1
|
Ferreira AAG, Desplan C. An Atlas of the Developing Drosophila Visual System Glia and Subcellular mRNA Localization of Transcripts in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552169. [PMID: 37609218 PMCID: PMC10441313 DOI: 10.1101/2023.08.06.552169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Glial cells are essential for proper nervous system development and function. To understand glial development and function, we comprehensively annotated glial cells in a single-cell mRNA-sequencing (scRNAseq) atlas of the developing Drosophila visual system. This allowed us to study their developmental trajectories, from larval to adult stages, and to understand how specific types of glia diversify during development. For example, neuropil glia that are initially transcriptionally similar in larvae, split into ensheathing and astrocyte-like glia during pupal stages. Other glial types, such as chiasm glia change gradually during development without splitting into two cell types. The analysis of scRNA-seq allowed us to discover that the transcriptome of glial cell bodies can be distinguished from that of their broken processes. The processes contain distinct enriched mRNAs that were validated in vivo. Therefore, we have identified most glial types in the developing optic lobe and devised a computational approach to identify mRNA species that are localized to cell bodies or cellular processes.
Collapse
Affiliation(s)
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
2
|
Liu Y, Shi SL. The roles of hnRNP A2/B1 in RNA biology and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1612. [PMID: 32588964 DOI: 10.1002/wrna.1612] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The RNA-binding protein hnRNPA2/B1 is a member of the hnRNPs family and is widely expressed in various tissues. hnRNPA2/B1 recognizes and binds specific RNA substrates and DNA motifs and is involved in the transcription, splicing processing, transport, stability, and translation regulation of a variety of RNA molecules and in regulating the expression of a large number of genes. hnRNPA2/B1 is also involved in telomere maintenance and DNA repair, while its expression changes and mutations are involved in the development of various tumors and neurodegenerative and autoimmune diseases. This paper reviews the role and mechanism of hnRNPA2/B1 in RNA metabolism, tumors, and neurodegenerative and autoimmune diseases. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yu Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Fujita H, Oikawa R, Hayakawa M, Tomoike F, Kimura Y, Okuno H, Hatashita Y, Fiallos Oliveros C, Bito H, Ohshima T, Tsuneda S, Abe H, Inoue T. Quantification of native mRNA dynamics in living neurons using fluorescence correlation spectroscopy and reduction-triggered fluorescent probes. J Biol Chem 2020; 295:7923-7940. [PMID: 32341124 PMCID: PMC7278347 DOI: 10.1074/jbc.ra119.010921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/22/2020] [Indexed: 11/06/2022] Open
Abstract
RNA localization in subcellular compartments is essential for spatial and temporal regulation of protein expression in neurons. Several techniques have been developed to visualize mRNAs inside cells, but the study of the behavior of endogenous and nonengineered mRNAs in living neurons has just started. In this study, we combined reduction-triggered fluorescent (RETF) probes and fluorescence correlation spectroscopy (FCS) to investigate the diffusion properties of activity-regulated cytoskeleton-associated protein (Arc) and inositol 1,4,5-trisphosphate receptor type 1 (Ip3r1) mRNAs. This approach enabled us to discriminate between RNA-bound and unbound fluorescent probes and to quantify mRNA diffusion parameters and concentrations in living rat primary hippocampal neurons. Specifically, we detected the induction of Arc mRNA production after neuronal activation in real time. Results from computer simulations with mRNA diffusion coefficients obtained in these analyses supported the idea that free diffusion is incapable of transporting mRNA of sizes close to those of Arc or Ip3r1 to distal dendrites. In conclusion, the combined RETF-FCS approach reported here enables analyses of the dynamics of endogenous, unmodified mRNAs in living neurons, affording a glimpse into the intracellular dynamics of RNA in live cells.
Collapse
Affiliation(s)
- Hirotaka Fujita
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Ryota Oikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Mayu Hayakawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Fumiaki Tomoike
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Hiroyuki Okuno
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiki Hatashita
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Carolina Fiallos Oliveros
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Aichi, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
4
|
Das S, Singer RH, Yoon YJ. The travels of mRNAs in neurons: do they know where they are going? Curr Opin Neurobiol 2019; 57:110-116. [PMID: 30784978 PMCID: PMC6650148 DOI: 10.1016/j.conb.2019.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
Neurons are highly polarized cells that can extend processes far from the cell body. As such, transport of messenger RNAs serves as a set of blueprints for the synthesis of specific proteins at distal sites. RNA localization to dendrites and axons confers the ability to regulate translation with extraordinary precision in space and time. Although the rationale for RNA localization is quite compelling, it is unclear how a neuron orchestrates such a complex task of distributing over a thousand different mRNAs to their respective subcellular compartments. Recent single-molecule imaging studies have led to insights into the kinetics of individual mRNAs. We can now peer into the transport dynamics of mRNAs in both dendrites and axons.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Janelia Research Campus, Ashburn, VA, USA.
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
5
|
Smith R, Rathod RJ, Rajkumar S, Kennedy D. Nervous translation, do you get the message? A review of mRNPs, mRNA-protein interactions and translational control within cells of the nervous system. Cell Mol Life Sci 2014; 71:3917-37. [PMID: 24952431 PMCID: PMC11113408 DOI: 10.1007/s00018-014-1660-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/22/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023]
Abstract
In neurons, translation of a message RNA can occur metres away from its transcriptional origin and in normal cells this is orchestrated with perfection. The life of an mRNA will see it pass through multiple steps of processing in the nucleus and the cytoplasm before it reaches its final destination. Processing of mRNA is determined by a myriad of RNA-binding proteins in multi-protein complexes called messenger ribonucleoproteins; however, incorrect processing and delivery of mRNA can cause several human neurological disorders. This review takes us through the life of mRNA from the nucleus to its point of translation in the cytoplasm. The review looks at the various cis and trans factors that act on the mRNA and discusses their roles in different cells of the nervous system and human disorders.
Collapse
Affiliation(s)
- Ross Smith
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia,
| | | | | | | |
Collapse
|
6
|
Human pathologies associated with defective RNA transport and localization in the nervous system. Biol Cell 2012; 99:649-61. [DOI: 10.1042/bc20070045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Ma B, Savas JN, Yu MS, Culver BP, Chao MV, Tanese N. Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons. Sci Rep 2011; 1:140. [PMID: 22355657 PMCID: PMC3216621 DOI: 10.1038/srep00140] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 10/18/2011] [Indexed: 12/30/2022] Open
Abstract
Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of β-actin mRNA. Live cell imaging demonstrated that β-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, HAP1, KIF5A, and dynein heavy chain by lentiviral-based shRNAs resulted in a reduction in the transport of β-actin mRNA. These findings support a role for Htt in participating in the mRNA transport machinery that also contains HAP1, KIF5A, and dynein.
Collapse
Affiliation(s)
- Bin Ma
- Department of Microbiology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA; Institute of Pathology, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Messengers, motors and mysteries: sorting of eukaryotic mRNAs by cytoskeletal transport. Biochem Soc Trans 2011; 39:1161-5. [DOI: 10.1042/bst0391161] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It has become increasingly apparent in recent years that the subcellular localization of specific mRNAs is a prevalent method for spatially controlling gene expression. In most cases, targeting of mRNAs is mediated by transport along cytoskeletal filaments by molecular motors. However, the means by which specific messages are recognized and linked to the motors are poorly understood. Here, I will provide an overview of recent progress in elucidating the molecular mechanisms and principles of mRNA transport, including several studies highlighting the co-operation of different motors during the localization process. Important outstanding questions will also be highlighted.
Collapse
|
9
|
Ma B, Culver BP, Baj G, Tongiorgi E, Chao MV, Tanese N. Localization of BDNF mRNA with the Huntington's disease protein in rat brain. Mol Neurodegener 2010; 5:22. [PMID: 20507609 PMCID: PMC2889995 DOI: 10.1186/1750-1326-5-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/27/2010] [Indexed: 01/09/2023] Open
Abstract
Background Studies have implicated reduced levels of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Huntington's disease. Mutant huntingtin (Htt) protein was previously reported to decrease BDNF gene transcription and axonal transport of BDNF. We recently showed that wild-type Htt is associated with the Argonaute 2 microRNA-processing enzyme involved in gene silencing. In dendrites, Htt co-localizes with components of neuronal granules and mRNAs, indicating that it might play a role in post-transcriptional processing/transport of dendritic mRNAs. Results We conducted imaging experiments in cultured cortical neurons to demonstrate the co-localization of endogenous Htt and BDNF mRNA in fixed cells, and co-trafficking of BDNF 3'UTR mRNA with endogenous and fluorescently tagged Htt in live neurons. We used an enhanced technique that combines FISH and immunofluorescent staining to co-localize BDNF mRNA with Htt, Ago2, CPEB and dynein in thick vibratome sections of the rat cortex. Conclusions In cultured neurons and sections of the rat cortex, we found BDNF mRNA associated with Htt and components of neuronal RNA granules, which are centers for regulating RNA transport and local translation. Htt may play a role in post-transcriptional transport/targeting of mRNA for BDNF, thus contributing to neurotrophic support and neuron survival.
Collapse
Affiliation(s)
- Bin Ma
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Subcellular localization of messenger RNAs (mRNAs) can give precise control over where protein products are synthesized and operate. However, just 10 years ago many in the broader cell biology community would have considered this a specialized mechanism restricted to a very small fraction of transcripts. Since then, it has become clear that subcellular targeting of mRNAs is prevalent, and there is mounting evidence for central roles for this process in many cellular events. Here, we review current knowledge of the mechanisms and functions of mRNA localization in animal cells.
Collapse
Affiliation(s)
- Christine E. Holt
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
11
|
Dorsett M, Schedl T. A role for dynein in the inhibition of germ cell proliferative fate. Mol Cell Biol 2009; 29:6128-39. [PMID: 19752194 PMCID: PMC2772574 DOI: 10.1128/mcb.00815-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 07/24/2009] [Accepted: 09/08/2009] [Indexed: 01/30/2023] Open
Abstract
During normal development as well as in diseased states such as cancer, extracellular "niches" often provide cues to proximal cells and activate intracellular pathways. Activation of such signaling pathways in turn instructs cellular proliferation and differentiation. In the Caenorhabditis elegans gonad, GLP-1/Notch signaling instructs germ line stem cells to self-renew through mitotic cell division. As germ cells progressively move out of the niche, they differentiate by entering meiosis and eventually form gametes. In this model system, we uncovered an unexpected role for the dynein motor complex in promoting normal differentiation of proliferating germ cells. We demonstrate that dynein light chain 1 (DLC-1) and its partner, dynein heavy chain 1, inhibit the proliferative cell fate, in part through regulation of METT-10, a conserved putative methyltransferase. We show that DLC-1 physically interacts with METT-10 and promotes both its overall levels and nuclear accumulation. Our results add a new dimension to the processes controlled by the dynein motor complex, demonstrating that dynein can act as an antiproliferative factor.
Collapse
Affiliation(s)
- Maia Dorsett
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, 63110
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, 63110
| |
Collapse
|
12
|
Lehmann M, Milev MP, Abrahamyan L, Yao XJ, Pante N, Mouland AJ. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. J Biol Chem 2009; 284:14572-85. [PMID: 19286658 PMCID: PMC2682905 DOI: 10.1074/jbc.m808531200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/03/2009] [Indexed: 11/06/2022] Open
Abstract
Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.
Collapse
Affiliation(s)
- Martin Lehmann
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Quebec
| | | | | | | | | | | |
Collapse
|
13
|
Bakiri Y, Burzomato V, Frugier G, Hamilton NB, Káradóttir R, Attwell D. Glutamatergic signaling in the brain's white matter. Neuroscience 2009; 158:266-74. [PMID: 18314276 DOI: 10.1016/j.neuroscience.2008.01.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/05/2008] [Indexed: 11/22/2022]
Abstract
Glutamatergic signaling has been exceptionally well characterized in the brain's gray matter, where it underlies fast information processing, learning and memory, and also generates the neuronal damage that occurs in pathological conditions such as stroke. The role of glutamatergic signaling in the white matter, an area until recently thought to be devoid of synapses, is less well understood. Here we review what is known, and highlight what is not known, of glutamatergic signaling in the white matter. We focus on how glutamate is released, the location and properties of the receptors it acts on, the interacting molecules that may regulate trafficking or signaling of the receptors, the possible functional roles of glutamate in the white matter, and its pathological effects including the possibility of treating white matter disorders with glutamate receptor blockers.
Collapse
Affiliation(s)
- Y Bakiri
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
14
|
Atomic force microscopy reveals binding of mRNA to microtubules mediated by two major mRNP proteins YB-1 and PABP. FEBS Lett 2008; 582:2875-81. [PMID: 18652827 DOI: 10.1016/j.febslet.2008.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/25/2008] [Accepted: 07/11/2008] [Indexed: 01/16/2023]
Abstract
A significant fraction of mRNAs is known to be associated in the form of mRNPs with microtubules for active transport. However, little is known about the interaction between mRNPs and microtubules and most of previous works were focused on molecular motor:microtubule interactions. Here, we have identified, via high resolution atomic force microscopy imaging, a significant binding of mRNA to microtubules mediated by two major mRNP proteins, YB-1 and PABP. This interaction with microtubules could be of critical importance for active mRNP traffic and for mRNP granule formation. A similar role may be fulfilled by other cationic mRNA partners.
Collapse
|
15
|
Fusco D, Bertrand E, Singer RH. Imaging of single mRNAs in the cytoplasm of living cells. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:135-50. [PMID: 15113083 PMCID: PMC4975164 DOI: 10.1007/978-3-540-74266-1_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dahlene Fusco
- Department of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, 10461, Bronx, New York, USA
| | - Edouard Bertrand
- Institut de Genetique Moleculaire de Montpellier-CNRS, UMR 5535, IFR 24, 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Robert H. Singer
- Department of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine, 10461, Bronx, New York, USA
| |
Collapse
|
16
|
Abstract
In recent years, closer inspection of the dynamics of cytoplasmic mRNA transport processes has shed new light on the mechanisms by which transcripts are recognized by motor complexes and deposited at the correct site. Several studies have highlighted the significance of the motile properties of motor complexes in differential transcript localization. In yeast, mRNA cargoes may stimulate either the movement or anchorage of actin-based motors. In higher eukaryotes, emerging evidence suggests that mRNA cargoes can control their sorting by regulating the motility of motor complexes or their choice of subsets of cytoskeletal tracks. The transport machinery that is utilized by differentially localizing mRNAs appears to share some common motors and regulatory factors. A major challenge for the future is therefore to understand how motor complexes decode the information in mRNA sequences.
Collapse
Affiliation(s)
- Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
17
|
Dynes JL, Steward O. Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. J Comp Neurol 2007; 500:433-47. [PMID: 17120280 DOI: 10.1002/cne.21189] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mRNA for Arc (activity-regulated cytoskeletal protein) is delivered into dendrites and localizes selectively at active synapses. Here we use a green fluorescent protein-based labeling system and confocal microscopy to define the transport kinetics of exogenously expressed mRNA from chimaeric Arc constructs (Arc/MS2 mRNA) in the dendrites of living rat neurons in culture. Arc/MS2 mRNA assembles into particles that move independently, bidirectionally, and intermittently in a fashion indicative of transport. Transport velocities range from below 6 to 65 mum/minute, which is consistent with actin-based and microtubule-based transport, respectively. In general, orthograde translocations are longer than retrograde translocations. Rapidly translocating Arc/MS2 mRNA particles sometimes reverse direction and decrease velocity just before stopping, suggesting that local signals regulate Arc mRNA targeting movements. These observations identify several phases of Arc mRNA movement that serve as potential points for regulating Arc mRNA localization.
Collapse
Affiliation(s)
- Joseph L Dynes
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
18
|
Bullock SL, Nicol A, Gross SP, Zicha D. Guidance of bidirectional motor complexes by mRNA cargoes through control of dynein number and activity. Curr Biol 2006; 16:1447-52. [PMID: 16860745 DOI: 10.1016/j.cub.2006.05.055] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/20/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
During asymmetric cytoplasmic mRNA transport, cis-acting localization signals are widely assumed to tether a specific subset of transcripts to motor complexes that have intrinsic directionality. Here we provide evidence that mRNA transcripts control their sorting by regulating the relative activities of opposing motors on microtubules. We show in Drosophila embryos that all mRNAs undergo bidirectional transport on microtubules and that cis-acting elements produce a range of polarized transcript distributions by regulating the frequency, velocity, and duration of minus-end-directed runs. Increased minus-end motility is dependent on the dosage of RNA elements and the proteins Egalitarian (Egl) and Bicaudal-D (BicD). We show that these proteins, together with the dynein motor, are recruited differentially to different RNA signals. Cytoplasmic transfer experiments reveal that, once assembled, cargo/motor complexes are insensitive to reduced cytoplasmic levels of transport proteins. Thus, the concentration of these proteins is only critical at the onset of transport. This work suggests that the architecture of RNA elements, through Egl and BicD, regulates directional transport by controlling the relative numbers of opposite polarity motors assembled. Our data raise the possibility that recruitment of different numbers of motors and regulatory proteins is a general strategy by which microtubule-based cargoes control their sorting.
Collapse
|
19
|
Abstract
The targeting of mRNAs to neuronal dendrites is an important protein sorting mechanism. Recent studies have revealed that mRNAs are transported by molecular motors. The kinesin superfamily protein KIF5 transports mRNAs such as calcium/calmodulin-dependent kinase IIalpha (CaMKIIalpha) and Arc mRNAs along microtubules in large granules containing proteins involved in RNA transport, protein synthesis, RNA helicases, heterogeneous nuclear ribonucleoproteins (hnRNPs), and RNA-associated proteins. This transport is fundamental to local protein synthesis and to the regulation of neuronal function.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| |
Collapse
|
20
|
Levy JR, Sumner CJ, Caviston JP, Tokito MK, Ranganathan S, Ligon LA, Wallace KE, LaMonte BH, Harmison GG, Puls I, Fischbeck KH, Holzbaur ELF. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. ACTA ACUST UNITED AC 2006; 172:733-45. [PMID: 16505168 PMCID: PMC2063705 DOI: 10.1083/jcb.200511068] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1. Cell lines from patients are morphologically normal but show delayed recovery after nocodazole treatment, consistent with a subtle disruption of dynein/dynactin function. The G59S mutation disrupts the folding of the CAP-Gly domain, resulting in aggregation of the p150Glued protein both in vitro and in vivo, which is accompanied by an increase in cell death in a motor neuron cell line. Overexpression of the chaperone Hsp70 inhibits aggregate formation and prevents cell death. These data support a model in which a point mutation in p150Glued causes both loss of dynein/dynactin function and gain of toxic function, which together lead to motor neuron cell death.
Collapse
Affiliation(s)
- Jennifer R Levy
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
22
|
Tretyakova I, Zolotukhin AS, Tan W, Bear J, Propst F, Ruthel G, Felber BK. Nuclear Export Factor Family Protein Participates in Cytoplasmic mRNA Trafficking. J Biol Chem 2005; 280:31981-90. [PMID: 16014633 DOI: 10.1074/jbc.m502736200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, the nuclear export of mRNA is mediated by nuclear export factor 1 (NXF1) receptors. Metazoans encode additional NXF1-related proteins of unknown function, which share homology and domain organization with NXF1. Some mammalian NXF1-related genes are expressed preferentially in the brain and are thought to participate in neuronal mRNA metabolism. To address the roles of NXF1-related factors, we studied the two mouse NXF1 homologues, mNXF2 and mNXF7. In neuronal cells, mNXF2, but not mNXF7, exhibited mRNA export activity similar to that of Tip-associated protein/NXF1. Surprisingly, mNXF7 incorporated into mobile particles in the neurites that contained poly(A) and ribosomal RNA and colocalized with Staufen1-containing transport granules, indicating a role in neuronal mRNA trafficking. Yeast two-hybrid interaction, coimmunoprecipitation, and in vitro binding studies showed that NXF proteins bound to brain-specific microtubule-associated proteins (MAP) such as MAP1B and the WD repeat protein Unrip. Both in vitro and in vivo, MAP1B also bound to NXF export cofactor U2AF as well as to Staufen1 and Unrip. These findings revealed a network of interactions likely coupling the export and cytoplasmic trafficking of mRNA. We propose a model in which MAP1B tethers the NXF-associated mRNA to microtubules and facilitates their translocation along dendrites while Unrip provides a scaffold for the assembly of these transport intermediates.
Collapse
Affiliation(s)
- Irina Tretyakova
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
In neural cells, certain RNAs are targeted to dendrites by a specific RNA trafficking pathway, termed the A2 pathway, mediated by the trans-acting trafficking factor, heterogeneous nuclear ribonucleoprotein (hnRNP) A2, which binds to an 11 nucleotide cis-acting trafficking sequence, termed the hnRNP A2 response element (A2RE). RNAs containing A2RE-like sequences are recognized by hnRNP A2 in the nucleus and exported to the cytoplasm where they assemble into trafficking intermediates, termed granules, which also contain components of the translation machinery and molecular motors (cytoplasmic dynein and conventional kinesin). RNA granules move along microtubules to the cell periphery where they become localized and where the encoded protein is translated. Intracellular trafficking of RNA molecules by the A2 pathway is mediated by a complex system consisting of five different subsystems, approximately 35 different molecules and approximately 45 different molecular interactions. Specificity in the A2 pathway is provided by specific interactions of hnRNP A2 with different molecular partners in different subsystems. Polarity of RNA trafficking is controlled by transitions of trafficking intermediates between different subsystems. Comprehensive understanding of the A2 RNA trafficking pathway will require quantitative analysis of concentrations and diffusion constants for each of the different molecules, on rates and off rates for each of the different interactions, relevant conditional operators controlling specific interactions, and interactions of different subsystems. Once the necessary quantitative data are available, mathematical models for the different RNA trafficking subsystems can be developed using computational platforms such as the 'Virtual Cell'. Here we describe how each of the subsystems in the A2 system functions and how the different subsystems interact to regulate RNA trafficking.
Collapse
Affiliation(s)
- John H Carson
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
24
|
Kavanagh SJ, Schulz TC, Davey P, Claudianos C, Russell C, Rathjen PD. A family of RS domain proteins with novel subcellular localization and trafficking. Nucleic Acids Res 2005; 33:1309-22. [PMID: 15741184 PMCID: PMC552957 DOI: 10.1093/nar/gki269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.
Collapse
Affiliation(s)
- Steven J. Kavanagh
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Thomas C. Schulz
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Philippa Davey
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Charles Claudianos
- Molecular Genetics and Evolution, Research School of Biological Sciences, Australian National UniversityACT 2601, Australia
| | - Carrie Russell
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
- National Stem Cell CentreNotting Hill, VIC 3168, Australia
- To whom correspondence should be addressed. Tel: +61 8 8303 5650; Fax: +61 8 8303 4348;
| |
Collapse
|
25
|
Kosturko LD, Maggipinto MJ, D'Sa C, Carson JH, Barbarese E. The microtubule-associated protein tumor overexpressed gene binds to the RNA trafficking protein heterogeneous nuclear ribonucleoprotein A2. Mol Biol Cell 2005; 16:1938-47. [PMID: 15703215 PMCID: PMC1073673 DOI: 10.1091/mbc.e04-08-0709] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In neural cells, such as oligodendrocytes and neurons, transport of certain RNAs along microtubules is mediated by the cis-acting heterogeneous nuclear ribonucleoprotein A2 response element (A2RE) trafficking element and the cognate trans-acting heterogeneous nuclear ribonucleoprotein (hnRNP) A2 trafficking factor. Using a yeast two-hybrid screen, we have identified a microtubule-associated protein, tumor overexpressed gene (TOG)2, as an hnRNP A2 binding partner. The C-terminal third of TOG2 is sufficient for hnRNP A2 binding. TOG2, the large protein isoform of TOG, is the only isoform detected in oligodendrocytes in culture. TOG coimmunoprecipitates with hnRNP A2 present in the cytoskeleton (CSK) fraction of neural cells, and both coprecipitate with microtubule stabilized pellets. Staining with anti-TOG reveals puncta that are localized in proximity to microtubules, often at the plus ends. TOG is colocalized with hnRNP A2 and A2RE-mRNA in trafficking granules that remain associated with CSK-insoluble tissue. These data suggest that TOG mediates the association of hnRNP A2-positive granules with microtubules during transport and/or localization.
Collapse
Affiliation(s)
- Linda D Kosturko
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The strength of synaptic connections can undergo long-lasting changes, and such long-term plasticity is thought to underlie higher brain functions such as learning and memory. De novo synthesis of proteins is required for such plastic changes. This model is now supported by several lines of experimental data. Components of translational machinery have been identified in dendrites, including ribosomes, translation-al factors, numerous RNAs, and components of posttranslational secretory pathways. Various RNAs have been shown to be actively and rapidly transported to dendrites. Dendritic RNAs typically contain transport-specifying elements (dendritic targeting elements). Such dendritic targeting elements associate with trans-acting factors to form transport-competent ribonucleoprotein particles. It is assumed that molecular motors mediate transport of such particles along dendritic cytoskeletal elements. Once an mRNA has arrived at its dendritic destination site, appropriate spatiotemporal control of its translation, for example, in response to transsynaptic activity, becomes vital. Such local translational control, recent evidence indicates, is implemented at different levels and through various pathways. In the default state, translation is assumed to be repressed, and several mechanisms, some including small untranslated RNAs, have been proposed to contribute to such repression. Translational control at the synapse thus provides a molecular basis for the long-term, input-specific modulation of synaptic strength.
Collapse
Affiliation(s)
- Huidong Wang
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, 11203, USA
| | | |
Collapse
|
27
|
Thomas MG, Martinez Tosar LJ, Loschi M, Pasquini JM, Correale J, Kindler S, Boccaccio GL. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol Biol Cell 2004; 16:405-20. [PMID: 15525674 PMCID: PMC539183 DOI: 10.1091/mbc.e04-06-0516] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Alternative Splicing
- Animals
- Animals, Newborn
- Biological Transport
- Blotting, Western
- Brain/metabolism
- Cloning, Molecular
- Computer Simulation
- Cytoplasm/metabolism
- In Situ Hybridization, Fluorescence
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microtubules/metabolism
- Models, Genetic
- Myelin Sheath/metabolism
- Oligodendroglia/metabolism
- Oxidative Stress
- Polyribosomes/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Double-Stranded/chemistry
- RNA, Messenger/metabolism
- RNA-Binding Proteins/biosynthesis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/physiology
- Rats
- Rats, Sprague-Dawley
- Ribonucleases/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- María G Thomas
- Fundación Instituto Leloir, IIB Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, IIBBA-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Active transport by microtubule motors has a plethora of crucial roles in eukaryotic cells. Organelles often move bidirectionally, employing both plus-end and minus-end directed motors. Bidirectional motion is widespread and may allow dynamic regulation, error correction and the establishment of polarized organelle distributions. Emerging evidence suggests that motors for both directions are simultaneously present on cellular 'cargo', but that their activity is coordinated so that when plus-end motors are active, minus-end motors are not, and vice versa. Both the dynein cofactor dynactin and the Klarsicht (Klar) protein appear to be important for such coordination. The direction of net transport depends on the balance between plus-end directed and minus-end directed motion. In several model systems, factors crucial for setting this balance have now been identified, setting the stage for a molecular dissection of the underlying regulatory mechanisms. These analyses will likely provide insight into motor cooperation in general.
Collapse
Affiliation(s)
- Michael A Welte
- Rosenstiel Biomedical Research Center and Department of Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
29
|
Bériault V, Clément JF, Lévesque K, Lebel C, Yong X, Chabot B, Cohen EA, Cochrane AW, Rigby WFC, Mouland AJ. A late role for the association of hnRNP A2 with the HIV-1 hnRNP A2 response elements in genomic RNA, Gag, and Vpr localization. J Biol Chem 2004; 279:44141-53. [PMID: 15294897 DOI: 10.1074/jbc.m404691200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two cis-acting RNA trafficking sequences (heterogenous ribonucleoprotein A2 (hnRNP A2)-response elements 1 and 2 or A2RE-1 and A2RE-2) have been identified in HIV-1 vpr and gag mRNAs and were found to confer cytoplasmic RNA trafficking in a murine oligodendrocyte assay. Their activities were assessed during HIV-1 proviral gene expression in COS7 cells. Single point mutations that were shown to severely block RNA trafficking were introduced into each of the A2REs. In both cases, this resulted in a marked decrease in hnRNP A2 binding to HIV-1 genomic RNA in whole cell extracts and hnRNP A2-containing polysomes. This also resulted in an accumulation of HIV-1 genomic RNA in the nucleus and a significant reduction in genomic RNA encapsidation levels. Immunofluorescence analyses revealed altered expression patterns for pr55Gag and particularly that for Vpr. Vpr localization became almost completely nuclear and this was reflected in a significant reduction in virion-associated Vpr levels. These effects coincided with late steps of the viral replication cycle and were not seen at early time points post-transfection. Transcription, splicing, steady state RNA levels, and pr55Gag processing were not affected. On the other hand, viral replication was markedly compromised in A2RE-2 mutant viruses and this correlated with lowered genomic RNA encapsidation levels. These data reveal new insights into the virus-host interactions between hnRNP A2 and the HIV-1 A2REs and their influence on the patterns of HIV-1 gene expression and viral assembly.
Collapse
Affiliation(s)
- Véronique Bériault
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Room 323A, 3755 Côte-Ste-Catherine Road, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kanai Y, Dohmae N, Hirokawa N. Kinesin Transports RNA. Neuron 2004; 43:513-25. [PMID: 15312650 DOI: 10.1016/j.neuron.2004.07.022] [Citation(s) in RCA: 849] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 06/21/2004] [Accepted: 07/19/2004] [Indexed: 01/01/2023]
Abstract
RNA transport is an important and fundamental event for local protein synthesis, especially in neurons. RNA is transported as large granules, but little is known about them. Here, we isolated a large RNase-sensitive granule (size: 1000S approximately) as a binding partner of conventional kinesin (KIF5). We identified a total of 42 proteins with mRNAs for CaMKIIalpha and Arc in the granule. Seventeen of the proteins (hnRNP-U, Pur alpha and beta, PSF, DDX1, DDX3, SYNCRIP, TLS, NonO, HSPC117, ALY, CGI-99, staufen, three FMRPs, and EF-1alpha) were extensively investigated, including their classification, binding combinations, and necessity for the "transport" of RNA. These proteins and the mRNAs were colocalized to the kinesin-associated granules in dendrites. The granules moved bidirectionally, and the distally directed movement was enhanced by the overexpression of KIF5 and reduced by its functional blockage. Thus, kinesin transports RNA via this granule in dendrites coordinately with opposite motors, such as dynein.
Collapse
Affiliation(s)
- Yoshimitsu Kanai
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
31
|
Uchida A, Brown A. Arrival, reversal, and departure of neurofilaments at the tips of growing axons. Mol Biol Cell 2004; 15:4215-25. [PMID: 15215317 PMCID: PMC515353 DOI: 10.1091/mbc.e04-05-0371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the movement of green fluorescent protein-tagged neurofilaments at the distal ends of growing axons by using time-lapse fluorescence imaging. The filaments moved in a rapid, infrequent, and asynchronous manner in either an anterograde or retrograde direction (60% anterograde, 40% retrograde). Most of the anterograde filaments entered the growth cone and most of the retrograde filaments originated in the growth cone. In a small number of cases we were able to observe neurofilaments reverse direction, and all of these reversals occurred in or close to the growth cone. We conclude that neurofilament polymers are delivered rapidly and infrequently to the tips of growing axons and that some of these polymers reverse direction in the growth cone and move back into the axon. We propose that 1) growth cones are a preferential site of neurofilament reversal in distal axons, 2) most retrograde neurofilaments in distal axons originate by reversal of anterograde filaments in the growth cone, 3) those anterograde filaments that do not reverse direction are recruited to form the neurofilament cytoskeleton of the newly forming axon, and 4) the net delivery of neurofilament polymers to growth cones may be controlled by regulating the reversal frequency.
Collapse
Affiliation(s)
- Atsuko Uchida
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
32
|
Gross SP, Guo Y, Martinez JE, Welte MA. A determinant for directionality of organelle transport in Drosophila embryos. Curr Biol 2004; 13:1660-8. [PMID: 14521831 DOI: 10.1016/j.cub.2003.08.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Motor-driven transport along microtubules is a primary cellular mechanism for moving and positioning organelles. Many cargoes move bidirectionally by using both minus and plus end-directed motors. How such cargoes undergo controlled net transport is unresolved. RESULTS Using a combination of genetics, molecular biology, and biophysics, we have identified Halo, a novel regulator of lipid droplet transport in early Drosophila embryos. In embryos lacking Halo, net transport of lipid droplets, but not that of other cargoes, is specifically altered; net transport is minus-end directed at developmental stages when it is normally plus-end directed. This reversal is due to an altered balance of motion at the level of individual organelles; without Halo, travel distances and stall forces are reduced for plus-end and increased for minus-end motion. During development, halo mRNA is highly upregulated just as net plus-end transport is initiated (phase II), and its levels drop precipitously shortly before transport becomes minus-end directed (phase III). Exogenously provided Halo prevents the switch to net minus-end transport in phase III in wild-type embryos and induces net plus-end transport during phase II in halo mutant embryos. This mechanism of regulation is likely to be of general importance because the Drosophila genome encodes a family of related proteins with similar sequences, each transiently expressed in distinct domains. CONCLUSIONS We conclude that Halo acts as a directionality determinant for embryonic droplet transport and is the first member of a new class of transport regulators.
Collapse
Affiliation(s)
- Steven P Gross
- Department of Developmental and Cell Biology, 2222 Natural Sciences I, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
33
|
Song J, Carson JH, Barbarese E, Li FY, Duncan ID. RNA transport in oligodendrocytes from the taiep mutant rat. Mol Cell Neurosci 2003; 24:926-38. [PMID: 14697659 DOI: 10.1016/s1044-7431(03)00254-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The results presented here identify a new RNA trafficking phenotype in taiep oligodendrocytes that increases the frequency of reversals and restricts the extent of transport of RNA containing the A2RE transport signal from MBP mRNA. The taiep rat is a myelin mutant characterized by excessive accumulation of microtubules in oligodendrocytes and myelin deficiency in the central nervous system. The taiep RNA trafficking is developmentally correlated with the microtubule accumulation in oligodendrocytes and can be partially suppressed by reducing microtubule density with nocodazole or inhibiting dynein activity by coinjecting anti-dynein antibodies. These results suggest that RNA trafficking in taiep oligodendrocytes is inhibited by enhanced dynein activity that neutralizes or lessens the normal overriding power of the plus-end directed motor kinesin. Altered orientation of microtubules in oligodendrocyte fine processes and a physical barrier created by densely packed microtubules may also contribute to the inhibition of RNA trafficking in taiep oligodendrocytes.
Collapse
Affiliation(s)
- Jonathan Song
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
34
|
Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 2003; 13:161-167. [PMID: 12546792 PMCID: PMC4764064 DOI: 10.1016/s0960-9822(02)01436-7] [Citation(s) in RCA: 462] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytoplasmic mRNA movements ultimately determine the spatial distribution of protein synthesis. Although some mRNAs are compartmentalized in cytoplasmic regions, most mRNAs, such as housekeeping mRNAs or the poly-adenylated mRNA population, are believed to be distributed throughout the cytoplasm. The general mechanism by which all mRNAs may move, and how this may be related to localization, is unknown. Here, we report a method to visualize single mRNA molecules in living mammalian cells, and we report that, regardless of any specific cytoplasmic distribution, individual mRNA molecules exhibit rapid and directional movements on microtubules. Importantly, the beta-actin mRNA zipcode increased both the frequency and length of these movements, providing a common mechanistic basis for both localized and nonlocalized mRNAs. Disruption of the cytoskeleton with drugs showed that microtubules and microfilaments are involved in the types of mRNA movements we have observed, which included complete immobility and corralled and nonrestricted diffusion. Individual mRNA molecules switched frequently among these movements, suggesting that mRNAs undergo continuous cycles of anchoring, diffusion, and active transport.
Collapse
Affiliation(s)
- Dahlene Fusco
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
| | - Nathalie Accornero
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Brigitte Lavoie
- NINDS/NIH Molecular Plasticity Section Bethesda, Maryland 20892
| | - Shailesh M. Shenoy
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
| | - Jean-Marie Blanchard
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Robert H. Singer
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
- Correspondence: ;
| | - Edouard Bertrand
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
- Correspondence: ;
| |
Collapse
|
35
|
MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM. Activity-independent homeostasis in rhythmically active neurons. Neuron 2003; 37:109-20. [PMID: 12526777 DOI: 10.1016/s0896-6273(02)01104-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The shal gene encodes the transient potassium current (I(A)) in neurons of the lobster stomatogastric ganglion. Overexpression of Shal by RNA injection into neurons produces a large increase in I(A), but surprisingly little change in the neuron's firing properties. Accompanying the increase in I(A) is a dramatic and linearly correlated increase in the hyperpolarization-activated inward current (I(h)). The enhanced I(h) electrophysiologically compensates for the enhanced I(A), since pharmacological blockade of I(h) uncovers the physiological effects of the increased I(A). Expression of a nonfunctional mutant Shal also induces a large increase in I(h), demonstrating a novel activity-independent coupling between the Shal protein and I(h) enhancement. Since I(A) and I(h) influence neuronal activity in opposite directions, our results suggest a selective coregulation of these channels as a mechanism for constraining cell activity within appropriate physiological parameters.
Collapse
Affiliation(s)
- Jason N MacLean
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
36
|
Larocque D, Pilotte J, Chen T, Cloutier F, Massie B, Pedraza L, Couture R, Lasko P, Almazan G, Richard S. Nuclear retention of MBP mRNAs in the quaking viable mice. Neuron 2002; 36:815-29. [PMID: 12467586 DOI: 10.1016/s0896-6273(02)01055-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Quaking viable (qk(v)) mice fail to properly compact myelin in their central nervous systems. Although the defect in the qk(v) mice involves a mutation affecting the expression of the alternatively spliced qk gene products, their roles in myelination are unknown. We show that the QKI RNA binding proteins regulate the nuclear export of MBP mRNAs. Disruption of the QKI nucleocytoplasmic equilibrium in oligodendrocytes results in nuclear and perikaryal retention of the MBP mRNAs and lack of export to cytoplasmic processes, as it occurs in qk(v) mice. MBP mRNA export defect leads to a reduction in the MBP levels and their improper cellular targeting to the periphery. Our findings suggest that QKI participates in myelination by regulating the mRNA export of key protein components.
Collapse
Affiliation(s)
- Daniel Larocque
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Slepchenko BM, Schaff JC, Carson JH, Loew LM. Computational cell biology: spatiotemporal simulation of cellular events. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:423-41. [PMID: 11988477 DOI: 10.1146/annurev.biophys.31.101101.140930] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of computational cell biology has emerged within the past 5 years because of the need to apply disciplined computational approaches to build and test complex hypotheses on the interacting structural, physical, and chemical features that underlie intracellular processes. To meet this need, newly developed software tools allow cell biologists and biophysicists to build models and generate simulations from them. The construction of general-purpose computational approaches is especially challenging if the spatial complexity of cellular systems is to be explicitly treated. This review surveys some of the existing efforts in this field with special emphasis on a system being developed in the authors' laboratory, Virtual Cell. The theories behind both stochastic and deterministic simulations are discussed. Examples of respective applications to cell biological problems in RNA trafficking and neuronal calcium dynamics are provided to illustrate these ideas.
Collapse
Affiliation(s)
- Boris M Slepchenko
- Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, CT 06117, USA
| | | | | | | |
Collapse
|
38
|
Shigematsu S, Khan AH, Kanzaki M, Pessin JE. Intracellular insulin-responsive glucose transporter (GLUT4) distribution but not insulin-stimulated GLUT4 exocytosis and recycling are microtubule dependent. Mol Endocrinol 2002; 16:1060-8. [PMID: 11981040 DOI: 10.1210/mend.16.5.0836] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate the potential role of microtubules in the regulation of insulin-responsive glucose transporter (GLUT4) trafficking in adipocytes, we examined the effects of microtubule depolymerizing and stabilizing agents. In contrast to previous reports, disruption or stabilization of microtubule structures had no significant effect on insulin-stimulated GLUT4 translocation. However, consistent with a more recent study (Molero, J. C., J. P. Whitehead, T. Meerloo, and D. E. James, 2001, J Biol Chem 276:43829-43835) nocodazole did inhibit glucose uptake through a direct interaction with the transporter itself independent of the translocation process. In addition, the initial rate of GLUT4 endocytosis was not significantly affected by microtubule depolymerization. However, these internalized GLUT4 compartments are confined to regions just beneath the plasma membrane and were not exposed to the extracellular space. Furthermore, they were unable to undergo further sorting steps and trafficking to the perinuclear region. Nevertheless, these apparent early endocytic GLUT4 compartments fully responded to a second insulin stimulation with an identical extent of plasma membrane translocation. Together, these data demonstrate that although microtubular organization may play a role in the trafficking of GLUT4 early endocytic vesicles back to the perinuclear region, they do not have a significant role in insulin-stimulated GLUT4 exocytosis, initial endocytosis from the plasma membrane and/or recycling back to the plasma membrane.
Collapse
Affiliation(s)
- Satoshi Shigematsu
- Department of Physiology & Biophysics, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
39
|
Kosik KS, Krichevsky AM. The message and the messenger: delivering RNA in neurons. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe16. [PMID: 11930084 DOI: 10.1126/stke.2002.126.pe16] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Synaptic plasticity results in enduring changes in synaptic function. Localized protein synthesis is part of this process. Kosik and Krichevsky describe how a dynamic macromolecular structure, the RNA granule, may be a key element contributing to changes in protein production leading to synaptic plasticity.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
Kosik KS, Krichevsky AM. The Message and the Messenger: Delivering RNA in Neurons. Sci Signal 2002. [DOI: 10.1126/scisignal.1262002pe16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 2002; 3:195-205. [PMID: 11994740 DOI: 10.1038/nrm760] [Citation(s) in RCA: 1121] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
From sites of transcription in the nucleus to the outreaches of the cytoplasm, messenger RNAs are associated with RNA-binding proteins. These proteins influence pre-mRNA processing as well as the transport, localization, translation and stability of mRNAs. Recent discoveries have shown that one group of these proteins marks exon exon junctions and has a role in mRNA export. These proteins communicate crucial information to the translation machinery for the surveillance of nonsense mutations and for mRNA localization and translation.
Collapse
Affiliation(s)
- Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
| | | | | |
Collapse
|