1
|
Ai Z, Dong B, Chen J. Insights into the function and research status of membrane protein APJ. Gene 2025; 962:149591. [PMID: 40419033 DOI: 10.1016/j.gene.2025.149591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/26/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
APJ, a membrane protein belonging to the G protein-coupled receptor (GPCR) family, was first discovered in 1993. It is activated by endogenous ligands such as Apelin and Elabela, coupling with various G proteins to trigger downstream signaling pathways. APJ is ubiquitously expressed in various organs and tissues, and plays pivotal roles in numerous physiological and pathological processes. This review provides a comprehensive overview of APJ's physiological functions, including its involvement in the cardiovascular system, metabolism, neuroendocrine stress responses, respiratory diseases, and appetite regulation. Furthermore, it discusses the potential of APJ as a biomarker for various tumors and its crucial role in tumor angiogenesis. Additionally, the review covers the development of small molecule antagonists targeting APJ and highlights the major challenges and future prospects in current APJ research. In conclusion, this review offers valuable insights into the multifaceted functions of APJ, its targeting antagonists, existing research challenges, and potential future directions, thereby contributing to further advancements in research and drug development in this field.
Collapse
Affiliation(s)
- Zhiying Ai
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272067, China; First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Bo Dong
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Chen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272067, China; Neurobiology Key Laboratory, School of Mental Health, Jining Medical University, Jining 272067, China.
| |
Collapse
|
2
|
Lenzi P, Lazzeri G, Ferrucci M, Scotto M, Frati A, Puglisi-Allegra S, Busceti CL, Fornai F. Is There a Place for Lewy Bodies before and beyond Alpha-Synuclein Accumulation? Provocative Issues in Need of Solid Explanations. Int J Mol Sci 2024; 25:3929. [PMID: 38612739 PMCID: PMC11011529 DOI: 10.3390/ijms25073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
In the last two decades, alpha-synuclein (alpha-syn) assumed a prominent role as a major component and seeding structure of Lewy bodies (LBs). This concept is driving ongoing research on the pathophysiology of Parkinson's disease (PD). In line with this, alpha-syn is considered to be the guilty protein in the disease process, and it may be targeted through precision medicine to modify disease progression. Therefore, designing specific tools to block the aggregation and spreading of alpha-syn represents a major effort in the development of disease-modifying therapies in PD. The present article analyzes concrete evidence about the significance of alpha-syn within LBs. In this effort, some dogmas are challenged. This concerns the question of whether alpha-syn is more abundant compared with other proteins within LBs. Again, the occurrence of alpha-syn compared with non-protein constituents is scrutinized. Finally, the prominent role of alpha-syn in seeding LBs as the guilty structure causing PD is questioned. These revisited concepts may be helpful in the process of validating which proteins, organelles, and pathways are likely to be involved in the damage to meso-striatal dopamine neurons and other brain regions involved in PD.
Collapse
Affiliation(s)
- Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Marco Scotto
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
| | - Alessandro Frati
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Roma, Italy
| | - Stefano Puglisi-Allegra
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| | - Carla Letizia Busceti
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.); (M.S.)
- IRCCS—Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy or (A.F.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
3
|
Harris M, Dolan RF, Bryce JR, Ewusi JG, Cook GA. In Vitro Glycosylation of the Membrane Protein γ-Sarcoglycan in Nanodiscs. ACS OMEGA 2023; 8:40904-40910. [PMID: 37929139 PMCID: PMC10620887 DOI: 10.1021/acsomega.3c06135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Membrane glycoproteins are proteins that reside in the membranes of cells and are post-translationally modified to have sugars attached to their amino acid side chains. Studies of this subset of proteins in their native states are becoming more important since they have been linked to numerous human diseases. However, these proteins are difficult to study due to their hydrophobic nature and their propensity to aggregate. Using membrane mimetics allows us to solubilize these proteins, which, in turn, allows us to perform glycosylation in vitro to study the effects of the modification on protein structure, dynamics, and interactions. Here, the membrane glycoprotein γ-sarcoglycan was incorporated into nanodiscs composed of long-chain lipids and membrane scaffold proteins to perform N-linked glycosylation in which an enzyme attaches a sugar to the asparagine side chain within the glycosylation site. We previously performed glycosylation of membrane proteins in vitro when the protein had been solubilized using different detergents and short-chain lipids. This work demonstrates successful glycosylation of a full-length membrane protein in nanodiscs providing a more biologically relevant sample to study the effects of the modification.
Collapse
Affiliation(s)
- Michael
S. Harris
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Rachel F. Dolan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - James R. Bryce
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jonas G. Ewusi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Gabriel A. Cook
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
4
|
Tiemann JKS, Zschach H, Lindorff-Larsen K, Stein A. Interpreting the molecular mechanisms of disease variants in human transmembrane proteins. Biophys J 2023:S0006-3495(22)03941-8. [PMID: 36600598 DOI: 10.1016/j.bpj.2022.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Next-generation sequencing of human genomes reveals millions of missense variants, some of which may lead to loss of protein function and ultimately disease. Here, we investigate missense variants in membrane proteins-key drivers in cell signaling and recognition. We find enrichment of pathogenic variants in the transmembrane region across 19,000 functionally classified variants in human membrane proteins. To accurately predict variant consequences, one fundamentally needs to understand the underlying molecular processes. A key mechanism underlying pathogenicity in missense variants of soluble proteins has been shown to be loss of stability. Membrane proteins, however, are widely understudied. Here, we interpret variant effects on a larger scale by performing structure-based estimations of changes in thermodynamic stability using a membrane-specific energy function and analyses of sequence conservation during evolution of 15 transmembrane proteins. We find evidence for loss of stability being the cause of pathogenicity in more than half of the pathogenic variants, indicating that this is a driving factor also in membrane-protein-associated diseases. Our findings show how computational tools aid in gaining mechanistic insights into variant consequences for membrane proteins. To enable broader analyses of disease-related and population variants, we include variant mappings for the entire human proteome.
Collapse
Affiliation(s)
- Johanna Katarina Sofie Tiemann
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrike Zschach
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Amelie Stein
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
6
|
Dixit G, Stowe RB, Bates A, Jaycox CK, Escobar JR, Harding BD, Drew DL, New CP, Sahu ID, Edelmann RE, Dabney-Smith C, Sanders CR, Lorigan GA. Purification and membrane interactions of human KCNQ1 100-370 potassium ion channel. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184010. [PMID: 35870481 PMCID: PMC11524546 DOI: 10.1016/j.bbamem.2022.184010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
KCNQ1 (Kv7.1 or KvLQT1) is a voltage-gated potassium ion channel that is involved in the ventricular repolarization following an action potential in the heart. It forms a complex with KCNE1 in the heart and is the pore forming subunit of slow delayed rectifier potassium current (Iks). Mutations in KCNQ1, leading to a dysfunctional channel or loss of activity have been implicated in a cardiac disorder, long QT syndrome. In this study, we report the overexpression, purification, biochemical characterization of human KCNQ1100-370, and lipid bilayer dynamics upon interaction with KCNQ1100-370. The recombinant human KCNQ1 was expressed in Escherichia coli and purified into n-dodecylphosphocholine (DPC) micelles. The purified KCNQ1100-370 was biochemically characterized by SDS-PAGE electrophoresis, western blot and nano-LC-MS/MS to confirm the identity of the protein. Circular dichroism (CD) spectroscopy was utilized to confirm the secondary structure of purified protein in vesicles. Furthermore, 31P and 2H solid-state NMR spectroscopy in DPPC/POPC/POPG vesicles (MLVs) indicated a direct interaction between KCNQ100-370 and the phospholipid head groups. Finally, a visual inspection of KCNQ1100-370 incorporated into MLVs was confirmed by transmission electron microscopy (TEM). The findings of this study provide avenues for future structural studies of the human KCNQ1 ion channel to have an in depth understanding of its structure-function relationship.
Collapse
Affiliation(s)
- Gunjan Dixit
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Rebecca B Stowe
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Colleen K Jaycox
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Jorge R Escobar
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Benjamin D Harding
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Christopher P New
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Richard E Edelmann
- Center for Advanced Microscopy and Imaging, Miami University, Oxford, OH 45056, USA
| | - Carole Dabney-Smith
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA; Cell, Molecular and Structural Biology Program, Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
7
|
Ge F, Zhu YH, Xu J, Muhammad A, Song J, Yu DJ. MutTMPredictor: Robust and accurate cascade XGBoost classifier for prediction of mutations in transmembrane proteins. Comput Struct Biotechnol J 2021; 19:6400-6416. [PMID: 34938415 PMCID: PMC8649221 DOI: 10.1016/j.csbj.2021.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Transmembrane proteins have critical biological functions and play a role in a multitude of cellular processes including cell signaling, transport of molecules and ions across membranes. Approximately 60% of transmembrane proteins are considered as drug targets. Missense mutations in such proteins can lead to many diverse diseases and disorders, such as neurodegenerative diseases and cystic fibrosis. However, there are limited studies on mutations in transmembrane proteins. In this work, we first design a new feature encoding method, termed weight attenuation position-specific scoring matrix (WAPSSM), which builds upon the protein evolutionary information. Then, we propose a new mutation prediction algorithm (cascade XGBoost) by leveraging the idea learned from consensus predictors and gcForest. Multi-level experiments illustrate the effectiveness of WAPSSM and cascade XGBoost algorithms. Finally, based on WAPSSM and other three types of features, in combination with the cascade XGBoost algorithm, we develop a new transmembrane protein mutation predictor, named MutTMPredictor. We benchmark the performance of MutTMPredictor against several existing predictors on seven datasets. On the 546 mutations dataset, MutTMPredictor achieves the accuracy (ACC) of 0.9661 and the Matthew's Correlation Coefficient (MCC) of 0.8950. While on the 67,584 dataset, MutTMPredictor achieves an MCC of 0.7523 and area under curve (AUC) of 0.8746, which are 0.1625 and 0.0801 respectively higher than those of the existing best predictor (fathmm). Besides, MutTMPredictor also outperforms two specific predictors on the Pred-MutHTP datasets. The results suggest that MutTMPredictor can be used as an effective method for predicting and prioritizing missense mutations in transmembrane proteins. The MutTMPredictor webserver and datasets are freely accessible at http://csbio.njust.edu.cn/bioinf/muttmpredictor/ for academic use.
Collapse
Key Words
- 1000 Genomes, 1000 genomes project consortium
- APOGEE, pathogenicity prediction through the logistic model tree
- BorodaTM, boosted regression trees for disease-associated mutations in transmembrane proteins
- COSMIC, catalogue of somatic mutations in cancer
- Cascade XGBoost
- ClinVar, clinical variants
- Condel, consensus deleteriousness score of missense mutations
- Disease-associated mutations
- Entprise, entropy and predicted protein structure
- ExAC, the exome aggregation consortium
- Meta-SNP, meta single nucleotide polymorphism
- Mutation prediction
- PROVEAN, protein variation effect analyzer
- PolyPhen, polymorphism phenotyping
- PolyPhen-2, polymorphism phenotyping v2
- Pred-MutHTP, prediction of mutations in human transmembrane proteins
- PredictSNP1, predict single nucleotide polymorphism v1
- Protein evolutionary information
- REVEL, rare exome variant ensemble learner
- SDM, site-directed mutate
- SIFT, sorting intolerant from tolerant
- SNAP, screening for non-acceptable polymorphisms
- SNP&GO, single nucleotide polymorphisms and gene ontology annotations
- SwissVar, variants in UniProtKB/Swiss-Prot
- TMSNP, transmembrane single nucleotide polymorphisms
- Transmembrane protein
- WEKA, waikato environment for knowledge analysis
- fathmm, functional analysis through hidden markov models
- humsavar, human polymorphisms and disease mutations
Collapse
Affiliation(s)
- Fang Ge
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Yi-Heng Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Jian Xu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Arif Muhammad
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
- School of Systems and Technology, Department of Informatics and System, University of Management and Technology, Lahore, 54770, Pakistan
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| |
Collapse
|
8
|
Schenkel M, Treff A, Deber CM, Krainer G, Schlierf M. Heat treatment of thioredoxin fusions increases the purity of α-helical transmembrane protein constructs. Protein Sci 2021; 30:1974-1982. [PMID: 34191368 PMCID: PMC8376418 DOI: 10.1002/pro.4150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023]
Abstract
Membrane proteins play key roles in cellular signaling and transport, represent the majority of drug targets, and are implicated in many diseases. Their relevance renders them important subjects for structural, biophysical, and functional investigations. However, obtaining membrane proteins in high purities is often challenging with conventional purification steps alone. To address this issue, we present here an approach to increase the purity of α-helical transmembrane proteins. Our approach exploits the Thioredoxin (Trx) tag system, which is able to confer some of its favorable properties, such as high solubility and thermostability, to its fusion partners. Using Trx fusions of transmembrane helical hairpin constructs derived from the human cystic fibrosis transmembrane conductance regulator (CFTR) and a bacterial ATP synthase, we establish conditions for the successful implementation of the selective heat treatment procedure to increase sample purity. We further examine systematically its efficacy with respect to different incubation times and temperatures using quantitative gel electrophoresis. We find that minute-timescale heat treatment of Trx-tagged fusion constructs with temperatures ranging from 50 to 90°C increases the purity of the membrane protein samples from ~60 to 98% even after affinity purification. We show that this single-step approach is even applicable in cases where regular selective heat purification from crude extracts, as reported for Trx fusions to soluble proteins, fails. Overall, our approach is easy to integrate into existing purification strategies and provides a facile route for increasing the purity of membrane protein constructs after purification by standard chromatography approaches.
Collapse
Affiliation(s)
- Mathias Schenkel
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
| | - Antoine Treff
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
| | - Charles M. Deber
- Division of Molecular Medicine, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
| | - Georg Krainer
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
- Centre for Misfolding Diseases, Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Michael Schlierf
- B CUBE – Center for Molecular BioengineeringTU DresdenDresdenGermany
| |
Collapse
|
9
|
Beytur S. Marker residue types at the structural regions of transmembrane alpha-helical and beta-barrel interfaces. Proteins 2021; 89:1145-1157. [PMID: 33890696 DOI: 10.1002/prot.26087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/11/2022]
Abstract
Membrane proteins play a variety of biological functions to the survival of organisms and functionalities of these proteins are often due to their homo- or hetero-complexation. Encoded by ~30% of the genome in most organisms, they represent the target of over half of nowadays drugs. Spanning the entirety of the cell membrane, transmembrane proteins are the most common type of membrane proteins and can be classified by secondary structures: alpha-helical and beta-barrel structures. Protein-protein interaction (PPI) have been widely studied for globular proteins and many computational tools are available for predicting PPI sites and construct models of complexes. Here, the structural regions of a non-redundant set of 232 alpha-helical and 37 beta-barrel transmembrane complexes and their interfaces are analyzed. Using the residue composition, frequency and propensity, this study brings the light on the marker residue types located at the structural regions of alpha-helical and beta-barrel transmembrane homomeric protein complexes and of their interfaces. This study also shows the necessity to relate the frequency to the composition into a ratio for immediately figuring out residue types presenting high frequencies at the interface and/or at one of its structural regions despite being a minor contributor compared to other residue types to that location's residue composition.
Collapse
Affiliation(s)
- Sercan Beytur
- Faculty of Engineering and Natural Sciences, Department of Bioinformatics and Genetics, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
10
|
Domański J, Sansom MSP, Stansfeld PJ, Best RB. Atomistic mechanism of transmembrane helix association. PLoS Comput Biol 2020; 16:e1007919. [PMID: 32497094 PMCID: PMC7272003 DOI: 10.1371/journal.pcbi.1007919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/30/2020] [Indexed: 01/21/2023] Open
Abstract
Transmembrane helix association is a fundamental step in the folding of helical membrane proteins. The prototypical example of this association is formation of the glycophorin dimer. While its structure and stability have been well-characterized experimentally, the detailed assembly mechanism is harder to obtain. Here, we use all-atom simulations within phospholipid membrane to study glycophorin association. We find that initial association results in the formation of a non-native intermediate, separated by a significant free energy barrier from the dimer with a native binding interface. We have used transition-path sampling to determine the association mechanism. We find that the mechanism of the initial bimolecular association to form the intermediate state can be mediated by many possible contacts, but seems to be particularly favoured by formation of non-native contacts between the C-termini of the two helices. On the other hand, the contacts which are key to determining progression from the intermediate to the native state are those which define the native binding interface, reminiscent of the role played by native contacts in determining folding of globular proteins. As a check on the simulations, we have computed association and dissociation rates from the transition-path sampling. We obtain results in reasonable accord with available experimental data, after correcting for differences in native state stability. Our results yield an atomistic description of the mechanism for a simple prototype of helical membrane protein folding. Many important cellular functions are performed by membrane proteins, and in particular by association of proteins via transmembrane helices. However, the mechanism of how the helices associate has been challenging to study, by either experiment or simulation. Here, we use advanced molecular simulation methods to overcome the slow time scales involved in helix association and dissociation and obtain a view of the association mechanism in atomic detail. We show that association occurs via an initially non-native dimer, before proceeding to the native state, and we validate our results by comparison to available experimental kinetic data. Our methods will also aid in the study of the assembly mechanism of larger transmembrane proteins via molecular simulation.
Collapse
Affiliation(s)
- Jan Domański
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, United Kingdom
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
12
|
Gupta A, Mahalakshmi R. Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49878-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Gupta A, Mahalakshmi R. Single-residue physicochemical characteristics kinetically partition membrane protein self-assembly and aggregation. J Biol Chem 2019; 295:1181-1194. [PMID: 31844019 PMCID: PMC6996891 DOI: 10.1074/jbc.ra119.011342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Indexed: 11/06/2022] Open
Abstract
Ninety-five percent of all transmembrane proteins exist in kinetically trapped aggregation-prone states that have been directly linked to neurodegenerative diseases. Interestingly, the primary sequence almost invariably avoids off-pathway aggregate formation, by folding reliably into its native, thermodynamically stabilized structure. However, with the rising incidence of protein aggregation diseases, it is now important to understand the underlying mechanism(s) of membrane protein aggregation. Micromolecular physicochemical and biochemical alterations in the primary sequence that trigger the formation of macromolecular cross-β aggregates can be measured only through combinatorial spectroscopic experiments. Here, we developed spectroscopic thermal perturbation with 117 experimental variables to assess how subtle protein sequence variations drive the molecular transition of the folded protein to oligomeric aggregates. Using the Yersinia pestis outer transmembrane β-barrel Ail as a model, we delineated how a single-residue substitution that alters the membrane-anchoring ability of Ail significantly contributes to the kinetic component of Ail stability. We additionally observed a stabilizing role for interface aliphatics, and that interface aromatics physicochemically contribute to Ail self-assembly and aggregation. Moreover, our method identified the formation of structured oligomeric intermediates during Ail aggregation. We show that the self-aggregation tendency of Ail is offset by the evolution of a thermodynamically compromised primary sequence that balances folding, stability, and oligomerization. Our approach provides critical information on how subtle changes in protein primary sequence trigger cross-β fibril formation, with insights that have direct implications for deducing the molecular progression of neurodegeneration and amyloidogenesis in humans.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
14
|
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183148. [PMID: 31825788 DOI: 10.1016/j.bbamem.2019.183148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/15/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ion channels play crucial roles in cellular biology, physiology, and communication including sensory perception. Voltage-gated potassium (Kv) channels execute their function by sensor activation, pore-coupling, and pore opening leading to K+ conductance. SCOPE OF REVIEW This review focuses on a voltage-gated K+ ion channel KCNQ1 (Kv 7.1). Firstly, discussing its positioning in the human ion chanome, and the role of KCNQ1 in the multitude of cellular processes. Next, we discuss the overall channel architecture and current structural insights on KCNQ1. Finally, the gating mechanism involving members of the KCNE family and its interaction with non-KCNE partners. MAJOR CONCLUSIONS KCNQ1 executes its important physiological functions via interacting with KCNE1 and non-KCNE1 proteins/molecules: calmodulin, PIP2, PKA. Although, KCNQ1 has been studied in great detail, several aspects of the channel structure and function still remain unexplored. This review emphasizes the structural and biophysical studies of KCNQ1, its interaction with KCNE1 and non-KCNE1 proteins and focuses on several seminal findings showing the role of VSD and the pore domain in the channel activation and gating properties. GENERAL SIGNIFICANCE KCNQ1 mutations can result in channel defects and lead to several diseases including atrial fibrillation and long QT syndrome. Therefore, a thorough structure-function understanding of this channel complex is essential to understand its role in both normal and disease biology. Moreover, unraveling the molecular mechanisms underlying the regulation of this channel complex will help to find therapeutic strategies for several diseases.
Collapse
|
15
|
Sadaf A, Ramos M, Mortensen JS, Du Y, Bae HE, Munk CF, Hariharan P, Byrne B, Kobilka BK, Loland CJ, Guan L, Chae PS. Conformationally Restricted Monosaccharide-Cored Glycoside Amphiphiles: The Effect of Detergent Headgroup Variation on Membrane Protein Stability. ACS Chem Biol 2019; 14:1717-1726. [PMID: 31305987 DOI: 10.1021/acschembio.9b00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detergents are widely used to isolate membrane proteins from lipid bilayers, but many proteins solubilized in conventional detergents are structurally unstable. Thus, there is major interest in the development of novel amphiphiles to facilitate membrane protein research. In this study, we have designed and synthesized novel amphiphiles with a rigid scyllo-inositol core, designated scyllo-inositol glycosides (SIGs). Varying the headgroup structure allowed the preparation of three sets of SIGs that were evaluated for their effects on membrane protein stability. When tested with a few model membrane proteins, representative SIGs conferred enhanced stability to the membrane proteins compared to a gold standard conventional detergent (DDM). Of the novel amphiphiles, a SIG designated STM-12 was most effective at preserving the stability of the multiple membrane proteins tested here. In addition, a comparative study of the three sets suggests that several factors, including micelle size and alkyl chain length, need to be considered in the development of novel detergents for membrane protein research. Thus, this study not only describes new detergent tools that are potentially useful for membrane protein structural study but also introduces plausible correlations between the chemical properties of detergents and membrane protein stabilization efficacy.
Collapse
Affiliation(s)
- Aiman Sadaf
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Manuel Ramos
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Jonas S. Mortensen
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Yang Du
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Hyoung Eun Bae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| | - Chastine F. Munk
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Claus J. Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan 155-88, Korea
| |
Collapse
|
16
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
17
|
Battisti A, Zamuner S, Sarti E, Laio A. Toward a unified scoring function for native state discrimination and drug-binding pocket recognition. Phys Chem Chem Phys 2019; 20:17148-17155. [PMID: 29900428 DOI: 10.1039/c7cp08170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protein folding and receptor-ligand recognition are fundamental processes for any living organism. Although folding and ligand recognition are based on the same chemistry, the existing empirical scoring functions target just one problem: predicting the correct fold or the correct binding pose. We here introduce a statistical potential which considers moieties as fundamental units. The scoring function is able to deal with both folding and ligand pocket recognition problems with a performance comparable to the scoring functions specifically tailored for one of the two tasks. We foresee that the capability of the new scoring function to tackle both problems in a unified framework will be a key to deal with the induced fit phenomena, in which a target protein changes significantly its conformation upon binding. Moreover, the new scoring function might be useful in docking protocols towards intrinsically disordered proteins, whose flexibility cannot be handled with the available docking software.
Collapse
Affiliation(s)
- Anna Battisti
- International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy.
| | | | | | | |
Collapse
|
18
|
Xu L, Liu S, Yang T, Shen Y, Zhang Y, Huang L, Zhang L, Ding S, Song F, Cheng W. DNAzyme Catalyzed Tyramide Depositing Reaction for In Situ Imaging of Protein Status on the Cell Surface. Theranostics 2019; 9:1993-2002. [PMID: 31037152 PMCID: PMC6485291 DOI: 10.7150/thno.31943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Effective characterization of protein biomarkers status on the cell surface has important value in the diagnosis and treatment of diseases. Traditional immunohistochemistry can only assess the protein expression level rather than accurately reflect their interaction and oligomerization, resulting in inevitable problems for personalized therapy. Methods: Herein, we developed a novel DNAzyme-catalyzed tyramide depositing reaction (DCTDR) for in situ amplified imaging of membrane protein status. By using human epidermal growth factor receptor 2 (HER2) as model, the binding of HER2 proteins with specific aptamers induced the formation of activated hemin/G-quadruplex (G4) DNAzyme on the cell surface to catalyze the covalent deposition of fluorescent tyramide on the membrane proteins for fluorescence imaging. Results: The DCTDR-based imaging can conveniently characterize total HER2 expression and HER2 dimerization on the breast cancer cell surface with the application of aptamer-G4 probes and proximity aptamer-split G4 probes, respectively. The designed DCTDR strategy was successfully applied to quantitatively estimate total HER2 expression and HER2 homodimer on clinical breast cancer tissue sections with high specificity and accuracy. Conclusion: The DCTDR strategy provides a simple, pragmatic and enzyme-free toolbox to conveniently and sensitively analyze protein status in clinical samples for improving clinical research, cancer diagnostics and personalized treatment.
Collapse
|
19
|
Suades A, Alcaraz A, Cruz E, Álvarez-Marimon E, Whitelegge JP, Manyosa J, Cladera J, Perálvarez-Marín A. Structural biology workflow for the expression and characterization of functional human sodium glucose transporter type 1 in Pichia pastoris. Sci Rep 2019; 9:1203. [PMID: 30718602 PMCID: PMC6362292 DOI: 10.1038/s41598-018-37445-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
Heterologous expression of human membrane proteins is a challenge in structural biology towards drug discovery. Here we report a complete expression and purification process of a functional human sodium/D-glucose co-transporter 1 (hSGLT1) in Pichia pastoris as representative example of a useful strategy for any human membrane protein. hSGLT1 gene was cloned in two different plasmids to develop parallel strategies: one which includes green fluorescent protein fusion for screening optimal conditions, and another for large scale protein production for structural biology and biophysics studies. Our strategy yields at least 1 mg of monodisperse purified recombinant hSGLT1 per liter of culture, which can be characterized by circular dichroism and infrared spectroscopy as an alpha-helical fold protein. This purified hSGLT1 transports co-substrates (Na+ and glucose) and it is inhibited by phlorizin in electrophysiological experiments performed in planar lipid membranes.
Collapse
Affiliation(s)
- Albert Suades
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Catalonia, Spain.,Department of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071, Castellón, Spain
| | - Esteban Cruz
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Catalonia, Spain
| | - Elena Álvarez-Marimon
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Catalonia, Spain
| | - Julian P Whitelegge
- The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute, David Geffen School of Medicine, UCLA, 760 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Joan Manyosa
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Catalonia, Spain
| | - Josep Cladera
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Catalonia, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Catalonia, Spain.
| |
Collapse
|
20
|
Lippens JL, Egea PF, Spahr C, Vaish A, Keener JE, Marty MT, Loo JA, Campuzano ID. Rapid LC-MS Method for Accurate Molecular Weight Determination of Membrane and Hydrophobic Proteins. Anal Chem 2018; 90:13616-13623. [PMID: 30335969 PMCID: PMC6580849 DOI: 10.1021/acs.analchem.8b03843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic target characterization involves many components, including accurate molecular weight (MW) determination. Knowledge of the accurate MW allows one to detect the presence of post-translational modifications, proteolytic cleavages, and importantly, if the correct construct has been generated and purified. Denaturing liquid chromatography-mass spectrometry (LC-MS) can be an attractive method for obtaining this information. However, membrane protein LC-MS methodology has remained relatively under-explored and under-incorporated in comparison to methods for soluble proteins. Here, systematic investigation of multiple gradients and column chemistries has led to the development of a 5 min denaturing LC-MS method for acquiring membrane protein accurate MW measurements. Conditions were interrogated with membrane proteins, such as GPCRs and ion channels, as well as bispecific antibody constructs of variable sizes with the aim to provide the community with rapid LC-MS methods necessary to obtain chromatographic and accurate MW measurements in a medium- to high-throughput manner. The 5 min method detailed has successfully produced MW measurements for hydrophobic proteins with a wide MW range (17.5 to 105.3 kDa) and provided evidence that some constructs indeed contain unexpected modifications or sequence clipping. This rapid LC-MS method is also capable of baseline separating formylated and nonformylated aquaporinZ membrane protein.
Collapse
Affiliation(s)
- Jennifer L. Lippens
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - Pascal F. Egea
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Chris Spahr
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - Amit Vaish
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| | - James E. Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Joseph A. Loo
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Iain D.G. Campuzano
- Amgen Discovery Research, Amgen, Thousand Oaks, California 91320, United States
| |
Collapse
|
21
|
Patel SJ, Van Lehn RC. Characterizing the Molecular Mechanisms for Flipping Charged Peptide Flanking Loops across a Lipid Bilayer. J Phys Chem B 2018; 122:10337-10348. [PMID: 30376710 DOI: 10.1021/acs.jpcb.8b06613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell membrane largely prevents the passive diffusion of charged molecules due to the large free energy barrier associated with translocating charged groups across the hydrophobic lipid bilayer core. Despite this barrier, some peptides can interconvert between transmembrane and surface-adsorbed states by "flipping" charged flanking loops across the bilayer on a surprisingly rapid second-minute time scale. The transmembrane helices of some multispanning membrane proteins undergo similar reorientation processes, suggesting that loop-flipping may be a mechanism for regulating membrane protein topology; however, the molecular mechanisms underlying this behavior remain unknown. In this work, we study the loop-flipping behavior exhibited by a peptide with a hydrophobic transmembrane helix, charged flanking loops, and a central, membrane-exposed aspartate residue of varying protonation state. We utilize all-atom temperature accelerated molecular dynamics simulations to predict the likelihood of loop-flipping without predefining specific loop-flipping pathways. We demonstrate that this approach can identify multiple possible flipping pathways, with the prevalence of each pathway depending on the protonation state of the central residue. In particular, we find that a charged central residue facilitates loop-flipping by stabilizing membrane water defects, enabling the "self-catalysis" of charge translocation. These findings provide detailed molecular-level insights into charged loop-flipping pathways that may generalize to other charge translocation processes, such as lipid flip-flop or the large-scale conformational rearrangements of multispanning membrane proteins.
Collapse
Affiliation(s)
- Samarthaben J Patel
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
22
|
Li W, Wang L, Wang Y, Jiang W. Binding-induced nicking site reconstruction strategy for quantitative detection of membrane protein on living cell. Talanta 2018; 189:383-388. [PMID: 30086935 DOI: 10.1016/j.talanta.2018.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023]
Abstract
Here, a binding-induced nicking site reconstruction strategy has been fabricated for quantitative detection of membrane protein on living cell. Taking protein tyrosine kinase-7 (PTK7) as model analyst, first, an aptamer probe was designed with an aptamer sequence, a trigger sequence and a nicking site. In the absence of PTK7, the aptamer sequence could partially hybridize with the trigger sequence, forming a stem-loop structure. And the two complementary sequences of the nicking site were separated, which could not be recognized by nicking enzyme. In the presence of PTK7, the aptamer probe and PTK7 binding caused the reconstruction of the probe, leading to the hybridization of the two separated nicking site sequences. Then, the nicking site could be identified and nicked, yielding the release of the trigger sequence. Next, the trigger sequence could initiate the homogeneous cascade amplification, producing multiple G-quadruplex structures. By inserting the N-Methyl Mesoporphyrin IX (NMM), enhanced fluorescence signal could be acquired. Through the binding-induced nicking site reconstruction, the trigger sequence could be released on the surface of living cell and became more accessible. By combining the cascade rolling circle amplification (RCA) and hybridization chain reaction (HCR), high sensitivity was achieved with a detection limit of 0.3 fM. Moreover, Quantitative assay of PTK7 on living cancer cells and normal cells were performed, suggesting that the proposed method was sensitive enough to detect changes in PTK7 expression. Thus, this strategy provided a novel and reliable method for membrane protein expression assay on living cell.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Natural Products Chemical Biological, Ministry of Education, School of Pharmacy, Shandong University, 250012 Jinan, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biological, Ministry of Education, School of Pharmacy, Shandong University, 250012 Jinan, PR China
| | - Yan Wang
- The 88th Hospital of PLA, 270100 Tai'an, PR China.
| | - Wei Jiang
- Key Laboratory of Natural Products Chemical Biological, Ministry of Education, School of Pharmacy, Shandong University, 250012 Jinan, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China.
| |
Collapse
|
23
|
Yang Y, Hong Y, Nam GH, Chung JH, Koh E, Kim IS. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605604. [PMID: 28165174 DOI: 10.1002/adma.201605604] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/30/2016] [Indexed: 06/06/2023]
Abstract
An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Gi-Hoon Nam
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Hwa Chung
- Bio-Imaging Center, Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Eunee Koh
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
24
|
Kim Y, Lee H, Manson SR, Lindahl M, Evans B, Miner JH, Urano F, Chen YM. Mesencephalic Astrocyte-Derived Neurotrophic Factor as a Urine Biomarker for Endoplasmic Reticulum Stress-Related Kidney Diseases. J Am Soc Nephrol 2016; 27:2974-2982. [PMID: 26940092 PMCID: PMC5042655 DOI: 10.1681/asn.2014100986] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/15/2016] [Indexed: 12/14/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and disrupted proteostasis contribute to the pathogenesis of a variety of glomerular and tubular diseases. Thus, it is imperative to develop noninvasive biomarkers for detecting ER stress in podocytes or tubular cells in the incipient stage of disease, when a kidney biopsy is not yet clinically indicated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) localizes to the ER lumen and is secreted in response to ER stress in several cell types. Here, using mouse models of human nephrotic syndrome caused by mutant laminin β2 protein-induced podocyte ER stress and AKI triggered by tunicamycin- or ischemia-reperfusion-induced tubular ER stress, we examined MANF as a potential urine biomarker for detecting ER stress in podocytes or renal tubular cells. ER stress upregulated MANF expression in podocytes and tubular cells. Notably, urinary MANF excretion concurrent with podocyte or tubular cell ER stress preceded clinical or histologic manifestations of the corresponding disease. Thus, MANF can potentially serve as a urine diagnostic or prognostic biomarker in ER stress-related kidney diseases to help stratify disease risk, predict disease progression, monitor treatment response, and identify subgroups of patients who can be treated with ER stress modulators in a highly targeted manner.
Collapse
Affiliation(s)
- Yeawon Kim
- Division of Nephrology, Department of Internal Medicine
| | - Heedoo Lee
- Division of Nephrology, Department of Internal Medicine
| | | | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland; and
| | - Bradley Evans
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, St. Louis, Missouri
| | - Jeffrey H Miner
- Division of Nephrology, Department of Internal Medicine, Departments of Cell Biology and Physiology and
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Pathology and Immunology, and
| | | |
Collapse
|
25
|
Lin M, Gessmann D, Naveed H, Liang J. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale. J Am Chem Soc 2016; 138:2592-601. [PMID: 26860422 DOI: 10.1021/jacs.5b10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.
Collapse
Affiliation(s)
- Meishan Lin
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Dennis Gessmann
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Hammad Naveed
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| |
Collapse
|
26
|
Viswanath S, Dominguez L, Foster LS, Straub JE, Elber R. Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization. Proteins 2015; 83:2170-85. [PMID: 26404856 DOI: 10.1002/prot.24934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022]
Abstract
Novel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of transmembrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking packages. This membrane version of DOCK/PIERR is applied to the prediction of coiled-coil homodimer structures of the transmembrane region of the C-terminal peptide of amyloid precursor protein (C99). Results from MD simulation of the C99 homodimer in POPC bilayer and docking are compared. Docking results are found to capture key aspects of the homodimer ensemble, including the existence of three topologically distinct conformers. Furthermore, the extended version of DOCK/PIERR is successful in capturing the effects of solvation in membrane and micelle. Specifically, DOCK/PIERR reproduces essential differences in the homodimer ensembles simulated in POPC bilayer and DPC micelle, where configurational entropy and surface curvature effects bias the handedness and topology of the homodimer ensemble.
Collapse
Affiliation(s)
- Shruthi Viswanath
- Department of Computer Science, University of Texas at Austin, Austin, Texas, 78712.,Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712
| | - Laura Dominguez
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - Leigh S Foster
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215
| | - Ron Elber
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, 78712.,Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
27
|
Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny JL, Leung CH, Ma DL. Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci 2015; 6:4284-4290. [PMID: 29218197 PMCID: PMC5707507 DOI: 10.1039/c5sc01320h] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/17/2015] [Indexed: 12/22/2022] Open
Abstract
A series of luminescent iridium(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The iridium(iii) complex 9 [Ir(pbi)2(5,5-dmbpy)]PF6 (where pbi = 2-phenyl-1H-benzo[d]imidazole; 5,5-dmbpy = 5,5'-dimethyl-2,2'-bipyridine) exhibited high luminescence for G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a G-quadruplex-based assay for protein tyrosine kinase-7 (PTK7) in aqueous solution. PTK7 is an important biomarker for a range of leukemias and solid tumors. In the presence of PTK7, the specific binding of the sgc8 aptamer sequence triggers a structural transition and releases the G-quadruplex-forming sequence. The formation of the nascent G-quadruplex structure is then detected by the G-quadruplex-selective iridium(iii) complex with an enhanced luminescent response. Moreover, the application of the assay for detecting PTK7 in cellular debris and membrane protein extract was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for PTK7.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Wei Gao
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Zeru Tian
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Lihua Lu
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Jean-Louis Mergny
- University of Bordeaux , ARNA Laboratory , Bordeaux , France .
- INSERM , U869 , IECB , Pessac , France
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
- Partner State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China
| |
Collapse
|
28
|
Petrosyan R, Bippes CA, Walheim S, Harder D, Fotiadis D, Schimmel T, Alsteens D, Müller DJ. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. NANO LETTERS 2015; 15:3624-3633. [PMID: 25879249 DOI: 10.1021/acs.nanolett.5b01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Christian A Bippes
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Stefan Walheim
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Daniel Harder
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Thomas Schimmel
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - David Alsteens
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Daniel J Müller
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
29
|
Stangl M, Schneider D. Functional competition within a membrane: Lipid recognition vs. transmembrane helix oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1886-96. [PMID: 25791349 DOI: 10.1016/j.bbamem.2015.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer-oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Michael Stangl
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes-Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
30
|
Huang L, Liu X, Cheng B, Huang K. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Arch Biochem Biophys 2015; 568:46-55. [PMID: 25615529 DOI: 10.1016/j.abb.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
The process of protein aggregation from soluble amyloidogenic proteins to insoluble amyloid fibrils plays significant roles in the onset of over 30 human amyloidogenic diseases, such as Prion disease, Alzheimer's disease and type 2 diabetes mellitus. Amyloid deposits are commonly found in patients suffered from amyloidosis; however, such deposits are rarely seen in healthy individuals, which may be largely attributed to the self-regulation in vivo. A vast number of physiological factors have been demonstrated to directly affect the process of amyloid formation in vivo. In this review, physiological factors that influence amyloidosis, including biological factors (chaperones, natural antibodies, enzymes, lipids and saccharides) and physicochemical factors (metal ions, pH environment, crowding and pressure, etc.), together with the mechanisms underlying these proteostasis effects, are summarized.
Collapse
Affiliation(s)
- Lianqi Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Biao Cheng
- Department of Pharmacy, Central Hospital of Wuhan, Wuhan, Hubei 430014, PR China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, Hubei 430075, PR China.
| |
Collapse
|
31
|
Hierarchical closeness efficiently predicts disease genes in a directed signaling network. Comput Biol Chem 2014; 53PB:191-197. [PMID: 25462327 DOI: 10.1016/j.compbiolchem.2014.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Many structural centrality measures were proposed to predict putative disease genes on biological networks. Closeness is one of the best-known structural centrality measures, and its effectiveness for disease gene prediction on undirected biological networks has been frequently reported. However, it is not clear whether closeness is effective for disease gene prediction on directed biological networks such as signaling networks. RESULTS In this paper, we first show that closeness does not significantly outperform other well-known centrality measures such as Degree, Betweenness, and PageRank for disease gene prediction on a human signaling network. In addition, we observed that prediction accuracy by the closeness measure was worse than that by a reachability measure, but closeness could efficiently predict disease genes among a set of genes with the same reachability value. Based on this observation, we devised a novel structural measure, hierarchical closeness, by combining reachability and closeness such that all genes are first ranked by the degree of reachability and then the tied genes are further ranked by closeness. We discovered that hierarchical closeness outperforms other structural centrality measures in disease gene prediction. We also found that the set of highly ranked genes in terms of hierarchical closeness is clearly different from that of hub genes with high connectivity. More interestingly, these findings were consistently reproduced in a random Boolean network model. Finally, we found that genes with relatively high hierarchical closeness are significantly likely to encode proteins in the extracellular matrix and receptor proteins in a human signaling network, supporting the fact that half of all modern medicinal drugs target receptor-encoding genes. CONCLUSION Taken together, hierarchical closeness proposed in this study is a novel structural measure to efficiently predict putative disease genes in a directed signaling network.
Collapse
|
32
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
33
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
34
|
Li L, Wang Q, Feng J, Tong L, Tang B. Highly sensitive and homogeneous detection of membrane protein on a single living cell by aptamer and nicking enzyme assisted signal amplification based on microfluidic droplets. Anal Chem 2014; 86:5101-7. [PMID: 24779994 DOI: 10.1021/ac500881p] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Membrane proteins play vital roles in numerous physiological functions. Recently, they have been considered as candidate biomarkers for cancer and recognized as major drug targets. So, accurate, sensitive, and high-throughput quantitative detection of the membrane proteins is crucial for better understanding their roles in cancer cells and further validating their function in clinical research. Here, we report a highly sensitive and homogeneous detection of membrane protein on single living cells by aptamer and nicking enzyme assisted fluorescence signal amplification in microfluidic droplets. The homogeneous reaction based on the membrane protein-triggered conformation alteration of hairpin probe can improve the detection accuracy with elimination of several washing and separation steps. The microfluidic system provides a high-throughput platform for the detection of a single cell, and the highly monodisperse droplet can function as an independent microreactor for the aptamer and nicking enzyme assisted fluorescence signal amplification, coordinating with the small volume of the confined space (a droplet), increased reaction rate, and highly sensitive detection of membrane protein on single cell can be reached.
Collapse
Affiliation(s)
- Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University , Jinan 250014, P. R. China
| | | | | | | | | |
Collapse
|
35
|
Reuven EM, Fink A, Shai Y. Regulation of innate immune responses by transmembrane interactions: lessons from the TLR family. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1586-93. [PMID: 24480409 DOI: 10.1016/j.bbamem.2014.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 02/06/2023]
Abstract
The mammalian innate immune response is responsible for the early stages of defense against invading pathogens. One of the major receptor families facilitating innate immune activation is the Toll-like receptor (TLR) family. These receptors are type 1 membrane proteins spanning the membrane with a single transmembrane domain (TMD). All TLRs form homo- and hetero-dimers within membranes and new data suggest that the single transmembrane domain of some of these receptors is involved in their dimerization and function. Newly identified TLR dimers are continuously reported but only little is known about the importance of the TMDs for their dimer assembly and signaling regulation. Uncontrolled or untimely activation of TLRs is related to a large number of pathologies ranging from cystic fibrosis to sepsis and cancer. In this review we will focus on the contribution of the TMDs of innate immune receptors - specifically TLR2-to their regulation and function. In addition, we will address the current issues remaining to be solved regarding the mechanistic insights of this regulation. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Eliran Moshe Reuven
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avner Fink
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Chen YM, Zhou Y, Go G, Marmerstein JT, Kikkawa Y, Miner JH. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J Am Soc Nephrol 2013; 24:1223-33. [PMID: 23723427 DOI: 10.1681/asn.2012121149] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the laminin β2 gene (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. LAMB2 is a component of the laminin-521 (α5β2γ1) trimer, an important constituent of the glomerular basement membrane (GBM). The C321R-LAMB2 missense mutation leads to congenital nephrotic syndrome but only mild extrarenal symptoms; the mechanisms underlying the development of proteinuria with this mutation are unclear. We generated three transgenic mouse lines, in which rat C321R-LAMB2 replaced mouse LAMB2 in the GBM. During the first postnatal month, expression of C321R-LAMB2 attenuated the severe proteinuria exhibited by Lamb2(-/-) mice in a dose-dependent fashion; proteinuria eventually increased, however, leading to renal failure. The C321R mutation caused defective secretion of laminin-521 from podocytes to the GBM accompanied by podocyte endoplasmic reticulum (ER) stress, likely resulting from protein misfolding. Moreover, ER stress preceded the onset of significant proteinuria and was manifested by induction of the ER-initiated apoptotic signal C/EBP homologous protein (CHOP), ER distention, and podocyte injury. Treatment of cells expressing C321R-LAMB2 with the chemical chaperone taurodeoxycholic acid (TUDCA), which can facilitate protein folding and trafficking, greatly increased the secretion of the mutant LAMB2. Taken together, these results suggest that the mild variant of Pierson syndrome caused by the C321R-LAMB2 mutation may be a prototypical ER storage disease, which may benefit from treatment approaches that target the handling of misfolded proteins.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
37
|
Locating an extracellular K+-dependent interaction site that modulates betaine-binding of the Na+-coupled betaine symporter BetP. Proc Natl Acad Sci U S A 2011; 108:E890-8. [PMID: 21987793 DOI: 10.1073/pnas.1109597108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BetP, a trimeric Na(+)-coupled betaine symporter, senses hyperosmotic stress via its cytoplasmic C-terminal domain and regulates transport activity in dependence of the cytoplasmic K(+)-concentration. This transport regulation of BetP depends on a sophisticated interaction network. Using single-molecule force spectroscopy we structurally localize and quantify these interactions changing on K(+)-dependent transport activation and substrate-binding. K(+) significantly strengthened all interactions, modulated lifetimes of functionally important structural regions, and increased the mechanical rigidity of the symporter. Substrate-binding could modulate, but not establish most of these K(+)-dependent interactions. A pronounced effect triggered by K(+) was observed at the periplasmic helical loop EH2. Tryptophan quenching experiments revealed that elevated K(+)-concentrations akin to those BetP encounters during hyperosmotic stress trigger the formation of a periplasmic second betaine-binding (S2) site, which was found to be at a similar position reported previously for the BetP homologue CaiT. In BetP, the presence of the S2 site strengthened the interaction between EH2, transmembrane α-helix 12 and the K(+)-sensing C-terminal domain resulting in a K(+)-dependent cooperative betaine-binding.
Collapse
|
38
|
Ng DP, Poulsen BE, Deber CM. Membrane protein misassembly in disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1115-22. [PMID: 21840297 DOI: 10.1016/j.bbamem.2011.07.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
Helix-helix interactions play a central role in the folding and assembly of integral α-helical membrane proteins and are fundamentally dictated by the amino acid sequence of the TM domain. It is not surprising then that missense mutations that target these residues are often linked to disease. In this review, we focus on the molecular mechanisms through which missense mutations lead to aberrant folding and/or assembly of these proteins, and then discuss pharmacological approaches that may potentially mitigate or reverse the negative effects of these mutations. Improving our understanding of how missense mutations affect the interactions between TM α-helices will increase our capability to develop effective therapeutic approaches to counter the misassembly of these proteins and, ultimately, disease. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Derek P Ng
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
39
|
Chen YM, Kikkawa Y, Miner JH. A missense LAMB2 mutation causes congenital nephrotic syndrome by impairing laminin secretion. J Am Soc Nephrol 2011; 22:849-58. [PMID: 21511833 DOI: 10.1681/asn.2010060632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Laminin β2 is a component of laminin-521, which is an important constituent of the glomerular basement membrane (GBM). Null mutations in laminin β2 (LAMB2) cause Pierson syndrome, a severe congenital nephrotic syndrome with ocular and neurologic defects. In contrast, patients with LAMB2 missense mutations, such as R246Q, can have less severe extrarenal defects but still exhibit congenital nephrotic syndrome. To investigate how such missense mutations in LAMB2 cause proteinuria, we generated three transgenic lines of mice in which R246Q-mutant rat laminin β2 replaced the wild-type mouse laminin β2 in the GBM. These transgenic mice developed much less severe proteinuria than their nontransgenic Lamb2-deficient littermates; the level of proteinuria correlated inversely with R246Q-LAMB2 expression. At the onset of proteinuria, expression and localization of proteins associated with the slit diaphragm and foot processes were normal, and there were no obvious ultrastructural abnormalities. Low transgene expressors developed heavy proteinuria, foot process effacement, GBM thickening, and renal failure by 3 months, but high expressors developed only mild proteinuria by 9 months. In vitro studies demonstrated that the R246Q mutation results in impaired secretion of laminin. Taken together, these results suggest that the R246Q mutation causes nephrotic syndrome by impairing secretion of laminin-521 from podocytes into the GBM; however, increased expression of the mutant protein is able to overcome this secretion defect and improve glomerular permselectivity.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
40
|
Damaghi M, Sapra KT, Köster S, Yildiz Ö, Kühlbrandt W, Muller DJ. Dual energy landscape: the functional state of the β-barrel outer membrane protein G molds its unfolding energy landscape. Proteomics 2011; 10:4151-62. [PMID: 21058339 DOI: 10.1002/pmic.201000241] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We applied dynamic single-molecule force spectroscopy to quantify the parameters (free energy of activation and distance of the transition state from the folded state) characterizing the energy barriers in the unfolding energy landscape of the outer membrane protein G (OmpG) from Escherichia coli. The pH-dependent functional switching of OmpG directs the protein along different regions on the unfolding energy landscape. The two functional states of OmpG take the same unfolding pathway during the sequential unfolding of β-hairpins I-IV. After the initial unfolding events, the unfolding pathways diverge. In the open state, the unfolding of β-hairpin V in one step precedes the unfolding of β-hairpin VI. In the closed state, β-hairpin V and β-strand S11 with a part of extracellular loop L6 unfold cooperatively, and subsequently β-strand S12 unfolds with the remaining loop L6. These two unfolding pathways in the open and closed states join again in the last unfolding step of β-hairpin VII. Also, the conformational change from the open to the closed state witnesses a rigidified extracellular gating loop L6. Thus, a change in the conformational state of OmpG not only bifurcates its unfolding pathways but also tunes its mechanical properties for optimum function.
Collapse
Affiliation(s)
- Mehdi Damaghi
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Nucleic acid aptamers targeting cell-surface proteins. Methods 2011; 54:215-25. [PMID: 21300154 DOI: 10.1016/j.ymeth.2011.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 12/21/2022] Open
Abstract
Aptamers are chemical antibodies that bind to their targets with high affinity and specificity. These short stretches of nucleic acids are identified using a repetitive in vitro selection and partitioning technology called SELEX (Systematic Evolution of Ligands by EXponential enrichment). Since the emergence of this technology, many modifications and variations have been introduced to enable the selection of specific ligands, even for implausible targets. For membrane protein, the selection scheme can be chosen depending upon the availability of the system, the protein characteristics and the application required. Aptamers have been generated for a significant number of disease-associated membrane proteins and have been shown to have considerable diagnostic and therapeutic importance. In this article, we review the SELEX process used for identification of aptamers that target cell-surface proteins and recapitulate their use as therapeutic and diagnostic reagents.
Collapse
|
42
|
Angiotensin I-converting enzyme Gln1069Arg mutation impairs trafficking to the cell surface resulting in selective denaturation of the C-domain. PLoS One 2010; 5:e10438. [PMID: 20454656 PMCID: PMC2862704 DOI: 10.1371/journal.pone.0010438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/20/2010] [Indexed: 11/29/2022] Open
Abstract
Background Angiotensin-converting enzyme (ACE; Kininase II; CD143) hydrolyzes small peptides such as angiotensin I, bradykinin, substance P, LH-RH and several others and thus plays a key role in blood pressure regulation and vascular remodeling. Complete absence of ACE in humans leads to renal tubular dysgenesis (RTD), a severe disorder of renal tubule development characterized by persistent fetal anuria and perinatal death. Methodology/Principal Findings Patient with RTD in Lisbon, Portugal, maintained by peritoneal dialysis since birth, was found to have a homozygous substitution of Arg for Glu at position 1069 in the C-terminal domain of ACE (Q1069R) resulting in absence of plasma ACE activity; both parents and a brother who are heterozygous carriers of this mutation had exactly half-normal plasma ACE activity compared to healthy individuals. We hypothesized that the Q1069R substitution impaired ACE trafficking to the cell surface and led to accumulation of catalytically inactive ACE in the cell cytoplasm. CHO cells expressing wild-type (WT) vs. Q1069R-ACE demonstrated the mutant accumulates intracellularly and also that it is significantly degraded by intracellular proteases. Q1069R-ACE retained catalytic and immunological characteristics of WT-ACE N domain whereas it had 10–20% of the nativity of the WT-ACE C domain. A combination of chemical (sodium butyrate) or pharmacological (ACE inhibitor) chaperones with proteasome inhibitors (MG 132 or bortezomib) significantly restored trafficking of Q1069R-ACE to the cell surface and increased ACE activity in the cell culture media 4-fold. Conclusions/Significance Homozygous Q1069R substitution results in an ACE trafficking and processing defect which can be rescued, at least in cell culture, by a combination of chaperones and proteasome inhibitors. Further studies are required to determine whether similar treatment of individuals with this ACE mutation would provide therapeutic benefits such as concentration of primary urine.
Collapse
|
43
|
The extracellular domain of Bri2 (ITM2B) binds the ABri peptide (1–23) and amyloid β-peptide (Aβ1–40): Implications for Bri2 effects on processing of amyloid precursor protein and Aβ aggregation. Biochem Biophys Res Commun 2010; 393:356-61. [DOI: 10.1016/j.bbrc.2009.12.122] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/17/2022]
|
44
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| |
Collapse
|
45
|
Bippes CA, Zeltina A, Casagrande F, Ratera M, Palacin M, Muller DJ, Fotiadis D. Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter. J Biol Chem 2009; 284:18651-63. [PMID: 19419962 DOI: 10.1074/jbc.m109.004267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Collapse
Affiliation(s)
- Christian A Bippes
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Conn PM, Janovick JA. Drug development and the cellular quality control system. Trends Pharmacol Sci 2009; 30:228-33. [DOI: 10.1016/j.tips.2009.02.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 01/01/2023]
|
47
|
Conn PM, Janovick JA. Trafficking and quality control of the gonadotropin releasing hormone receptor in health and disease. Mol Cell Endocrinol 2009; 299:137-45. [PMID: 19059461 PMCID: PMC2655134 DOI: 10.1016/j.mce.2008.10.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 01/09/2023]
Abstract
In order to serve as enzymes, receptors and ion channels, proteins require structural precision. This is monitored by a cellular quality control system (QCS) that rejects misfolded proteins and thereby protects the cell against aberrant activity. Misfolding can result in protein molecules that retain intrinsic function, yet become misrouted within the cell; these cease to perform normally and result in disease. A therapeutic opportunity exists to correct misrouting and rescue mutants using "pharmacoperones" (small molecular folding templates, often peptidomimetics, which promote correct folding and rescue) thereby restoring function and potentially curing the underlying disease. Because of its small size, the GnRH (gonadotropin-releasing hormone) receptor (GnRHR) is an excellent model for GPCR (G protein-coupled receptor) and has allowed elucidation of the precise biochemical mechanism of pharmacoperone action necessary for rational design of new therapeutic agents. This review summarizes what has been learned about the structural requirements of the GnRHR that govern its interaction with the QCS and now presents the potential for the rational design of pharmacoperones. Because of the role of protein processing, this approach is likely to be applicable to other GCPCs and other proteins in general.
Collapse
Affiliation(s)
- P Michael Conn
- Oregon National Primate Research Center and Departments of Physiology and Pharmacology and Cell Biology and Development, Oregon Health & Science University, United States.
| | | |
Collapse
|
48
|
Posokhov YO, Rodnin MV, Lu L, Ladokhin AS. Membrane Insertion Pathway of Annexin B12: Thermodynamic and Kinetic Characterization by Fluorescence Correlation Spectroscopy and Fluorescence Quenching. Biochemistry 2008; 47:5078-87. [DOI: 10.1021/bi702223c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yevgen O. Posokhov
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| | - Mykola V. Rodnin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| | - Lucy Lu
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, and Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92612
| |
Collapse
|
49
|
Fasano C, Campana V, Griffiths B, Kelly G, Schiavo G, Zurzolo C. Gene expression profile of quinacrine-cured prion-infected mouse neuronal cells. J Neurochem 2008; 105:239-50. [PMID: 18036195 DOI: 10.1111/j.1471-4159.2007.05140.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Prion diseases are transmissible fatal neurodegenerative diseases of humans and animals, characterised by the presence of an abnormal isoform (scrapie prion protein; PrP(Sc)) of the endogenous cellular prion protein (PrP(C)). The pathological mechanisms at the basis of prion diseases remain elusive, although the accumulation of PrP(Sc) has been linked to neurodegeneration. Different genomic approaches have been applied to carry out large-scale expression analysis in prion-infected brains and cell lines, in order to define factors potentially involved in pathogenesis. However, the general lack of overlap between the genes found in these studies prompted us to carry an analysis of gene expression using an alternative approach. Specifically, in order to avoid the complexities of shifting gene expression in a heterogeneous cell population, we used a single clone of GT1 cells that was de novo infected with mouse prion-infected brain homogenate and then treated with quinacrine to clear PrP(Sc). By comparing the gene expression profiles of about 15 000 genes in quinacrine-cured and not cured prion-infected GT1 cells, we investigated the influence of the presence or the absence of PrP(Sc). By real-time PCR, we confirmed that the gene encoding for laminin was down-regulated as a consequence of the elimination of PrP(Sc) by the quinacrine treatment. Thus, we speculate that this protein could be a specific candidate for further analysis of its role in prion infection and pathogenesis.
Collapse
Affiliation(s)
- Carlo Fasano
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
50
|
Ladokhin AS. Insertion intermediate of annexin B12 is prone to aggregation on membrane interfaces. ACTA ACUST UNITED AC 2008. [DOI: 10.7124/bc.000796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. S. Ladokhin
- Kansas University Medical Center
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|