1
|
Cao X, Flagg SC, Li X, Chennamsetty N, Balakrishnan G, Das TK. Quadrupole Dalton-Based Controlled Proteolysis Method for Characterization of Higher Order Protein Structure. Anal Chem 2019; 91:5339-5345. [DOI: 10.1021/acs.analchem.9b00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiang Cao
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Shannon C. Flagg
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Xue Li
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Naresh Chennamsetty
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Gurusamy Balakrishnan
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| | - Tapan K. Das
- Biologics Methods and Analytical Development, Bristol-Myers Squibb, Hopewell, New Jersey 08534, United States
| |
Collapse
|
2
|
Neidel C, Kuehn A, Schulz CP, Hertel IV, Linscheid MW, Schultz T. Femtosecond laser-induced dissociation (fs-LID) as an activation method in mass spectrometry. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Aprahamian ML, Chea EE, Jones LM, Lindert S. Rosetta Protein Structure Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data. Anal Chem 2018; 90:7721-7729. [PMID: 29874044 DOI: 10.1021/acs.analchem.8b01624] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years mass spectrometry-based covalent labeling techniques such as hydroxyl radical footprinting (HRF) have emerged as valuable structural biology techniques, yielding information on protein tertiary structure. These data, however, are not sufficient to predict protein structure unambiguously, as they provide information only on the relative solvent exposure of certain residues. Despite some recent advances, no software currently exists that can utilize covalent labeling mass spectrometry data to predict protein tertiary structure. We have developed the first such tool, which incorporates mass spectrometry derived protection factors from HRF labeling as a new centroid score term for the Rosetta scoring function to improve the prediction of protein tertiary structures. We tested our method on a set of four soluble benchmark proteins with known crystal structures and either published HRF experimental results or internally acquired data. Using the HRF labeling data, we rescored large decoy sets of structures predicted with Rosetta for each of the four benchmark proteins. As a result, the model quality improved for all benchmark proteins as compared to when scored with Rosetta alone. For two of the four proteins we were even able to identify atomic resolution models with the addition of HRF data.
Collapse
Affiliation(s)
- Melanie L Aprahamian
- Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States
| | - Emily E Chea
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
4
|
Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics. Cell Signal 2018; 41:56-64. [DOI: 10.1016/j.cellsig.2017.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
|
5
|
Schmidt C, Beilsten-Edmands V, Mohammed S, Robinson CV. Acetylation and phosphorylation control both local and global stability of the chloroplast F 1 ATP synthase. Sci Rep 2017; 7:44068. [PMID: 28276484 PMCID: PMC5343439 DOI: 10.1038/srep44068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
ATP synthases (ATPases) are enzymes that produce ATP and control the pH in the cell or cellular compartments. While highly conserved over different species, ATPases are structurally well-characterised but the existence and functional significance of many post-translational modifications (PTMs) is not well understood. We combined a range of mass spectrometric techniques to unravel the location and extent of PTMs in the chloroplast ATP synthase (cATPase) purified from spinach leaves. We identified multiple phosphorylation and acetylation sites and found that both modifications stabilise binding of ε and δ subunits. Comparing cross-linking of naturally modified cATPase with the in vitro deacetylated enzyme revealed a major conformational change in the ε subunit in accord with extended and folded forms of the subunit. Locating modified residues within the catalytic head we found that phosphorylated and acetylated residues are primarily on α/β and β/α interfaces respectively. By aligning along different interfaces the higher abundance acetylated residues are proximal to the regulatory sites while the lower abundance phosphorylation sites are more densely populated at the catalytic sites. We propose that modifications in the catalytic head, together with the conformational change in subunit ε, work in synergy to fine-tune the enzyme during adverse conditions.
Collapse
Affiliation(s)
- Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Steffen P, Kwiatkowski M, Robertson WD, Zarrine-Afsar A, Deterra D, Richter V, Schlüter H. Protein species as diagnostic markers. J Proteomics 2016; 134:5-18. [DOI: 10.1016/j.jprot.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
|
7
|
Cavanagh AT, Wassarman KM. 6S RNA, a Global Regulator of Transcription inEscherichia coli,Bacillus subtilis, and Beyond. Annu Rev Microbiol 2014; 68:45-60. [DOI: 10.1146/annurev-micro-092611-150135] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy T. Cavanagh
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| |
Collapse
|
8
|
Choi SS, Chung HS. Novel co-matrix systems for the MALDI-MS analysis of polystyrene using a UV absorber and stabilizer. Analyst 2013; 138:1256-61. [PMID: 23314042 DOI: 10.1039/c2an35718f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sung-Seen Choi
- Department of Chemistry, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | | |
Collapse
|
9
|
Choi SS, Chung HS. Role of a UV Absorber as a Matrix for Analysis of Polystyrene Using Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.9.3119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Cuomo A, Bonaldi T. Systems biology "on-the-fly": SILAC-based quantitative proteomics and RNAi approach in Drosophila melanogaster. Methods Mol Biol 2010; 662:59-78. [PMID: 20824466 DOI: 10.1007/978-1-60761-800-3_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Stable isotope labeling with amino acids in cell culture (SILAC) has become increasingly popular as a quantitative proteomics (qProteomics) method. In combination with high-resolution mass spectrometry (MS) and new efficient algorithms for the analysis of quantitative MS data, SILAC has proven to be a potent tool for the in-depth characterization of functional states. QProteomics extends transcriptomics analysis in providing comprehensive and unbiased protein expression profiles. In this chapter, we describe the use of SILAC procedure in combination with RNA interference (RNAi) to characterize loss-of-function phenotypes, an example to illustrate how qProteomics can address many of the systems-wide approaches previously restricted to the mRNA level. Furthermore, by explaining the adaptation of SILAC to a novel cellular model, the Drosophila melanogaster Schneider cells SL2, we aim to offer an example enabling the readers to apply the same strategy to any other cell culture, specific for their need.
Collapse
Affiliation(s)
- Alessandro Cuomo
- Department of Molecular Oncology, European Institute of Oncology, Milano, Italy
| | | |
Collapse
|
11
|
Dedieu A, Gaillard JC, Pourcher T, Darrouzet E, Armengaud J. Revisiting iodination sites in thyroglobulin with an organ-oriented shotgun strategy. J Biol Chem 2010; 286:259-69. [PMID: 20978121 DOI: 10.1074/jbc.m110.159483] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroglobulin (Tg) is secreted by thyroid epithelial cells. It is essential for thyroid hormonogenesis and iodine storage. Although studied for many years, only indirect and partial surveys of its post-translational modifications were reported. Here, we present a direct proteomic approach, used to study the degree of iodination of mouse Tg without any preliminary purification. A comprehensive coverage of Tg was obtained using a combination of different proteases, MS/MS fragmentation procedures with inclusion lists and a hybrid mass high-resolution LTQ-Orbitrap XL mass spectrometer. Although only 16 iodinated sites are currently known for human Tg, we uncovered 37 iodinated tyrosine residues, most of them being mono- or diiodinated. We report the specific isotopic pattern of thyroxine modification, not recognized as a normal peptide pattern. Four hormonogenic sites were detected. Two donor sites were identified through the detection of a pyruvic acid residue in place of the initial tyrosine. Evidence for polypeptide cleavages sites due to the action of cathepsins and dipeptidyl proteases in the thyroid were also detected. This work shows that semi-quantitation of Tg iodination states is feasible for human biopsies and should be of significant medical interest for further characterization of human thyroid pathologies.
Collapse
Affiliation(s)
- Alain Dedieu
- Commissariat à l'Energie Atomique, DSV, iBEB, Laboratoire des Transporters en Imagerie et Radiothérapie en Oncologie, Bagnols-sur-Cèze F-30207, France.
| | | | | | | | | |
Collapse
|
12
|
Essono S, Clément G, Padiolleau-Lefevre S, Créminon C, Grassi J, Boquet D. Peptide mass-assisted antibody cloning strategy for accurate characterization of potential therapeutic monoclonal antibodies against neurodegenerative diseases. Protein Eng Des Sel 2009; 23:203-10. [PMID: 19951998 DOI: 10.1093/protein/gzp071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of therapeutic recombinant antibodies involves accurate characterization of immunoglobulin variable light (VL) and heavy (VH) chains. However, it has been reported that the use of subgroup or isotype-specific primers for the amplification of monoclonal antibody (mAb) variable domains introduces heterogeneities within the variable domains, or amplifies aberrant productive Ig domains. To address these issues, we have combined the rapid amplification of cDNA ends PCR (RACE-PCR) for the full-length VL and VH amplification, with peptide mass fingerprinting of the corresponding Ig chain. Using this strategy, we amplified full-length cDNA chains of SAF34 and SAF32, two potential therapeutic mAbs against neurodegenerative diseases directed to the prion protein (PrP). We report an unambiguous correlation between hybridoma cDNA sequences and protein fingerprints of the variable domains of each mAb, indicating the discrimination between mutated, pseudo-genes and functional Ig genes. As a proof of principle for this dual strategy of full-length PCR amplification of variable domains and their characterization by MALDI-TOF, we show that the corresponding scFvs recognize the native PrP and retain full capacity to bind to human PrP, as does the parental mAb. This finding addresses the need for reliable light and heavy chain characterization, a key factor for humanization of mouse antibodies and for its use in passive immunotherapy applications.
Collapse
Affiliation(s)
- Sosthene Essono
- CEA, iBiTecS, SPI, Laboratoire d'Etude et de Recherche en Immunoanalyse (LERI), Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
13
|
Koomen J, Hawke D, Kobayashi R. Developing an Understanding of Proteomics: An Introduction to Biological Mass Spectrometry. Cancer Invest 2009. [DOI: 10.1081/cnv-46344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Ponomarenko EA, Lisitsa AV, Petrak J, Moshkovskii SA, Archakov AI. Identification of differentially expressed proteins using automated meta-analysis of proteomic articles. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
Proteome--the protein complement of a genome--has become the protein renaissance and a key research tool in the post-genomic era. The basic technology involves the routine usage of gel electrophoresis and spectrometry procedures for deciphering the primary protein sequence/structure as well as knowing certain unique post-translational modifications that a particular protein has undergone to perform a specific function in the cell. However, the recent advancements in protein analysis have ushered this science to provide deeper, bigger and more valuable perspectives regarding performance of subtle protein-protein interactions. Applications of this branch of molecular biology are as vast as the subject is and include clinical diagnostics, pharmaceutical and biotechnological industries. The 21st century hails the use of products, procedures and advancements of this science as finer touches required for the grooming of fast-paced technology.
Collapse
Affiliation(s)
- Anu Kalia
- Department of Microbiology Punjab Agricultural University, Ludhiana, Punjab, India.
| | | |
Collapse
|
16
|
Graham RLJ, Graham C, McMullan G. Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 2007; 6:26. [PMID: 17697372 PMCID: PMC1971468 DOI: 10.1186/1475-2859-6-26] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/15/2007] [Indexed: 11/29/2022] Open
Abstract
It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level.In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS) and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.
Collapse
Affiliation(s)
- Robert LJ Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Ciaren Graham
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| | - Geoff McMullan
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, BT52 1SA, UK
| |
Collapse
|
17
|
Archakov AI, Ivanov YD, Lisitsa AV, Zgoda VG. AFM fishing nanotechnology is the way to reverse the Avogadro number in proteomics. Proteomics 2007; 7:4-9. [PMID: 17154275 DOI: 10.1002/pmic.200600467] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Future development of proteomics may be hindered by limitations in the concentration sensitivity of widespread technological approaches. The concentration sensitivity limit (CSL) of currently used approaches, like 2-DE/LC separation coupled with MS detection, etc., varies from 10(-9) to 10(-12) M. Therefore, proteomic technologies enable detection of up to 20% of the protein species present in the plasma. New technologies, like atomic force microscopy (AFM molecular detector), enable the counting of single molecules, whereas biospecific fishing can be used to capture these molecules from the biomaterial. At the same time, fishing also has thermodynamic limitations due to the reversibility of the binding. In cases where the fishing becomes irreversible, its combination with an AFM detector enables the registration of single protein molecules, and that opens up a way to lower the CSL down to the reverse Avogadro number.
Collapse
Affiliation(s)
- Alexander Ivanovich Archakov
- Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Pogodinskaya Street, Moscow, Russia.
| | | | | | | |
Collapse
|
18
|
Su X, Jacob NK, Amunugama R, Lucas DM, Knapp AR, Ren C, Davis ME, Marcucci G, Parthun MR, Byrd JC, Fishel RA, Freitas MA. Liquid chromatography mass spectrometry profiling of histones. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 850:440-54. [PMID: 17254850 PMCID: PMC2694509 DOI: 10.1016/j.jchromb.2006.12.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/08/2006] [Accepted: 12/17/2006] [Indexed: 11/25/2022]
Abstract
Here we describe the use of reverse-phase liquid chromatography mass spectrometry (RPLC-MS) to simultaneously characterize variants and post-translationally modified isoforms for each histone. The analysis of intact proteins significantly reduces the time of sample preparation and simplifies data interpretation. LC-MS analysis and peptide mass mapping have previously been applied to identify histone proteins and to characterize their post-translational modifications. However, these studies provided limited characterization of both linker histones and core histones. The current LC-MS analysis allows for the simultaneous observation of all histone PTMs and variants (both replacement and bulk histones) without further enrichment, which will be valuable in comparative studies. Protein identities were verified by the analysis of histone H2A species using RPLC fractionation, AU-PAGE separation and nano-LC-MS/MS.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Chemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Naduparambil K. Jacob
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Ravindra Amunugama
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - David M. Lucas
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Amy R. Knapp
- Department of Molecular and Cellular Biochemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Chen Ren
- Department of Chemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Melanie E. Davis
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Guido Marcucci
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Mark R. Parthun
- Department of Molecular and Cellular Biochemistry, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - John C. Byrd
- Department of Internal Medicine, Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Richard A. Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology, and Medical Genetics; Human Cancer Genetics, College of Medicine and Public Health The Ohio State University Columbus, OH
| |
Collapse
|
19
|
Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM. Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:490-499. [PMID: 16488154 DOI: 10.1016/j.jasms.2005.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral "fingerprint" generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706-1396, Madison, WI, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706-1396, Madison, WI, USA
| | - Travis W Berggren
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706-1396, Madison, WI, USA
| | - Michael S Westphall
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706-1396, Madison, WI, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, 53706-1396, Madison, WI, USA.
| |
Collapse
|
20
|
Borchers CH, Thapar R, Petrotchenko EV, Torres MP, Speir JP, Easterling M, Dominski Z, Marzluff WF. Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Proc Natl Acad Sci U S A 2006; 103:3094-9. [PMID: 16492733 PMCID: PMC1413926 DOI: 10.1073/pnas.0511289103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Indexed: 11/18/2022] Open
Abstract
The stem-loop-binding protein (SLBP) is involved in multiple aspects of histone mRNA metabolism. To characterize the modification status and sites of SLBP, we combined mass spectrometric bottom-up (analysis of peptides) and top-down (analysis of intact proteins) proteomic approaches. Drosophilia SLBP is heavily phosphorylated, containing up to seven phosphoryl groups. Accurate M(r) determination by Fourier transform ion cyclotron resonance (FTICR)-MS and FTICR-MS top-down experiments using a variety of dissociation techniques show there is removal of the initiator methionine and acetylation of the N terminus in the baculovirus-expressed protein, and that T230 is stoichiometrically phosphorylated. T230 is highly conserved; we have determined that this site is also completely phosphorylated in baculovirus-expressed mammalian SLBP and extensively phosphorylated in both Drosophila and mammalian cultured cells. Removal of the phosphoryl group from T230 by either dephosphorylation or mutation results in a 7-fold reduction in the affinity of SLBP for the stem-loop RNA.
Collapse
Affiliation(s)
| | - Roopa Thapar
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | | | | | | | | | - Zbigniew Dominski
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| | - William F. Marzluff
- *Department of Biochemistry and Biophysics and
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599; and
| |
Collapse
|
21
|
Hardouin J, Hubert-Roux M, Delmas AF, Lange C. Identification of isoenzymes using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:725-32. [PMID: 16456911 DOI: 10.1002/rcm.2355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The identification of isoforms is one of the great challenges in proteomics due to the large number of identical amino acids preventing their separations by two-dimensional electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become a rapid and sensitive tool in proteomics, notably with the new instrumental improvements. In this study, we used several acquisition modes of MALDI-TOFMS to identify isoforms of porcine glutathiones S-transferase. The use of multiple proteases coupled to the different acquisition modes of MALDI-TOFMS (linear, reflectron, post-source decay (PSD) and in-source decay, positive and negative modes) allowed the identification of two sequences. Moreover, a third sequence is pointed out from a PSD study of a tryptic ion revealing the modification of the amino acid tyrosine 146 to phenylalanine.
Collapse
Affiliation(s)
- Julie Hardouin
- Laboratoire de Spectrométrie de Masse Bio-Organique, CNRS-UMR 6014, UFR des Sciences, Université de Rouen, 76 821 Mont-Saint-Aignan Cedex, France
| | | | | | | |
Collapse
|
22
|
Darie CC, Biniossek ML, Gawinowicz MA, Milgrom Y, Thumfart JO, Jovine L, Litscher ES, Wassarman PM. Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. J Biol Chem 2005; 280:37585-98. [PMID: 16157586 DOI: 10.1074/jbc.m506709200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rainbow trout egg vitelline envelope (VE) is constructed of three proteins, called VEalpha,VEbeta, and VEgamma, that are synthesized and secreted by the liver and transported in the bloodstream to the ovary, the site of VE assembly around eggs. All three proteins possess an N-terminal signal peptide, a zona pellucida domain, a consensus furin-like cleavage site (CFLCS) close to the C terminus, and a short propeptide downstream of the CFLCS. Proteolytic processing at the CFLCS results in loss of the short C-terminal propeptide from precursor proteins and enables incorporation of mature proteins into the VE. Here mass spectrometry (matrix-assisted laser desorption ionization time-of-flight-mass spectrometry and liquid chromatography-mass spectrometry with a micromass-quadrupole TOF hybrid mass and a QSTAR Pulsar i mass spectrometer) was employed with VE proteins isolated from rainbow trout eggs in a peptidomics-based approach to determine the following: 1) the C-terminal amino acid of mature, proteolytically processed VE proteins; 2) the cellular site of proteolytic processing at the CFLCS of VE precursor proteins; and 3) the relationship between proteolytic processing and limited covalent cross-linking of VE proteins. Peptides derived from the C-terminal region were found for all three VE proteins isolated from eggs, indicating that processing at the CFLCS occurs after the arrival of VE precursor proteins at the egg. Consistent with this conclusion, peptides containing an intact CFLCS were also found for all three VE proteins isolated from eggs. Furthermore, peptides derived from the C-terminal propeptides of VE protein heterodimers VEalpha-VEgamma and VEbeta-VEgamma were found, suggesting that a small amount of VE protein can be covalently cross-linked on eggs prior to proteolytic processing at the CFLCS. Collectively, these results provide important evidence about the process of VE formation in rainbow trout and other non-cyprinoid fish and allow comparisons to be made with the process of zona pellucida formation in mammals.
Collapse
Affiliation(s)
- Costel C Darie
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim SJ, Jones RC, Cha CJ, Kweon O, Edmondson RD, Cerniglia CE. Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 2005; 4:3899-908. [PMID: 15540208 DOI: 10.1002/pmic.200400872] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein profiles of Mycobacterium vanbaalenii PYR-1 grown in the presence of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) were examined by two-dimensional gel electrophoresis (2-DE). Cultures of M. vanbaalenii PYR-1 were incubated with pyrene, pyrene-4,5-quinone (PQ), phenanthrene, anthracene, and fluoranthene. Soluble cellular protein fractions were analyzed and compared, using immobilized pH gradient (IPG) strips. More than 1000 gel-separated proteins were detected using a 2-DE analysis program within the window of isoelectric point (pI) 4-7 and a molecular mass range of 10-100 kDa. We observed variations in the protein composition showing the upregulation of multiple proteins for the five PAH treatments compared with the uninduced control sample. By N-terminal sequencing or mass spectrometry, we further analyzed the proteins separated by 2-DE. Due to the lack of genome sequence information for this species, protein identification provided an analytical challenge. Several PAH-induced proteins were identified including a catalase-peroxidase, a putative monooxygenase, a dioxygenase small subunit, a small subunit of naphthalene-inducible dioxygenase, and aldehyde dehydrogenase. We also identified proteins related to carbohydrate metabolism (enolase, 6-phosphogluconate dehydrogenase, indole-3-glycerol phosphate synthase, and fumarase), DNA translation (probable elongation factor Tsf), heat shock proteins, and energy production (ATP synthase). Many proteins from M. vanbaalenii PYR-1 showed similarity with protein sequences from M. tuberculosis and M. leprae. Some proteins were detected uniquely upon exposure to a specific PAH whereas others were common to more than one PAH, which indicates that induction triggers not only specific responses but a common response in this strain.
Collapse
Affiliation(s)
- Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lu XM, Lu MY, Fischman AJ, Tompkins RG. A new approach for sequencing human IRS1 phosphotyrosine-containing peptides using CapLC-Q-TOF(micro). JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:599-607. [PMID: 15739155 DOI: 10.1002/jms.826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reversible phosphorylation of proteins functions as a biological switching network for activation and inhibition of downstream biological processes. Since phosphorylations of these sites are often transient processes, and hence sub-stoichiometric, systematic characterization of phosphorylation sites is a formidable challenge. In this work, a new approach was developed to pinpoint phosphotyrosine sites on tyrosine-containing peptides. This required (1) the development of a new and highly sensitive nano-electrospray assembly and (2) validation of the concept that the specificity and detection limit for trace levels of phosphotyrosine immonium ion in peptide mixtures from protein digests can be increased by varying the collision energy. With our method, an automatic tandem mass spectrometric analysis of peptides eluted from a C(18) capillary liquid chromatographic column is triggered by a positive confirmation of phosphotyrosine immonium ion in a time-of-flight mass spectrometric survey. The approach was tested by analyzing the phosphorylation of human IRS-1 peptides that interact with the Src-homology 2 domain and mixtures of these peptides with tryptic digests of bovine serum albumin and horse heart myoglobin.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- Surgical Service and Nuclear Medicine Division, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
| | | | | | | |
Collapse
|
25
|
Naylor S, Kumar R. Emerging role of mass spectrometry in structural and functional proteomics. ADVANCES IN PROTEIN CHEMISTRY 2004; 65:217-48. [PMID: 12964371 DOI: 10.1016/s0065-3233(03)01021-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Stephen Naylor
- Beyond Genomics, Inc., Waltham, Massachusetts 02451, USA
| | | |
Collapse
|
26
|
Maras B, Barra D, Schininà ME, Cardone F, Pocchiari M. Prion (PrPres) allotypes profiling: a new perspectives from mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2004; 10:371-382. [PMID: 15187296 DOI: 10.1255/ejms.602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biochemical methods employed for PrPres allotypes profiling are reviewed and compared with the latest mass spectrometric approaches. Emphasis is put on the advantages offered by a recently proposed electrospray strategy.
Collapse
Affiliation(s)
- Bruno Maras
- Dipartmento de Scienze Biochemiche A Rossi Fnelli, Università La Sapienza, Rome, Italy
| | | | | | | | | |
Collapse
|
27
|
Yamane K, Minamoto A, Yamashita H, Takamura H, Miyamoto-Myoken Y, Yoshizato K, Nabetani T, Tsugita A, Mishima HK. Proteome analysis of human vitreous proteins. Mol Cell Proteomics 2003; 2:1177-87. [PMID: 12975481 DOI: 10.1074/mcp.m300038-mcp200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Various protein contents such as enzymes, growth factors, and structural components are responsible for biological activities in organs. We have created a map of vitreous proteins and developed a proteome analysis of human vitreous samples to understand the underlying molecular mechanism and to provide clues to new therapeutic approaches in eyes with proliferative diabetic retinopathy (PDR). METHODS Vitreous and serum samples were obtained from subjects with idiopathic macular hole (MH, 26 cases) and PDR (33 cases). The expressed proteins in the samples were separated by two-dimensional (2-D) polyacrylamide gel electrophoresis. Protein spots were visualized by silver staining, and their expression patterns were analyzed. Some protein spots of concern were excised from the 2-D gels, digested in situ with trypsin, and analyzed by mass spectrometry. RESULTS More than 400 spots were detected on 2-D gels of MH cases, of which 78 spots were successfully analyzed. The spots corresponded to peptide fragments of 18 proteins, including pigment epithelium-derived factor, prostaglandin-D2 synthase, and interphotoreceptor retinoid-binding protein. These were not identified in the corresponding serum samples. These proteins were also expressed in PDR samples, with no distinct tendency to increase or decrease compared with the MH samples. More than 600 spots were detected on 2-D gels of PDR cases, of which 141 spots were successfully analyzed. The spots corresponded to peptide fragments of 38 proteins. Enolase and catalase were identified among four detected spots. Neither was found in MH vitreous or in PDR serum samples. CONCLUSION A map of protein expression was made in human vitreous from eyes with MH and PDR. In the PDR eyes, the increased protein expression observed was due to barrier dysfunction and/or production in the eye. Proteome analysis was useful in systematic screening of various protein expression in human vitreous samples.
Collapse
Affiliation(s)
- Ken Yamane
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wagner Y, Sickmann A, Meyer HE, Daum G. Multidimensional nano-HPLC for analysis of protein complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:1003-1011. [PMID: 12954168 DOI: 10.1016/s1044-0305(03)00399-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The analysis of macromolecular protein complexes is an important factor in understanding most cellular processes, e.g., protein transport into cell organells, signal transduction via biological membranes, apoptosis, energy metabolism, directed motion of cells, and cell division. These complexes are not only built of various numbers of different proteins but also of prosthetic groups and RNA molecules. To understand the role each protein plays in a complex, a complete analysis of all protein compounds is necessary. Therefore, several separation steps have to be coupled to mass spectrometry to identify the proteins. In this work, we describe the application of multidimensional liquid chromatography, SCX-RP-LC as well as SAX-RP-LC, coupled to electrospray ion trap mass spectrometry. Tryptic digested ribosomes were separated by ion exchange chromatography manually collected and prepared for reversed phase chromatography to analyze the peptides via nano-ESI mass spectrometry. The total numbers of identified proteins are compared in consideration of the separation method (SCX-RP versus SAX-RP).
Collapse
Affiliation(s)
- Yvonne Wagner
- Rudolf Virchow-Zentrum, Julius Maximilians University Wuerzberg, Wuerzburg, Germany
| | | | | | | |
Collapse
|
29
|
Zhang K, Yau PM, Chandrasekhar B, New R, Kondrat R, Imai BS, Bradbury ME. Differentiation between peptides containing acetylated or tri-methylated lysines by mass spectrometry: An application for determining lysine 9 acetylation and methylation of histone H3. Proteomics 2003; 4:1-10. [PMID: 14730666 DOI: 10.1002/pmic.200300503] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histone acetylation and methylation play a critical role in transcription and gene regulation. Identification of sites of lysine acetylation and methylation in histones or other proteins by mass spectrometry (MS) is of increasing interest. In this paper, we report the use of MS to differentiate between peptides containing acetylated or tri-methylated lysines. High accuracy matrix-assisted laser desorption/ionization-time of flight MS gives better than five parts per million measurement accuracy, which is sufficient to verify acetylation and/or methylation. Electrospray ionization tandem mass spectrometry was used to assign modification sites and to differentiate acetylation from methylation. Typically, an immonium ion at m/z 98 corresponds to a mono-methylated lysine and an immonium ion at m/z 126 corresponds to an acetylated lysine. The neutral loss ion (MH(+)-59) is unique for a tri-methylated lysine. For a peptide with two or more modification sites of acetylation or tri-methylation or one site containing partial acetylation and tri-methylation, the a(2)-, b(2)-type ion is the characteristic index for an acetylated lysine whereas the b(2)-59 ion is indicative of a tri-methylated lysine in the N-terminus. The y-type ions and y-59 ions are characteristic of an acetylated lysine and a tri-methylated lysine at the C-terminus, respectively. We demonstrated that a lysine in a peptide modified by methylation or acetylation can be differentiated by MS using our method. Even if more then one lysine is present in a peptide and different modifications of this amino acid occur, they can be distinguished. This method was successful for the determination of the acetylation and methylation status of lysine 9 of histone H3 in chicken erythrocytes and human HeLa cell lines.
Collapse
Affiliation(s)
- Kangling Zhang
- UCR Mass Spectrometry Facility, Department of Chemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Czogalla A, Kwolek P, Hryniewicz-Jankowska A, Nietubyć M, Leluk J, Sikorski AF. A protein isolated from Escherichia coli, identified as GroEL, reacts with anti-beta spectrin antibodies. Arch Biochem Biophys 2003; 415:94-100. [PMID: 12801517 DOI: 10.1016/s0003-9861(03)00223-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We found that a protein of molecular weight close to 65kDa, present in Escherichia coli cells, reacts with anti-beta spectrin antibodies. A method of purification of this protein was designed. The method consists of the following: nonionic detergent extraction, gel filtration chromatography, ion-exchange chromatography using DEAE-Servacell, and two FPLC ion-exchange chromatography runs: the first without urea, the second in its presence. This method allowed us to obtain a highly purified protein. The results of mass spectrometry analysis suggest that the investigated protein is GroEL (Hsp60 Class). Using computer programs, by sequence analysis of both proteins we tried to explain why GroEL isolated from E. coli reacts with anti-beta spectrin antibodies. Both proteins may share a single epitope for the antibodies on their surfaces. Additionally, such an assumption is supported by the results of experiments in which antibodies interacting with GroEL were obtained from anti-beta spectrin serum and were shown to react with both GroEL and beta spectrins.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Institute of Biochemistry and Molecular Biology, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Lill J. Proteomic tools for quantitation by mass spectrometry. MASS SPECTROMETRY REVIEWS 2003; 22:182-194. [PMID: 12838544 DOI: 10.1002/mas.10048] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Techniques for the quantitation of proteins and peptides by mass spectrometry (MS) are reviewed. A range of labeling processes is discussed, including metabolic, enzymatic, and chemical labeling, and techniques that can be employed for comparative and absolute quantitation are presented. Advantages and drawbacks of the techniques are discussed, and suggestions for the appropriate uses of the methodologies are explained. Overall, the metabolic incorporation of isotopic labels provides the most accurate labeling strategy, and is most useful when an internal standard for comparative quantitation is needed. However, that technique is limited to research that uses cultured cells.
Collapse
Affiliation(s)
- Jennie Lill
- ActivX Biosciences, 11025 North Torrey Pines Rd., La Jolla, California 92037, USA.
| |
Collapse
|
32
|
Galeva N, Yakovlev D, Koen Y, Duzhak T, Alterman M. Direct identification of cytochrome P450 isozymes by matrix-assisted laser desorption/ionization time of flight-based proteomic approach. Drug Metab Dispos 2003; 31:351-5. [PMID: 12642458 DOI: 10.1124/dmd.31.4.351] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main targets of our investigation were cytochrome P450 isozymes (P450), the key enzymes of the hepatic drug-metabolizing system. Current research approaches to the identification of individual P450 forms include specific P450 inhibitors or substrates, antibody-based identification, and mRNA-based expression profiling. All of these approaches suffer from one common disadvantage-they all are indirect methods. On the other hand, current developments in mass spectrometry provide a direct and reliable approach to protein identification with sensitivity in the femtomole or low picomole range. In this study we have used high-accuracy, matrix-assisted laser desorption/ionization time of flight (MALDI TOF)-based peptide mapping to perform direct identification of distinct P450 isozymes in various rat and rabbit liver microsomes. For the first time, the P450 isozyme composition of clofibrate-induced rat and phenobarbital-induced rabbit liver microsomes was determined by peptide mass fingerprinting (PMF). Application of MALDI TOF-based PMF allows differential identification of such highly homologous P450s as CYP2B1 and CYP2B2. We have found that CYP2A10 previously reported only in rabbit olfactory and respiratory nasal mucosa is present in phenobarbital (PB)-induced rabbit liver microsomes. Two other rabbit P450s, earlier identified only by screening a cDNA library, were found to be present in PB-induced rabbit liver microsomes. In summary, direct identification of P450s by proteomic technique offers advantages over other methods with regard to identification of distinct P450 isozymes and should become a standard approach for characterizing microsomes.
Collapse
Affiliation(s)
- Nadezhda Galeva
- Biochemical Research Service Laboratory, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA
| | | | | | | | | |
Collapse
|
33
|
Zhang K, Tang H. Analysis of core histones by liquid chromatography-mass spectrometry and peptide mapping. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783:173-9. [PMID: 12450536 DOI: 10.1016/s1570-0232(02)00631-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histone acetylation and methylation are processes that are generally considered to play crucial roles in the chromatin-based regulatory mechanism. Characterization of the histones as well as their modification sites has become increasingly important. In this paper, the use of LC-MS and peptide mapping methods to analyze chicken core histones and identify the modification sites is reported. Microbore C(4) HPLC separated the core histones into H2A, H2B, H3 and H4 using HFBA as the ion-pairing agent. The four subclasses of histones and their putative acetylated or methylated isoforms were identified by LC-MS simultaneously. MALDI-TOF and tandem mass spectrometry provided peptide mapping of the modification sites of the histones through trypsin digestion of the HPLC eluents. This approach is straightforward and prospective for further application in the field of chromatin research.
Collapse
Affiliation(s)
- Kangling Zhang
- UCR MS facility, Department of Chemistry, University of California at Riverside, 92521, Riverside, CA, USA.
| | | |
Collapse
|
34
|
Segmentation of Protein Spots in 2D Gel Electrophoresis Images with Watersheds Using Hierarchical Threshold. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-3-540-39737-3_49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
35
|
Taverner T, Hall NE, O'Hair RAJ, Simpson RJ. Characterization of an antagonist interleukin-6 dimer by stable isotope labeling, cross-linking, and mass spectrometry. J Biol Chem 2002; 277:46487-92. [PMID: 12235153 DOI: 10.1074/jbc.m207370200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The homodimeric form of a recombinant cytokine interleukin-6 (IL-6(D)) is known to antagonize IL-6 signaling. In this study, spatially proximal residues between IL-6 chains in IL-6(D) were identified using a method for specific recognition of intermolecular cross-linked peptides. Our strategy involved mixing 1:1 (15)N-labeled and unlabeled ((14)N) protein to form a mixture of isotopically labeled and unlabeled homodimers, which was chemically cross-linked. This cross-linked IL-6(D) was subjected to proteolysis by trypsin and the generated peptides were analyzed by electrospray ionization time-of-flight mass spectrometry (MS). Molecular ions from cross-linked peptides of intermolecular origin are labeled with [(15)N/(15)N] + [(15)N/(14)N] + [(14)N/(15)N] + [(14)N/(14)N] yielding readily identified triplet/quadruplet MS peaks. All other peptide species are labeled with [(15)N] + [(14)N] yielding doublet peaks. Intermolecular cross-linked peptides were identified by MS, and cross-linked residues were identified. This intermolecular cross-link detection method, which we have designated "mixed isotope cross-linking" MIX may have more general application to protein-protein interaction studies. The pattern of proximal residues found was consistent with IL-6(D) having a domain-swapped fold similar to IL-10 and interferon-gamma. This fold implies that IL-6(D)-mediated antagonism of IL-6 signaling is caused by obstruction of cooperative gp130 binding on IL-6(D), rather than direct blocking of gp-130-binding sites on IL-6(D).
Collapse
Affiliation(s)
- Thomas Taverner
- Joint ProteomicS Laboratory, The Ludwig Institute for Cancer Research and The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050, Australia
| | | | | | | |
Collapse
|
36
|
Zhang K, Tang H, Huang L, Blankenship JW, Jones PR, Xiang F, Yau PM, Burlingame AL. Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal Biochem 2002; 306:259-69. [PMID: 12123664 DOI: 10.1006/abio.2002.5719] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new strategy has been employed for the identification of the covalent modification sites (mainly acetylation and methylation) of histone H3 from chicken erythrocytes using low enzyme/substrate ratios and short digestion times (trypsin used as the protease) with analysis by HPLC separation, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), matrix-assisted laser desorption ionization-postsource decay, and tandem mass spectrometric techniques. High-accuracy MALDI-TOF mass measurements with representative immonium ions (126 for acetylated lysine, 98 for monomethylated lysine, and 84 for di-, tri-, and unmethylated lysine) have been effectively used for differentiating methylated peptides from acetylated peptides. Our results demonstrate that lysines 4, 9, 14, 27, and 36 of the N-terminal of H3 are methylated, while lysines 14, 18, and 23 are acetylated. Surprisingly, a non-N-terminal residue, lysine 79, in the loop region hooking up to the bound DNA, was newly found to be methylated (un-, mono-, and dimethylated isoforms coexist). The reported mass spectrometric method has the advantages of speed, directness, sensitivity, and ease over protein sequencing and Western-blotting methods and holds the promise of an improved method for determining the status of histone modifications in the field of chromosome research.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Chemistry, School of Pharmacology, University of the Pacific, Stockton, California 95211, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Piersma SR, van de Pijpekamp A, Wijngaards G, Gruppen H, Boumans H. Quantitation and localisation of (in vitro) transglutaminase-catalysed glutamine hydroxylation using mass spectrometry. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00500-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Orsatti L, Pallaoro M, Steinküler C, Orru' S, Bonelli F. Reactivity of the NS2/3(907-1206)ASK(4) protein with beta-mercaptoethanol studied by electrospray ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:1919-1927. [PMID: 12362382 DOI: 10.1002/rcm.814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present work reports a mass spectrometric investigation of the NS2/3 protein, a protease from hepatitis C virus (HCV). During routine protein manipulation, in the presence of 100 mM beta-mercaptoethanol and under denatured conditions, the protein was unexpectedly modified at its cysteine residues, and the increased molecular weight corresponded to one molecule of beta-mercaptoethanol bound. The modified protein, once refolded, was found to be less active than the unmodified one. The aim of this work was to investigate whether the reactivity of cysteines with beta-mercaptoethanol involves one specific, highly reactive residue of the sequence, or if the modification is a random process. Liquid chromatography (LC) coupled on-line with an electrospray ion trap mass spectrometer was used to identify the modification sites. It was found that five cysteines out of nine had reacted with beta-mercaptoethanol, none of them showing a significantly higher reactivity than the others. 95% of sequence coverage was obtained.
Collapse
Affiliation(s)
- Laura Orsatti
- Department of Pharmacology, Istituto di Ricerche di Biologia Molecolare "P. Angeletti", IRBM, Via Pontina Km 30.600, Pomezia (Rome), Italy.
| | | | | | | | | |
Collapse
|
39
|
Tran NT, Cabanes-Macheteau M, Taverna M. Chapter 20 Analysis of glycoproteins and their glycopeptide and glycan fragments by electrophoresis and capillary electrophoresis. JOURNAL OF CHROMATOGRAPHY LIBRARY 2002. [DOI: 10.1016/s0301-4770(02)80045-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Griffin TJ, Gygi SP, Rist B, Aebersold R, Loboda A, Jilkine A, Ens W, Standing KG. Quantitative proteomic analysis using a MALDI quadrupole time-of-flight mass spectrometer. Anal Chem 2001; 73:978-86. [PMID: 11289445 DOI: 10.1021/ac001169y] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe an approach to the quantitative analysis of complex protein mixtures using a MALDI quadrupole time-of-flight (MALDI QqTOF) mass spectrometer and isotope coded affinity tag reagents (Gygi, S. P.; et al. Nat. Biotechnol. 1999, 17, 994-9.). Proteins in mixtures are first labeled on cysteinyl residues using an isotope coded affinity tag reagent, the proteins are enzymatically digested, and the labeled peptides are purified using a multidimensional separation procedure, with the last step being the elution of the labeled peptides from a microcapillary reversed-phase liquid chromatography column directly onto a MALDI sample target. After addition of matrix, the sample spots are analyzed using a MALDI QqTOF mass spectrometer, by first obtaining a mass spectrum of the peptides in each sample spot in order to quantify the ratio of abundance of pairs of isotopically tagged peptides, followed by tandem mass spectrometric analysis to ascertain the sequence of selected peptides for protein identification. The effectiveness of this approach is demonstrated in the quantification and identification of peptides from a control mixture of proteins of known relative concentrations and also in the comparative analysis of protein expression in Saccharomyces cerevisiae grown on two different carbon sources.
Collapse
Affiliation(s)
- T J Griffin
- Department of Molecular Biotechnology, University of Washington, Seattle 98195-7730, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
This review highlights the many roles mass spectrometry plays in the discovery and development of new therapeutics by both the pharmaceutical and the biotechnology industries. Innovations in mass spectrometer source design, improvements to mass accuracy, and implementation of computer-controlled automation have accelerated the purification and characterization of compounds derived from combinatorial libraries, as well as the throughput of pharmacokinetics studies. The use of accelerator mass spectrometry, chemical reaction interface-mass spectrometry and continuous flow-isotope ratio mass spectrometry are promising alternatives for conducting mass balance studies in man. To meet the technical challenges of proteomics, discovery groups in biotechnology companies have led the way to development of instruments with greater sensitivity and mass accuracy (e.g., MALDI-TOF, ESI-Q-TOF, Ion Trap), the miniaturization of separation techniques and ion sources (e.g., capillary HPLC and nanospray), and the utilization of bioinformatics. Affinity-based methods coupled to mass spectrometry are allowing rapid and selective identification of both synthetic and biological molecules. With decreasing instrument cost and size and increasing reliability, mass spectrometers are penetrating both the manufacturing and the quality control arenas. The next generation of technologies to simplify the investigation of the complex fate of novel pharmaceutical entities in vitro and in vivo will be chip-based approaches coupled with mass spectrometry.
Collapse
Affiliation(s)
- D I Papac
- Department of Development Research, NPS Pharmaceuticals, Inc., Salt Lake City, Utah 84108, USA
| | | |
Collapse
|
42
|
Proteins Involved in Biogenesis of the Thylakoid Membrane. REGULATION OF PHOTOSYNTHESIS 2001. [DOI: 10.1007/0-306-48148-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Affiliation(s)
- J Godovac-Zimmermann
- Center for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, United Kingdom.
| | | |
Collapse
|
44
|
Katayama H, Nagasu T, Oda Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1416-21. [PMID: 11507753 DOI: 10.1002/rcm.379] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
High-sensitivity, high-throughput analysis of proteins for proteomics studies is usually performed by polyacrylamide gel electrophoresis in combination with mass spectrometry. However, the quality of the data obtained depends on the in-gel digestion procedure employed. This work describes an improvement in the in-gel digestion efficiency for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. A dramatic improvement in the coverage of tryptic peptides was observed when n-octyl glucoside was added to the buffer. Whole cell extracted proteins from S. cerevisiae were separated by two-dimensional gel electrophoresis and stained with silver. Protein spots were identified using our improved in-gel digestion method and MALDI-TOFMS. In addition, the mass spectra obtained by using the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) were compared with those obtained using 2,5-dihydroxybenzoic acid (DHB). The DHB matrix usually gave more peaks, which led to higher sequence coverage and, consequently, to higher confidence in protein identification. This improved in-gel digestion protocol is simple and useful for protein identification by MALDI-TOFMS.
Collapse
Affiliation(s)
- H Katayama
- Laboratory of Seeds Finding Technology, Eisai Co. Ltd, Tokodai 5-1-3, Tsukuba, Ibaraki 300-2635, Japan
| | | | | |
Collapse
|
45
|
Colangelo J, Orlando R. On-target endoglycosidase digestion matrix-assisted laser desorption/ionization mass spectrometry of glycopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:2284-2289. [PMID: 11746894 DOI: 10.1002/rcm.463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The digestion of glycopeptides with endoglycosidases can be used in the process of their structural characterization, and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is often used to analyze the products of these digestions. In the currently accepted protocol for the endoglycosidase digestion of glycopeptides on the MALDI target, the target must be incubated at 37 degrees C, and an hour or more is needed for digestion. We have modified the procedure so that the process can be performed at room temperature in 5 to 15 min, and digestions are performed in the presence of a MALDI matrix. The endoglycosidases used for digestion were endoglycosidase H and peptide-N-glycosidase F. Glycopeptides from asialofetuin and endopolygalacturonase (EPG) II were used as standards because their glycan structures have been previously characterized. Glycopeptides with unknown glycan structures were also digested, including glycopeptides from pectate lyase, EPG I, and pectin methylesterase from Aspergillus niger.
Collapse
Affiliation(s)
- J Colangelo
- Complex Carbohydrate Research Center, and Department of Chemistry, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA
| | | |
Collapse
|
46
|
Kirpekar F, Krogh TN. RNA fragmentation studied in a matrix-assisted laser desorption/ionisation tandem quadrupole/orthogonal time-of-flight mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:8-14. [PMID: 11135418 DOI: 10.1002/1097-0231(20010115)15:1<8::aid-rcm185>3.0.co;2-s] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have studied the fragmentation behaviour of short, singly protonated oligoribonucleotides on a MALDI Qq-TOF instrument with the aim of using this instrumental set-up to characterise modifications of RNA molecules. Individual ion species from enzymatically generated mixtures were isolated in one quadrupole and subjected to collision-induced dissociation in a second quadrupole followed by separation of the resulting product ions in an orthogonal time-of-flight mass analyser. Complex spectra were generally observed with nearly all types of cleavages along the phosphodiester backbone and of the N-glycosidic bonds (and combinations of these) occurring, albeit at different relative intensities. The most labile part of the backbone was found to be the 5'-P-O bond, resulting in c- and y-ions. Loss of neutral cytosine and guanine occurred equally often, whereas neutral loss of adenosine was less prevalent. Loss of uracil, either neutral or charged species, was not observed. Because the fragmentation pattern observed here is significantly different from what has been reported for singly protonated oligodeoxyribonucleotides, we suggest that the 2'-substituent in the sugar plays a central role in the fragmentation mechanisms of nucleic acids. Finally, we used the acquired knowledge about oligoribonucleotide fragmentation to characterise an in vivo methylated oligoribonucleotide by tandem mass spectrometry.
Collapse
MESH Headings
- Base Sequence
- Geobacillus stearothermophilus/genetics
- Geobacillus stearothermophilus/metabolism
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Protons
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Sulfolobus acidocaldarius/genetics
- Sulfolobus acidocaldarius/metabolism
Collapse
Affiliation(s)
- F Kirpekar
- Department of Biochemistry and Molecular Biology, Odense University SDU, Campusvej 55, DK-5230 Odense M, Denmark.
| | | |
Collapse
|
47
|
Devreese B, Vanrobaeys F, Van Beeumen J. Automated nanoflow liquid chromatography/tandem mass spectrometric identification of proteins from Shewanella putrefaciens separated by two-dimensional polyacrylamide gel electrophoresis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:50-56. [PMID: 11135424 DOI: 10.1002/1097-0231(20010115)15:1<50::aid-rcm191>3.0.co;2-v] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The implementation of nanoflow liquid chromatography offers unique opportunities for automation of proteomics research. We demonstrate that automated nanoflow LC/MS/MS allowed the unambiguous identification of proteins from the omnipotent bacterium Shewanella putrefaciens, based on similarity searches against the completely determined genome of related microorganisms and against non-redundant databases. Total protein extracts were separated by 2-dimensional polyacrylamide electrophoresis. Only 1/20th of a tryptic digest mixture obtained from a single Coomassie Blue stained spot was loaded on the nanoflow LC column using a preconcentration/desalting step, and analyzed on-line on a hybrid quadrupole time-of-flight mass spectrometer with an automated MS-to-MS/MS switching protocol. This method allowed the de novo peptide sequence determination of several tryptic fragments and the identification of different proteins. CopyrightCopyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- B Devreese
- Laboratory of Protein Biochemistry and Protein Engineering, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
48
|
Abstract
The utility of mass spectrometry for the analysis of proteins has grown enormously in the past decade. Significant advances in detection and ionization techniques are allowing questions about noncovalent assembly to be addressed by the direct observation of gas phase complexes, their assembly in real time and their disassembly by perturbation of solution or instrument conditions. These technological innovations have plainly captured the imagination of biological researchers. Recent and novel developments include the combination of mass spectrometry with isotopic labeling, affinity labeling and genomic information. Collectively, these advances are opening new doors to the isolation of complexes, the identification of their substituents and the characterization of their conformations and assembly.
Collapse
Affiliation(s)
- A D Miranker
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, PO Box 208114, New Haven, CT 06520, USA.
| |
Collapse
|
49
|
Jan van Wijk K. Proteomics of the chloroplast: experimentation and prediction. TRENDS IN PLANT SCIENCE 2000; 5:420-425. [PMID: 11044718 DOI: 10.1016/s1360-1385(00)01737-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
New technologies, in combination with increasing amounts of plant genome sequence data, have opened up incredible experimental possibilities to identify the total set of chloroplast proteins (the chloroplast proteome) as well as their expression levels and post-translational modifications in a global manner. This is summarized under the term 'proteomics' and typically involves two-dimensional electrophoresis or chromatography, mass spectrometry and bioinformatics. Complemented with nucleotide-based global techniques, proteomics is expected to provide many new insights into chloroplast biogenesis, adaptation and function.
Collapse
Affiliation(s)
- K Jan van Wijk
- Dept of Biochemistry, Arrhenius Laboratories, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
50
|
Lalev AI, Abeyrathne PD, Nazar RN. Ribosomal RNA maturation in Schizosaccharomyces pombe is dependent on a large ribonucleoprotein complex of the internal transcribed spacer 1. J Mol Biol 2000; 302:65-77. [PMID: 10964561 DOI: 10.1006/jmbi.2000.4015] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interdependency of steps in the processing of pre-rRNA in Schizosaccharomyces pombe suggests that RNA processing, at least in part, acts as a quality control mechanism which helps assure that only functional RNA is incorporated into mature ribosomes. To determine further the role of the transcribed spacer regions in rRNA processing and to detect interactions which underlie the interdependencies, the ITS1 sequence was examined for its ability to form ribonucleoprotein complexes with cellular proteins. When incubated with protein extract, the spacer formed a specific large RNP. This complex was stable to fractionation by agarose or polyacrylamide gel electrophoresis. Modification exclusion analyses indicated that the proteins interact with a helical domain which is conserved in the internal transcribed spacers. Mutagenic analyses confirmed an interaction with this sequence and indicated that this domain is critical to the efficient maturation of the precursor RNA. The protein constituents, purified by affinity chromatography using the ITS1 sequence, retained an ability to form stable RNP. Protein analyses of gel purified complex, prepared with affinity-purified proteins, indicated at least 20 protein components ranging in size from 20-200 kDa. Peptide mapping by Maldi-Toff mass spectroscopy identified eight hypothetical RNA binding proteins which included four different RNA-binding motifs. Another protein was putatively identified as a pseudouridylate synthase. Additional RNA constituents were not detected. The significance of this complex with respect to rRNA maturation and interdependence in rRNA processing is discussed.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromatography, Affinity
- Genes, Fungal/genetics
- Molecular Weight
- Mutation/genetics
- Nucleic Acid Conformation
- Peptide Mapping
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/genetics
- Ribonucleoproteins/isolation & purification
- Ribonucleoproteins/metabolism
- Schizosaccharomyces/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- A I Lalev
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|