1
|
Tao L, Xu Y, Cui Y, Wei Q, Lin B, Cao Y, Dai Z, Ma Z, Zhang L, Shi A, Gu L, Liu Y. Hydrochlorothiazide disrupts DNA damage response to exacerbate skin photosensitivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117314. [PMID: 39541700 DOI: 10.1016/j.ecoenv.2024.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Hydrochlorothiazide (HCTZ) is a widely utilized diuretic for the treatment of hypertension. The photosensitivity of HCTZ has been recognized for six decades, with UVA being considered the primary culprit. However, the precise molecular mechanism of HCTZ sensitizing skin to UV radiation remains unknown. In this study, we demonstrate that HCTZ exacerbates UVB-induced photosensitivity in normal skin by disrupting the DNA damage response, a crucial network responsible for maintaining epidermal homeostasis. Here, we found that HCTZ aggravates UVB-induced mouse skin damage. Through transcriptomic and proteomic profiling, we have found that the cell cycle and p53 signaling pathway may contribute to the photosensitivity caused by HCTZ. In keratinocytes, HCTZ promotes the transition from G1 to S phase and inhibits the p53 signaling pathway after exposure to UV radiation. We have found that HCTZ enhances the accumulation of DNA damage induced by UVB and impairs nucleotide excision repair (NER), which is responsible for repairing UVB-induced DNA lesions, by inhibiting the expression of NER-related genes and shortening the duration of G1 phase. Furthermore, pharmacologically inducing G1 arrest eliminates HCTZ-induced accumulation of damaged DNA. These findings unveil an unknown mechanism through which HCTZ impairs NER and interferes with UVB-induced cell cycle arrest, ultimately leading to improper response towards DNA damage and increased skin sensitivity.
Collapse
Affiliation(s)
- Lei Tao
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Yujiao Xu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yingyue Cui
- National Healthcare Security Administration, Beijing 100032, China
| | - Qingcheng Wei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Boyang Lin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Cao
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Zhen Dai
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Zhi Ma
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Ling Zhang
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Aiping Shi
- Pharmaceutical department, Taixing People's Hospital, Taixing 225400, China
| | - Ling Gu
- Taixing People's Hospital, Taixing 225400, China.
| | - Yunyao Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
2
|
Hu AJ, Li W, Dinh C, Zhang Y, Hu JK, Daniele SG, Hou X, Yang Z, Asara JM, Hu GF, Farmer SR, Hu MG. CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver. Nat Commun 2024; 15:1091. [PMID: 38316780 PMCID: PMC10844593 DOI: 10.1038/s41467-024-45294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice. Mechanistically, CDK6 phosphorylates AMP-activated protein kinase, leading to phosphorylation and inactivation of acetyl-CoA carboxylase, a key enzyme in DNL. CDK6 also phosphorylates CHREBP thus preventing its entry into the nucleus. Ablation of runt related transcription factor 1 in K43M mature adipocytes reverses most of the phenotypes observed in K43M mice. These results demonstrate a role of CDK6 in DNL and a strategy to alleviate metabolic syndromes.
Collapse
Affiliation(s)
- Alexander J Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Wei Li
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Calvin Dinh
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Yongzhao Zhang
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Jamie K Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- University of Miami Miller School of Medicine, Dermatology. 1295 NW 14th St. University of Miami Hospital South Bldg. Suites K-M, Miami, FL, USA
| | - Stefano G Daniele
- Yale School of Medicine, MD-PhD program, 333 Cedar St, New Haven, CT, USA
| | - Xiaoli Hou
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, PR China
| | - Zixuan Yang
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- TUFTS University Friedman School of Nutrition Science and Policy, TUFTS University, 150 Harrison Avenue, MA, Boston, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guo-Fu Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Stephen R Farmer
- Boston University School of Medicine, Department of Biochemistry, 72E Concord St, Boston, MA, USA
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
3
|
Laanemets A, Babok S, Piirsoo A. Characterization and comparative analysis of phosphorylation patterns in HPV18 and HPV11 E1 helicases: Implications for viral genome replication. Virology 2023; 587:109853. [PMID: 37523977 DOI: 10.1016/j.virol.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
The genome of human papillomaviruses (HPVs) encodes the E1 replication factor, whose biological activities are regulated by cellular protein kinases. Here, the phosphorylation pattern of the E1 helicase of oncogenic mucosotropic HPV18 was investigated both in vitro and in vivo. Four serine residues located in a short peptide within a localization regulatory region were found to be phosphorylated in both experimental settings. We demonstrate that this peptide is targeted in vitro by various protein kinases, including CK2, PKA, and CKD2/cyclin A/B/E complexes. Through point mutagenesis, we show that phosphorylation of this region is essential for E1 subcellular localization, the interaction of E1 with the E2 protein, and replication of the HPV18 genome. Furthermore, we demonstrate the functional conservation of this phosphorylation across the E1 proteins of the low-risk mucosotropic HPV11 and high-risk cutaneotropic HPV5. These findings provide deeper insights into the phosphorylation-mediated regulation of biological activities of the E1 protein.
Collapse
Affiliation(s)
| | - Sofiya Babok
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer 2022; 13:21-45. [PMID: 36051751 PMCID: PMC9426627 DOI: 10.18632/genesandcancer.221] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although Cdk4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development and tumorigenesis as well as the current status and utility of approved small molecule CDK4/6 inhibitors that are currently being used as cancer therapeutics.
Collapse
Affiliation(s)
- Stacey J. Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Poulikos I. Poulikakos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Hanna Y. Irie
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Levy Place, NY 10029, USA
| |
Collapse
|
6
|
Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021; 11:life11090957. [PMID: 34575106 PMCID: PMC8467178 DOI: 10.3390/life11090957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.
Collapse
|
7
|
Pharmacological relevance of CDK inhibitors in Alzheimer's disease. Neurochem Int 2021; 148:105115. [PMID: 34182065 DOI: 10.1016/j.neuint.2021.105115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that cell cycle activation plays a role in the pathophysiology of neurodegenerative diseases. Alzheimer's disease is a progressive, terminal neurodegenerative disease that affects memory and other important mental functions. Intracellular deposition of Tau protein, a hyperphosphorylated form of a microtubule-associated protein, and extracellular aggregation of Amyloid β protein, which manifests as neurofibrillary tangles (NFT) and senile plaques, respectively, characterize this condition. In recent years, however, several studies have concluded that cell cycle re-entry is one of the key causes of neuronal death in the pathogenesis of Alzheimer's disease. The eukaryotic cell cycle is well-coordinated machinery that performs critical functions in cell replenishment, such as DNA replication, cell creation, repair, and the birth of new daughter cells from the mother cell. The complex interplay between the levels of various cyclins and cyclin-dependent kinases (CDKs) at different checkpoints is needed for cell cycle synchronization. CDKIs (cyclin-dependent kinase inhibitors) prevent cyclin degradation and CDK inactivation. Different external and internal factors regulate them differently, and they have different tissue expression and developmental functions. The checkpoints ensure that the previous step is completed correctly before starting the new cell cycle phase, and they protect against the transfer of defects to the daughter cells. Due to the development of more selective and potent ATP-competitive CDK inhibitors, CDK inhibitors appear to be on the verge of having a clinical impact. This avenue is likely to yield new and effective medicines for the treatment of cancer and other neurodegenerative diseases. These new methods for recognizing CDK inhibitors may be used to create non-ATP-competitive agents that target CDK4, CDK5, and other CDKs that have been recognized as important therapeutic targets in Alzheimer's disease treatment.
Collapse
|
8
|
Izadi S, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Mohammadi H, Yousefi M, Jadidi-Niaragh F. CDK1 in Breast Cancer: Implications for Theranostic Potential. Anticancer Agents Med Chem 2021; 20:758-767. [PMID: 32013835 DOI: 10.2174/1871520620666200203125712] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
Breast cancer has been identified as one of the main cancer-related deaths among women during some last decades. Recent advances in the introduction of novel potent anti-cancer therapeutics in association with early detection methods led to a decrease in the mortality rate of breast cancer. However, the scenario of breast cancer is yet going on and further improvements in the current anti-cancer therapeutic approaches are needed. Several factors are present in the tumor microenvironment which help to cancer progression and suppression of anti-tumor responses. Targeting these cancer-promoting factors in the tumor microenvironment has been suggested as a potent immunotherapeutic approach for cancer therapy. Among the various tumorsupporting factors, Cyclin-Dependent Kinases (CDKs) are proposed as a novel promising target for cancer therapy. These factors in association with cyclins play a key role in cell cycle progression. Dysregulation of CDKs which leads to increased cell proliferation has been identified in various cancers, such as breast cancer. Accordingly, the development and use of CDK-inhibitors have been associated with encouraging results in the treatment of breast cancer. However, it is unknown that the inhibition of which CDK is the most effective strategy for breast cancer therapy. Since the selective blockage of CDK1 alone or in combination with other therapeutics has been associated with potent anti-cancer outcomes, it is suggested that CDK1 may be considered as the best CDK target for breast cancer therapy. In this review, we will discuss the role of CDK1 in breast cancer progression and treatment.
Collapse
Affiliation(s)
- Sepideh Izadi
- 1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Nikkhoo
- 1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang H, Song L, Zhou T, Zeng C, Jia Y, Zhao Y. A computational study of Tat-CDK9-Cyclin binding dynamics and its implication in transcription-dependent HIV latency. Phys Chem Chem Phys 2020; 22:25474-25482. [PMID: 33043947 DOI: 10.1039/d0cp03662e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
HIV is a virus that attacks the T cells. HIV may either actively replicate or become latent within host cells for years. Since HIV uses its own protein Tat to hijack the host CDK9-Cyclin complex for transcription, Tat is implicated in transcription-dependent HIV latency. To quantify the impact of Tat binding, we propose a computational framework to probe the dynamics of the CDK9-Cyclin interface and the ATP pocket reorganization upon binding by different Tat mutants. Specifically, we focus on mutations at three Tat residues P10, W11, and N12 that are known to interact directly with CDK9 based on the crystal structure of the Tat-CDK9-Cyclin complex. Our molecular dynamics simulations show that the CDK9-Cyclin interface becomes slightly weaker for P10S and W11R mutants but tighter for the K12N mutant. Furthermore, the side chain orientation of residue K48 in the ATP pocket of CDK9 is similar to the inactive state in P10S and W11R simulations, but similar to the active state in K12N simulations. These are consistent with some existing but puzzling observations of latency for these mutants. This framework may hence help gain a better understanding of the role of Tat in the transcription-dependent HIV latency establishment.
Collapse
Affiliation(s)
- Huiwen Wang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China.
| | | | | | | | | | | |
Collapse
|
10
|
Nguyen P, Valanejad L, Cast A, Wright M, Garcia JM, El-Serag HB, Karns R, Timchenko NA. Elimination of Age-Associated Hepatic Steatosis and Correction of Aging Phenotype by Inhibition of cdk4-C/EBPα-p300 Axis. Cell Rep 2020; 24:1597-1609. [PMID: 30089269 PMCID: PMC8209958 DOI: 10.1016/j.celrep.2018.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/13/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The aging liver is affected by several disorders, including steatosis, that can lead to a decline of liver functions. Here, we present evidence that the cdk4-C/EBPα-p300 axis is a critical regulator of age-associated disorders, including steatosis. We found that patients with non-alcoholic fatty liver disease (NAFLD) have increased levels of cdk4 and that cdk4-resistant C/EBPα-S193A mice do not develop hepatic steatosis with advancing age. Underlying mechanisms include a block in C/EBPα activation and subsequent failure in activation of enzymes involved in the development of NAFLD. Inhibition of cdk4 in aged wild-type (WT) mice by a specific cdk4 inhibitor, PD-0332991, reduces C/EBPα-p300 complexes and eliminates hepatic steatosis. Moreover, the inhibition of cdk4 in aged mice reverses many age-related disorders. Mechanisms of correction include elimination of cellular senescence and alterations in the chromatin structure of hepatocytes. Thus, the inhibition of cdk4 might be considered as a therapeutic approach to correct age-associated liver disorders. Nguyen et al. show that nuclear elevation of cdk4 leads to age-associated disorders, such as hepatic steatosis, and to age-dependent decline of liver functions and morphology. Elevation of cdk4 changes multiple molecular aspects of liver biology. Inhibition of cdk4 in old mice eliminates hepatic steatosis and corrects age-associated liver disorders.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Leila Valanejad
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ashley Cast
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mary Wright
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Jose M Garcia
- GRECC, VA Puget Sound Health Care System and University of Washington, Seattle, WA 98108, USA
| | - Hashem B El-Serag
- Center for Innovations in Quality, Effectiveness and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA; Section of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nikolai A Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
11
|
Kawahara R, Rosa-Fernandes L, Dos Santos AF, Bandeira CL, Dombrowski JG, Souza RM, Da Fonseca MP, Festuccia WT, Labriola L, Larsen MR, Marinho CRF, Palmisano G. Integrated Proteomics Reveals Apoptosis-related Mechanisms Associated with Placental Malaria. Mol Cell Proteomics 2019; 18:182-199. [PMID: 30242111 PMCID: PMC6356084 DOI: 10.1074/mcp.ra118.000907] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/15/2018] [Indexed: 12/27/2022] Open
Abstract
Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Biochemistry and Molecular biology, University of Southern Denmark, Odense, Denmark
| | | | - Carla Letícia Bandeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Rodrigo M Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | | | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Leticia Labriola
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Brazil
| | - Martin R Larsen
- Department of Biochemistry and Molecular biology, University of Southern Denmark, Odense, Denmark
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil;.
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil;.
| |
Collapse
|
12
|
Schmidt M, Rohe A, Platzer C, Najjar A, Erdmann F, Sippl W. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases. Molecules 2017; 22:E2045. [PMID: 29168755 PMCID: PMC6149964 DOI: 10.3390/molecules22122045] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
In the cell cycle, there are two checkpoint arrests that allow cells to repair damaged DNA in order to maintain genomic integrity. Many cancer cells have defective G1 checkpoint mechanisms, thus depending on the G2 checkpoint far more than normal cells. G2 checkpoint abrogation is therefore a promising concept to preferably damage cancerous cells over normal cells. The main factor influencing the decision to enter mitosis is a complex composed of Cdk1 and cyclin B. Cdk1/CycB is regulated by various feedback mechanisms, in particular inhibitory phosphorylations at Thr14 and Tyr15 of Cdk1. In fact, Cdk1/CycB activity is restricted by the balance between WEE family kinases and Cdc25 phosphatases. The WEE kinase family consists of three proteins: WEE1, PKMYT1, and the less important WEE1B. WEE1 exclusively mediates phosphorylation at Tyr15, whereas PKMYT1 is dual-specific for Tyr15 as well as Thr14. Inhibition by a small molecule inhibitor is therefore proposed to be a promising option since WEE kinases bind Cdk1, altering equilibria and thus affecting G2/M transition.
Collapse
Affiliation(s)
- Matthias Schmidt
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Alexander Rohe
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Charlott Platzer
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Abdulkarim Najjar
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Frank Erdmann
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
13
|
Benson Z, Manjili SH, Habibi M, Guruli G, Toor AA, Payne KK, Manjili MH. Conditioning neoadjuvant therapies for improved immunotherapy of cancer. Biochem Pharmacol 2017; 145:12-17. [PMID: 28803721 DOI: 10.1016/j.bcp.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
Recent advances in the treatment of melanoma and non-small cell lung cancer (NSCLC) by combining conventional therapies with anti-PD1/PD-L1 immunotherapies, have renewed interests in immunotherapy of cancer. The emerging concept of conventional cancer therapies combined with immunotherapy differs from the classical concept in that it is not simply taking advantage of their additive anti-tumor effects, but it is to use certain therapeutic regimens to condition the tumor microenvironment for optimal response to immunotherapy. To this end, low dose immunogenic chemotherapies, epigenetic modulators and inhibitors of cell cycle progression are potential candidates for rendering tumors highly responsive to immunotherapy. Next generation immunotherapeutics are therefore predicted to be highly effective against cancer, when they are used following appropriate immune modulatory compounds or targeted delivery of tumor cell cycle inhibitors using nanotechnology.
Collapse
Affiliation(s)
- Zachary Benson
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, USA
| | - Saeed H Manjili
- Department of Biomedical Engineering, Virginia Commonwealth University School of Engineering, USA
| | - Mehran Habibi
- Department of Surgery, The Johns Hopkins School of Medicine, USA
| | - Georgi Guruli
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, USA; Massey Cancer Center, USA
| | - Amir A Toor
- Massey Cancer Center, USA; Bone Marrow Transplant Program, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, USA
| | - Kyle K Payne
- Translational Tumor Immunology Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Masoud H Manjili
- Massey Cancer Center, USA; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, USA.
| |
Collapse
|
14
|
Novak ZA, Wainman A, Gartenmann L, Raff JW. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes. Dev Cell 2017; 37:545-57. [PMID: 27326932 PMCID: PMC4918730 DOI: 10.1016/j.devcel.2016.05.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic “centriole conversion” is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome. Cdk1 phosphorylates Sas-4 to initiate Polo/Plk1 recruitment to daughter centrioles Polo recruitment promotes Asterless (Asl) incorporation into daughter centrioles Asl incorporation licenses new centrioles to duplicate and organize centrosomes These observations help explain why centriole conversion is tied to mitosis
Collapse
Affiliation(s)
- Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
15
|
Jin J, Valanejad L, Nguyen TP, Lewis K, Wright M, Cast A, Stock L, Timchenko L, Timchenko NA. Activation of CDK4 Triggers Development of Non-alcoholic Fatty Liver Disease. Cell Rep 2016; 16:744-56. [PMID: 27373160 DOI: 10.1016/j.celrep.2016.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/18/2016] [Accepted: 05/31/2016] [Indexed: 01/13/2023] Open
Abstract
The development of non-alcoholic fatty liver disease (NAFLD) is a multiple step process. Here, we show that activation of cdk4 triggers the development of NAFLD. We found that cdk4 protein levels are elevated in mouse models of NAFLD and in patients with fatty livers. This increase leads to C/EBPα phosphorylation on Ser193 and formation of C/EBPα-p300 complexes, resulting in hepatic steatosis, fibrosis, and hepatocellular carcinoma (HCC). The disruption of this pathway in cdk4-resistant C/EBPα-S193A mice dramatically reduces development of high-fat diet (HFD)-mediated NAFLD. In addition, inhibition of cdk4 by flavopiridol or PD-0332991 significantly reduces development of hepatic steatosis, the first step of NAFLD. Thus, this study reveals that activation of cdk4 triggers NAFLD and that inhibitors of cdk4 may be used for the prevention/treatment of NAFLD.
Collapse
Affiliation(s)
- Jingling Jin
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Leila Valanejad
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA
| | - Thuy Phuong Nguyen
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA
| | - Kyle Lewis
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary Wright
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA
| | - Ashley Cast
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA
| | - Lauren Stock
- Department of Neurology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA
| | - Nikolai A Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue ML 7015, Cincinnati, OH 45229, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Ortmann B, Bensaddek D, Carvalhal S, Moser SC, Mudie S, Griffis ER, Swedlow JR, Lamond AI, Rocha S. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci 2015; 129:191-205. [PMID: 26644182 PMCID: PMC4732302 DOI: 10.1242/jcs.179911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/18/2015] [Indexed: 12/28/2022] Open
Abstract
PHD1 (also known as EGLN2) belongs to a family of prolyl hydroxylases (PHDs) that are involved in the control of the cellular response to hypoxia. PHD1 is also able to regulate mitotic progression through the regulation of the crucial centrosomal protein Cep192, establishing a link between the oxygen-sensing and the cell cycle machinery. Here, we demonstrate that PHD1 is phosphorylated by CDK2, CDK4 and CDK6 at S130. This phosphorylation fluctuates with the cell cycle and can be induced through oncogenic activation. Functionally, PHD1 phosphorylation leads to increased induction of hypoxia-inducible factor (HIF) protein levels and activity during hypoxia. PHD1 phosphorylation does not alter its intrinsic enzymatic activity, but instead decreases the interaction between PHD1 and HIF1α. Interestingly, although phosphorylation of PHD1 at S130 lowers its activity towards HIF1α, this modification increases the activity of PHD1 towards Cep192. These results establish a mechanism by which cell cycle mediators, such as CDKs, temporally control the activity of PHD1, directly altering the regulation of HIF1α and Cep192. Summary: CDK-mediated phosphorylation of PHD1 at serine 130 controls target specificity and confers cell cycle regulation of PHD1.
Collapse
Affiliation(s)
- Brian Ortmann
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sara Carvalhal
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra C Moser
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sharon Mudie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jason R Swedlow
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
Uversky VN. Unreported intrinsic disorder in proteins: Disorder emergency room. INTRINSICALLY DISORDERED PROTEINS 2015; 3:e1010999. [PMID: 28232885 DOI: 10.1080/21690707.2015.1010999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/01/2014] [Accepted: 11/24/2014] [Indexed: 10/23/2022]
Abstract
This article continues an "Unreported Intrinsic Disorder in Proteins" series, the goal of which is to expose some interesting cases of missed (or overlooked, or ignored) disorder in proteins. The need for this series is justified by the observation that despite the fact that protein intrinsic disorder is widely accepted by the scientific community, there are still numerous instances when appreciation of this phenomenon is absent. This results in the avalanche of research papers which are talking about intrinsically disordered proteins (or hybrid proteins with ordered and disordered regions) not recognizing that they are talking about such proteins. Articles in the "Unreported Intrinsic Disorder in Proteins" series provide a fast fix for some of the recent noticeable disorder overlooks.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute; Morsani College of Medicine, University of South Florida; Tampa, FL USA; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia; Laboratory of Structural Dynamics; Stability and Folding of Proteins; Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia
| |
Collapse
|
18
|
Strebel K. HIV accessory proteins versus host restriction factors. Curr Opin Virol 2013; 3:692-9. [PMID: 24246762 PMCID: PMC3855913 DOI: 10.1016/j.coviro.2013.08.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 02/05/2023]
Abstract
Primate immunodeficiency viruses, including HIV-1, are characterized by the presence of accessory genes such as vif, vpr, vpx, vpu, and nef. Current knowledge indicates that none of the primate lentiviral accessory proteins has enzymatic activity. Instead, these proteins interact with cellular ligands to either act as adapter molecules to redirect the normal function of host factors for virus-specific purposes or to inhibit a normal host function by mediating degradation or causing intracellular mislocalization/sequestration of the factors involved. This review aims at providing an update of our current understanding of how Vif, Vpu, and Vpx control the cellular restriction factors APOBEC3G, BST-2, and SAMHD1, respectively.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-0460, United States.
| |
Collapse
|
19
|
Simon E, Gildor T, Kornitzer D. Phosphorylation of the cyclin CaPcl5 modulates both cyclin stability and specific recognition of the substrate. J Mol Biol 2013; 425:3151-65. [PMID: 23763991 DOI: 10.1016/j.jmb.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/16/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
The Candida albicans cyclin CaPcl5 activates the cyclin-dependent kinase Pho85 and induces phosphorylation of the transcription factor CaGcn4, leading to its degradation. The high substrate specificity of the CaPcl5/Pho85 complex provides the opportunity to study the determinants of substrate selectivity of cyclins. Mutational analysis of CaPcl5 suggests that residues in a predicted α-helix at the N-terminal end of the cyclin box, as well as in helix I of the cyclin box, play a role in specific substrate recognition. Similar to Saccharomyces cerevisiae Pcl5, we show here that CaPcl5 induces its own phosphorylation at two adjacent sites in the N-terminal region of the protein and that this phosphorylation causes degradation of the cyclin in vivo via the SCF(CDC4) ubiquitin ligase. Remarkably, however, in vitro studies reveal that this phosphorylation also results in a loss of specific substrate recognition, thereby providing an additional novel mechanism for limiting cyclin activity.
Collapse
Affiliation(s)
- Einav Simon
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | |
Collapse
|
20
|
Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 2013; 87:11516-24. [PMID: 23966382 DOI: 10.1128/jvi.01642-13] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SAMHD1 is a host protein responsible, at least in part, for the inefficient infection of dendritic, myeloid, and resting T cells by HIV-1. Interestingly, HIV-2 and SIVsm viruses are able to counteract SAMHD1 by targeting it for proteasomal degradation using their Vpx proteins. It has been proposed that SAMHD1 is a dGTP-dependent deoxynucleoside triphosphohydrolase (dNTPase) that restricts HIV-1 by reducing cellular dNTP levels to below that required for reverse transcription. However, nothing is known about SAMHD1 posttranslational modifications and their potential role in regulating SAMHD1 function. We used (32)P labeling and immunoblotting with phospho-specific antibodies to identify SAMHD1 as a phosphoprotein. Several amino acids in SAMHD1 were identified to be sites of phosphorylation using direct mass spectrometry. Mutation of these residues to alanine to prevent phosphorylation or to glutamic acid to mimic phosphorylation had no effect on the nuclear localization of SAMHD1 or its sensitivity to Vpx-mediated degradation. Furthermore, neither alanine nor glutamic acid substitutions had a significant effect on SAMHD1 dNTPase activity in an in vitro assay. Interestingly, however, we found that a T592E mutation, mimicking constitutive phosphorylation at a main phosphorylation site, severely affected the ability of SAMHD1 to restrict HIV-1 in a U937 cell-based restriction assay. In contrast, a T592A mutant was still capable of restricting HIV-1. These results indicate that SAMHD1 phosphorylation may be a negative regulator of SAMHD1 restriction activity. This conclusion is supported by our finding that SAMHD1 is hyperphosphorylated in monocytoid THP-1 cells under nonrestrictive conditions.
Collapse
|
21
|
Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, Ponzio G, Rezzonico R. CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 2013; 20:800-11. [PMID: 23429262 DOI: 10.1038/cdd.2013.5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Disruption of contact inhibition and serum afflux that occur after a tissue injury activate cell cycle, which then stops when confluence is reached again. Although the events involved in cell cycle entry have been widely documented, those managing cell cycle exit have remained so far ill defined. We have identified that the final stage of wound closure is preceded in keratinocytes by a strong accumulation of miR-483-3p, which acts as a mandatory signal triggering cell cycle arrest when confluence is reached. Blocking miR-483-3p accumulation strongly delays cell cycle exit, maintains cells into a proliferative state and retards their differentiation program. Using two models of cell cycle synchronization (i.e. mechanical injury and serum addition), we show that an ectopic upregulation of miR-483-3p blocks cell cycle progression in early G1 phase. This arrest results from a direct targeting of the CDC25A phosphatase by miR-483-3p, which can be impeded using an anti-miRNA against miR-483-3p or a protector that blocks the complex formation between miR-483-3p and the 3'-untranslated region (UTR) of CDC25A transcript. We show that the miRNA-induced silencing of CDC25A increases the tyrosine phosphorylation status of CDK4/6 cyclin-dependent kinases which, in turn, abolishes CDK4/6 capacity to associate with D-type cyclins. This prevents CDK4/6 kinases' activation, impairs downstream events such as cyclin E stimulation and sequesters cells in early G1. We propose this new regulatory process of cyclin-CDK association as a general mechanism coupling miRNA-mediated CDC25A invalidation to CDK post-transcriptional modifications and cell cycle control.
Collapse
Affiliation(s)
- T Bertero
- CNRS UMR 7275, IPMC, Physiological Genomics of the Eukaryotes, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The cell cycle is regulated in part by cyclins and their associated serine/threonine cyclin-dependent kinases, or CDKs. CDK4, in conjunction with the D-type cyclins, mediates progression through the G1 phase when the cell prepares to initiate DNA synthesis. Although CDK4-null mutant mice are viable and cell proliferation is not significantly affected in vitro due to compensatory roles played by other CDKs, this gene plays a key role in mammalian development and cancer. This review discusses the role that CDK4 plays in cell cycle control, normal development, and tumorigenesis as well as how small molecule inhibitors of CDK4 can be used to treat disease.
Collapse
|
23
|
Shehata SN, Hunter RW, Ohta E, Peggie MW, Lou HJ, Sicheri F, Zeqiraj E, Turk BE, Sakamoto K. Analysis of substrate specificity and cyclin Y binding of PCTAIRE-1 kinase. Cell Signal 2012; 24:2085-94. [PMID: 22796189 PMCID: PMC3590450 DOI: 10.1016/j.cellsig.2012.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/25/2012] [Indexed: 12/29/2022]
Abstract
PCTAIRE-1 (cyclin-dependent kinase [CDK] 16) is a highly conserved serine/threonine kinase that belongs to the CDK family of protein kinases. Little is known regarding PCTAIRE-1 regulation and function and no robust assay exists to assess PCTAIRE-1 activity mainly due to a lack of information regarding its preferred consensus motif and the lack of bona fide substrates. We used positional scanning peptide library technology and identified the substrate-specificity requirements of PCTAIRE-1 and subsequently elaborated a peptide substrate termed PCTAIRE-tide. Recombinant PCTAIRE-1 displayed vastly improved enzyme kinetics on PCTAIRE-tide compared to a widely used generic CDK substrate peptide. PCTAIRE-tide also greatly improved detection of endogenous PCTAIRE-1 activity. Similar to other CDKs, PCTAIRE-1 requires a proline residue immediately C-terminal to the phosphoacceptor site (+ 1) for optimal activity. PCTAIRE-1 has a unique preference for a basic residue at + 4, but not at + 3 position (a key characteristic for CDKs). We also demonstrate that PCTAIRE-1 binds to a novel cyclin family member, cyclin Y, which increased PCTAIRE-1 activity towards PCTAIRE-tide > 100-fold. We hypothesised that cyclin Y binds and activates PCTAIRE-1 in a way similar to which cyclin A2 binds and activates CDK2. Point mutants of cyclin Y predicted to disrupt PCTAIRE-1-cyclin Y binding severely prevented complex formation and activation of PCTAIRE-1. We have identified PCTAIRE-tide as a powerful tool to study the regulation of PCTAIRE-1. Our understanding of the molecular interaction between PCTAIRE-1 and cyclin Y further facilitates future investigation of the functions of PCTAIRE-1 kinase.
Collapse
Affiliation(s)
- Saifeldin N Shehata
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Discrete phosphorylated retinoblastoma protein isoform expression in mouse tooth development. J Mol Histol 2012; 43:281-8. [PMID: 22476877 DOI: 10.1007/s10735-012-9404-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/11/2012] [Indexed: 12/27/2022]
Abstract
Retinoblastoma protein (pRb) phosphorylation plays a central role in mediating cell cycle G1/S stage transition, together with E2F transcription factors. The binding of pRb to E2F is thought to be controlled by the sequential and cumulative phosphorylation of pRb at various amino acids. In addition to well characterized roles as a tumor suppressor, pRb has more recently been implicated in osteoprogenitor and other types of stem cell maintenance, proliferation and differentiation, thereby influencing the morphogenesis of developing organs. In this study, we present data characterizing the expression of pRb and three phosphorylated pRb (ppRb) isoforms-ppRbS780, ppRbS795, ppRbS807/811-in developmentally staged mouse molar and incisor teeth. Our results reveal distinct developmental expression patterns for individual ppRb isoforms in dental epithelial and dental mesenchymal cell differentiation, suggesting discrete functions in tooth development.
Collapse
|
25
|
Lee MH, Mabb AM, Gill GB, Yeh ETH, Miyamoto S. NF-κB induction of the SUMO protease SENP2: A negative feedback loop to attenuate cell survival response to genotoxic stress. Mol Cell 2012; 43:180-91. [PMID: 21777808 DOI: 10.1016/j.molcel.2011.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/24/2011] [Accepted: 06/27/2011] [Indexed: 11/27/2022]
Abstract
Activation of NF-κB, pivotal for immunity and oncogenesis, is tightly controlled by multiple feedback mechanisms. In response to DNA damage, SUMOylation of NEMO (NF-κB essential modulator) is critical for NF-κB activation; however, the SUMO proteases and feedback mechanisms involved remain unknown. Here we show that among the six known Sentrin/SUMO-specific proteases (SENPs), only SENP2 can efficiently associate with NEMO, deSUMOylate NEMO, and inhibit NF-κB activation induced by DNA damage. We further show that NF-κB induces SENP2 (and SENP1) transcription selectively in response to genotoxic stimuli, which involves ataxia telangiectasia mutated (ATM)-dependent histone methylation of SENP2 promoter κB regions and NF-κB recruitment. SENP2 null cells display biphasic NEMO SUMOylation and activation of IKK and NF-κB, and higher resistance to DNA damage-induced cell death. Our study establishes a self-attenuating feedback mechanism selective to DNA damage-induced signaling to limit NF-κB-dependent cell survival responses.
Collapse
Affiliation(s)
- Moon Hee Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, 6159 Wisconsin Institute for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| | | | | | | | | |
Collapse
|
26
|
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 2012; 64:78-94. [PMID: 22210278 DOI: 10.1016/j.addr.2011.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided. We also describe how retroviruses and latent DNA viruses take advantage of mitosis to transfer their viral genome and segregate their episomes into the host daughter nuclei. Based on this knowledge, we propose strategies to improve nonviral gene delivery in dividing cells with the ultimate goal of designing nonviral gene delivery systems that are as efficient as their viral counterparts but non-immunogenic, non-oncogenic and easy and inexpensive to prepare.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
27
|
Cyclin-dependent kinases: bridging their structure and function through computations. Future Med Chem 2011; 3:1551-9. [PMID: 21882947 DOI: 10.4155/fmc.11.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are one of the most promising target families for drug discovery for several diseases, such as cancer and neurodegenerative disorders. Over the years, structural insights on CDKs have demonstrated high protein plasticity, with several cases where two or more structures of the same protein adopt different conformations. This has generated a great deal of interest in understanding the relationship between CDK structure and function. Here, we highlight how computer simulations have recently contributed in characterizing some key rare and transient events in CDKs, such as the reaction transition state and activation loop movement. Although not yet fully defined, we can now portray the enzymatic mechanism and plasticity of CDKs at high spatial and temporal resolution. These theoretical studies bridge with experiments and highlight structural determinants that could help in designing specific CDK inhibitors.
Collapse
|
28
|
Dorfman MD, Kerr B, Garcia-Rudaz C, Paredes AH, Dissen GA, Ojeda SR. Neurotrophins acting via TRKB receptors activate the JAGGED1-NOTCH2 cell-cell communication pathway to facilitate early ovarian development. Endocrinology 2011; 152:5005-16. [PMID: 22028443 PMCID: PMC3230062 DOI: 10.1210/en.2011-1465] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tropomyosin-related kinase (TRK) receptor B (TRKB) mediates the supportive actions of neurotrophin 4/5 and brain-derived neurotrophic factor on early ovarian follicle development. Absence of TRKB receptors reduces granulosa cell (GC) proliferation and delays follicle growth. In the present study, we offer mechanistic insights into this phenomenon. DNA array and quantitative PCR analysis of ovaries from TrkB-null mice revealed that by the end of the first week of postnatal life, Jagged1, Hes1, and Hey2 mRNA abundance is reduced in the absence of TRKB receptors. Although Jagged1 encodes a NOTCH receptor ligand, Hes1 and Hey2 are downstream targets of the JAGGED1-NOTCH2 signaling system. Jagged1 is predominantly expressed in oocytes, and the abundance of JAGGED1 is decreased in TrkB(-/-) oocytes. Lack of TRKB receptors also resulted in reduced expression of c-Myc, a NOTCH target gene that promotes entry into the cell cycle, but did not alter the expression of genes encoding core regulators of cell-cycle progression. Selective restoration of JAGGED1 synthesis in oocytes of TrkB(-/-) ovaries via lentiviral-mediated transfer of the Jagged1 gene under the control of the growth differentiation factor 9 (Gdf9) promoter rescued c-Myc expression, GC proliferation, and follicle growth. These results suggest that neurotrophins acting via TRKB receptors facilitate early follicle growth by supporting a JAGGED1-NOTCH2 oocyte-to-GC communication pathway, which promotes GC proliferation via a c-MYC-dependent mechanism.
Collapse
Affiliation(s)
- Mauricio D Dorfman
- Division of Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jeong J, Verheyden JM, Kimble J. Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 2011; 7:e1001348. [PMID: 21455289 PMCID: PMC3063749 DOI: 10.1371/journal.pgen.1001348] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 02/18/2011] [Indexed: 11/29/2022] Open
Abstract
Coordination of the cell cycle with developmental events is crucial for generation of tissues during development and their maintenance in adults. Defects in that coordination can shift the balance of cell fates with devastating clinical effects. Yet our understanding of the molecular mechanisms integrating core cell cycle regulators with developmental regulators remains in its infancy. This work focuses on the interplay between cell cycle and developmental regulators in the Caenorhabditis elegans germline. Key developmental regulators control germline stem cells (GSCs) to self-renew or begin differentiation: FBF RNA–binding proteins promote self-renewal, while GLD RNA regulatory proteins promote meiotic entry. We first discovered that many but not all germ cells switch from the mitotic into the meiotic cell cycle after RNAi depletion of CYE-1 (C. elegans cyclin E) or CDK-2 (C. elegans Cdk2) in wild-type adults. Therefore, CYE-1/CDK-2 influences the mitosis/meiosis balance. We next found that GLD-1 is expressed ectopically in GSCs after CYE-1 or CDK-2 depletion and that GLD-1 removal can rescue cye-1/cdk-2 defects. Therefore, GLD-1 is crucial for the CYE-1/CDK-2 mitosis/meiosis control. Indeed, GLD-1 appears to be a direct substrate of CYE-1/CDK-2: GLD-1 is a phosphoprotein; CYE-1/CDK-2 regulates its phosphorylation in vivo; and human cyclin E/Cdk2 phosphorylates GLD-1 in vitro. Transgenic GLD-1(AAA) harbors alanine substitutions at three consensus CDK phosphorylation sites. GLD-1(AAA) is expressed ectopically in GSCs, and GLD-1(AAA) transgenic germlines have a smaller than normal mitotic zone. Together these findings forge a regulatory link between CYE-1/CDK-2 and GLD-1. Finally, we find that CYE-1/CDK-2 works with FBF-1 to maintain GSCs and prevent their meiotic entry, at least in part, by lowering GLD-1 abundance. Therefore, CYE-1/CDK-2 emerges as a critical regulator of stem cell maintenance. We suggest that cyclin E and Cdk-2 may be used broadly to control developmental regulators. How are cell cycle regulators coordinated with cell fate and patterning regulators during development? Several studies suggest that core cell cycle regulators can influence development, but molecular mechanisms remain unknown for the most part. We have tackled this question in the nematode Caenorhabditis elegans. Specifically, we have investigated how cell cycle regulators affect germline stem cells. Previous work had identified conserved developmental regulators that control the choice between self-renewal and differentiation in this tissue. In this work, we focus on cyclin E/Cdk-2, which is a core cell cycle kinase, and GLD-1, a key regulator of stem cell differentiation. Our work shows that cyclin E/Cdk-2 phosphorylates GLD-1 and lowers its abundance in stem cells via a post-translational mechanism. We also find that a post-transcriptional GLD-1 regulator, called FBF-1, works synergistically with cyclin E/Cdk-2 to ensure that GLD-1 is off in germline stem cells. When both FBF-1 and cyclin E/Cdk-2 are removed, the stem cells are no longer maintained and instead differentiate. Our findings reveal that cyclin E/Cdk-2 kinase is a critical stem cell regulator and provide a paradigm for how cell cycle regulators interface with developmental regulators.
Collapse
Affiliation(s)
- Johan Jeong
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Jamie M. Verheyden
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cuomo ME, Platt GM, Pearl LH, Mittnacht S. Cyclin-cyclin-dependent kinase regulatory response is linked to substrate recognition. J Biol Chem 2011; 286:9713-25. [PMID: 21233209 DOI: 10.1074/jbc.m110.173872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin/cyclin-dependent kinase (CDK) complexes are critical regulators of cellular proliferation. A complex network of regulatory mechanisms has evolved to control their activity, including activating and inactivating phosphorylation of the catalytic CDK subunit and inhibition through specific regulatory proteins. Primate herpesviruses, including the oncogenic Kaposi sarcoma herpesvirus, encode cyclin D homologues. Viral cyclins have diverged from their cellular progenitor in that they elicit holoenzyme activity independent of activating phosphorylation by the CDK-activating kinase and resistant to inhibition by CDK inhibitors. Using sequence comparison and site-directed mutagenesis, we performed molecular analysis of the cellular cyclin D and the Kaposi sarcoma herpesvirus-cyclin to delineate the molecular mechanisms behind their different behavior. This provides evidence that a surface recognized for its involvement in the docking of CIP/KIP inhibitors is required and sufficient to modulate cyclin-CDK response to a range of regulatory cues, including INK4 sensitivity and CDK-activating kinase dependence. Importantly, amino acids in this region are critically linked to substrate selection, suggesting that a mutational drift in this surface simultaneously affects function and regulation. Together our work provides novel insight into the molecular mechanisms governing cyclin-CDK function and regulation and defines the biological forces that may have driven evolution of viral cyclins.
Collapse
Affiliation(s)
- Maria Emanuela Cuomo
- Section of Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Amanchy R, Kandasamy K, Mathivanan S, Periaswamy B, Reddy R, Yoon WH, Joore J, Beer MA, Cope L, Pandey A. Identification of Novel Phosphorylation Motifs Through an Integrative Computational and Experimental Analysis of the Human Phosphoproteome. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2011; 4:22-35. [PMID: 21720494 PMCID: PMC3124146 DOI: 10.4172/jpb.1000163] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein phosphorylation occurs in certain sequence/structural contexts that are still incompletely understood. The amino acids surrounding the phosphorylated residues are important in determining the binding of the kinase to the protein sequence. Upon phosphorylation these sequences also determine the binding of certain domains that specifically bind to phosphorylated sequences. Thus far, such 'motifs' have been identified through alignment of a limited number of well identified kinase substrates. RESULTS: Experimentally determined phosphorylation sites from Human Protein Reference Database were used to identify 1,167 novel serine/threonine or tyrosine phosphorylation motifs using a computational approach. We were able to statistically validate a number of these novel motifs based on their enrichment in known phosphopeptides datasets over phosphoserine/threonine/tyrosine peptides in the human proteome. There were 299 novel serine/threonine or tyrosine phosphorylation motifs that were found to be statistically significant. Several of the novel motifs that we identified computationally have subsequently appeared in large datasets of experimentally determined phosphorylation sites since we initiated our analysis. Using a peptide microarray platform, we have experimentally evaluated the ability of casein kinase I to phosphorylate a subset of the novel motifs discovered in this study. Our results demonstrate that it is feasible to identify novel phosphorylation motifs through large phosphorylation datasets. Our study also establishes peptide microarrays as a novel platform for high throughput kinase assays and for the validation of consensus motifs. Finally, this extended catalog of phosphorylation motifs should assist in a systematic study of phosphorylation networks in signal transduction pathways.
Collapse
Affiliation(s)
- Ramars Amanchy
- McKusick-Nathans Institute of Genetic Medicine and the Departments of Biological Chemistry and Oncology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kumaran Kandasamy
- McKusick-Nathans Institute of Genetic Medicine and the Departments of Biological Chemistry and Oncology, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Suresh Mathivanan
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | | | - Raghunath Reddy
- Institute of Bioinformatics, International Tech Park, Bangalore 560066, India
| | - Wan-Hee Yoon
- McKusick-Nathans Institute of Genetic Medicine and the Departments of Biological Chemistry and Oncology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jos Joore
- Pepscan Systems, Edelhertweg 15, 8219 PH Lelystad, The Netherlands
| | - Michael A Beer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center and the Department of Biostatistics, Bloomberg School of Public Health, and Johns Hopkins University, Baltimore, Maryland, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine and the Departments of Biological Chemistry and Oncology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
32
|
Bishop A, Lane R, Beniston R, Chapa-y-Lazo B, Smythe C, Sudbery P. Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J 2010; 29:2930-42. [PMID: 20639857 PMCID: PMC2944046 DOI: 10.1038/emboj.2010.158] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/10/2010] [Indexed: 01/16/2023] Open
Abstract
Polarized growth is a fundamental property of cell growth and development. It requires the delivery of post-Golgi secretory vesicles to the site of polarized growth. This process is mediated by Rab GTPases activated by their guanine exchange factors (GEFs). The human fungal pathogen, Candida albicans, can grow in a budded yeast form or in a highly polarized hyphal form, and thus provides a model to study this phenomenon. During hyphal, but not yeast growth, secretory vesicles accumulate in an apical body called a Spitzenkörper, which acts to focus delivery of the vesicles to the tip. Post-Golgi transport of secretory vesicles is mediated by the Rab GTPase Sec4, activated by its GEF Sec2. Using a combination of deletion mapping, in vitro mutagenesis, an analogue-sensitive allele of Cdc28 and an in vitro kinase assay, we show that localization of Sec2 to the Spitzenkörper and normal hyphal development requires phosphorylation of Serine 584 by the cyclin-dependent kinase Cdc28. Thus, as well as controlling passage through the cell cycle, Cdc28 has an important function in controlling polarized secretion.
Collapse
Affiliation(s)
- Amy Bishop
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Rachel Lane
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Richard Beniston
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Bernardo Chapa-y-Lazo
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| | - Carl Smythe
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Peter Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
33
|
Lenardon MD, Milne SA, Mora-Montes HM, Kaffarnik FAR, Peck SC, Brown AJP, Munro CA, Gow NAR. Phosphorylation regulates polarisation of chitin synthesis in Candida albicans. J Cell Sci 2010; 123:2199-206. [PMID: 20530569 PMCID: PMC2886742 DOI: 10.1242/jcs.060210] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2010] [Indexed: 11/20/2022] Open
Abstract
The ability to undergo polarised cell growth is fundamental to the development of almost all walled organisms. Fungi are characterised by yeasts and moulds, and both cellular forms have been studied extensively as tractable models of cell polarity. Chitin is a hallmark component of fungal cell walls. Chitin synthesis is essential for growth, viability and rescue from many conditions that impair cell-wall integrity. In the polymorphic human pathogen Candida albicans, chitin synthase 3 (Chs3) synthesises the majority of chitin in the cell wall and is localised at the tips of growing buds and hyphae, and at the septum. An analysis of the C. albicans phospho-proteome revealed that Chs3 can be phosphorylated at Ser139. Mutation of this site showed that both phosphorylation and dephosphorylation are required for the correct localisation and function of Chs3. The kinase Pkc1 was not required to target Chs3 to sites of polarised growth. This is the first report demonstrating an essential role for chitin synthase phosphorylation in the polarised biosynthesis of fungal cell walls and suggests a new mechanism for the regulation of this class of glycosyl-transferase enzyme.
Collapse
Affiliation(s)
- Megan D. Lenardon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Sarah A. Milne
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Héctor M. Mora-Montes
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Scott C. Peck
- Division of Biochemistry, 271H Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Alistair J. P. Brown
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Carol A. Munro
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Neil A. R. Gow
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| |
Collapse
|
34
|
Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Biosci Rep 2010; 30:243-55. [DOI: 10.1042/bsr20090171] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.
Collapse
|
35
|
Yun MH, Hiom K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 2009; 459:460-3. [PMID: 19357644 PMCID: PMC2857324 DOI: 10.1038/nature07955] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 03/03/2009] [Indexed: 01/07/2023]
Abstract
The repair of DNA double-strand breaks (DSBs) is tightly regulated during the cell cycle. In G1 phase, the absence of a sister chromatid means that repair of DSBs occurs through non-homologous end-joining or microhomology-mediated end-joining (MMEJ). These pathways often involve loss of DNA sequences at the break site and are therefore error-prone. In late S and G2 phases, even though DNA end-joining pathways remain functional, there is an increase in repair of DSBs by homologous recombination, which is mostly error-free. Consequently, the relative contribution of these different pathways to DSB repair in the cell cycle has a large influence on the maintenance of genetic integrity. It has remained unknown how DSBs are directed for repair by different, potentially competing, repair pathways. Here we identify a role for CtIP (also known as RBBP8) in this process in the avian B-cell line DT40. We establish that CtIP is required not only for repair of DSBs by homologous recombination in S/G2 phase but also for MMEJ in G1. The function of CtIP in homologous recombination, but not MMEJ, is dependent on the phosphorylation of serine residue 327 and recruitment of BRCA1. Cells expressing CtIP protein that cannot be phosphorylated at serine 327 are specifically defective in homologous recombination and have a decreased level of single-stranded DNA after DNA damage, whereas MMEJ remains unaffected. Our data support a model in which phosphorylation of serine 327 of CtIP as cells enter S phase and the recruitment of BRCA1 functions as a molecular switch to shift the balance of DSB repair from error-prone DNA end-joining to error-free homologous recombination.
Collapse
Affiliation(s)
- Maximina H Yun
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
36
|
Narayanan A, Jacobson MP. Computational studies of protein regulation by post-translational phosphorylation. Curr Opin Struct Biol 2009; 19:156-63. [DOI: 10.1016/j.sbi.2009.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 02/08/2023]
|
37
|
Babu P, Smiles D, Narasu M, Srinivas K. Identification of Novel CDK2 Inhibitors by QSAR and Virtual Screening Procedures. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200860041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
39
|
Malik R, Nigg EA, Körner R. Comparative conservation analysis of the human mitotic phosphoproteome. Bioinformatics 2008; 24:1426-32. [DOI: 10.1093/bioinformatics/btn197] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Boyer MJ, Cheng T. The CDK inhibitors: potential targets for therapeutic stem cell manipulations? Gene Ther 2008; 15:117-25. [PMID: 17989702 DOI: 10.1038/sj.gt.3303064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 09/22/2007] [Accepted: 09/23/2007] [Indexed: 12/17/2022]
Abstract
Therapies involving adult stem cells are dependent upon sufficient expansion of these cells to repopulate or replace the diseased tissue and are consequently hindered by their relatively quiescent phenotype. Cellular proliferation is governed by the cyclin-dependent kinases, which in a complex with a corresponding cyclin, phosphorylate a number of downstream mediators to drive the cell through the cell cycle. In turn, biochemical activities of the cyclin-dependent kinases are regulated by two families of cyclin-dependent kinase inhibitors, which have been shown to be potent cell intrinsic blocks of adult stem cell proliferation in multiple tissue types. In contrast to normal stem cells, inappropriate regulation of the cell cycle in cancer stem cells may underlie tumorigenesis and failure of conventional chemotherapeutics to fully eradicate a tumor. Thus, definition of the roles of the cyclin-dependent kinase inhibitors in normal and cancer stem cells may permit the development of novel strategies for adult stem cell expansion and therapies specifically targeted to cancer stem cells.
Collapse
Affiliation(s)
- M J Boyer
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
41
|
Huang K, Ferrin-O’Connell I, Zhang W, Leonard GA, O’Shea EK, Quiocho FA. Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway. Mol Cell 2007; 28:614-23. [PMID: 18042456 PMCID: PMC2175173 DOI: 10.1016/j.molcel.2007.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/06/2007] [Accepted: 09/25/2007] [Indexed: 11/20/2022]
Abstract
The ability to sense and respond appropriately to environmental changes is a primary requirement of all living organisms. In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes involved in the regulation of phosphate acquisition from the ambient environment. A signal transduction pathway (the PHO pathway) mediates this response, with Pho85-Pho80 playing a vital role. Here we report the X-ray structure of Pho85-Pho80, a prototypic structure of a CDK-cyclin complex functioning in transcriptional regulation in response to environmental changes. The structure revealed a specific salt link between a Pho85 arginine and a Pho80 aspartate that makes phosphorylation of the Pho85 activation loop dispensable and that maintains a Pho80 loop conformation for possible substrate recognition. It further showed two sites on the Pho80 cyclin for high-affinity binding of the transcription factor substrate (Pho4) and the CDK inhibitor (Pho81) that are markedly distant to each other and the active site.
Collapse
Affiliation(s)
- Kexin Huang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ian Ferrin-O’Connell
- Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Gordon A. Leonard
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Florante A. Quiocho
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
42
|
Bhattacharjee AK. In silico three-dimensional pharmacophores for aiding the discovery of the Pfmrk (Plasmodium cyclin-dependent protein kinases) specific inhibitors for the therapeutic treatment of malaria. Expert Opin Drug Discov 2007; 2:1115-27. [PMID: 23484876 DOI: 10.1517/17460441.2.8.1115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The resurgence of malaria and lack of effective antimalarial drugs affect millions of people worldwide every year, causing several million deaths. With the emergence of structure-based drug design methodologies, a major thrust in drug discovery efforts has shifted towards targeting specific proteins in parasites that are involved in their metabolic pathways. Although cyclin-dependent kinases (CDKs), due to their direct role in cell cycle regulations, have been targeted for the development of cancer therapeutics, CDKs for Plasmodium falciparum have only been recently identified to be attractive for the discovery of antimalarials. One of the plasmodium CDK targets is Pfmrk. Being a putative homolog of Cdk7 and, thus, having the possibility of dual functions, both in cell cycle control and gene expression within the parasite, pfrmk has become an interesting antimalarial chemotherapeutic target. This review discusses how in silico methodologies, without the knowledge of the X-ray crystallographic structure of Pfmrk, particularly based on the development of pharmacophores on known inhibitors can aid the discovery and design of Pfmrk-specific inhibitors through virtual screening of compound databases and provides insights into the understanding of the mechanism of binding in the active site of this enzyme.
Collapse
Affiliation(s)
- Apurba K Bhattacharjee
- Walter Reed Army Institute of Research, Department of Medicinal Chemistry, Division of Experimental Therapeutics, Silver Spring, MD 20910-7500, USA +1 301 319 9043 ; +1 301 319 9449 ;
| |
Collapse
|
43
|
Moses AM, Hériché JK, Durbin R. Clustering of phosphorylation site recognition motifs can be exploited to predict the targets of cyclin-dependent kinase. Genome Biol 2007; 8:R23. [PMID: 17316440 PMCID: PMC1852407 DOI: 10.1186/gb-2007-8-2-r23] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/16/2007] [Accepted: 02/22/2007] [Indexed: 11/10/2022] Open
Abstract
Protein kinases are critical to cellular signalling and post-translational gene regulation, but their biological substrates are difficult to identify. We show that cyclin-dependent kinase (CDK) consensus motifs are frequently clustered in CDK substrate proteins. Based on this, we introduce a new computational strategy to predict the targets of CDKs and use it to identify new biologically interesting candidates. Our data suggest that regulatory modules may exist in protein sequence as clusters of short sequence motifs.
Collapse
Affiliation(s)
- Alan M Moses
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Jean-Karim Hériché
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH, UK
| |
Collapse
|
44
|
Abstract
Cdk7, a member of the cyclin dependent protein kinase family, regulates the activities of other Cdks through phosphorylation on their activation segment, and hence contributes to control of the eukaryotic cell cycle. Cdk7 is itself phosphorylated on the activation segment. Cdk7 phosphorylates Cdk1, Cdk2, Cdk4, and Cdk6, but only Cdk1 and Cdk2 can phosphorylate Cdk7 and none of them is able to auto-phosphorylate. The activation segments of the Cdks are very similar in sequence. Their specificity does not appear to be dictated by the sequences surrounding the phosphorylation sites but by structural determinants at remote sites. Through mutagenesis studies, we have identified regions in Cdk2 responsible for its interaction with Cdk7. A model has been built that explains the molecular basis for the specificity observed in Cdk recognition. The two kinases are arranged in a quasi-symmetric head-to-tail arrangement in which the N-terminal lobe from one kinase docks against the C-terminal lobe from the other kinase, and the activation segments are within reach of the opposite catalytic sites. Further experiments demonstrate that cyclin A hydrophobic pocket is not a recruitment site for Cdk7.
Collapse
Affiliation(s)
- Graziano Lolli
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
45
|
Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, Molinari A, Santocanale C. Identification of Mcm2 Phosphorylation Sites by S-phase-regulating Kinases. J Biol Chem 2006; 281:10281-90. [PMID: 16446360 DOI: 10.1074/jbc.m512921200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Minichromosome maintenance 2-7 proteins play a pivotal role in replication of the genome in eukaryotic organisms. Upon entry into S-phase several subunits of the MCM hexameric complex are phosphorylated. It is thought that phosphorylation activates the intrinsic MCM DNA helicase activity, thus allowing formation of active replication forks. Cdc7, Cdk2, and ataxia telangiectasia and Rad3-related kinases regulate S-phase entry and S-phase progression and are known to phosphorylate the Mcm2 subunit. In this work, by in vitro kinase reactions and mass spectrometry analysis of the products, we have mapped phosphorylation sites in the N terminus of Mcm2 by Cdc7, Cdk2, Cdk1, and CK2. We found that Cdc7 phosphorylates Mcm2 in at least three different sites, one of which corresponds to a site also reported to be phosphorylated by ataxia telangiectasia and Rad3-related. Three serine/proline sites were identified for Cdk2 and Cdk1, and a unique site was phosphorylated by CK2. We raised specific anti-phosphopeptide antibodies and found that all the sites identified in vitro are also phosphorylated in cells. Importantly, although all the Cdc7-dependent Mcm2 phosphosites fluctuate during the cell cycle with kinetics similar to Cdc7 kinase activity and Cdc7 protein levels, phosphorylation of Mcm2 in the putative cyclin-dependent kinase (Cdk) consensus sites is constant during the cell cycle. Furthermore, our analysis indicates that the majority of the Mcm2 isoforms phosphorylated by Cdc7 are not stably associated with chromatin. This study forms the basis for understanding how MCM functions are regulated by multiple kinases within the cell cycle and in response to external perturbations.
Collapse
Affiliation(s)
- Alessia Montagnoli
- Department of Biology, Nerviano Medical Sciences-Oncology, Via Pasteur 10, 20014 Nerviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mayya V, Rezual K, Wu L, Fong MB, Han DK. Absolute quantification of multisite phosphorylation by selective reaction monitoring mass spectrometry: determination of inhibitory phosphorylation status of cyclin-dependent kinases. Mol Cell Proteomics 2006; 5:1146-57. [PMID: 16546994 DOI: 10.1074/mcp.t500029-mcp200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multisite phosphorylation is an important mechanism for achieving intricate regulation of protein function. Here we extended the absolute quantification of abundance (AQUA) methodology and validated its applicability to quantitatively study multisite phosphorylation. As a test case, we chose the conserved inhibitory site of the cyclin-dependent kinases (CDKs), Cdk1, Cdk2, and Cdk3, which are important regulators of cell cycle transitions and apoptosis. Inhibitory phosphorylation at Thr(14) and Tyr(15) of the CDKs is modulated by complex regulatory mechanisms involving multiple kinases and phosphatases. Yet the resulting quantitative dynamics among the four possible phosphorylated and non-phosphorylated versions of CDKs (T14p-Y15p, T14p-Y15, T14-Y15p, and T14-Y15) has not been investigated to date. Hence we used the heavy isotope-labeled tryptic peptides spanning the inhibitory site as internal standards and quantified all four versions by LC-selected reaction monitoring. Quantification of the phosphorylation status of the inhibitory site in the cell extracts provided novel quantitative insights. 1) The transition to mitotic phase was dominated by the conversion of "T14p-Y15p" to the "T14-Y15" form, whereas the two monophosphorylated forms were considerably lower in abundance. 2) The amount of all four forms decreased during the progression of apoptosis but with differing kinetics. Analysis of immunoprecipitated Cdk1 and Cdk2 revealed that the inhibitory site phosphorylation state of both kinases at different stages of the cell cycle followed the same trend. Quantitative immunoblotting using antibodies to Cdk1 and Cdk2 and to the T14-Y15p form suggested that quantification by AQUA was reliable and accurate. These results highlight the utility of internal standard peptides to achieve accurate quantification of multisite phosphorylation status.
Collapse
Affiliation(s)
- Viveka Mayya
- Department of Cell Biology and Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
47
|
Corellou F, Camasses A, Ligat L, Peaucellier G, Bouget FY. Atypical regulation of a green lineage-specific B-type cyclin-dependent kinase. PLANT PHYSIOLOGY 2005; 138:1627-36. [PMID: 15965018 PMCID: PMC1176432 DOI: 10.1104/pp.105.059626] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are the main regulators of cell cycle progression in eukaryotes. The role and regulation of canonical CDKs, such as the yeast (Saccharomyces cerevisiae) Cdc2 or plant CDKA, have been extensively characterized. However, the function of the plant-specific CDKB is not as well understood. Besides being involved in cell cycle control, Arabidopsis (Arabidopsis thaliana) CDKB would integrate developmental processes to cell cycle progression. We investigated the role of CDKB in Ostreococcus (Ostreococcus tauri), a unicellular green algae with a minimal set of cell cycle genes. In this primitive alga, at the basis of the green lineage, CDKB has integrated two levels of regulations: It is regulated by Tyr phosphorylation like cdc2/CDKA and at the level of synthesis-like B-type CDKs. Furthermore, Ostreococcus CDKB/cyclin B accounts for the main peak of mitotic activity, and CDKB is able to rescue a yeast cdc28(ts) mutant. By contrast, Ostreococcus CDKA is not regulated by Tyr phosphorylation, and it exhibits a low and steady-state activity from DNA replication to exit of mitosis. This suggests that from a major role in the control of mitosis in green algae, CDKB has evolved in higher plants to assume other functions outside the cell cycle.
Collapse
Affiliation(s)
- Florence Corellou
- Unité Mixte de Recherche 7628 Centre National de la Recherche Scientifique, Université Paris VI, Laboratoire Arago, Modèles en Biologie Cellulaire et Evolutive, BP44, 66651 Banyuls sur Mer, France
| | | | | | | | | |
Collapse
|
48
|
Perlman DH, Berg EA, O'connor PB, Costello CE, Hu J. Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proc Natl Acad Sci U S A 2005; 102:9020-5. [PMID: 15951426 PMCID: PMC1157036 DOI: 10.1073/pnas.0502138102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B viruses are pararetroviruses that contain a partially dsDNA genome and replicate this DNA through an RNA intermediate (the pregenomic RNA, pgRNA) by reverse transcription. Viral assembly begins with the packaging of the pgRNA into nucleocapsids (NCs), with subsequent reverse transcription within NCs converting the pgRNA into the characteristic dsDNA genome. Only NCs containing this dsDNA (the so-called "mature" NCs) are enveloped by the viral envelope proteins and secreted as virions; "immature" NCs, i.e., those containing pgRNA or immature reverse transcription intermediates, are excluded from virion formation. This phenomenon is thought to be caused by the emergence of an intrinsic maturation signal only on the mature NCs. To define the maturation signal, we have devised a method to separate mature from immature duck hepatitis B virus NCs and have compared them to NCs derived from secreted virions. Detailed mass spectrometric analyses revealed that the core protein from immature NCs was phosphorylated on at least six sites, whereas the core protein from mature NCs and that from secreted virions was entirely dephosphorylated. These results, together with the known requirement of core phosphorylation for pgRNA packaging and DNA synthesis, suggest that the NC undergoes a dynamic change in phosphorylation state to fulfill its multiple roles at different stages of viral replication. Although phosphorylation of the NCs is required for efficient RNA packaging and DNA synthesis by the immature NCs, dephosphorylation of the mature NCs may trigger envelopment and secretion.
Collapse
Affiliation(s)
- David H Perlman
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
49
|
Hu J, Imam SZ, Hashiguchi K, de Souza-Pinto NC, Bohr VA. Phosphorylation of human oxoguanine DNA glycosylase (alpha-OGG1) modulates its function. Nucleic Acids Res 2005; 33:3271-82. [PMID: 15942030 PMCID: PMC1143695 DOI: 10.1093/nar/gki636] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxoguanine DNA glycosylase (OGG1) initiates the repair of 8-oxoguanine (8-oxoG), a major oxidative DNA base modification that has been directly implicated in cancer and aging. OGG1 functions in the base excision repair pathway, for which a molecular hand-off mechanism has been proposed. To date, only one functional and a few physical protein interactions have been reported for OGG1. Using the yeast two-hybrid system and a protein array membrane, we identified two novel protein interactions of OGG1, with two different protein kinases: Cdk4, a serine-threonine kinase, and c-Abl, a tyrosine kinase. We confirmed these interactions in vitro using recombinant proteins and in vivo by co-immunoprecipitation from whole cell extracts. OGG1 is phosphorylated in vitro by Cdk4, resulting in a 2.5-fold increase in the 8-oxoG/C incision activity of OGG1. C-Abl tyrosine phosphorylates OGG1 in vitro; however, this phosphorylation event does not affect OGG1 8-oxoG/C incision activity. These results provide the first evidence that a post-translational modification of OGG1 can affect its catalytic activity. The distinct functional outcomes from serine/threonine or tyrosine phosphorylation may indicate that activation of different signal transduction pathways modulate OGG1 activity in different ways.
Collapse
Affiliation(s)
| | | | | | | | - Vilhelm A. Bohr
- To whom correspondence should be addressed. Tel: +1 410 558 8162; Fax: +1 410 558 8157;
| |
Collapse
|
50
|
Squire CJ, Dickson JM, Ivanovic I, Baker EN. Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure 2005; 13:541-50. [PMID: 15837193 DOI: 10.1016/j.str.2004.12.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/25/2022]
Abstract
Phosphorylation is critical to regulation of the eukaryotic cell cycle. Entry to mitosis is triggered by the cyclin-dependent kinase CDK1 (Cdc2), which is inactivated during the preceding S and G2 phases by phosphorylation of T14 and Y15. Two homologous kinases, Wee1, which phosphorylates Y15, and Myt1, which phosphorylates both T14 and Y15, mediate this inactivation. We have determined the crystal structure of the catalytic domain of human somatic Wee1 (Wee1A) complexed with an active-site inhibitor at 1.8 A resolution. Although Wee1A is functionally a tyrosine kinase, in sequence and structure it most closely resembles serine/threonine kinases such as Chk1 and cAMP kinases. The crystal structure shows that although the catalytic site closely resembles that of other protein kinases, the activation segment contains Wee1-specific features that maintain it in an active conformation and, together with a key substitution in its glycine-rich loop, help determine its substrate specificity.
Collapse
Affiliation(s)
- Christopher J Squire
- School of Biological Sciences and Centre for Molecular Biodiscovery, University of Auckland, Auckland 1001, New Zealand
| | | | | | | |
Collapse
|