1
|
Kim S, Woo Y, Um D, Chun I, Noh SJ, Ji HA, Jung N, Goo BS, Yoo JY, Mun DJ, Nghi TD, Nhung TTM, Han SH, Lee SB, Lee W, Yun J, So KH, Kim DK, Jang H, Suh Y, Rah JC, Baek ST, Yoon KJ, Kim MS, Kim TK, Park SK. Perturbed cell fate decision by schizophrenia-associated AS3MT d2d3 isoform during corticogenesis. SCIENCE ADVANCES 2025; 11:eadp8271. [PMID: 40153497 PMCID: PMC11952104 DOI: 10.1126/sciadv.adp8271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
The neurodevelopmental theory of schizophrenia emphasizes early brain development in its etiology. Genome-wide association studies have linked schizophrenia to genetic variations of AS3MT (arsenite methyltransferase) gene, particularly the increased expression of AS3MTd2d3 isoform. To investigate the biological basis of this association with schizophrenia pathophysiology, we established a transgenic mouse model (AS3MTd2d3-Tg) ectopically expressing AS3MTd2d3 at the cortical neural stem cells. AS3MTd2d3-Tg mice exhibited enlarged ventricles and deficits in sensorimotor gating and sociability. Single-cell and single-nucleus RNA sequencing analyses of AS3MTd2d3-Tg brains revealed cell fate imbalances and altered excitatory neuron composition. AS3MTd2d3 localized to centrosome, disrupting mitotic spindle orientation and differentiation in developing neocortex and organoids, in part through NPM1 (Nucleophosmin 1). The structural analysis identified that hydrophobic residues exposed in AS3MTd2d3 are critical for its pathogenic function. Therefore, our findings may help to explain the early pathological features of schizophrenia.
Collapse
Affiliation(s)
- Seunghyun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Inseop Chun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su-Jin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hyeon Ah Ji
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namyoung Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jin Yeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seung Hyeon Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Wonhyeok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jonghyeok Yun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Ki Hurn So
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dae-Kyum Kim
- Division of Thoracic and Upper Gastrointestinal Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1A4, Canada
- Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Hyunsoo Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Seung Tae Baek
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejon 34141, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03772, Republic of Korea
| |
Collapse
|
2
|
Dhanya SK, Kalia K, Mohanty S, Azam T, Channakkar AS, D'Souza L, Swathi KS, Reddy PC, Muralidharan B. Histone-binding protein RBBP4 is necessary to promote neurogenesis in the developing mouse neocortical progenitors. eNeuro 2024; 11:ENEURO.0391-23.2024. [PMID: 39592227 PMCID: PMC7617683 DOI: 10.1523/eneuro.0391-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Chromatin regulation plays a crucial role in neocortical neurogenesis, and mutations in chromatin modifiers are linked to neurodevelopmental disorders. RBBP4 is a core subunit of several chromatin-modifying complexes; however, its functional role and genome-wide occupancy profile in the neocortical primordium are unknown. To address this, we performed RBBP4 knockdown using CRISPR/Cas9 on neocortical progenitors derived from mice of both sexes at embryonic age 12.5 during deep-layer neurogenesis. Our study demonstrates that downregulation of RBBP4 in the E12.5 neocortical progenitors reduced neuronal output, specifically affecting CTIP2-expressing neurons. We demonstrate that RBBP4 plays an essential role in regulating neocortical progenitor proliferation. However, overexpression of RBBP4 alone was not sufficient to regulate neuronal fate.Genome-wide occupancy analysis revealed that RBBP4 primarily binds to distal regulatory elements, and neuron differentiation is a significant GO biological pathway of RBBP4-bound genes. Interestingly, we found that RBBP4 binds to Cdon, a receptor protein in the Shh signaling pathway, and knockdown of Cdon phenocopies RBBP4 knockdown resulting in a significant reduction in neurogenesis, particularly CTIP2-expressing neurons. CDON overexpression could rescue the phenotype caused upon loss of RBBP4 in the neocortex, thereby suggesting the functional link between RBBP4 and its target gene CDON. Our results shed light on the cellular role of RBBP4 and identify CDON as a novel regulator of deep-layer neurogenesis in the neocortical progenitors. Our findings are significant in the context of understanding how dysregulated chromatin regulation impacts cellular mechanisms in neurodevelopmental disorders.Significance Statement Chromatin modifier RBBP4 regulates chromatin structure and, thereby, gene expression. It is expressed in the dorsal telencephalon progenitors during deep-layer neurogenesis. In this study, we unveil a novel role for RBBP4 in regulating deep-layer neurogenesis in the neocortical progenitors. Our research underscores RBBP4's critical role in governing progenitor proliferation and neuronal subtype specification in the neocortex while identifying its genome-wide binding occupancy profile. Moreover, we identify Cdon as a novel binding target of RBBP4, also involved in regulating deep-layer neurogenesis. These findings illuminate the mechanisms by which chromatin modifiers influence neocortical development, offering insights into how mutations in chromatin modifiers could impact cortical development and contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Sattwik Mohanty
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Tulaib Azam
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Asha S Channakkar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
- Regional Centre for Biotechnology, Faridabad - 121001
| | - Leora D'Souza
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - K S Swathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi- 201314, India
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore-560065, India
| |
Collapse
|
3
|
Chen X, Ma Y, Shi Y, Fu Y, Nan M, Ren Q, Gao J. Population-Level Cell Trajectory Inference Based on Gaussian Distributions. Biomolecules 2024; 14:1396. [PMID: 39595573 PMCID: PMC11592043 DOI: 10.3390/biom14111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
In the past decade, inferring developmental trajectories from single-cell data has become a significant challenge in bioinformatics. RNA velocity, with its incorporation of directional dynamics, has significantly advanced the study of single-cell trajectories. However, as single-cell RNA sequencing technology evolves, it generates complex, high-dimensional data with high noise levels. Existing trajectory inference methods, which overlook cell distribution characteristics, may perform inadequately under such conditions. To address this, we introduce CPvGTI, a Gaussian distribution-based trajectory inference method. CPvGTI utilizes a Gaussian mixture model, optimized by the Expectation-Maximization algorithm, to construct new cell populations in the original data space. By integrating RNA velocity, CPvGTI employs Gaussian Process Regression to analyze the differentiation trajectories of these cell populations. To evaluate the performance of CPvGTI, we assess CPvGTI's performance against several state-of-the-art methods using four structurally diverse simulated datasets and four real datasets. The simulation studies indicate that CPvGTI excels in pseudo-time prediction and structural reconstruction compared to existing methods. Furthermore, the discovery of new branch trajectories in human forebrain and mouse hematopoiesis datasets confirms CPvGTI's superior performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Gao
- School of Science, Jiangnan University, Wuxi 214122, China; (X.C.); (Y.M.); (Y.S.); (Y.F.); (M.N.); (Q.R.)
| |
Collapse
|
4
|
Suresh V, Muralidharan B, Pradhan SJ, Bose M, D’Souza L, Parichha A, Reddy PC, Galande S, Tole S. Regulation of chromatin accessibility and gene expression in the developing hippocampal primordium by LIM-HD transcription factor LHX2. PLoS Genet 2023; 19:e1010874. [PMID: 37594984 PMCID: PMC10482279 DOI: 10.1371/journal.pgen.1010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/06/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023] Open
Abstract
In the mammalian cerebral cortex, the hippocampal primordium (Hcp) occupies a discrete position in the dorsal telencephalic neuroepithelium adjacent to the neocortical primordium (Ncp). We examined transcriptomic and chromatin-level features that distinguish the Hcp from the Ncp in the mouse during the early neurogenic period, embryonic day (E)12.5. ATAC-seq revealed that the Hcp was more accessible than the Ncp at this stage. Motif analysis of the differentially accessible loci in these tissues revealed LHX2 as a candidate transcription factor for modulating gene regulatory networks (GRNs). We analyzed LHX2 occupancy profiles and compared these with transcriptomic data from control and Lhx2 mutant Hcp and Ncp at E12.5. Our results revealed that LHX2 directly regulates distinct genes in the Hcp and Ncp within a set of common pathways that control fundamental aspects of development namely pluripotency, axon pathfinding, Wnt, and Hippo signaling. Loss of Lhx2 caused a decrease in accessibility, specifically in hippocampal chromatin, suggesting that this factor may play a unique role in hippocampal development. We identified 14 genes that were preferentially enriched in the Hcp, for which LHX2 regulates both chromatin accessibility and mRNA expression, which have not thus far been examined in hippocampal development. Together, these results provide mechanistic insight into how LHX2 function in the Hcp may contribute to the process by which the hippocampus acquires features distinct from the neocortex.
Collapse
Affiliation(s)
- Varun Suresh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Bhavana Muralidharan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Saurabh J. Pradhan
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
| | - Mahima Bose
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Leora D’Souza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arpan Parichha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Puli Chandramouli Reddy
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Delhi NCR, India
| | - Sanjeev Galande
- Chromatin Biology and Epigenetics Laboratory, Biology department, Indian Institute of Science Education and Research Pune, India
- Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Delhi NCR, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
5
|
m 6A regulation of cortical and retinal neurogenesis is mediated by the redundant m 6A readers YTHDFs. iScience 2022; 25:104908. [PMID: 36039295 PMCID: PMC9418916 DOI: 10.1016/j.isci.2022.104908] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/12/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
m6A modification plays an important role in regulating mammalian neurogenesis. However, whether and how the major cytoplasmic m6A readers, YTHDF1, YTHDF2, and YTHDF3 mediate this process is still not clear. Here, we demonstrate that Ythdf1 and Ythdf2 double deletion but not individual knockout recapitulates the phenotype of Mettl14 knockout in cortex. In addition, we find that Mettl14 knockout in retina causes protracted proliferation of retinal progenitors, decreased numbers of retinal neurons, and disturbed laminar structure. This phenotype is only reproduced when Ythdf1, Ythdf2, and Ythdf3 are knocked out simultaneously in retina. Analysis of YTHDF target mRNAs in mouse cortex and retina reveals abundant overlapping mRNAs related to neurogenesis that are recognized and regulated by both YTHDF1 and YTHDF2. Together our results demonstrate that the functionally redundant YTHDFs mediate m6A regulation of cortical and retinal neurogenesis.
Collapse
|
6
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
7
|
Zhao X, Garcia J, Royer LA, Guo S. Colocalization Analysis for Cryosectioned and Immunostained Tissue Samples with or without Label Retention Expansion Microscopy (LR-ExM) by JACoP. Bio Protoc 2022; 12:e4336. [PMID: 35592606 PMCID: PMC8918214 DOI: 10.21769/bioprotoc.4336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/25/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
Asymmetric cell division (ACD) is fundamental for balancing cell proliferation and differentiation in metazoans. During active neurogenesis in the developing zebrafish forebrain, radial glia progenitors (RGPs) mainly undergo ACD to produce one daughter with high activity of Delta/Notch signaling (proliferative cell fate) and another daughter with low Delta/Notch signaling (differentiative cell fate). The cell polarity protein partitioning-defective 3 (Par-3) is critical for regulating this process. To understand how polarized Par-3 on the cell cortex can lead to differential Notch activity in the nuclei of daughter cells, we combined an anti-Delta D (Dld) -atto 647N antibody uptake assay with label retention expansion microscopy (LR-ExM), to obtain high resolution immunofluorescent images of Par-3, dynein light intermediate chain 1 (Dlic1), and Dld endosomes in mitotic RGPs. We then developed a protocol for analyzing the colocalization of Par-3, Dlic1, and endosomal DeltaD, using JACoP (Just Another Co-localization Plugin) in ImageJ software (Bolte and Cordelières, 2006). Through such analyses, we have shown that cytosolic Par-3 is associated with Dlic1 on Dld endosomes. Our work demonstrates a direct involvement of Par-3 in dynein-mediated polarized transport of Notch signaling endosomes. This bio-protocol may be generalizable for analysis of protein co-localization in any cryosectioned and immunostained tissue samples.
Collapse
Affiliation(s)
- Xiang Zhao
- Chan Zuckerberg Biohub, San Francisco, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA
| | - Jason Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA.,Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Ojalvo-Sanz AC, López-Mascaraque L. Gliogenic Potential of Single Pallial Radial Glial Cells in Lower Cortical Layers. Cells 2021; 10:3237. [PMID: 34831460 PMCID: PMC8621618 DOI: 10.3390/cells10113237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/16/2023] Open
Abstract
During embryonic development, progenitor cells are progressively restricted in their potential to generate different neural cells. A specific progenitor cell type, the radial glial cells, divides symmetrically and then asymmetrically to produce neurons, astrocytes, oligodendrocytes, and NG2-glia in the cerebral cortex. However, the potential of individual progenitors to form glial lineages remains poorly understood. To further investigate the cell progeny of single pallial GFAP-expressing progenitors, we used the in vivo genetic lineage-tracing method, the UbC-(GFAP-PB)-StarTrack. After targeting those progenitors in embryonic mice brains, we tracked their adult glial progeny in lower cortical layers. Clonal analyses revealed the presence of clones containing sibling cells of either a glial cell type (uniform clones) or two different glial cell types (mixed clones). Further, the clonal size and rostro-caudal cell dispersion of sibling cells differed depending on the cell type. We concluded that pallial E14 neural progenitors are a heterogeneous cell population with respect to which glial cell type they produce, as well as the clonal size of their cell progeny.
Collapse
Affiliation(s)
| | - Laura López-Mascaraque
- Cellular, Molecular and Developmental Neurobiology Department, Instituto Cajal-CSIC, 8002 Madrid, Spain;
| |
Collapse
|
9
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Liu Y, Zhang Y. ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Rev Rep 2020; 15:703-716. [PMID: 31273540 DOI: 10.1007/s12015-019-09904-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural progenitor cells (NPCs) are multipotent cells that have the potential to produce neurons and glial cells in the neural system. NPCs undergo identity maintenance or differentiation regulated by different kinds of transcription factors. Here we present evidence that ETV5, which is an ETS transcription factor, promotes the generation of glial cells and drives the neuronal subtype-specific genes in newly differentiated neurons from the human embryonic stem cells-derived NPCs. Next, we find a new role for ETV5 in the repression of NEUROG2 expression in NPCs. ETV5 represses NEUROG2 transcription via NEUROG2 promoter and requires the ETS domain. We identify ETV5 has the binding sites and is implicated in silent chromatin in NEUROG2 promoter by chromatin immunoprecipitation (ChIP) assays. Further, NEUROG2 transcription repression by ETV5 was shown to be dependent on a transcriptional corepressor (CoREST). During NPC differentiation toward neurons, ETV5 represses NEUROG2 expression and blocks the appearance of glutamatergic neurons. This finding suggests that ETV5 negatively regulates NEUROG2 expression and increases the number of GABAergic subtype neurons derived from NPCs. Thus, ETV5 represents a potent new candidate protein with benefits for the generation of GABAergic neurons.
Collapse
Affiliation(s)
- Yang Liu
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuanyuan Zhang
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
11
|
Xue W, Zhao Y, Xiao Z, Wu X, Ma D, Han J, Li X, Xue X, Yang Y, Fang Y, Fan C, Liu S, Xu B, Han S, Chen B, Zhang H, Fan Y, Liu W, Dong Q, Dai J. Epidermal growth factor receptor-extracellular-regulated kinase blockade upregulates TRIM32 signaling cascade and promotes neurogenesis after spinal cord injury. Stem Cells 2019; 38:118-133. [PMID: 31621984 DOI: 10.1002/stem.3097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Nerve regeneration is blocked after spinal cord injury (SCI) by a complex myelin-associated inhibitory (MAI) microenvironment in the lesion site; however, the underlying mechanisms are not fully understood. During the process of neural stem cell (NSC) differentiation, pathway inhibitors were added to quantitatively assess the effects on neuronal differentiation. Immunoprecipitation and lentivirus-induced overexpression were used to examine effects in vitro. In vivo, animal experiments and lineage tracing methods were used to identify nascent neurogenesis after SCI. In vitro results indicated that myelin inhibited neuronal differentiation by activating the epidermal growth factor receptor (EGFR)-extracellular-regulated kinase (ERK) signaling cascade. Subsequently, we found that tripartite motif (TRIM) 32, a neuronal fate-determining factor, was inhibited. Moreover, inhibition of EGFR-ERK promoted TRIM32 expression and enhanced neuronal differentiation in the presence of myelin. We further demonstrated that ERK interacts with TRIM32 to regulate neuronal differentiation. In vivo results indicated that EGFR-ERK blockade increased TRIM32 expression and promoted neurogenesis in the injured area, thus enhancing functional recovery after SCI. Our results showed that EGFR-ERK blockade antagonized MAI of neuronal differentiation of NSCs through regulation of TRIM32 by ERK. Collectively, these findings may provide potential new targets for SCI repair.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dezun Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Sumei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Weiyuan Liu
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qun Dong
- Pathology Department, Taikang Xianlin Drum Tower Hospital, Nanjing, People's Republic of China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|
12
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
13
|
Pushchina EV, Kapustyanov IA, Varaksin AA. Proliferation and Neuro- and Gliogenesis in Normal and Mechanically Damaged Mesencephalic Tegmentum in Juvenile Chum Salmon, Oncorhynchus keta. Russ J Dev Biol 2019. [DOI: 10.1134/s106236041902005x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhang T, Zhang S, Song X, Zhao X, Hou C, Li Z, Gao J. Loss of Lgl1 Disrupts the Radial Glial Fiber-guided Cortical Neuronal Migration and Causes Subcortical Band Heterotopia in Mice. Neuroscience 2018; 400:132-145. [PMID: 30597194 DOI: 10.1016/j.neuroscience.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
Radial glial cells (RGCs) are neuronal progenitors and function as scaffolds for neuronal radial migration in the developing cerebral cortex. These functions depend on a polarized radial glial scaffold, which is of fundamental importance for brain development. Lethal giant larvae 1 (Lgl1), a key regulator for cell polarity from Drosophila to mammals, plays a key role in tumorigenesis and brain development. To overcome neonatal lethality in Lgl1-null mice and clarify the role of Lgl1 in mouse cerebral cortex development and function, we created Lgl1 dorsal telencephalon-specific knockout mice mediated by Emx1-Cre. Lgl1Emx1 conditional knockout (CKO) mice had normal life spans and could be used for function research. Histology results revealed that the mutant mice displayed an ectopic cortical mass in the dorsolateral hemispheric region between the normotopic cortex and the subcortical white matter, resembling human subcortical band heterotopia (SBH). The Lgl1Emx1 CKO cortex showed disrupted adherens junctions (AJs), which were accompanied by ectopic RGCs and intermediate progenitors, and disorganization of the radial glial fiber system. The early- and late-born neurons failed to reach the destined position along the disrupted radial glial fiber scaffold and instead accumulated in ectopic positions and formed SBH. Additionally, the absence of Lgl1 led to severe abnormalities in RGCs, including hyperproliferation, impaired differentiation, and increased apoptosis. Lgl1Emx1 CKO mice also displayed deficiencies in anxiety-related behaviors. We concluded that Lgl1 is essential for RGC development and neural migration during cerebral cortex development.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Sen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xinli Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Xiaohan Zhao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Congzhe Hou
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China
| | - Zhenzu Li
- Department of Bioengineering, Shandong Polytechnic, Jinan 250104, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan 250100, China.
| |
Collapse
|
15
|
Braccioli L, Vervoort SJ, Puma G, Nijboer CH, Coffer PJ. SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Res 2018; 33:110-119. [PMID: 30343100 DOI: 10.1016/j.scr.2018.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
SOX4 has been shown to promote neuronal differentiation both in the adult and embryonic neural progenitors. Ectopic SOX4 expression has also been shown to inhibit oligodendrocyte differentiation in mice, however the underlying molecular mechanisms remain poorly understood. Here we demonstrate that SOX4 regulates transcriptional targets associated with neural development in neural stem cells (NSCs), reducing the expression of genes promoting oligodendrocyte differentiation. Interestingly, we observe that SOX4 levels decreased during oligodendrocyte differentiation in vitro. Moreover, we show that SOX4 knockdown induces increased oligodendrocyte differentiation, as the percentage of Olig2-positive/2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNPase)-positive maturing oligodendrocytes increases, while the number of Olig2-positive oligodendrocyte precursors is unaffected. Conversely, conditional SOX4 overexpression utilizing a doxycycline inducible system decreases the percentage of maturing oligodendrocytes, suggesting that SOX4 inhibits maturation from precursor to mature oligodendrocyte. We identify the transcription factor Hes5 as a direct SOX4 target gene and we show that conditional overexpression of Hes5 rescues the increased oligodendrocyte differentiation mediated by SOX4 depletion in NSCs. Taken together, these observations support a novel role for SOX4 in NSC by controlling oligodendrocyte differentiation through induction of Hes5 expression.
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands; Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Stephin J Vervoort
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Gianmarco Puma
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, 3584, CT, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508, AB, the Netherlands.
| |
Collapse
|
16
|
Kageyama R, Shimojo H, Ohtsuka T. Dynamic control of neural stem cells by bHLH factors. Neurosci Res 2018; 138:12-18. [PMID: 30227160 DOI: 10.1016/j.neures.2018.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/17/2022]
Abstract
During brain development, neural stem cells change their competency to give sequential rise to neurons and glial cells. Expression of the basic helix-loop-helix (bHLH)-type cell-fate determination factors Ascl1, Olig2, and Hes1 is oscillatory in neural stem cells. Conversely, sustained expression of these factors mediates cell-fate determination. Optogenetic analyses suggest that oscillatory expression regulates maintenance and proliferation of neural stem cells, and that sustained expression induces cell-fate determination. Expression of the Notch ligand Delta-like1 (Dll1), which is controlled by Hes1 and Ascl1, is also oscillatory in neural stem cells. Mathematical modeling showed that if the timing of Dll1 expression is changed, Hes1 oscillations are severely dampened, resulting in impaired maintenance and proliferation of neural stem cells and causing microcephaly. Another bHLH factor, Hes5, also shows oscillatory expression in neural stem cells. Hes5 overexpression and knock-out result in abnormal expression of Hmga1 and Hmga2, which are essential for timing the switching of neural stem-cell competency. These data indicate that oscillatory expression of bHLH factors is important for normal neural stem-cell function in the developing nervous system.
Collapse
Affiliation(s)
- Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan.
| | - Hiromi Shimojo
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
Braccioli L, Vervoort SJ, Adolfs Y, Heijnen CJ, Basak O, Pasterkamp RJ, Nijboer CH, Coffer PJ. FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports 2018; 9:1530-1545. [PMID: 29141232 PMCID: PMC5688236 DOI: 10.1016/j.stemcr.2017.10.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in FOXP1 have been linked to neurodevelopmental disorders including intellectual disability and autism; however, the underlying molecular mechanisms remain ill-defined. Here, we demonstrate with RNA and chromatin immunoprecipitation sequencing that FOXP1 directly regulates genes controlling neurogenesis. We show that FOXP1 is expressed in embryonic neural stem cells (NSCs), and modulation of FOXP1 expression affects both neuron and astrocyte differentiation. Using a murine model of cortical development, FOXP1-knockdown in utero was found to reduce NSC differentiation and migration during corticogenesis. Furthermore, transplantation of FOXP1-knockdown NSCs in neonatal mice after hypoxia-ischemia challenge demonstrated that FOXP1 is also required for neuronal differentiation and functionality in vivo. FOXP1 was found to repress the expression of Notch pathway genes including the Notch-ligand Jagged1, resulting in inhibition of Notch signaling. Finally, blockade of Jagged1 in FOXP1-knockdown NSCs rescued neuronal differentiation in vitro. Together, these data support a role for FOXP1 in regulating embryonic NSC differentiation by modulating Notch signaling. FOXP1 promotes astrocyte and neuronal differentiation of NSCs in vitro FOXP1 promotes neuronal differentiation of NSCs in vivo FOXP1 transcriptionally regulates pro-neural genes and represses Notch pathway genes FOXP1 promotes neuronal differentiation by limiting Jagged1 expression
Collapse
Affiliation(s)
- Luca Braccioli
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht 3508 AB, the Netherlands; Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Stephin J Vervoort
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht 3508 AB, the Netherlands.
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
18
|
Itokazu Y, Wang J, Yu RK. Gangliosides in Nerve Cell Specification. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:241-263. [PMID: 29747816 DOI: 10.1016/bs.pmbts.2017.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system is generated from progenitor cells that are recognized as neural stem cells (NSCs). NSCs are defined as undifferentiated neural cells that are characterized by the capacity for self-renewal and multipotency. Throughout neural development, NSCs undergo proliferation, migration, and cellular differentiation, and dynamic changes are observed in the composition of carbohydrate-rich molecules, including gangliosides. Gangliosides are sialic acid-containing glycosphingolipids with essential and multifaceted functions in brain development and NSC maintenance, which reflects the complexity of brain development. Our group has pioneered research on the importance of gangliosides for growth factor receptor signaling and epigenetic regulation of ganglioside biosynthesis in NSCs. We found that GD3 is the predominant ganglioside species in NSCs (>80%) and modulates NSC proliferation by interacting with epidermal growth factor receptor signaling. In postnatal brain, GD3 is required for long-term maintenance of NSCs. Deficiency in GD3 leads to developmental and behavioral deficits, such as depression. The synthesis of GD3 is switched to the synthesis of complex, brain-type gangliosides, namely, GM1, GD1a, GD1b, and GT1b, resulting in terminal differentiation and loss of "stemness" of NSCs. In this process, GM1 is augmented by a novel GM1-modulated epigenetic gene regulation mechanism of glycosyltransferases at a later differentiation stage. Consequently, our research suggests that stage-specific gangliosides play specific roles in maintaining NSC activities and in cell fate determination.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
19
|
Kageyama R, Shimojo H, Isomura A. Oscillatory Control of Notch Signaling in Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:265-277. [DOI: 10.1007/978-3-319-89512-3_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Li R, Sun L, Fang A, Li P, Wu Q, Wang X. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 2017; 8:823-833. [PMID: 29058117 PMCID: PMC5676597 DOI: 10.1007/s13238-017-0479-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/01/2017] [Indexed: 11/26/2022] Open
Abstract
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ai Fang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Li
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
21
|
Liu XJ, Jiang X, Huang SN, Sun JY, Zhao F, Zeng WB, Luo MH. Human cytomegalovirus infection dysregulates neural progenitor cell fate by disrupting Hes1 rhythm and down-regulating its expression. Virol Sin 2017; 32:188-198. [PMID: 28451898 DOI: 10.1007/s12250-017-3956-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection is a leading cause of birth defects, primarily affecting the central nervous system and causing its maldevelopment. As the essential downstream effector of Notch signaling pathway, Hes1, and its dynamic expression, plays an essential role on maintaining neural progenitor /stem cells (NPCs) cell fate and fetal brain development. In the present study, we reported the first observation of Hes1 oscillatory expression in human NPCs, with an approximately 1.5 hour periodicity and a Hes1 protein half-life of about 17 (17.6 ± 0.2) minutes. HCMV infection disrupts the Hes1 rhythm and down-regulates its expression. Furthermore, we discovered that depleting Hes1 protein disturbed NPCs cell fate by suppressing NPCs proliferation and neurosphere formation, and driving NPCs abnormal differentiation. These results suggested a novel mechanism linking disruption of Hes1 rhythm and down-regulation of Hes1 expression to neurodevelopmental disorders caused by congenital HCMV infection.
Collapse
Affiliation(s)
- Xi-Juan Liu
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Jiang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,The Joint Center of Translational Precision Medicine; Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou, 510000, China
| | - Sheng-Nan Huang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jin-Yan Sun
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
22
|
Miyata M, Maruo T, Kaito A, Wang S, Yamamoto H, Fujiwara T, Mizoguchi A, Mandai K, Takai Y. Roles of afadin in the formation of the cellular architecture of the mouse hippocampus and dentate gyrus. Mol Cell Neurosci 2017; 79:34-44. [DOI: 10.1016/j.mcn.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 11/15/2016] [Accepted: 12/27/2016] [Indexed: 12/19/2022] Open
|
23
|
Yao B, Christian KM, He C, Jin P, Ming GL, Song H. Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci 2016; 17:537-49. [PMID: 27334043 DOI: 10.1038/nrn.2016.70] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms - including DNA and histone modifications, as well as regulation by non-coding RNAs - have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA.,The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, Maryland 21205, USA
| |
Collapse
|
24
|
Yamaguchi M, Seki T, Imayoshi I, Tamamaki N, Hayashi Y, Tatebayashi Y, Hitoshi S. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J Physiol Sci 2016; 66:197-206. [PMID: 26578509 PMCID: PMC4823343 DOI: 10.1007/s12576-015-0421-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/18/2015] [Indexed: 11/29/2022]
Abstract
Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan.
| | | | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Hayashi
- Department of Integrative Physiology, Shiga University of Medical Science, Shiga, Japan
| | - Yoshitaka Tatebayashi
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
25
|
Chu J, Tu Y, Chen J, Tan D, Liu X, Pi R. Effects of melatonin and its analogues on neural stem cells. Mol Cell Endocrinol 2016; 420:169-79. [PMID: 26499395 DOI: 10.1016/j.mce.2015.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/27/2015] [Accepted: 10/18/2015] [Indexed: 12/30/2022]
Abstract
Neural stem cells (NSCs) are multipotent cells which are capable of self-replication and differentiation into neurons, astrocytes or oligodendrocytes in the central nervous system (CNS). NSCs are found in two main regions in the adult brain: the subgranular zone (SGZ) in the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ). The recent discovery of NSCs in the adult mammalian brain has fostered a plethora of translational and preclinical studies to investigate novel approaches for the therapy of neurodegenerative diseases. Melatonin is the major secretory product synthesized and secreted by the pineal gland and shows both a wide distribution within phylogenetically distant organisms from bacteria to humans and a great functional versatility. Recently, accumulated experimental evidence showed that melatonin plays an important role in NSCs, including its proliferation, differentiation and survival, which are modulated by many factors including MAPK/ERK signaling pathway, histone acetylation, neurotrophic factors, transcription factors, and apoptotic genes. The purpose of this review is to summarize the beneficial effects of melatonin on NSCs and further to discuss the potential usage of melatonin and its derivatives or analogues in the treatment of CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaqi Chu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yalin Tu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingkao Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dunxian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA
| | - Xingguo Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510080, China; International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou 510006, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
26
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
27
|
Hui SP, Nag TC, Ghosh S. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish. PLoS One 2015; 10:e0143595. [PMID: 26630262 PMCID: PMC4667880 DOI: 10.1371/journal.pone.0143595] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022] Open
Abstract
Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.
Collapse
Affiliation(s)
- Subhra Prakash Hui
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi- 110029, India
| | - Sukla Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A. P. C. Road, Kolkata—700009, India
- * E-mail:
| |
Collapse
|
28
|
Huang R, Zhao J, Ju L, Wen Y, Xu Q. The influence of GAP-43 on orientation of cell division through G proteins. Int J Dev Neurosci 2015; 47:333-9. [PMID: 26380950 DOI: 10.1016/j.ijdevneu.2015.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/25/2015] [Accepted: 07/10/2015] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that GAP-43 is highly expressed in horizontally dividing neural progenitor cells, and G protein complex are required for proper mitotic-spindle orientation of those progenitors in the mammalian developing cortex. In order to verify the hypothesis that GAP-43 may influence the orientation of cell division through interacting with G proteins during neurogenesis, the GAP-43 RNA from adult C57 mouse was cloned into the pEGFP-N1 vector, which was then transfected into Madin-Darby Canine Kidney (MDCK) cells cultured in a three-dimensional (3D) cell culture system. The interaction of GAP-43 with Gαi was detected by co-immunoprecipitation (co-IP), while cystogenesis of 3D morphogenesis of MDCK cells and expression of GAP-43 and Gαi were determined by immunofluorescence and Western blotting. The results showed are as follows: After being transfected by pEGFP-N1-GAP-43, GAP-43 was localized on the cell membrane and co-localized with Gαi, and this dramatically induced a defective cystogenesis in 3D morphogenesis of MDCK cells. The functional interaction between GAP-43 and Gαi proteins was proven by the co-IP assay. It can be considered from the results that the GAP-43 is involved in the orientation of cell division by interacting with Gαi and this should be an important mechanism for neurogenesis in the mammalian brain.
Collapse
Affiliation(s)
- Rui Huang
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Junpeng Zhao
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Lili Ju
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Yujun Wen
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China
| | - Qunyuan Xu
- Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Lhx2 regulates the timing of β-catenin-dependent cortical neurogenesis. Proc Natl Acad Sci U S A 2015; 112:12199-204. [PMID: 26371318 DOI: 10.1073/pnas.1507145112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. The loss of Lhx2 in cortical progenitors results in precocious radial glia differentiation and a temporal shift of cortical neurogenesis. We further investigated the underlying mechanisms at play and demonstrated that in the absence of Lhx2, the Wnt/β-catenin pathway failed to maintain progenitor proliferation. We developed and applied a mathematical model that reveals how precocious neurogenesis affected cortical surface and thickness. Thus, we concluded that Lhx2 is required for β-catenin function in maintaining cortical progenitor proliferation and controls the timing of cortical neurogenesis.
Collapse
|
30
|
Imayoshi I, Ishidate F, Kageyama R. Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells. Front Cell Neurosci 2015; 9:288. [PMID: 26300726 PMCID: PMC4523821 DOI: 10.3389/fncel.2015.00288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Abstract
The basic-helix-loop-helix (bHLH) transcription factors Ascl1/Mash1, Hes1, and Olig2 regulate the fate choice of neurons, astrocytes, and oligodendrocytes, respectively; however, these factors are coexpressed in self-renewing multipotent neural stem cells (NSCs) even before cell fate determination. This fact raises the possibility that these fate determination factors are differentially expressed between self-renewing and differentiating NSCs with unique expression dynamics. Real-time imaging analysis utilizing fluorescent proteins is a powerful strategy for monitoring expression dynamics. Fusion with fluorescent reporters makes it possible to analyze the dynamic behavior of specific proteins in living cells. However, it is technically challenging to conduct long-term imaging of proteins, particularly those with low expression levels, because a high-sensitivity and low-noise imaging system is required, and very often bleaching of fluorescent proteins and cell toxicity by prolonged laser exposure are problematic. Furthermore, to analyze the functional roles of the dynamic expression of cellular proteins, it is essential to image reporter fusion proteins that are expressed at comparable levels to their endogenous expression. In this review, we introduce our recent reports about the dynamic control of bHLH transcription factors in multipotency and fate choice of NSCs, focusing on real-time imaging of fluorescent reporters fused with bHLH transcription factors. Our imaging results indicate that bHLH transcription factors are expressed in an oscillatory manner by NSCs, and that one of them becomes dominant during fate choice. We propose that the multipotent state of NSCs correlates with the oscillatory expression of several bHLH transcription factors, whereas the differentiated state correlates with the sustained expression of a single bHLH transcription factor.
Collapse
Affiliation(s)
- Itaru Imayoshi
- The Hakubi Center, Kyoto University Kyoto, Japan ; Laboratory of Growth Regulation, Institute for Virus Research, Kyoto University Kyoto, Japan ; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan ; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Saitama, Japan
| | - Fumiyoshi Ishidate
- World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan
| | - Ryoichiro Kageyama
- Laboratory of Growth Regulation, Institute for Virus Research, Kyoto University Kyoto, Japan ; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Saitama, Japan
| |
Collapse
|
31
|
Tsukada T, Simamura E, Shimada H, Arai T, Higashi N, Akai T, Iizuka H, Hatta T. The suppression of maternal-fetal leukemia inhibitory factor signal relay pathway by maternal immune activation impairs brain development in mice. PLoS One 2015; 10:e0129011. [PMID: 26043040 PMCID: PMC4456156 DOI: 10.1371/journal.pone.0129011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/03/2015] [Indexed: 12/27/2022] Open
Abstract
Recent studies in rodents suggest that maternal immune activation (MIA) by viral infection is associated with schizophrenia and autism in offspring. Although maternal IL-6 is though t to be a possible mediator relating MIA induced these neuropsychiatric disorders, the mechanism remains to be elucidated. Previously, we reported that the maternal leukemia inhibitory factor (LIF)–placental ACTH–fetal LIF signaling relay pathway (maternal–fetal LIF signal relay) promotes neurogenesis of fetal cerebrum in rats. Here we report that the maternal–fetal LIF signal relay in mice is suppressed by injection of polyriboinosinic-polyribocytidylic acid into dams, which induces MIA at 12.5 days post-coitum. Maternal IL-6 levels and gene expression of placental suppressor of cytokine signaling 3 (Socs3) increased according to the severity of MIA and gene expression of placental Socs3 correlated with maternal IL-6 levels. Furthermore, we show that MIA causes reduction of LIF level in the fetal cerebrospinal fluid, resulting in the decreased neurogenesis in the cerebrum. These findings suggest that maternal IL-6 interferes the maternal–fetal LIF signal relay by inducing SOCS3 in the placenta and leads to decreased neurogenesis.
Collapse
Affiliation(s)
- Tsuyoshi Tsukada
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Eriko Simamura
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Hiroki Shimada
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Takuma Arai
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Nobuaki Higashi
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Takuya Akai
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Hideaki Iizuka
- Department of Neurosurgery, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 920–0293, Japan
- * E-mail:
| |
Collapse
|
32
|
Haldipur P, Sivaprakasam I, Periasamy V, Govindan S, Mani S. Asymmetric cell division of granule neuron progenitors in the external granule layer of the mouse cerebellum. Biol Open 2015; 4:865-72. [PMID: 25979710 PMCID: PMC4571082 DOI: 10.1242/bio.009886] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plane of division of granule neuron progenitors (GNPs) was analysed with respect to the pial surface in P0 to P14 cerebellum and the results showed that there was a significant bias towards the plane of cell division being parallel to pial surface across this developmental window. In addition, the distribution of β-Catenin in anaphase cells was analysed, which showed that there was a significant asymmetry in the distribution of β-Catenin in dividing GNPs. Further, inhibition of Sonic Hedgehog (Shh) signalling had an effect on plane of cell division. Asymmetric distribution of β-Catenin was shown to occur towards the source of a localized extracellular cue.
Collapse
Affiliation(s)
- Parthiv Haldipur
- National Brain Research Centre, Manesar, Gurgaon 122050, Haryana, India
| | - Iswariya Sivaprakasam
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Vinod Periasamy
- National Brain Research Centre, Manesar, Gurgaon 122050, Haryana, India
| | - Subashika Govindan
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Shyamala Mani
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
33
|
Zhang C, Ge X, Liu Q, Jiang M, Li MW, Li H. MicroRNA-mediated non-cell-autonomous regulation of cortical radial glial transformation revealed by a Dicer1 knockout mouse model. Glia 2015; 63:860-76. [PMID: 25643827 DOI: 10.1002/glia.22789] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/23/2014] [Indexed: 11/09/2022]
Abstract
Radial glia (RG), as neurogenic progenitors and neuronal migration scaffolds, play critical roles during cortical neurogenesis. RG transformation into astrocytes, marking the transition from developmental to physiological function of these cells, is an important step during cortical development. In this study, we aim to determine the roles of microRNAs (miRNAs) during this biological process. In a conditional Dicer1-null mouse where Dicer1 is deleted in both RG and their neuronal progeny, we observe delayed RG transformation as revealed by the persistence of their radial processes, and reduced number and complexity of translocated RG cell bodies in the postnatal cerebral cortex. Downregulation of Notch1 signaling is crucial to RG transformation, and consistently we find that Notch1 signaling is enhanced in the Dicer1-null cerebral cortex. In addition, we show that, among the Notch1 ligands, Jagged2 (Jag2) is preferentially upregulated in the postnatal Dicer1-null cerebral cortex as well as primary embryonic cortical cultures with instant Dicer1 deletion. Functionally, Dicer1-deleted postnatal cerebellar cells with elevated Jag2 expression stimulate a stronger Notch1 signaling in a RG clone L2.3 when co-cultured than control cells. Therefore, we unravel a novel non-cell-autonomous mechanism that regulates RG transformation by modulating Notch1 signaling via miRNA-mediated suppression of the Nocth1 ligand Jag2. Furthermore, we validate Jag2 as a miR-124 target gene and demonstrate in vitro that Jag2 expression is highly sensitive to Dicer1 deletion. Finally, we propose a new concept of MiRNA-Sensitive target genes, identification of which may unravel a unique mode of miRNA-mediated gene expression regulation.
Collapse
Affiliation(s)
- Chi Zhang
- West China Developmental & Stem Cell Institute, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Progenitor genealogy in the developing cerebral cortex. Cell Tissue Res 2014; 359:17-32. [PMID: 25141969 DOI: 10.1007/s00441-014-1979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
The mammalian cerebral cortex is characterized by a complex histological organization that reflects the spatio-temporal stratifications of related stem and neural progenitor cells, which are responsible for the generation of distinct glial and neuronal subtypes during development. Some work has been done to shed light on the existing filiations between these progenitors as well as their respective contribution to cortical neurogenesis. The aim of the present review is to summarize the current views of progenitor hierarchy and relationship in the developing cortex and to further discuss future research directions that would help us to understand the molecular and cellular regulating mechanisms involved in cerebral corticogenesis.
Collapse
|
35
|
Imayoshi I, Kageyama R. Oscillatory control of bHLH factors in neural progenitors. Trends Neurosci 2014; 37:531-8. [PMID: 25149265 DOI: 10.1016/j.tins.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/02/2014] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
The mammalian brain consists of a complex ensemble of neurons and glia. Their production during development and remodeling is tightly controlled by various regulatory mechanisms in neural progenitor cells (NPCs). Among such regulations, basic helix-loop-helix (bHLH) factors have key functions in the self-renewal, multipotency, and fate determination of NPCs. Here, we highlight the importance of the expression dynamics of bHLH factors in these processes. The oscillatory expression of multiple bHLH factors is correlated with the multipotent and self-renewable state, whereas sustained expression of a selected bHLH factor regulates fate determination. We also discuss potential mechanisms by which a single bHLH factor can exhibit versatile functions in NPC regulation as well as the hierarchical structure of the bHLH factor oscillatory network.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; The Hakubi Center, Kyoto University, Kyoto 606-8501, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
36
|
Gil-Sanz C, Landeira B, Ramos C, Costa MR, Müller U. Proliferative defects and formation of a double cortex in mice lacking Mltt4 and Cdh2 in the dorsal telencephalon. J Neurosci 2014; 34:10475-87. [PMID: 25100583 PMCID: PMC4200106 DOI: 10.1523/jneurosci.1793-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 11/21/2022] Open
Abstract
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.
Collapse
Affiliation(s)
- Cristina Gil-Sanz
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, and
| | - Bruna Landeira
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59056-450, Brazil
| | - Cynthia Ramos
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, and
| | - Marcos R Costa
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59056-450, Brazil
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, and
| |
Collapse
|
37
|
Kageyama R, Shimojo H, Imayoshi I. Dynamic expression and roles of Hes factors in neural development. Cell Tissue Res 2014; 359:125-33. [PMID: 24850276 DOI: 10.1007/s00441-014-1888-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
Abstract
The basic helix-loop-helix factors Hes1 and Hes5 repress the expression of proneural factors such as Ascl1, thereby inhibiting neuronal differentiation and maintaining neural progenitor cells (NPCs). Hes1 expression oscillates by negative feedback with a period of about 2-3 h in proliferating NPCs. Induction of sustained expression of Hes1 in NPCs inhibits their cell-cycle progression, suggesting that the oscillatory expression of Hes1 is important for the proliferation of NPCs. Hes1 oscillation drives the oscillatory expression of proneural factors such as Ascl1 by periodic repression. By contrast, in differentiating neurons, Hes1 expression disappears and the expression of proneural factors is up-regulated and sustained. A new optogenetics approach that induces Ascl1 expression by blue light illumination demonstrated that sustained expression of Ascl1 induces neuronal differentiation, whereas oscillatory expression of Ascl1 activates the proliferation of NPCs. These results together indicate that Hes1 regulates the oscillatory versus sustained expression of the proneural factor Ascl1, which in turn regulates the proliferation of NPCs and the subsequent processes of cell-cycle exit and neuronal fate determination, depending on the expression dynamics.
Collapse
Affiliation(s)
- Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan,
| | | | | |
Collapse
|
38
|
Tsunekawa Y, Kikkawa T, Osumi N. Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. Dev Growth Differ 2014; 56:349-57. [PMID: 24835888 DOI: 10.1111/dgd.12135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/26/2022]
Abstract
Asymmetric cell division and cell cycle regulation are fundamental mechanisms of mammalian brain development and evolution. Cyclin D2, a positive regulator of G1 progression, shows a unique localization within radial glial (RG) cells (i.e., the neural progenitor in the developing neocortex). Cyclin D2 accumulates at the very basal tip of the RG cell (i.e., the basal endfoot) via a unique cis-regulatory sequence found in the 3' untranslated region (3'UTR) of its mRNA. During RG division, Cyclin D2 protein is asymmetrically distributed to two daughter cells following mitosis. The daughter cell that inherits Cyclin D2 mRNA maintains its self-renewal capability, while its sibling undergoes differentiation. A similar localization pattern of Cyclin D2 protein has been observed in the human fetal cortical primordium, suggesting a common mechanism of maintenance of neural progenitors that may be evolutionarily conserved across higher mammals such as primates. Here, we discuss our findings and the Cyclin D2 function in mammalian brain development and evolution.
Collapse
Affiliation(s)
- Yuji Tsunekawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | |
Collapse
|
39
|
Imayoshi I, Kageyama R. bHLH Factors in Self-Renewal, Multipotency, and Fate Choice of Neural Progenitor Cells. Neuron 2014; 82:9-23. [DOI: 10.1016/j.neuron.2014.03.018] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2014] [Indexed: 12/18/2022]
|
40
|
Lenkowski JR, Raymond PA. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 2014; 40:94-123. [PMID: 24412518 DOI: 10.1016/j.preteyeres.2013.12.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/31/2022]
Abstract
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| | - Pamela A Raymond
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Glycolipid and Glycoprotein Expression During Neural Development. ADVANCES IN NEUROBIOLOGY 2014; 9:185-222. [DOI: 10.1007/978-1-4939-1154-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Gao P, Sultan KT, Zhang XJ, Shi SH. Lineage-dependent circuit assembly in the neocortex. Development 2013; 140:2645-55. [PMID: 23757410 DOI: 10.1242/dev.087668] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neocortex plays a key role in higher-order brain functions, such as perception, language and decision-making. Since the groundbreaking work of Ramón y Cajal over a century ago, defining the neural circuits underlying brain functions has been a field of intense study. Here, we review recent findings on the formation of neocortical circuits, which have taken advantage of improvements to mouse genetics and circuit-mapping tools. These findings are beginning to reveal how individual components of circuits are generated and assembled during development, and how early developmental processes, such as neurogenesis and neuronal migration, guide precise circuit assembly.
Collapse
Affiliation(s)
- Peng Gao
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
43
|
Chou SJ, O'Leary DDM. Role for Lhx2 in corticogenesis through regulation of progenitor differentiation. Mol Cell Neurosci 2013; 56:1-9. [PMID: 23454273 DOI: 10.1016/j.mcn.2013.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/19/2013] [Indexed: 01/04/2023] Open
Abstract
The neocortex represents the brain region that has undergone a major increase in its relative size during the course of mammalian evolution. The larger cortex results from a corresponding increase in progenitor cell number. The progenitors giving rise to neocortex are located in the ventricular zone of the dorsal telencephalon and highly express Lhx2, a LIM-homeodomain transcription factor. The neocortex fails to form in the Lhx2 constitutive knockout, indicating a role for Lhx2 in corticogenesis, but mid-embryonic lethality of the Lhx2 knockout requires the use of conditional strategies for further studies. Therefore, to explore Lhx2 function in neocortical progenitors, we generated mice with Lhx2 conditionally deleted from cortical progenitors at the onset of neurogenesis. We find that Lhx2 is critical for maintaining the proliferative state of neocortical progenitors during corticogenesis. In the conditional knockouts, the neocortex is formed but is significantly smaller than wild type. We find that deletion of Lhx2 leads to significantly decreased numbers of cortical progenitors and premature neuronal differentiation. A likely mechanism is indicated by our findings that Lhx2 is required for the expression of Hes1 in cortical progenitors, a key effector in the Notch signaling pathway that maintains the proliferative progenitor state. We conclude that Lhx2 regulates the balance between proliferation and differentiation in cortical progenitors and through this mechanism Lhx2 controls cortical size.
Collapse
Affiliation(s)
- Shen-Ju Chou
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | |
Collapse
|
44
|
Suzuki IK, Hirata T. Neocortical neurogenesis is not really “neo”: A new evolutionary model derived from a comparative study of chick pallial development. Dev Growth Differ 2012; 55:173-87. [DOI: 10.1111/dgd.12020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ikuo K. Suzuki
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| | - Tatsumi Hirata
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| |
Collapse
|
45
|
Tan SL, Nishi M, Ohtsuka T, Matsui T, Takemoto K, Kamio-Miura A, Aburatani H, Shinkai Y, Kageyama R. Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development. Development 2012; 139:3806-16. [PMID: 22991445 DOI: 10.1242/dev.082198] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the developing brain, neural progenitor cells switch differentiation competency by changing gene expression profiles that are governed partly by epigenetic control, such as histone modification, although the precise mechanism is unknown. Here we found that ESET (Setdb1), a histone H3 Lys9 (H3K9) methyltransferase, is highly expressed at early stages of mouse brain development but downregulated over time, and that ablation of ESET leads to decreased H3K9 trimethylation and the misregulation of genes, resulting in severe brain defects and early lethality. In the mutant brain, endogenous retrotransposons were derepressed and non-neural gene expression was activated. Furthermore, early neurogenesis was severely impaired, whereas astrocyte formation was enhanced. We conclude that there is an epigenetic role of ESET in the temporal and tissue-specific gene expression that results in proper control of brain development.
Collapse
Affiliation(s)
- Siok-Lay Tan
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Imayoshi I, Shimojo H, Sakamoto M, Ohtsuka T, Kageyama R. Genetic visualization of notch signaling in mammalian neurogenesis. Cell Mol Life Sci 2012; 70:2045-57. [PMID: 22971775 PMCID: PMC3663255 DOI: 10.1007/s00018-012-1151-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 11/24/2022]
Abstract
Notch signaling plays crucial roles in fate determination and the differentiation of neural stem cells in embryonic and adult brains. It is now clear that the notch pathway is under more complex and dynamic regulation than previously thought. To understand the functional details of notch signaling more precisely, it is important to reveal when, where, and how notch signaling is dynamically communicated between cells, for which the visualization of notch signaling is essential. In this review, we introduce recent technical advances in the visualization of notch signaling during neural development and in the adult brain, and we discuss the physiological significance of dynamic regulation of notch signaling.
Collapse
Affiliation(s)
- Itaru Imayoshi
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | | | | | | | |
Collapse
|
47
|
Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem Biophys Res Commun 2012; 425:762-8. [DOI: 10.1016/j.bbrc.2012.07.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 01/29/2023]
|
48
|
Tsunekawa Y, Osumi N. How to keep proliferative neural stem/progenitor cells: a critical role of asymmetric inheritance of cyclin D2. Cell Cycle 2012; 11:3550-4. [PMID: 22895110 DOI: 10.4161/cc.21500] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It has long been argued that cell cycle regulators such as cyclins, cyclin-dependent kinases and their inhibitors affect the fate of neuronal progenitor cells. Recently, we identified that cyclin D2, which localizes at the basal tip of the radial glial cell (i.e., the neural progenitor in the developing neocortex), functions to give differential cell fates to its daughter cells just after cell division. This basally biased localization is due to transportation of cyclin D2 mRNA via its unique cis-regulatory sequence and local translation into cyclin D2 protein at the basal endfoot. During division of the neural progenitor cells, cyclin D2 protein is inherited by the daughter cell that retain the basal process, resulting in asymmetric distribution of cyclin D2 protein between the two daughter cells. Cyclin D2 is similarly localized in the human fetal cortical primordium, suggesting a common mechanism for the maintenance of neural progenitors and a possible scenario in evolution of primate brains. Here we introduce our recent findings and discuss how cyclin D2 functions in mammalian brain development and evolution.
Collapse
Affiliation(s)
- Yuji Tsunekawa
- Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
49
|
Abstract
Stem cells have captured our imagination and generated hope, representing a source of replacement cells to treat a host of medical conditions. Tucked away in specialized niches, stem cells maintain tissue function and rejuvenate organs. Balancing the equation between cellular supply and demand is especially important in the adult brain, as neural stem cells (NSCs) in two discrete regions, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) next to the lateral ventricles, continuously self-renew and differentiate into neurons in a process called adult neurogenesis. Through the interplay of intrinsic and extrinsic factors, adult neurogenic niches ensure neuronal turnover throughout life, contributing to plasticity and homeostatic processes in the brain. This review summarizes recent progress on the molecular control of adult neurogenesis in the SGZ and SVZ, focusing on the role of specific transcription factors that mediate the progression from NSCs to lineage-committed progenitors and, ultimately, the generation of mature neurons and glia.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
50
|
Relucio J, Menezes MJ, Miyagoe-Suzuki Y, Takeda S, Colognato H. Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone. Glia 2012; 60:1451-67. [PMID: 22706957 DOI: 10.1002/glia.22365] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 05/10/2012] [Indexed: 01/28/2023]
Abstract
The laminin family of extracellular matrix proteins are expressed broadly during embryonic brain development, but are enriched at ventricular and pial surfaces where laminins mediate radial glial attachment during corticogenesis. In the adult brain, however, laminin distribution is restricted, yet is found within the vascular basal lamina and associated fractones of the ventricular zone (VZ)-subventricular zone (SVZ) stem cell niche, where laminins regulate adult neural progenitor cell proliferation. It remains unknown, however, if laminins regulate the wave of oligodendrogenesis that occurs in the neonatal/early postnatal VZ-SVZ. Here we report that Lama2, the gene that encodes the laminin α2-subunit, regulates postnatal oligodendrogenesis. At birth, Lama2-/- mice had significantly higher levels of dying oligodendrocyte progenitor cells (OPCs) in the OPC germinal zone of the dorsal SVZ. This translated into fewer OPCs, both in the dorsal SVZ well as in an adjacent developing white matter tract, the corpus callosum. In addition, intermediate progenitor cells that give rise to OPCs in the Lama2-/- VZ-SVZ were mislocalized and proliferated nearer to the ventricle surface. Later, delays in oligodendrocyte maturation (with accompanying OPC accumulation), were observed in the Lama2-/- corpus callosum, leading to dysmyelination by postnatal day 21. Together these data suggest that prosurvival laminin interactions in the developing postnatal VZ-SVZ germinal zone regulate the ability, or timing, of oligodendrocyte production to occur appropriately.
Collapse
Affiliation(s)
- Jenne Relucio
- Department of Pharmacology, Stony Brook University, Stony Brook, New York, 11794, USA
| | | | | | | | | |
Collapse
|