1
|
Silva LR, Souza SOD, Leite ACR, Silva-Júnior EFD. Exploring therapeutic strategies based on chaperon-mediated disaggregation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 145:219-254. [PMID: 40324847 DOI: 10.1016/bs.apcsb.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In the quest to develop effective therapeutic strategies for diseases associated with protein misfolding and aggregation, molecular chaperones have emerged as pivotal players. This chapter explores the role of chaperones, such as Hsp40, Hsp70, and Hsp90, in mediating the disaggregation of misfolded proteins and facilitating proper folding under stress conditions. Despite their lack of sequence specificity, these proteins adeptly recognize exposed hydrophobic regions in partially folded states, thereby preventing aggregation and promoting functional conformations. The intricate network of chaperone interactions is crucial for maintaining cellular homeostasis and mitigating the pathological consequences of protein misfolding, particularly in conditions like Alzheimer's disease and various cancers. Innovative therapeutic approaches, including the use of pharmacological and chemical chaperones, aim to restore functionality to mutated or misfolded proteins, exemplified by interventions targeting the ΔF508 mutation in CFTR. While promising, the modulation of chaperone activity must be carefully calibrated to avoid disrupting cellular functions. This chapter highlights the potential of chaperone-mediated disaggregation as a therapeutic strategy, addressing both the current advancements and the challenges that lie ahead in harnessing these proteins for clinical benefit.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Research Group on Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Sheila Oliveira de Souza
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Ana Catarina Rezende Leite
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil.
| | - Edeildo Ferreira da Silva-Júnior
- Research Group on Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil.
| |
Collapse
|
2
|
Garbuzynskiy SO, Marchenkov VV, Marchenko NY, Semisotnov GV, Finkelstein AV. How proteins manage to fold and how chaperones manage to assist the folding. Phys Life Rev 2025; 52:66-79. [PMID: 39709754 DOI: 10.1016/j.plrev.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature. We discuss the famous Levinthal's paradox of protein folding and its solution, theoretical models of protein folding and unfolding, and the dependence of the rates of these processes on the protein chain length. Special attention is paid to relatively small, single-domain, and water-soluble globular proteins whose structure and folding are much better studied and understood than those of large proteins, especially membrane or fibrous proteins. Lastly, we describe the chaperone-assisted protein folding with an emphasis on the chaperones' ability to prevent proteins from their irreversible aggregation. Since the possible assistance mechanisms connected with chaperones are still debatable, experimental data useful in selecting the most likely mechanisms of chaperone-assisted protein folding are presented.
Collapse
Affiliation(s)
- Sergiy O Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Natalia Y Marchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Gennady V Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| |
Collapse
|
3
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Ghafoor H, Asim MN, Ibrahim MA, Dengel A. ProSol-multi: Protein solubility prediction via amino acids multi-level correlation and discriminative distribution. Heliyon 2024; 10:e36041. [PMID: 39281576 PMCID: PMC11401092 DOI: 10.1016/j.heliyon.2024.e36041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Protein solubility prediction is useful for the careful selection of highly effective candidate proteins for drug development. In recombinant proteins synthesis, solubility prediction is valuable for optimizing key protein characteristics, including stability, functionality, and ease of purification. It contains valuable information about potential biomarkers or therapeutic targets and helps in early forecasting of neurodegenerative diseases, cancer, and cardiovascular disorders. Traditional wet-lab experimental protein solubility prediction approaches are error-prone, time-consuming, and costly. Researchers harnessed the competence of Artificial Intelligence approaches for replacing experimental approaches with computational predictors. These predictors inferred the solubility of proteins by analyzing amino acids distributions in raw protein sequences. There is still a lot of room for the development of robust computational predictors because existing predictors remain fail in extracting comprehensive discriminative distribution of amino acids. To more precisely discriminate soluble proteins from insoluble proteins, this paper presents ProSol-Multi predictor that makes use of a novel MLCDE encoder and Random Forest classifier. MLCDE encoder transforms protein sequences into informative statistical vectors by capturing amino acids multi-level correlation and discriminative distribution within raw protein sequences. The performance of proposed encoder is evaluated against 56 existing protein sequence encoding methods on a widely used protein solubility prediction benchmark dataset under two different experimental settings namely intrinsic and extrinsic. Intrinsic evaluation reveals that from all sequence encoders, proposed MLCDE encoder manages to generate non-overlapping clusters of soluble and insoluble classes. In extrinsic evaluation, 10 machine learning classifiers achieve better performance with proposed MLCDE encoder as compared to 56 existing protein sequence encoders. Moreover, across 4 public benchmark datasets, proposed ProSol-Multi predictor outshines 20 existing predictors by an average accuracy of 3%, MCC and AU-ROC of 2%. ProSol-Multi interactive web application is available at https://sds_genetic_analysis.opendfki.de/ProSol-Multi.
Collapse
Affiliation(s)
- Hina Ghafoor
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
| | - Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
| | - Andreas Dengel
- Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, 67663, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, 67663, Germany
| |
Collapse
|
5
|
Russell PPS, Rickard MM, Boob M, Gruebele M, Pogorelov TV. In silico protein dynamics in the human cytoplasm: Partial folding, misfolding, fold switching, and non-native interactions. Protein Sci 2023; 32:e4790. [PMID: 37774143 PMCID: PMC10578126 DOI: 10.1002/pro.4790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
We examine the influence of cellular interactions in all-atom models of a section of the Homo sapiens cytoplasm on the early folding events of the three-helix bundle protein B (PB). While genetically engineered PB is known to fold in dilute water box simulations in three microseconds, the three initially unfolded PB copies in our two cytoplasm models using a similar force field did not reach the native state during 30-microsecond simulations. We did however capture the formation of all three helices in a compact native-like topology. Folding in vivo is delayed because intramolecular contact formation within PB is in direct competition with intermolecular contacts between PB and surrounding macromolecules. In extreme cases, intermolecular beta-sheets are formed. Interactions with other macromolecules are also observed to promote structure formation, for example when a PB helix in our simulations is shielded from solvent by macromolecular crowding. Sticking and crowding in our models initiate sampling of helix/sheet structural plasticity of PB. Relatedly, in past in vitro experiments, similar GA domains were shown to switch between two different folds. Finally, we also observed that stickiness between PB and the cellular environment can be modulated in our simulations through the reduction in protein hydrophobicity when we reversed PB back to the wild-type sequence. This study demonstrates that even fast-folding proteins can get stuck in non-native states in the cell, making them useful models for protein-chaperone interactions and early stages of aggregate formation relevant to cellular disease.
Collapse
Affiliation(s)
| | - Meredith M. Rickard
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Mayank Boob
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Martin Gruebele
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of PhysicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Taras V. Pogorelov
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- National Center for Supercomputing ApplicationsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- School of Chemical SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
6
|
Wang C, Zou Q. Prediction of protein solubility based on sequence physicochemical patterns and distributed representation information with DeepSoluE. BMC Biol 2023; 21:12. [PMID: 36694239 PMCID: PMC9875434 DOI: 10.1186/s12915-023-01510-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Protein solubility is a precondition for efficient heterologous protein expression at the basis of most industrial applications and for functional interpretation in basic research. However, recurrent formation of inclusion bodies is still an inevitable roadblock in protein science and industry, where only nearly a quarter of proteins can be successfully expressed in soluble form. Despite numerous solubility prediction models having been developed over time, their performance remains unsatisfactory in the context of the current strong increase in available protein sequences. Hence, it is imperative to develop novel and highly accurate predictors that enable the prioritization of highly soluble proteins to reduce the cost of actual experimental work. RESULTS In this study, we developed a novel tool, DeepSoluE, which predicts protein solubility using a long-short-term memory (LSTM) network with hybrid features composed of physicochemical patterns and distributed representation of amino acids. Comparison results showed that the proposed model achieved more accurate and balanced performance than existing tools. Furthermore, we explored specific features that have a dominant impact on the model performance as well as their interaction effects. CONCLUSIONS DeepSoluE is suitable for the prediction of protein solubility in E. coli; it serves as a bioinformatics tool for prescreening of potentially soluble targets to reduce the cost of wet-experimental studies. The publicly available webserver is freely accessible at http://lab.malab.cn/~wangchao/softs/DeepSoluE/ .
Collapse
Affiliation(s)
- Chao Wang
- grid.411307.00000 0004 1790 5236School of Software Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Mostert I, Bester R, Burger JT, Maree HJ. Identification of Interactions between Proteins Encoded by Grapevine Leafroll-Associated Virus 3. Viruses 2023; 15:208. [PMID: 36680248 PMCID: PMC9865355 DOI: 10.3390/v15010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between proteins of grapevine leafroll-associated virus 3 (GLRaV-3). The p5 movement protein, HSP70 homolog, coat protein, and p20B of GLRaV-3 were all found to self-interact, however, the mechanism by which p5 interacts remains unknown due to the absence of a cysteine residue crucial for the dimerisation of the closterovirus homolog of this protein. Although HSP70h forms part of the virion head of closteroviruses, in GLRaV-3, it interacts with the coat protein that makes up the body of the virion. Silencing suppressor p20B has been shown to interact with HSP70h, as well as the major coat protein and the minor coat protein. The results of this study suggest that the virion assembly of a member of the genus Ampelovirus occurs in a similar but not identical manner to those of other genera in the family Closteroviridae. Identification of interactions of p20B with virus structural proteins provides an avenue for future research to explore the mechanisms behind the suppression of host silencing and suggests possible involvement in other aspects of the viral replication cycle.
Collapse
Affiliation(s)
- Ilani Mostert
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Citrus Research International, P.O. Box 2201, Matieland 7602, South Africa
| |
Collapse
|
8
|
Finkelstein AV, Bogatyreva NS, Ivankov DN, Garbuzynskiy SO. Protein folding problem: enigma, paradox, solution. Biophys Rev 2022; 14:1255-1272. [PMID: 36659994 PMCID: PMC9842845 DOI: 10.1007/s12551-022-01000-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 01/22/2023] Open
Abstract
The ability of protein chains to spontaneously form their three-dimensional structures is a long-standing mystery in molecular biology. The most conceptual aspect of this mystery is how the protein chain can find its native, "working" spatial structure (which, for not too big protein chains, corresponds to the global free energy minimum) in a biologically reasonable time, without exhaustive enumeration of all possible conformations, which would take billions of years. This is the so-called "Levinthal's paradox." In this review, we discuss the key ideas and discoveries leading to the current understanding of protein folding kinetics, including folding landscapes and funnels, free energy barriers at the folding/unfolding pathways, and the solution of Levinthal's paradox. A special role here is played by the "all-or-none" phase transition occurring at protein folding and unfolding and by the point of thermodynamic (and kinetic) equilibrium between the "native" and the "unfolded" phases of the protein chain (where the theory obtains the simplest form). The modern theory provides an understanding of key features of protein folding and, in good agreement with experiments, it (i) outlines the chain length-dependent range of protein folding times, (ii) predicts the observed maximal size of "foldable" proteins and domains. Besides, it predicts the maximal size of proteins and domains that fold under solely thermodynamic (rather than kinetic) control. Complementarily, a theoretical analysis of the number of possible protein folding patterns, performed at the level of formation and assembly of secondary structures, correctly outlines the upper limit of protein folding times.
Collapse
Affiliation(s)
- Alexei V. Finkelstein
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Biotechnology Department of the Lomonosov Moscow State University, 4 Institutskaya Str, 142290 Pushchino, Moscow Region, Russia
- Biology Department of the Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Natalya S. Bogatyreva
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry N. Ivankov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Sergiy O. Garbuzynskiy
- Institute of Protein Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
9
|
Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Behl T, Abdellatif AAH, Bhaskaran PM, Dachani SR, Sehgal A, Singh S, Sharma N, Makeen HA, Albratty M, Dailah HG, Bhatia S, Al-Harrasi A, Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147:112647. [PMID: 35149361 DOI: 10.1016/j.biopha.2022.112647] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Sudarshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University (Al-Dawadmi Campus), Al-Dawadmi, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan university, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
10
|
Perach M, Zafrir Z, Tuller T, Lewinson O. Identification of conserved slow codons that are important for protein expression and function. RNA Biol 2021; 18:2296-2307. [PMID: 33691590 PMCID: PMC8632084 DOI: 10.1080/15476286.2021.1901185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022] Open
Abstract
ABSTRASTDue to the redundancy of the genetic code most amino acids are encoded by several 'synonymous' codons. These codons are used unevenly, and each organism demonstrates its own unique codon usage bias, where the 'preferred' codons are associated with tRNAs that are found in high concentrations. Therefore, for decades, the prevailing view had been that preferred and non-preferred codons are linked to high or slow translation rates, respectively.However, this simplified view is contrasted by the frequent failures of codon-optimization efforts and by evidence of non-preferred (i.e. 'slow') codons having specific roles important for efficient production of functional proteins. One such specific role of slower codons is the regulation of co-translational protein folding, a complex biophysical process that is very challenging to model or to measure.Here, we combined a genome-wide approach with experiments to investigate the role of slow codons in protein production and co-translational folding. We analysed homologous gene groups from divergent bacteria and identified positions of inter-species conservation of bias towards slow codons. We then generated mutants where the conserved slow codons are substituted with 'fast' ones, and experimentally studied the effects of these codon substitutions. Using cellular and biochemical approaches we find that at certain locations, slow-to-fast codon substitutions reduce protein expression, increase protein aggregation, and impair protein function.This report provides an approach for identifying functionally relevant regions with slower codons and demonstrates that such codons are important for protein expression and function.
Collapse
Affiliation(s)
- Michal Perach
- Department of Molecular Microbiology, the Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Zohar Zafrir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology, the Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
The Cytotoxicity and Clearance of Mutant Huntingtin and Other Misfolded Proteins. Cells 2021; 10:cells10112835. [PMID: 34831058 PMCID: PMC8616338 DOI: 10.3390/cells10112835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Protein misfolding and aggregation are implicated in many neurodegenerative diseases. One of these diseases is Huntington's, which is caused by increased glutamine-encoding trinucleotide repeats within the Huntingtin gene. Like other misfolded proteins, mutated Huntingtin proteins with polyglutamine expansions are prone to aggregation. Misfolded proteins exist as soluble monomers, small aggregates, or as large insoluble inclusion bodies. Misfolded protein aggregates are believed to be cytotoxic by stressing the protein degradation machinery, disrupting membrane structure, or sequestering other proteins. We recently showed that expression of misfolded proteins lowers cellular free ubiquitin levels, which compromises the protein degradation machinery. Therefore, the efficient degradation of misfolded proteins is critical to preserve cell health. Cells employ two major mechanisms to degrade misfolded proteins. The first is the ubiquitin-proteasome system (UPS), which ubiquitinates and degrades misfolded proteins with the assistance of segregase Cdc48/p97. The UPS pathway is mainly responsible for the clearance of misfolded proteins present as monomers or smaller aggregates. The second pathway is macroautophagy/autophagy, in which protein aggregates or inclusion bodies are recruited into an autophagosome before transport to the vacuole/lysosome for degradation. This review is focused on the current understanding of the cytotoxicity of misfolded proteins as well as their clearance pathways, with a particular emphasis on mutant Huntingtin.
Collapse
|
12
|
A Conceptual Framework for Integrating Cellular Protein Folding, Misfolding and Aggregation. Life (Basel) 2021; 11:life11070605. [PMID: 34202456 PMCID: PMC8304792 DOI: 10.3390/life11070605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.
Collapse
|
13
|
Yano N, Emi T, Gregory DJ, Fedulov AV. Consideration on Efficient Recombinant Protein Production: Focus on Substrate Protein-Specific Compatibility Patterns of Molecular Chaperones. Protein J 2021; 40:756-764. [PMID: 34052952 DOI: 10.1007/s10930-021-09995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Expression of recombinant proteins requires at times the aid of molecular chaperones for efficient post-translational folding into functional structure. However, predicting the compatibility of a protein substrate with the right type of chaperone to produce functional proteins is a daunting issue. To study the difference in effects of chaperones on His-tagged recombinant proteins with different characteristics, we performed in vitro proteins expression using Escherichia coli overexpressed with several chaperone 'teams': Trigger Factor (TF), GroEL/GroES and DnaK/DnaJ/GrpE, alone or in combinations, with the aim to determine whether protein secondary structure can serve as predictor for chaperone success. Protein A, which has a helix dominant structure, showed the most efficient folding with GroES/EL or TF chaperones alone, whereas Protein B, which has less helix in the structure, showed a remarkable effect on the DnaK/J/GrpE system alone. This tendency was also seen with other recombinant proteins with particular properties. With the chaperons' assistance, both proteins were synthesized more efficiently in the culture at 22.5 °C for 20 h than at 37 °C for 3 h. These findings suggest a novel avenue to study compatibility of chaperones with substrate proteins and optimal culture conditions for producing functional proteins with a potential for predictive analysis of the success of chaperones based on the properties of the substrate protein.
Collapse
Affiliation(s)
- Naohiro Yano
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, NAB-210. 593 Eddy Street, Providence, RI, 02903, USA
| | - Tania Emi
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, NAB-210. 593 Eddy Street, Providence, RI, 02903, USA
| | - David J Gregory
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Alexey V Fedulov
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, NAB-210. 593 Eddy Street, Providence, RI, 02903, USA.
| |
Collapse
|
14
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
15
|
Choi SI, Seong BL. A social distancing measure governing the whole proteome. Curr Opin Struct Biol 2020; 66:104-111. [PMID: 33238232 DOI: 10.1016/j.sbi.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
16
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
17
|
Kelly JW. Pharmacologic Approaches for Adapting Proteostasis in the Secretory Pathway to Ameliorate Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2020; 12:a034108. [PMID: 31088828 PMCID: PMC7197434 DOI: 10.1101/cshperspect.a034108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maintenance of the proteome, ensuring the proper locations, proper conformations, appropriate concentrations, etc., is essential to preserve the health of an organism in the face of environmental insults, infectious diseases, and the challenges associated with aging. Maintaining the proteome is even more difficult in the background of inherited mutations that render a given protein and others handled by the same proteostasis machinery misfolding prone and/or aggregation prone. Maintenance of the proteome or maintaining proteostasis requires the orchestration of protein synthesis, folding, trafficking, and degradation by way of highly conserved, interacting, and competitive proteostasis pathways. Each subcellular compartment has a unique proteostasis network compromising common and specialized proteostasis maintenance pathways. Stress-responsive signaling pathways detect the misfolding and/or aggregation of proteins in specific subcellular compartments using stress sensors and respond by generating an active transcription factor. Subsequent transcriptional programs up-regulate proteostasis network capacity (i.e., ability to fold and degrade proteins in that compartment). Stress-responsive signaling pathways can also be linked by way of signaling cascades to nontranscriptional means to reestablish proteostasis (e.g., by translational attenuation). Proteostasis is also strongly influenced by the inherent kinetics and thermodynamics of the folding, misfolding, and aggregation of individual proteins, and these sequence-based attributes in combination with proteostasis network capacity together influence proteostasis. In this review, we will focus on the growing body of evidence that proteostasis deficits leading to human pathology can be reversed by pharmacologic adaptation of proteostasis network capacity through stress-responsive signaling pathway activation. The power of this approach will be exemplified by focusing on the ATF6 arm of the unfolded protein response stress responsive-signaling pathway that regulates proteostasis network capacity of the secretory pathway.
Collapse
Affiliation(s)
- Jeffery W Kelly
- Departments of Chemistry and Molecular Medicine; and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
18
|
Choi SI. A Simple Principle for Understanding the Combined Cellular Protein Folding and Aggregation. Curr Protein Pept Sci 2020; 21:3-21. [DOI: 10.2174/1389203720666190725114550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Proteins can undergo kinetic/thermodynamic partitioning between folding and aggregation. Proper protein folding and thermodynamic stability are crucial for aggregation inhibition. Thus, proteinfolding principles have been widely believed to consistently underlie aggregation as a consequence of conformational change. However, this prevailing view appears to be challenged by the ubiquitous phenomena that the intrinsic and extrinsic factors including cellular macromolecules can prevent aggregation, independently of (even with sacrificing) protein folding rate and stability. This conundrum can be definitely resolved by ‘a simple principle’ based on a rigorous distinction between protein folding and aggregation: aggregation can be controlled by affecting the intermolecular interactions for aggregation, independently of the intramolecular interactions for protein folding. Aggregation is beyond protein folding. A unifying model that can conceptually reconcile and underlie the seemingly contradictory observations is described here. This simple principle highlights, in particular, the importance of intermolecular repulsive forces against aggregation, the magnitude of which can be correlated with the size and surface properties of molecules. The intermolecular repulsive forces generated by the common intrinsic properties of cellular macromolecules including chaperones, such as their large excluded volume and surface charges, can play a key role in preventing the aggregation of their physically connected polypeptides, thus underlying the generic intrinsic chaperone activity of soluble cellular macromolecules. Such intermolecular repulsive forces of bulky cellular macromolecules, distinct from protein conformational change and attractive interactions, could be the puzzle pieces for properly understanding the combined cellular protein folding and aggregation including how proteins can overcome their metastability to amyloid fibrils in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Proteomic analysis of Sporothrix schenckii cell wall reveals proteins involved in oxidative stress response induced by menadione. Microb Pathog 2020; 141:103987. [PMID: 31962184 DOI: 10.1016/j.micpath.2020.103987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/25/2019] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Sporotrichosis is an emergent subcutaneous mycosis that is a threat to both humans and other animals. Sporotrichosis is acquired by the traumatic implantation of species of the Sporothrix genus. Added to the detoxification systems, pathogenic fungi possess different mechanisms that allow them to survive within the phagocytic cells of their human host during the oxidative burst. These mechanisms greatly depend from the cell wall (CW) since phagocytic cells recognize pathogens through specific receptors associated to the structure. To date, there are no studies addressing the modulation of the expression of S. schenckii CW proteins (CWP) in response to reactive oxygen species (ROS). Therefore, in this work, a proteomic analysis of the CW of S. schenckii in response to the oxidative agent menadione (O2•-) was performed. Proteins that modulate their expression were identified which can be related to the fungal survival mechanisms within the phagocyte. Among the up-regulated CWP in response to the oxidative agent, 13 proteins that could be involved in the mechanisms of oxidative stress response in S. schenckii were identified. The proteins identified were thioredoxin1 (Trx1), superoxide dismutase (Sod), GPI-anchored cell wall protein, β-1,3-endoglucanase EglC, glycoside hydrolase (Gh), chitinase, CFEM domain protein, glycosidase crf1, covalently-linked cell wall protein (Ccw), 30 kDa heat shock protein (Hsp30), lipase, trehalase (Treh), fructose-bisphosphate aldolase (Fba1) and citrate synthase (Cs). The identification of CWP that modulates their expression in response to superoxide ion (O2•-) in S. schenckii is a useful approach to understand how the fungus defends itself against ROS, in order to evade the phagocytic cells from the host and cause the infection.
Collapse
|
20
|
Adeyemi OO, Sherry L, Ward JC, Pierce DM, Herod MR, Rowlands DJ, Stonehouse NJ. Involvement of a Nonstructural Protein in Poliovirus Capsid Assembly. J Virol 2019; 93:e01447-18. [PMID: 30541849 PMCID: PMC6384072 DOI: 10.1128/jvi.01447-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Virus capsid proteins must perform a number of roles. These include self-assembly and maintaining stability under challenging environmental conditions, while retaining the conformational flexibility necessary to uncoat and deliver the viral genome into a host cell. Fulfilling these roles could place conflicting constraints on the innate abilities encoded within the protein sequences. In a previous study, we identified a number of mutations within the capsid-coding sequence of poliovirus (PV) that were established in the population during selection for greater thermostability by sequential treatment at progressively higher temperatures. Two mutations in the VP1 protein acquired at an early stage were maintained throughout this selection procedure. One of these mutations prevented virion assembly when introduced into a wild-type (wt) infectious clone. Here we show, by sequencing beyond the capsid-coding region of the heat-selected virions, that two mutations had arisen within the coding region of the 2A protease. Both mutations were maintained throughout the selection process. Introduction of these mutations into a wt infectious clone by site-directed mutagenesis considerably reduced replication. However, they permitted a low level of assembly of infectious virions containing the otherwise lethal mutation in VP1. The 2Apro mutations were further shown to slow the kinetics of viral polyprotein processing, and we suggest that this delay improves the correct folding of the mutant capsid precursor protein to permit virion assembly.IMPORTANCE RNA viruses, including poliovirus, evolve rapidly due to the error-prone nature of the polymerase enzymes involved in genome replication. Fixation of advantageous mutations may require the acquisition of complementary mutations which can act in concert to achieve a favorable phenotype. This study highlights a compensatory role of a nonstructural regulatory protein, 2Apro, for an otherwise lethal mutation of the structural VP1 protein to facilitate increased thermal resistance. Studying how viruses respond to selection pressures is important for understanding mechanisms which underpin emergence of resistance and could be applied to the future development of antiviral agents and vaccines.
Collapse
Affiliation(s)
- Oluwapelumi O Adeyemi
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Lee Sherry
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Danielle M Pierce
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Conversion of a soluble protein into a potent chaperone in vivo. Sci Rep 2019; 9:2735. [PMID: 30804538 PMCID: PMC6389997 DOI: 10.1038/s41598-019-39158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/18/2019] [Indexed: 01/31/2023] Open
Abstract
Molecular chaperones play an important role in cellular protein-folding assistance and aggregation inhibition. As a different but complementary model, we previously proposed that, in general, soluble cellular macromolecules with large excluded volume and surface charges exhibit intrinsic chaperone activity to prevent aggregation of their connected polypeptides irrespective of the connection type, thereby contributing to efficient protein folding. As a proof of concept, we here demonstrated that a model recombinant protein with a specific sequence-binding domain robustly exerted chaperone activity toward various proteins harbouring a short recognition tag of 7 residues in Escherichia coli. The chaperone activity of this protein was comparable to that of representative E. coli chaperones in vivo. Furthermore, in vitro refolding experiments confirmed the in vivo results. Our findings reveal that a soluble protein exhibits the intrinsic chaperone activity to prevent off-pathway aggregation of its interacting proteins, leading to more productive folding while allowing them to fold according to their intrinsic folding pathways. This study gives new insights into the plausible chaperoning role of soluble cellular macromolecules in terms of aggregation inhibition and indirect folding assistance.
Collapse
|
22
|
Impact of a Heat Shock Protein Impurity on the Immunogenicity of Biotherapeutic Monoclonal Antibodies. Pharm Res 2019; 36:51. [PMID: 30771015 PMCID: PMC6394513 DOI: 10.1007/s11095-019-2586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 11/04/2022]
Abstract
Purpose Anti-drug antibodies can impair the efficacy of therapeutic proteins and, in some circumstances, induce adverse health effects. Immunogenicity can be promoted by aggregation; here we examined the ability of recombinant mouse heat shock protein 70 (rmHSP70) - a common host cell impurity - to modulate the immune responses to aggregates of two therapeutic mAbs in mice. Methods Heat and shaking stress methods were used to generate aggregates in the sub-micron size range from two human mAbs, and immunogenicity assessed by intraperitoneal exposure in BALB/c mice. Results rmHSP70 was shown to bind preferentially to aggregates of both mAbs, but not to the native, monomeric proteins. Aggregates supplemented with 0.1% rmHSP70 induced significantly enhanced IgG2a antibody responses compared with aggregates alone but the effect was not observed for monomeric mAbs. Dendritic cells pulsed with mAb aggregate showed enhanced IFNγ production on co-culture with T cells in the presence of rmHSP70. Conclusion The results indicate a Th1-skewing of the immune response by aggregates and show that murine rmHSP70 selectively modulates the immune response to mAb aggregates, but not monomer. These data suggest that heat shock protein impurities can selectively accumulate by binding to mAb aggregates and thus influence immunogenic responses to therapeutic proteins. Electronic supplementary material The online version of this article (10.1007/s11095-019-2586-7) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Dimitriou NM, Pavlopoulou A, Tremi I, Kouloulias V, Tsigaridas G, Georgakilas AG. Prediction of Gold Nanoparticle and Microwave-Induced Hyperthermia Effects on Tumor Control via a Simulation Approach. NANOMATERIALS 2019; 9:nano9020167. [PMID: 30699996 PMCID: PMC6410344 DOI: 10.3390/nano9020167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/12/2022]
Abstract
Hyperthermia acts as a powerful adjuvant to radiation therapy and chemotherapy. Recent advances show that gold nanoparticles (Au-NPs) can mediate highly localized thermal effects upon interaction with laser radiation. The purpose of the present study was to investigate via in silico simulations the mechanisms of Au-NPs and microwave-induced hyperthermia, in correlation to predictions of tumor control (biological endpoints: tumor shrinkage and cell death) after hyperthermia treatment. We also study in detail the dependence of the size, shape and structure of the gold nanoparticles on their absorption efficiency, and provide general guidelines on how one could modify the absorption spectrum of the nanoparticles in order to meet the needs of specific applications. We calculated the hyperthermia effect using two types of Au-NPs and two types of spherical tumors (prostate and melanoma) with a radius of 3 mm. The plasmon peak for the 30 nm Si-core Au-coated NPs and the 20 nm Au-NPs was found at 590 nm and 540 nm, respectively. Considering the plasmon peaks and the distribution of NPs in the tumor tissue, the induced thermal profile was estimated for different intervals of time. Predictions of hyperthermic cell death were performed by adopting a three-state mathematical model, where “three-state” includes (i) alive, (ii) vulnerable, and (iii) dead states of the cell, and it was coupled with a tumor growth model. Our proposed methodology and preliminary results could be considered as a proof-of-principle for the significance of simulating accurately the hyperthermia-based tumor control involving the immune system. We also propose a method for the optimization of treatment by overcoming thermoresistance by biological means and specifically through the targeting of the heat shock protein 90 (HSP90), which plays a critical role in the thermotolerance of cells and tissues.
Collapse
Affiliation(s)
- Nikolaos M Dimitriou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Turkey.
| | - Ioanna Tremi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece.
| | - Georgios Tsigaridas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
24
|
Zeng J, Huang Z. From Levinthal's Paradox to the Effects of Cell Environmental Perturbation on Protein Folding. Curr Med Chem 2018; 26:7537-7554. [PMID: 30332937 DOI: 10.2174/0929867325666181017160857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal's paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding. METHODS In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal's paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding. RESULTS The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature. CONCLUSION This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.
Collapse
Affiliation(s)
- Juan Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, China.,Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zunnan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
25
|
Calabrò E, Magazù S. Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer. Electromagn Biol Med 2018; 37:155-168. [DOI: 10.1080/15368378.2018.1499031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Emanuele Calabrò
- Department of Mathematical and Informatics Sciences, Physical Sciences and Earth Sciences of Messina University, Messina, Italy
- CISFA - Interuniversity Consortium of Applied Physical Sciences (Consorzio Interuniversitario di Scienze Fisiche Applicate), Messina, Italy
| | - Salvatore Magazù
- Department of Mathematical and Informatics Sciences, Physical Sciences and Earth Sciences of Messina University, Messina, Italy
- Le Studium, Loire Valley Institute for Advanced Studies, Orléans & Tours, Orléans, France
- Centre de Biophysique Moleculaire (CBM), rue Charles Sadron, Laboratoire Interfaces, Confinement, Matériaux et Nanostructures (ICMN) – UMR 7374 CNRS, Université d’Orléans, Orleans, France
- Istituto Nazionale di Alta Matematica “F. Severi” – INDAM – Gruppo Nazionale per la Fisica Matematica – GNFM, Rome, Italy
| |
Collapse
|
26
|
Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat. Sci Rep 2018; 8:7826. [PMID: 29777151 PMCID: PMC5959904 DOI: 10.1038/s41598-018-26257-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/03/2018] [Indexed: 01/21/2023] Open
Abstract
Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.
Collapse
|
27
|
Guseman AJ, Speer SL, Perez Goncalves GM, Pielak GJ. Surface Charge Modulates Protein-Protein Interactions in Physiologically Relevant Environments. Biochemistry 2018; 57:1681-1684. [PMID: 29473738 PMCID: PMC5977980 DOI: 10.1021/acs.biochem.8b00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions are fundamental to biology yet are rarely studied under physiologically relevant conditions where the concentration of macromolecules can exceed 300 g/L. These high concentrations cause cosolute-complex contacts that are absent in dilute buffer. Understanding such interactions is important because they organize the cellular interior. We used 19F nuclear magnetic resonance, the dimer-forming A34F variant of the model protein GB1, and the cosolutes bovine serum albumin (BSA) and lysozyme to assess the effects of repulsive and attractive charge-charge dimer-cosolute interactions on dimer stability. The interactions were also manipulated via charge-change variants and by changing the pH. Charge-charge repulsions between BSA and GB1 stabilize the dimer, and the effects of lysozyme indicate a role for attractive interactions. The data show that chemical interactions can regulate the strength of protein-protein interactions under physiologically relevant crowded conditions and suggest a mechanism for tuning the equilibrium thermodynamics of protein-protein interactions in cells.
Collapse
Affiliation(s)
- Alex J. Guseman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shannon L. Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerardo M. Perez Goncalves
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
28
|
|
29
|
Roles and Functions of the Unconventional Prefoldin URI. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:95-108. [PMID: 30484155 DOI: 10.1007/978-3-030-00737-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Almost 15 years ago, the URI prefoldin-like complex was discovered by Krek and colleagues in immunoprecipitation experiments conducted in mammalian cells with the aim of identifying new binding partners of the E3 ubiquitin-protein ligase S-phase kinase-associated protein 2 (SKP2) (Gstaiger et al. Science 302(5648):1208-1212, 2003). The URI prefoldin-like complex is a heterohexameric chaperone complex comprising two α and four β subunits (α2β4). The α subunits are URI and STAP1, while the β subunits are PFDN2, PFDN6, and PFDN4r, one of which is probably present in duplicate. Elucidating the roles and functions of these components in vitro and in vivo will help to clarify the mechanistic behavior of what appears to be a remarkably important cellular machine.
Collapse
|
30
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
31
|
Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell 2017; 171:1001-1014. [PMID: 29149602 DOI: 10.1016/j.cell.2017.10.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
Protein conformational states-from intrinsically disordered ensembles to amyloids that underlie the self-templating, infectious properties of prion-like proteins-have attracted much attention. Here, we highlight the diversity, including differences in biophysical properties, that drive distinct biological functions and pathologies among self-templating proteins. Advances in chemical genomics, gene editing, and model systems now permit deconstruction of the complex interplay between these protein states and the host factors that react to them. These methods reveal that conformational switches modulate normal and abnormal information transfer and that intimate relationships exist between the intrinsic function of proteins and the deleterious consequences of their misfolding.
Collapse
|
32
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
33
|
Finkelstein AV. Some additional remarks to the solution of the protein folding puzzle: Reply to comments on "There and back again: Two views on the protein folding puzzle". Phys Life Rev 2017; 21:77-79. [PMID: 28673605 DOI: 10.1016/j.plrev.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation.
| |
Collapse
|
34
|
Cryar A, Groves K, Quaglia M. Online Hydrogen-Deuterium Exchange Traveling Wave Ion Mobility Mass Spectrometry (HDX-IM-MS): a Systematic Evaluation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1192-1202. [PMID: 28374315 PMCID: PMC5438439 DOI: 10.1007/s13361-017-1633-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/11/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Adam Cryar
- LGC, Queens Road, Teddington, London, TW11 0LY, UK.
| | - Kate Groves
- LGC, Queens Road, Teddington, London, TW11 0LY, UK
| | | |
Collapse
|
35
|
Pandey RB, Jacobs DJ, Farmer BL. Preferential binding effects on protein structure and dynamics revealed by coarse-grained Monte Carlo simulation. J Chem Phys 2017; 146:195101. [PMID: 28527439 PMCID: PMC5438306 DOI: 10.1063/1.4983222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 04/26/2017] [Indexed: 11/14/2022] Open
Abstract
The effect of preferential binding of solute molecules within an aqueous solution on the structure and dynamics of the histone H3.1 protein is examined by a coarse-grained Monte Carlo simulation. The knowledge-based residue-residue and hydropathy-index-based residue-solvent interactions are used as input to analyze a number of local and global physical quantities as a function of the residue-solvent interaction strength (f). Results from simulations that treat the aqueous solution as a homogeneous effective solvent medium are compared to when positional fluctuations of the solute molecules are explicitly considered. While the radius of gyration (Rg) of the protein exhibits a non-monotonic dependence on solvent interaction over a wide range of f within an effective medium, an abrupt collapse in Rg occurs in a narrow range of f when solute molecules rapidly bind to a preferential set of sites on the protein. The structure factor S(q) of the protein with wave vector (q) becomes oscillatory in the collapsed state, which reflects segmental correlations caused by spatial fluctuations in solute-protein binding. Spatial fluctuations in solute binding also modify the effective dimension (D) of the protein in fibrous (D ∼ 1.3), random-coil (D ∼ 1.75), and globular (D ∼ 3) conformational ensembles as the interaction strength increases, which differ from an effective medium with respect to the magnitude of D and the length scale.
Collapse
Affiliation(s)
- R B Pandey
- Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA
| | - D J Jacobs
- Department of Physics and Optical Science, University of North Carolina, Charlotte, North Carolina 28223, USA
| | - B L Farmer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson Air Force Base, Ohio 45433, USA and Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
36
|
Stroo E, Koopman M, Nollen EAA, Mata-Cabana A. Cellular Regulation of Amyloid Formation in Aging and Disease. Front Neurosci 2017; 11:64. [PMID: 28261044 PMCID: PMC5306383 DOI: 10.3389/fnins.2017.00064] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Alejandro Mata-Cabana
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| |
Collapse
|
37
|
Berezovsky IN, Guarnera E, Zheng Z. Basic units of protein structure, folding, and function. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 128:85-99. [PMID: 27697476 DOI: 10.1016/j.pbiomolbio.2016.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Study of the hierarchy of domain structure with alternative sets of domains and analysis of discontinuous domains, consisting of remote segments of the polypeptide chain, raised a question about the minimal structural unit of the protein domain. The hypothesis on the decisive role of the polypeptide backbone in determining the elementary units of globular proteins have led to the discovery of closed loops. It is reviewed here how closed loops form the loop-n-lock structure of proteins, providing the foundation for stability and designability of protein folds/domain and underlying their co-translational folding. Simplified protein sequences are considered here with the aim to explore the basic principles that presumably dominated the folding and stability of proteins in the early stages of structural evolution. Elementary functional loops (EFLs), closed loops with one or few catalytic residues, are, in turn, units of the protein function. They are apparent descendants of the prebiotic ring-like peptides, which gave rise to the first functional folds/domains being fused in the beginning of the evolution of protein structure. It is also shown how evolutionary relations between protein functional superfamilies and folds delineated with the help of EFLs can contribute to establishing the rules for design of desired enzymatic functions. Generalized descriptors of the elementary functions are proposed to be used as basic units in the future computational design.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| |
Collapse
|
38
|
Shi L, Gehin T, Chevolot Y, Souteyrand E, Mangé A, Solassol J, Laurenceau E. Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray. Anal Bioanal Chem 2015; 408:1497-506. [DOI: 10.1007/s00216-015-9257-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
39
|
The C-terminal α-helices of mammalian Hsc70 play a critical role in the stabilization of α-synuclein binding and inhibition of aggregation. Int J Biol Macromol 2015; 83:433-41. [PMID: 26601760 DOI: 10.1016/j.ijbiomac.2015.10.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/23/2022]
Abstract
Protein misfolding, followed by aggregation and amyloid formation is an underlying pathological hallmark in a number of prevalent diseases, including Parkinson's (PD), Alzheimer's (AD) and Type 2 diabetes (T2D). In the case of PD, the aggregation of α-synuclein protein (α-syn) has been shown to be highly cytotoxic and to play a key role in the death of dopaminergic cells. Thus, inhibition of the aggregation process may be considered as an attractive avenue for therapeutic intervention. In this respect, molecular chaperones, known to promote proper folding of proteins, are able to inhibit protein aggregation thus preventing amyloid formation. In this work, the effect of the constitutively expressed chaperone Hsc70 and its various domains on α-syn aggregation have been investigated using different approaches. The results show that the C-terminal domain alone (residues 386-646) is as efficient in inhibiting α-syn aggregation as the entire Hsc70 protein, by increasing the lag phase for α-syn oligomeric nucleus formation, suggesting that the chaperone interacts with and stabilizes α-syn monomers and/or small aggregates. Deletion of the C-terminal helices (residues 510-646), which are known to play the role of a lid locking target peptide ligands in the peptide-binding site of the chaperone, strongly reduced the efficiency of inhibition of α-syn aggregation indicating that these helices play an essential in stabilizing the interaction between Hsc70 and α-syn. Furthermore, the effects of Hsc70 and its structural domains on aggregation appear to correlate with those on cytotoxicity, by reducing the fraction of α-syn toxic species to various degrees. Together these results suggest a mechanism in which inhibition of synuclein aggregation is the result of monomeric synuclein binding to the chaperone as any monomeric target unfolded protein or peptide binding to the chaperone.
Collapse
|
40
|
The Trigger Factor Chaperone Encapsulates and Stabilizes Partial Folds of Substrate Proteins. PLoS Comput Biol 2015; 11:e1004444. [PMID: 26512985 PMCID: PMC4626277 DOI: 10.1371/journal.pcbi.1004444] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022] Open
Abstract
How chaperones interact with protein chains to assist in their folding is a central open question in biology. Obtaining atomistic insight is challenging in particular, given the transient nature of the chaperone-substrate complexes and the large system sizes. Recent single-molecule experiments have shown that the chaperone Trigger Factor (TF) not only binds unfolded protein chains, but can also guide protein chains to their native state by interacting with partially folded structures. Here, we used all-atom MD simulations to provide atomistic insights into how Trigger Factor achieves this chaperone function. Our results indicate a crucial role for the tips of the finger-like appendages of TF in the early interactions with both unfolded chains and partially folded structures. Unfolded chains are kinetically trapped when bound to TF, which suppresses the formation of transient, non-native end-to-end contacts. Mechanical flexibility allows TF to hold partially folded structures with two tips (in a pinching configuration), and to stabilize them by wrapping around its appendages. This encapsulation mechanism is distinct from that of chaperones such as GroEL, and allows folded structures of diverse size and composition to be protected from aggregation and misfolding interactions. The results suggest that an ATP cycle is not required to enable both encapsulation and liberation. Trigger Factor (TF) is an ATP-independent chaperone protein that assists in folding and prevents misfolding. Up to now, it is a general unsolved question how chaperones assist in the folding of protein chains. Experimental methods that can probe at the length and timescales of inter-residue interactions are scarce, while the systems are too large—and the folding process too long—to be studied by computer simulations. To overcome these obstacles, the authors performed molecular dynamics simulations at key moments along the folding pathway, and address the changes in the folding and unfolding dynamics of protein chains while in contact with TF. This study provides the first detailed view on a chaperone-protein complex in different stages of folding and offers an explanation for the ability of TF to guide chains to their native state. Moreover, the results demonstrates the role of TF’s flexibility in interacting with a wide range of client states. Overall, it explains how TF can interact with many types of substrates in various stages of folding, without the need for an ATP cycle to switch between encapsulation and liberation of client proteins.
Collapse
|
41
|
Berezovsky IN, Zheng Z, Kurotani A, Tokmakov AA, Kurochkin IV. Organization of the multiaminoacyl-tRNA synthetase complex and the cotranslational protein folding. Protein Sci 2015; 24:1475-85. [PMID: 26131561 DOI: 10.1002/pro.2735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/09/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in the protein synthesis by catalyzing an attachment of their cognate amino acids to tRNAs. Unlike their prokaryotic counterparts, ARSs in higher eukaryotes form a multiaminoacyl-tRNA synthetase complex (MARS), consisting of the subset of ARS polypeptides and three auxiliary proteins. The intriguing feature of MARS complex is the presence of only nine out of twenty ARSs, specific for Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met, and Pro, regardless of the organism, cell, or tissue types. Although existence of MARSs complex in higher eukaryotes has been already known for more than four decades, its functional significance remains elusive. We found that seven of the nine corresponding amino acids (Arg, Gln, Glu, Ile, Leu, Lys, and Met) together with Ala form a predictor of the protein α-helicity. Remarkably, all amino acids (besides Ala) in the predictor have the highest possible number of side-chain rotamers. Therefore, compositional bias of a typical α-helix can contribute to the helix's stability by increasing the entropy of the folded state. It also appears that position-specific α-helical propensity, specifically periodic alternation of charged and hydrophobic residues in the helices, may well be provided by the structural organization of the complex. Considering characteristics of MARS complex from the perspective of the α-helicity, we hypothesize that specific composition and structure of the complex represents a functional mechanism for coordination of translation with the fast and correct folding of amphiphilic α-helices.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (a*STAR), Singapore, 138671.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, 117579
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (a*STAR), Singapore, 138671
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | | | - Igor V Kurochkin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (a*STAR), Singapore, 138671
| |
Collapse
|
42
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
43
|
Abstract
When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same.
Collapse
Affiliation(s)
- Paul T. Wingfield
- Protein Expression Laboratory, NIAMS - NIH, Building 6B, Room 1B130, 6 Center Drive, Bethesda, MD 20814, Tel: 301-594-1313,
| |
Collapse
|
44
|
Sun H, Jiang R, Xu S, Zhang Z, Xu G, Zheng J, Qu L. Transcriptome responses to heat stress in hypothalamus of a meat-type chicken. J Anim Sci Biotechnol 2015; 6:6. [PMID: 25774290 PMCID: PMC4359534 DOI: 10.1186/s40104-015-0003-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/29/2015] [Indexed: 11/25/2022] Open
Abstract
Background Heat stress has resulted in great losses in poultry production. To address this issue, we systematically analyzed chicken hypothalamus transcriptome responses to thermal stress using a 44 k chicken Agilent microarray, Methods Hypothalamus samples were collected from a control group reared at 25°C, a heat-stress group treated at 34°C for 24 h, and a temperature-recovery group reared at 25°C for 24 h following a heat-stress treatment. We compared the expression profiles between each pair of the three groups using microarray data. Results A total of 1,967 probe sets were found to be differentially expressed in the three comparisons with P < 0.05 and a fold change (FC) higher than 1.5, and the genes were mainly involved in self-regulation and compensation required to maintain homeostasis. Consistent expression results were found for 11 selected genes by quantitative real-time PCR. Thirty-eight interesting differential expression genes were found from GO term annotation and those genes were related to meat quality, growth, and crucial enzymes. Using these genes for genetic network analysis, we obtained three genetic networks. Moreover, the transcripts of heat-shock protein, including Hsp 40 and Hsp 90, were significantly altered in response to thermal stress. Conclusions This study provides a broader understanding of molecular mechanisms underlying stress response in chickens and discovery of novel genes that are regulated in a specific thermal-stress manner. Electronic supplementary material The online version of this article (doi:10.1186/s40104-015-0003-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Shengyou Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Zebin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
45
|
Jalles A, 1 Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal;, Maciel P. The disruption of proteostasis in neurodegenerative disorders. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.3.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Martín I, Celaya G, Alfonso C, Moro F, Rivas G, Muga A. Crowding activates ClpB and enhances its association with DnaK for efficient protein aggregate reactivation. Biophys J 2014; 106:2017-27. [PMID: 24806934 DOI: 10.1016/j.bpj.2014.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/24/2014] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Reactivation of intracellular protein aggregates after a severe stress is mandatory for cell survival. In bacteria, this activity depends on the collaboration between the DnaK system and ClpB, which in vivo occurs in a highly crowded environment. The reactivation reaction includes two steps: extraction of unfolded monomers from the aggregate and their subsequent refolding into the native conformation. Both steps might be compromised by excluded volume conditions that would favor aggregation of unstable protein folding intermediates. Here, we have investigated whether ClpB and the DnaK system are able to compensate this unproductive effect and efficiently reactivate aggregates of three different substrate proteins under crowding conditions. To this aim, we have compared the association equilibrium, biochemical properties, stability, and chaperone activity of the disaggregase ClpB in the absence and presence of an inert macromolecular crowding agent. Our data show that crowding i), increases three to four orders of magnitude the association constant of the functional hexamer; ii), shifts the conformational equilibrium of the protein monomer toward a compact state; iii), stimulates its ATPase activity; and iv), favors association of the chaperone with substrate proteins and with aggregate-bound DnaK. These effects strongly enhance protein aggregate reactivation by the DnaK-ClpB network, highlighting the importance of volume exclusion in complex processes in which several proteins have to work in a sequential manner.
Collapse
Affiliation(s)
- Ianire Martín
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, Bilbao 48080, Spain
| | - Garbiñe Celaya
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, Bilbao 48080, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Fernando Moro
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, Bilbao 48080, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas (Consejo Superior de Investigaciones Científicas), Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Arturo Muga
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas/Universidad del País Vasco-Euskal Herriko Unibertsitatea) and Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Apartado 644, Bilbao 48080, Spain.
| |
Collapse
|
47
|
Ghosh A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role inUstilago maydispathogenesis. FEMS Microbiol Lett 2014; 361:17-24. [DOI: 10.1111/1574-6968.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/28/2014] [Accepted: 09/18/2014] [Indexed: 01/10/2023] Open
Affiliation(s)
- Anupama Ghosh
- Division of Plant Biology; Bose Institute, Centenary campus; Kolkata West Bengal India
| |
Collapse
|
48
|
Abstract
Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge.
Collapse
|
49
|
Griesemer M, Young C, Robinson AS, Petzold L. BiP clustering facilitates protein folding in the endoplasmic reticulum. PLoS Comput Biol 2014; 10:e1003675. [PMID: 24991821 PMCID: PMC4081015 DOI: 10.1371/journal.pcbi.1003675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/03/2014] [Indexed: 12/26/2022] Open
Abstract
The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.
Collapse
Affiliation(s)
- Marc Griesemer
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States of America
- * E-mail:
| | - Carissa Young
- Department of Chemical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Anne S. Robinson
- Department of Chemical Engineering, University of Delaware, Newark, Delaware, United States of America
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, United States of America
| | - Linda Petzold
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
50
|
Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 2014; 7:421-34. [PMID: 24719117 PMCID: PMC3974453 DOI: 10.1242/dmm.014563] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.
Collapse
Affiliation(s)
- Vaishali Kakkar
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melanie Meister-Broekema
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melania Minoia
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Serena Carra
- Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, via G. Campi 287, 41125 Modena, Italy
| | - Harm H. Kampinga
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|