1
|
Liu Y, Zhu P, Kong L, Wang J, Ji C, Li Y, Dong L, Yi W. Efficient secretory expression, purification, and characterization of lipase in Pseudomonas aeruginosa M18, with multifunctional applications in diagnostics. World J Microbiol Biotechnol 2025; 41:57. [PMID: 39885054 DOI: 10.1007/s11274-025-04279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Lipase (EC 3.1.1.3) is a crucial hydrolase with broad industrial and clinical applications. In this study, the lipA and lipH genes from Pseudomonas aeruginosa were cloned into the pBBR1MCS-2 vector and expressed under the regulation of the highly efficient BSFP_0720 promoter from Burkholderia stabilis FERMP-21014. This system allowed for efficient secretory expression in Pseudomonas aeruginosa without requiring an inducer. The recombinant lipase exhibited both lipase and cholesteryl esterase activities, making it suitable for triglyceride and cholesterol assay kits. Additionally, gene editing was used to knock out the endogenous cholesterol oxidase gene in Pseudomonas aeruginosa, eliminating cross-interference in different assay kits. High-density fermentation using glucose as the carbon source resulted in lipase activity reaching 68 kU/L and cholesteryl esterase activity reaching 214 kU/L after 30 h of fermentation, representing a 356-fold increase compared to natural production. By combining ammonium sulfate precipitation, hydrophobic interaction chromatography, and anion exchange chromatography, a purity of 94.32% was achieved (as determined by CE-SDS). Accelerated stability tests showed that the lyophilized lipase retained over 96% residual activity after storage at 37 °C for 21 days and at 45 °C for 7 days, suggesting its suitability for long-term storage. The enzymatic properties of the lipase demonstrated resistance to common chemicals, high activity in buffers with pH values between 7 and 9, and short-term tolerance to high temperatures (60 °C). These characteristics make the lipase highly adaptable for use in complex clinical samples and various industrial applications. The successful high-efficiency expression and multifunctional utility of this lipase highlight its significant commercial potential in diagnostics and other fields.
Collapse
Affiliation(s)
- Yunbo Liu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
- Zybio Inc, Chongqing, 400082, China.
- Chongqing Essence Biological Engineering, Chongqing, 400082, China.
| | - Pan Zhu
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | - Lingyuan Kong
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | - Jing Wang
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | - Chengdong Ji
- Chongqing Essence Biological Engineering, Chongqing, 400082, China
| | | | - Lichun Dong
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China.
| | - Weijing Yi
- Zybio Inc, Chongqing, 400082, China.
- Chongqing Essence Biological Engineering, Chongqing, 400082, China.
| |
Collapse
|
2
|
Zhang M, Liu M, Zhang L, Chen Z, Zhou YB, Li HT, Liu JM. Impact of cesarean section on metabolic syndrome components in offspring rats. Pediatr Res 2024; 95:1775-1782. [PMID: 38347169 DOI: 10.1038/s41390-024-03079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 07/14/2024]
Abstract
INTRODUCTION Epidemiological evidence suggests an association between CS and offspring metabolic syndrome (MetS), but whether a causal relationship exists is unknown. METHODS In this study, timed-mated Wistar rat dams were randomly assigned to cesarean section (CS), vaginal delivery (VD), and surrogate groups. The offspring from both CS and VD groups were reared by surrogate dams until weaning, and weaned male offspring from both groups were randomly assigned to receive normal diet (ND) or high-fat/high-fructose diet (HFF) ad libitum for 39 weeks. RESULTS By the end of study, CS-ND offspring gained 17.8% more weight than VD-ND offspring, while CS-HFF offspring gained 36.4% more weight than VD-HFF offspring. Compared with VD-ND offspring, CS-ND offspring tended to have increased triglycerides (0.27 mmol/l, 95% CI, 0.05 to 0.50), total cholesterol (0.30 mmol/l, -0.08 to 0.68), and fasting plasma glucose (FPG) (0.30 mmol/l, -0.01 to 0.60); more pronounced differences were observed between CS-HFF and VD-HFF offspring in these indicators (triglyceride, 0.66 mmol/l, 0.35 to 0.97; total cholesterol, 0.46 mmol/l, 0.13 to 0.79; and FPG, 0.55 mmol/l, 0.13 to 0.98). CONCLUSIONS CS offspring were more prone to adverse metabolic profile and HFF might exacerbate this condition, indicating the association between CS and MetS is likely to be causal. IMPACT Whether the observed associations between CS and MetS in non-randomized human studies are causally relevant remains undetermined. Compared with vaginally born offspring rats, CS born offspring gained more body weight and tended to have compromised lipid profiles and abnormal insulin sensitivity, suggesting a causal relationship between CS and MetS that may be further amplified by a high-fat/high-fructose diet. Due to the high prevalence of CS births globally, greater clinical consideration must be given to the potential adverse effects of CS, and whether these risks should be made known to patients in clinical practice merits evaluation.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
| | - Mengjiao Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Long Zhang
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Bo Zhou
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
| | - Hong-Tian Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China.
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 100191, Beijing, China.
| | - Jian-Meng Liu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 100191, Beijing, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, 100191, Beijing, China
| |
Collapse
|
3
|
Serrano J, Martine L, Grosjean Y, Acar N, Alves G, Masson EAY. The importance of choosing the appropriate cholesterol quantification method: enzymatic assay versus gas chromatography. J Lipid Res 2024; 65:100561. [PMID: 38762123 PMCID: PMC11237936 DOI: 10.1016/j.jlr.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
Cholesterol is a major lipid of the animal realm with many biological roles. It is an important component of cellular membranes and a precursor of steroid hormones and bile acids. It is particularly abundant in nervous tissues, and dysregulation of cholesterol metabolism has been associated with neurodegenerative diseases such as Alzheimer's and Huntington's diseases. Deciphering the pathophysiological mechanisms of these disorders often involves animal models such as mice and Drosophila. Accurate quantification of cholesterol levels in the chosen models is a critical point of these studies. In the present work, we compare two common methods, gas chromatography coupled to flame-ionization detection (GC/FID) and a cholesterol oxidase-based fluorometric assay to measure cholesterol in mouse brains and Drosophila heads. Cholesterol levels measured by the two methods were similar for the mouse brain, which presents a huge majority of cholesterol in its sterol profile. On the contrary, depending on the method, measured cholesterol levels were very different for Drosophila heads, which present a complex sterol profile with a minority of cholesterol. We showed that the enzyme-based assay is not specific for cholesterol and detects other sterols as well. This method is therefore not suited for cholesterol measurement in models such as Drosophila. Alternatively, chromatographic methods, such as GC/FID, offer the required specificity for cholesterol quantification. Understanding the limitations of the quantification techniques is essential for reliable interpretation of the results in cholesterol-related research.
Collapse
Affiliation(s)
- Jeanne Serrano
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France; Sensory Perception & Glia-Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Lucy Martine
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Yaël Grosjean
- Sensory Perception & Glia-Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Georges Alves
- Sensory Perception & Glia-Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Elodie A Y Masson
- Eye & Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| |
Collapse
|
4
|
Griffiths WJ, Yutuc E, Wang Y. Mass Spectrometry Imaging of Cholesterol and Oxysterols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:73-87. [PMID: 38036876 DOI: 10.1007/978-3-031-43883-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Mass spectrometry imaging (MSI) is a new technique in the toolbox of the analytical biochemist. It allows the generation of a compound-specific image from a tissue slice where a measure of compound abundance is given pixel by pixel, usually displayed on a color scale. As mass spectra are recorded at each pixel, the data can be interrogated to generate images of multiple different compounds all in the same experiment. Mass spectrometry (MS) requires the ionization of analytes, but cholesterol and other neutral sterols tend to be poorly ionized by the techniques employed in most MSI experiments, so despite their high abundance in mammalian tissues, cholesterol is poorly represented in the MSI literature. In this chapter, we discuss some of the MSI studies where cholesterol has been imaged and introduce newer methods for its analysis by MSI. Disturbed cholesterol metabolism is linked to many disorders, and the potential of MSI to study cholesterol, its precursors, and its metabolites in animal models and from human biopsies will be discussed.
Collapse
Affiliation(s)
| | - Eylan Yutuc
- Swansea University Medical School, Swansea, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
5
|
Ebrahimi Fana S, Fazaeli A, Aminian M. Directed evolution of cholesterol oxidase with improved thermostability using error-prone PCR. Biotechnol Lett 2023; 45:1159-1167. [PMID: 37289346 DOI: 10.1007/s10529-023-03401-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/14/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Cholesterol oxidase is industrially important as it is frequently used as a biosensor in food and agriculture industries and measurement of cholesterol. Although, most natural enzymes show low thermostability, which limits their application. Here, we obtained an improved variant of Chromobacterium sp. DS1 cholesterol oxidase (ChOS) with enhanced thermostability by random mutant library applying two forms of error-prone PCR (serial dilution and single step). Wild-type ChOS indicated an optimal temperature and pH of 70 ºC and pH 7.5, respectively. The best mutant ChOS-M acquired three amino acid substitutions (S112T, I240V and A500S) and enhanced thermostability (at 50 °C for 5 h) by 30%. The optimum temperature and pH in the mutant were not changed. In comparison to wild type, circular dichroism disclosed no significant secondary structural alterations in mutants. These findings show that error-prone PCR is an effective method for enhancing enzyme characteristics and offers a platform for the practical use of ChOS as a thermal-resistance enzyme in industrial fields and clinical diagnosis.
Collapse
Affiliation(s)
- Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 14155-6447, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Aminian
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 14155-6447, Tehran, Iran.
| |
Collapse
|
6
|
Román-Pizarro V, Écija-Arenas Á, Fernández-Romero JM. An integrated microfluidic-based biosensor using a magnetically controlled MNPs-enzyme microreactor to determine cholesterol in serum with fluorometric detection. Mikrochim Acta 2023; 190:303. [PMID: 37464062 PMCID: PMC10354181 DOI: 10.1007/s00604-023-05894-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
This work provides a microfluidic-based biosensor to determine total cholesterol in serum based on integrating the reaction/detection zone of a microfluidic chip of a magnetically retained enzyme microreactor (MREµR) coupled with the remote fluorometric detection through a bifurcated fiber-optic bundle (BFOB) connected with a conventional spectrofluorometer. The method is based on developing the enzymatic hydrolysis and oxidation of cholesterol at microscale size using both enzymes (cholesterol esterase (ChE) and cholesterol oxidase (ChOx)) immobilized on magnetic nanoparticles (MNPs). The biocatalyst reactions were followed by monitoring the fluorescence decreasing by the naphtofluorescein (NF) oxidation in the presence of the previous H2O2 formed. This microfluidic biosensor supposes the physical integration of a minimal MREµR as a bioactive enzyme area and the focused BFOB connected with the spectrofluorometer detector. The MREµR was formed by a 1 mm length of magnetic retained 2:1 ChE-MNP/ChOx-MNP mixture. The dynamic range of the calibration graph was 0.005-10 mmol L-1, expressed as total cholesterol concentration with a detection limit of 1.1 µmol L-1 (r2 = 0.9999, sy/x = 0.03, n = 10, r = 3). The precision expressed as the relative standard deviation (RSD%) was between 1.3 and 2.1%. The microfluidic-based biosensors showed a sampling frequency estimated at 30 h-1. The method was applied to determine cholesterol in serum samples with recovery values between 94.8 and 102%. The results of the cholesterol determination in serum were also tested by correlation with those obtained using the other two previous methods.
Collapse
Affiliation(s)
- Vanesa Román-Pizarro
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina Y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, "Marie Curie" Building Annex, 14071, Córdoba, Spain
| | - Ángela Écija-Arenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina Y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, "Marie Curie" Building Annex, 14071, Córdoba, Spain
| | - Juan M Fernández-Romero
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina Y Nanoquímica (IUNAN), Universidad de Córdoba, Campus de Rabanales, "Marie Curie" Building Annex, 14071, Córdoba, Spain.
| |
Collapse
|
7
|
Doukyu N, Ikehata Y, Sasaki T. Expression and characterization of cholesterol oxidase with high thermal and pH stability from Janthinobacterium agaricidamnosum. Prep Biochem Biotechnol 2023; 53:331-339. [PMID: 35697335 DOI: 10.1080/10826068.2022.2084626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cholesterol oxidases (COXases) have a diverse array of applications including analysis of blood cholesterol levels, synthesis of steroids, and utilization as an insecticidal protein. The COXase gene from Janthinobacterium agaricidamnosum was cloned and expressed in Escherichia coli. The purified COXase showed an optimal temperature of 60 °C and maintained about 96 and 72% of its initial activity after 30 min at 60 and 70 °C, respectively. In addition, the purified COXase exhibited a pH optimum at 7.0 and high pH stability over the broad pH range of 3.0-12.0. The pH stability of the COXase at pH 12.0 was higher than that of highly stable COXase from Chromobacterium sp. DS-1. The COXase oxidized cholesterol and β-cholestanol at higher rates than other 3β-hydroxysteroids. The Km, Vmax, and kcat values for cholesterol were 156 μM, 13.7 μmol/min/mg protein, and 14.4 s-1, respectively. These results showed that this enzyme could be very useful in the clinical determination of cholesterol in serum and the production of steroidal compounds. This is the first report to characterize a COXase from the genus Janthinobacterium.
Collapse
Affiliation(s)
| | - Yuuki Ikehata
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Taichi Sasaki
- Department of Life Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
8
|
Ye X, Jiang Y, Mu X, Sun Y, Ma P, Ren P, Song D. Ultrabright silicon nanoparticle fluorescence probe for sensitive detection of cholesterol in human serum. Anal Bioanal Chem 2022; 414:3827-3836. [PMID: 35347354 DOI: 10.1007/s00216-022-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/01/2022]
|
9
|
Improvement of thermostability of cholesterol oxidase from streptomyces Sp. SA-COO by random mutagenesis. Protein Expr Purif 2021; 191:106028. [PMID: 34863881 DOI: 10.1016/j.pep.2021.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
To enhance the thermal stability of Streptomyces Sp. SA-COO cholesterol oxidase, random mutagenesis was used. A random mutant library was generated using two types of error-prone PCR (single step and serial dilution) and two mutants (ChOA-M1 and ChOA-M2) with improved thermostability were obtained. The best mutant ChOA-M1 acquired three amino acid substitutions (G49T, W52K, and F62V) and improved thermostability (at 50 °C for 5 h) by 40% and increased the kcat/Km value by 23%. The optimum pH was desirably changed to encompass a broad range from alkali to acid and circular dichroism revealed no significant secondary structure changes in mutants against wild type. These findings indicated that random mutagenesis was an effective technique for optimizing cholesterol oxidase properties and make a foundation for practical applications of Cholesterol oxidase in clinical diagnosis and industrial fields.
Collapse
|
10
|
Kwon GE, Hyun MH, Byun DJ, Paeng KJ, Seo HS, Choi MH. Metabolic signatures of cholesterol biosynthesis and absorption in patients with coronary artery disease. J Steroid Biochem Mol Biol 2021; 212:105940. [PMID: 34119628 DOI: 10.1016/j.jsbmb.2021.105940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023]
Abstract
Due to the biochemical importance of cholesterol homeostasis in cardiovascular disease (CVD), this study was aimed to identify metabolic signatures of serum sterols according to atherosclerotic CVD severity. Biogically active free cholesterol and its 11 analogues in serum samples obtained from subjects who underwent cardiovascular intervention were quantitatively evaluated by gas chromatography-mass spectrometry (GCMS). Study groups were divided by 29 patients with stable angina (SA), 35 patients with acute coronary syndrome (ACS), and 41 controls. In all subjects, serum levels of cholesterol and its upstream precursors of 7-dehydrocholesterol, lathosterol, and lanosterol were closely associated with CVD risk factors, such as total cholesterol, low-density lipoprotein cholesterol (LDL-C), and LDL-C/high-density lipoprotein cholesterol (HDL-C) ratio (r = 0.407 ∼ 0.684, P < 0.03 for all). Metabolic ratios of lathosterol/cholesterol (control = 55.75 ± 34.34, SA = 51.04 ± 34.93, ACS = 36.52 ± 22.00; P < 0.03) and lanosterol/cholesterol (control = 12.27 ± 7.43, SA = 10.97 ± 9.13, ACS = 8.01 ± 5.82; P < 0.03), were remarkably decreased. Both metabolic ratios and individual concentrations of lathosterol and lanosterol were also decreased in subjects with statin treatment than those in the control group without statin treatment (P < 0.05 for all), whereas three metabolic ratios of dietary sterols (sitosterol, campesterol, and stigmasterol) to free cholesterol were increased after statin therapy (P < 0.05 for all) in both SA and ACS groups. The present metabolic signatures suggest that both lathosterol/cholesterol and lanosterol/cholesterol ratios corresponding to cholesterol biosynthesis may reflect statin response. Individual dietary sterols to cholesterol ratios resulted in higher intestinal cholesterol absorption after statin therapy.
Collapse
Affiliation(s)
- Go Eun Kwon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Chemistry, Yonsei University, Wonju, 26493, Republic of Korea
| | - Myung Han Hyun
- Department of Internal Medicine, Seoul, 08308, Republic of Korea
| | - Dong Jun Byun
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ki-Jung Paeng
- Department of Chemistry, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hong Seog Seo
- Cardiovascular Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
11
|
Xu D, Li C, Zi Y, Jiang D, Qu F, Zhao XE. MOF@MnO 2nanocomposites prepared using in situmethod and recyclable cholesterol oxidase-inorganic hybrid nanoflowers for cholesterol determination. NANOTECHNOLOGY 2021; 32:315502. [PMID: 33836512 DOI: 10.1088/1361-6528/abf692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
In this work, through thein situgrowth of MnO2nanosheets on the surface of terbium metal-organic frameworks (Tb-MOFs), MOF@MnO2nanocomposites are prepared and the fluorescence of Tb-MOFs is quenched significantly by MnO2. Additionally, the hybrid nanoflowers are self-assembled by cholesterol oxidase (ChOx) and copper phosphate (Cu3(PO4)2·3H2O). Then a new strategy for cholesterol determination is developed based on MOF@MnO2nanocomposites and hybrid nanoflowers. Cholesterol is oxidized under the catalysis of hybrid nanoflowers to yield H2O2, which further reduces MnO2nanosheets into Mn2+. Hence, the fluorescence recovery of Tb-MOFs is positively correlated to the concentration of cholesterol in the range of 10 to 360μM. The limit of detection (LOD) of cholesterol is 1.57μM. On the other hand, the hierarchical and confined structure of ChOx-inorganic hybrid nanoflowers greatly improve the stability of the enzyme. The activity of hybrid nanoflowers remains at a high level for one week when stored at room temperature. Moreover, the hybrid nanoflowers can be collected by centrifugation and reused. The activity of hybrid nanoflowers can continue at a high level for five cycles of determination. Therefore, it can be concluded that the hybrid nanoflowers are more stable and more economic than free enzymes, and they show a similar sensitivity and specificity to cholesterol compared with free ChOx. Finally, this strategy has been further validated for the determination of cholesterol in serum samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Dawei Xu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Cong Li
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Yuqiu Zi
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan 250014, People's Republic of China
| | - Fei Qu
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| | - Xian-En Zhao
- Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
- Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China
| |
Collapse
|
12
|
Werkman IL, Kövilein J, de Jonge JC, Baron W. Impairing committed cholesterol biosynthesis in white matter astrocytes, but not grey matter astrocytes, enhances in vitro myelination. J Neurochem 2021; 156:624-641. [PMID: 32602556 PMCID: PMC7984098 DOI: 10.1111/jnc.15113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Remyelination is a regenerative process that is essential to recover saltatory conduction and to prevent neurodegeneration upon demyelination. The formation of new myelin involves the differentiation of oligodendrocyte progenitor cells (OPCs) toward oligodendrocytes and requires high amounts of cholesterol. Astrocytes (ASTRs) modulate remyelination by supplying lipids to oligodendrocytes. Remarkably, remyelination is more efficient in grey matter (GM) than in white matter (WM), which may relate to regional differences in ASTR subtype. Here, we show that a feeding layer of gmASTRs was more supportive to in vitro myelination than a feeding layer of wmASTRs. While conditioned medium from both gmASTRs and wmASTRs accelerated gmOPC differentiation, wmOPC differentiation is enhanced by secreted factors from gmASTRs, but not wmASTRs. In vitro analyses revealed that gmASTRs secreted more cholesterol than wmASTRs. Cholesterol efflux from both ASTR types was reduced upon exposure to pro-inflammatory cytokines, which was mediated via cholesterol transporter ABCA1, but not ABCG1, and correlated with a minor reduction of myelin membrane formation by oligodendrocytes. Surprisingly, a wmASTR knockdown of Fdft1 encoding for squalene synthase (SQS), an enzyme essential for the first committed step in cholesterol biosynthesis, enhanced in vitro myelination. Reduced secretion of interleukin-1β likely by enhanced isoprenylation, and increased unsaturated fatty acid synthesis, both pathways upstream of SQS, likely masked the effect of reduced levels of ASTR-derived cholesterol. Hence, our findings indicate that gmASTRs export more cholesterol and are more supportive to myelination than wmASTRs, but specific inhibition of cholesterol biosynthesis in ASTRs is beneficial for wmASTR-mediated modulation of myelination.
Collapse
Affiliation(s)
- Inge L. Werkman
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
- Present address:
Department of BiologyUniversity of VirginiaCharlottesvilleVAUSA
| | - Janine Kövilein
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Jenny C. de Jonge
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| | - Wia Baron
- Biomedical Sciences of Cells & Systemssection Molecular NeurobiologyUniversity of GroningenUniversity Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
13
|
Vasilyev V, Sokolov A, Kostevich V, Elizarova A, Gorbunov N, Panasenko O. Binding of lactoferrin to the surface of low-density lipoproteins modified by myeloperoxidase prevents intracellular cholesterol accumulation by human blood monocytes. Biochem Cell Biol 2021; 99:109-116. [DOI: 10.1139/bcb-2020-0141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myeloperoxidase (MPO) is a unique heme-containing peroxidase that can catalyze the formation of hypochlorous acid (HOCl). The strong interaction of MPO with low-density lipoproteins (LDL) promotes proatherogenic modification of LDL by HOCl. The MPO-modified LDL (Mox-LDL) accumulate in macrophages, resulting in the formation of foam cells, which is the pathognomonic symptom of atherosclerosis. A promising approach to prophylaxis and atherosclerosis therapy is searching for remedies that prevent the modification or accumulation of LDL in macrophages. Lactoferrin (LF) has several application points in obesity pathogenesis. We aimed to study LF binding to Mox-LDL and their accumulation in monocytes transformed into macrophages. Using surface plasmon resonance and ELISA techniques, we observed no LF interaction with intact LDL, whereas Mox-LDL strongly interacted with LF. The affinity of Mox-LDL to LF increased with the degree of oxidative modification of LDL. Moreover, an excess of MPO did not prevent interaction of Mox-LDL with LF. LF inhibits accumulation of cholesterol in macrophages exposed to Mox-LDL. The results obtained reinforce the notion of LF potency as a remedy against atherosclerosis.
Collapse
Affiliation(s)
- V.B. Vasilyev
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - A.V. Sokolov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Saint Petersburg State University, Saint Petersburg 199034, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - V.A. Kostevich
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - A.Yu. Elizarova
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
| | - N.P. Gorbunov
- FSBSI (Institute of Experimental Medicine), Saint Petersburg 197376, Russia
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - O.M. Panasenko
- Federal Research and Clinical Center of Physical–Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
14
|
The electrochemical reaction controlled optical response of cholestrol oxidase (COx) conjugated CdSe/ZnS quantum dots. Sci Rep 2020; 10:20439. [PMID: 33235247 PMCID: PMC7686357 DOI: 10.1038/s41598-020-77499-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
This paper reports the enhanced performance of cholesterol oxidase (COx) conjugated CdSe/ZnS quantum dots (QDs) by using water-soluble mercaptoacitic acid (MAA) as linker. The functionalized MAA-CdSe/ZnS QDs conjugated in four different dilutions of cholesterol oxidase significantly affected QDs photoluminescence intensities, which affected the process of charge transfer from QDs to MAA. The conjugation of COx to MAA-QDs in increased dilutions resulted in the regain of PL intensities, which were attributed to the passivation of MAA HOMO/LUMO states. The electrochemical impedance spectroscopy and cyclic voltammetry of the conjugated QDs were performed to get study the charge transfer mechanism. The 1:1000 diluted COx conjugated MAA-CdSe/ZnS QDs was found to have the lowest charge transfer resistance of 228 Ω, the highest diffusion (~ 1.39 × 10–13 cm2/s) and charge transfer rates (~ 4.5 × 10–6 s−1) between the electrode and the redox species. The current study demonstrated the sensitivity of electrochemical and optical based detection on the alkaline.
Collapse
|
15
|
Doukyu N, Ishikawa M. Cholesterol oxidase from Rhodococcus erythropolis with high specificity toward β-cholestanol and pytosterols. PLoS One 2020; 15:e0241126. [PMID: 33104755 PMCID: PMC7588053 DOI: 10.1371/journal.pone.0241126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
Two genes (choRI and choRII) encoding cholesterol oxidases belonging to the vanillyl-alcohol oxidase (VAO) family were cloned on the basis of putative cholesterol oxidase gene sequences in the genome sequence data of Rhodococcus erythropolis PR4. The genes corresponding to the mature enzymes were cloned in a pET vector and expressed in Escherichia coli. The two cholesterol oxidases produced from the recombinant E. coli were purified to examine their properties. The amino acid sequence of ChoRI showed significant similarity (57%) to that of ChoRII. ChoRII was more stable than ChoRI in terms of pH and thermal stability. The substrate specificities of these enzymes differed distinctively from one another. Interestingly, the activities of ChoRII toward β-cholestanol, β-sitosterol, and stigmasterol were 2.4-, 2.1-, and 1.7-fold higher, respectively, than those of cholesterol. No cholesterol oxidases with high activity toward these sterols have been reported so far. The cholesterol oxidation products from these two enzymes also differed. ChoRI and ChoRII oxidized cholesterol to form cholest-4-en-3-one and 6β-hydroperoxycholest-4-en-3-one, respectively.
Collapse
Affiliation(s)
- Noriyuki Doukyu
- Department of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan
- Bio-Nano Electronic Research Center, Toyo University, Kawagoe, Saitama, Japan
- * E-mail:
| | - Makoto Ishikawa
- Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan
| |
Collapse
|
16
|
Nano-Rods Structured Cerium Oxide Platform for Cholesterol Biosensor. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Nguyen PT, Kim YI, Kim MI. Reagent-Free Colorimetric Cholesterol Test Strip Based on Self Color-Changing Property of Nanoceria. Front Chem 2020; 8:798. [PMID: 32984259 PMCID: PMC7493407 DOI: 10.3389/fchem.2020.00798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 01/13/2023] Open
Abstract
Paper-based test strip consisting of cerium oxide nanoparticles (nanoceria) as hydrogen peroxide (H2O2)-dependent color-changing nanozymes and cholesterol oxidase (ChOx) has been developed for convenient colorimetric determination of cholesterol without the need for chromogenic substrate. The construction of the cholesterol strip begins with physical adsorption of nanoceria on the paper surface, followed by covalent immobilization of ChOx via silanization, chitosan-mediated activation, and glutaraldehyde treatment of the nanoceria-embedded paper matrices. In the presence of cholesterol, ChOx catalyzes its oxidation to produce H2O2, which forms peroxide complex on the nanoceria surface and induces visual color change of the nanoceria-embedded paper from white/light yellow into intense yellow/orange, which was conveniently quantified with an image acquired by a conventional smartphone with the ImageJ software. Using this strategy, target cholesterol was specifically determined down to 40 μM with a dynamic linear concentration range of 0.1–1.5 mM under neutral pH condition, which is suitable to measure the serum cholesterol, with excellent stability during 20 days and reusability by recovering its original color-changing activity for 4 consecutive cycles. Furthermore, the practical utility of this strategy was successfully demonstrated by reliably determining cholesterol in human blood serum samples. This study demonstrates the potential of self color-changing nanozymes for developing colorimetric paper strip sensor, which is particularly useful in instrumentation-free point-of-care environments.
Collapse
Affiliation(s)
- Phuong Thy Nguyen
- Department of BioNano Technology, Gachon University, Seongnam-si, South Korea
| | - Young Im Kim
- Department of BioNano Technology, Gachon University, Seongnam-si, South Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam-si, South Korea
| |
Collapse
|
18
|
Medium Optimization by Response Surface Methodology for Improved Cholesterol Oxidase Production by a Newly Isolated Streptomyces rochei NAM-19 Strain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1870807. [PMID: 32337225 PMCID: PMC7150710 DOI: 10.1155/2020/1870807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 11/17/2022]
Abstract
Cholesterol oxidase is an alcohol oxidoreductase flavoprotein with wide biotechnological applications. The current work describes the isolation of a potential cholesterol oxidase producing streptomycete from Egyptian soil. The isolated strain produced cholesterol oxidase in submerged culture using a medium containing glucose, yeast extract, malt extract, and CaCO3 with the addition of cholesterol as an inducer. The isolated strain was identified as Streptomyces rochei NAM-19 based on 16S rRNA sequencing and phylogeny. Optimization of cholesterol oxidase production has been carried out using response surface methodology. The Plackett-Burman design method was used to evaluate the significant components of the production medium followed by Box-Behnken experimental design to locate the true optimal concentrations, which are significantly affecting enzyme production. Results showed that the predicted enzyme response could be closely correlated with the experimentally obtained production. Furthermore, the applied optimization strategy increased volumetric enzyme production by 2.55 times (65.1 U/mL) the initial production obtained before medium optimization (25.5 U/mL).
Collapse
|
19
|
Pratush A, Yang Q, Peng T, Huang T, Hu Z. Identification of non-accumulating intermediate compounds during estrone (E1) metabolism by a newly isolated microbial strain BH2-1 from mangrove sediments of the South China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5097-5107. [PMID: 31848950 DOI: 10.1007/s11356-019-06894-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Steroid estrogens are natural hormonal compounds produced by various animals and humans. Estrone (E1), estradiol (E2), and estriol (E3) are the most commonly known estrogens that are released into the environment along with human and animal excreta, which end up polluting water bodies. While these estrogens are usually biotransformed into their respective by-products by various microbial strains, E2 could also be transformed into E1 by 17β-hydroxysteroid dehydrogenases (17β-HSDs) under reducing environmental conditions. However, due to limited further biotransformation of E1, it accumulates to higher levels in water bodies compared to other natural estrogens in the aquatic environment. Given that E1 is one of the potential endocrine-disrupting compounds (EDCs), with several adverse effects on aquatic animals and consequently on the seafood industry, it is vital to remove E1 from the environment via improved steroid bioremediation. In the present study, we successfully isolated a potential E1-degrading microbial strain (named as BH2-1) from soil sediments collected from the Bai Hai mangrove region of the South China Sea. The strain BH2-1 has excellent E1-degrading potential and could degrade 89.5% of E1 after 6 days of incubation in a MSM-E1 medium containing 1% NaCl at pH 6. Besides, after 3 h and 6 h of extraction, two non-accumulating intermediate compounds [3-hydroxyandrosta-5,7,9(11)-trien-17-one and androsta-1,4,6-triene-3,17-dione (ATD)], respectively, were successfully identified using GC-MS analysis. These non-accumulating intermediate compounds have not previously been reported during E1 biodegradation and might be new intermediate metabolites. The identification of these new compounds also gives more insight into the mechanism of E1 metabolism and helps to establish a clear E1 biodegradation pathway, which further enriches our knowledge on the overall microbial steroid degradation pathway. Furthermore, whole-genome sequence analysis of strain BH2-1 revealed the presence of 46 genes that belong to 6 major steroid-degrading gene classes.
Collapse
Affiliation(s)
- Amit Pratush
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Yang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
20
|
Immobilization of Cholesterol Oxidase from Streptomyces Sp. on Magnetite Silicon Dioxide by Crosslinking Method for Cholesterol Oxidation. Appl Biochem Biotechnol 2020; 191:968-980. [PMID: 31950444 DOI: 10.1007/s12010-020-03241-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Abstract
Enzymatic biosensor has been paid much attention to the research fields due to its advantage in medical application. As one of the application, we determined the optimum value of cholesterol oxidase against cholesterol. In this work, we studied the behavior of cholesterol oxidation by enzymatic reaction to get the optimum condition for cholesterol oxidation. The enzyme that used were in two form, free cholesterol oxidase, and immobilized cholesterol oxidase. Cholesterol oxidase was produced from Streptomyces sp. by using solid state fermentation method and identified had high enzyme activity to be 5.12 U/mL. Cholesterol oxidase was simultaneously crosslinked immobilized onto magnetite coated by silicon dioxide (M-SiO2). The support was characterized by Fourier transform infrared (FTIR) to determine the functional group of modified particle and scanning electron microscope (SEM) to observe the morphological or our prepared particle. Cholesterol oxidase sensitivity to substrate was analyzed by using HPLC with different interval time measurements. The oxidation of cholesterol by free enzyme and immobilized enzyme was also investigated. The best sensitivity of cholesterol oxidase was estimated to oxidize Cso (concentration of substrate) 1.46 mM of substrate with Ce (concentration of enzyme) 20 mg/mL for 180 min. Final oxidation value of cholesterol by immobilized enzyme was greater than 60%. The results of this study revealed that immobilized enzyme for cholesterol oxidation was stable, reproducible, and sensitive.
Collapse
|
21
|
Chen L, Chen Y, Miao L, Gao Y, Di J. Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04469-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. Electrophoresis 2019; 41:287-305. [DOI: 10.1002/elps.201900258] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Worapot Suntornsuk
- Department of Microbiology, Faculty of ScienceKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical ChemistryFaculty of PharmacyMahidol University Bangkok Thailand
| |
Collapse
|
23
|
Hussein J, Attia MF, El Bana M, El-Daly SM, Mohamed N, El-Khayat Z, El-Naggar ME. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 2019; 140:1305-1314. [PMID: 31449866 DOI: 10.1016/j.ijbiomac.2019.08.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Our goal in this study is to improve the efficiency of docosahexaenoic acid (DHA) toward the enhancement of insulin signaling pathway in vivo via loading with zinc oxide nanoparticles (ZnO NPs). To this end, two consecutive steps were undertaken, preparation of ZnO NPs by one-step solid-state reaction in dry conditions and calcinated followed by loading DHA. Both developed nanoparticles, with and without DHA were then characterized by TEM, SEM, EDX, and Zetasizer. For comparison between free and loaded DHA, four groups of rats were prepared to receive different treatments. Group I; healthy rats (reference), group II; diabetes (streptozotocin-induced), group III and group IV are diabetes orally administered with free DHA and DHA-loaded ZnO NPs (10 mg/kg bw/day), respectively. Blood samples were collected and analyzed where the results demonstrated that fasting blood sugar and insulin resistance were significantly increased in diabetic group along with upgrading in oxidative stress parameters emphasizing the oxidative properties of streptozotocin. HPLC analysis of cell membrane fatty acids resulted in the reduction of omega-6 and 9 and elevation of omega-3 after free DHA and DHA-loaded ZnO NPs streptozotocin treatments. DHA-loaded ZnO NPs had high performance in enhancing insulin signaling pathway as expressed in changes of phosphatidylinositol 3-kinase (PI3K) levels.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed F Attia
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt; Department of Chemistry, Clemson University, Clemson, SC, United States.
| | - Mona El Bana
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Nadia Mohamed
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zakeria El-Khayat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt.
| |
Collapse
|
24
|
Microbial transformation of cholesterol: reactions and practical aspects-an update. World J Microbiol Biotechnol 2019; 35:131. [PMID: 31432251 DOI: 10.1007/s11274-019-2708-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Cholesterol is a C27-sterol employed as starting material for the synthesis of valuable pharmaceutical steroids and precursors. The microbial transformations of cholesterol have been widely studied, since they are performed with high regio- and stereoselectivity and allow the production of steroidal compounds which are difficult to synthesize by classical chemical methods. In recent years, ongoing research is being conducted to discover novel biocatalysts and to develop biotechnological processes to improve existing biocatalysts and biotransformation reactions. The main objective of this review is to present the most remarkable advances in fungal and bacterial transformation of cholesterol, focusing on the different types of microbial reactions and biocatalysts, biotransformation products, and practical aspects related to sterol dispersion improvement, covering literature since 2000. It reviews the conversion of cholesterol by whole-cell biocatalysts and by purified enzymes that lead to various structural modifications, including side chain cleavage, hydroxylation, dehydrogenation/reduction, isomerization and esterification. Finally, approaches used to improve the poor solubility of cholesterol in aqueous media, such as the use of different sterol-solubilizing agents or two-phase conversion system, are also discussed.
Collapse
|
25
|
Heinelt M, Nöll T, Nöll G. Spectroelectrochemical Investigation of Cholesterol Oxidase fromStreptomyces lividansat Different pH Values. ChemElectroChem 2019. [DOI: 10.1002/celc.201801416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manuel Heinelt
- University of SiegenDepartment of Chemistry and Biology Organic Chemistry Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Tanja Nöll
- University of SiegenDepartment of Chemistry and Biology Organic Chemistry Adolf-Reichwein-Str. 2 57068 Siegen Germany
| | - Gilbert Nöll
- University of SiegenDepartment of Chemistry and Biology Organic Chemistry Adolf-Reichwein-Str. 2 57068 Siegen Germany
| |
Collapse
|
26
|
Fazaeli A, Golestani A, Lakzaei M, Rasi Varaei SS, Aminian M. Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS One 2019; 14:e0212217. [PMID: 30759160 PMCID: PMC6373949 DOI: 10.1371/journal.pone.0212217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cholesterol oxidase is a bifunctional bacterial flavoenzyme which catalyzes oxidation and isomerization of cholesterol. This valuable enzyme has attracted a great deal of attention because of its wide application in the clinical laboratory, synthesis of steroid derived drugs, food industries, and its potentially insecticidal activity. Therefore, development of an efficient protocol for overproduction of cholesterol oxidase could be valuable and beneficial in this regard. The present study examined the role of various parameters (host strain, culture media, induction time, isopropyl ß-D-1-thiogalactopyranoside concentration, as well as post-induction incubation time and temperature) on over-expression of cholesterol oxidase from Chromobacterium sp. DS1. Applying the optimized protocol, the yield of recombinant cholesterol oxidase significantly increased from 92 U/L to 2115 U/L. Under the optimized conditions, the enzyme was produced on a large-scale, and overexpressed cholesterol oxidase was purified from cell lysate by column nickel affinity chromatography. Km and Vmax values of the purified enzyme for cholesterol were estimated using Lineweaver-Burk plot. Further, the optimum pH and optimum temperature for the enzyme activity were determined. This study reports a straightforward protocol for cholesterol oxidase production which can be performed in any laboratory.
Collapse
Affiliation(s)
- Aliakbar Fazaeli
- Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abolfazl Golestani
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Mostafa Lakzaei
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Samaneh Sadat Rasi Varaei
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
| | - Mahdi Aminian
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Ardabil, Iran
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
27
|
Sahu S, Shera SS, Banik RM. Artificial Neural Network Modeling to Predict the Non-Linearity in Reaction Conditions of Cholesterol Oxidase from <i>Streptomyces olivaceus</i> <i>MTCC</i> 6820. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/jbm.2019.74002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Fazaeli A, Golestani A, Lakzaei M, Rasi Varaei SS, Aminian M. Expression optimization of recombinant cholesterol oxidase in Escherichia coli and its purification and characterization. AMB Express 2018; 8:183. [PMID: 30421362 PMCID: PMC6232189 DOI: 10.1186/s13568-018-0711-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Cholesterol oxidase is a bacterial flavoenzyme which catalyzes oxidation and isomerization of cholesterol. This enzyme has a great commercial value because of its wide applications in cholesterol analysis of clinical samples, synthesis of steroid-derived drugs, food industries, and potentially insecticidal activity. Accordingly, development of an efficient protocol for overexpression of cholesterol oxidase can be very valuable and beneficial. In this study, expression optimization of cholesterol oxidase from Streptomyces sp. SA-COO was investigated in Escherichia coli host strains. Various parameters that may influence the yield of a recombinant enzyme were evaluated individually. The optimal host strain, culture media, induction time, Isopropyl ß-d-1-thiogalactopyranoside concentration, as well as post-induction incubation time and temperature were determined in a shaking flask mode. Applying the optimized protocol, the production of recombinant cholesterol oxidase was significantly enhanced from 3.2 to 158 U/L. Under the optimized condition, the enzyme was produced on a large-scale, and highly expressed cholesterol oxidase was purified from cell lysate by column nickel affinity chromatography. Km and Vmax values of the purified enzyme for cholesterol were estimated using Lineweaver–Burk plot. Further, the optimum pH and optimum temperature for the enzyme activity were also determined. We report a straightforward and easy protocol for cholesterol oxidase production which can be performed in any laboratory.
Collapse
|
29
|
Li LH, Dutkiewicz EP, Huang YC, Zhou HB, Hsu CC. Analytical methods for cholesterol quantification. J Food Drug Anal 2018; 27:375-386. [PMID: 30987710 PMCID: PMC9296199 DOI: 10.1016/j.jfda.2018.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is an important lipid molecule in cell membranes and lipoproteins. Cholesterol is also a precursors of steroid hormones, bile acids, and vitamin D. Abnormal levels of cholesterol or its precursors have been observed in various human diseases, such as heart diseases, stroke, type II diabetes, brain diseases and many others. Therefore, accurate quantification of cholesterol is important for individuals who are at increased risk for these diseases. Multiple analytical methods have been developed for analysis of cholesterol, including classical chemical methods, enzymatic assays, gas chromatography (GC), liquid chromatography (LC), and mass spectrometry (MS). Strategy known as ambient ionization mass spectrometry (AIMS), operating at atmospheric pressure, with only minimal sample pretreatments for real time, in situ, and rapid interrogation of the sample has also been employed for quantification of cholesterol. In this review, we summarize the most prevalent methods for cholesterol quantification in biological samples and foods. Nevertheless, we highlight several new technologies, such as AIMS, used as alternative methods to measure cholesterol that are potentially next-generation platforms. Representative examples of molecular imaging of cholesterol in tissue sections are also included in this review article.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei,
Taiwan
| | - Ewelina P. Dutkiewicz
- Department of Chemistry, National Taiwan University, Taipei,
Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei,
Taiwan
| | - Ying-Chen Huang
- Department of Chemistry, National Taiwan University, Taipei,
Taiwan
| | - Hsin-Bai Zhou
- Department of Chemistry, National Taiwan University, Taipei,
Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei,
Taiwan
- Corresponding author. E-mail address: (C.-C. Hsu)
| |
Collapse
|
30
|
García-García P, Rocha-Martin J, Fernandez-Lorente G, Guisan JM. Co-localization of oxidase and catalase inside a porous support to improve the elimination of hydrogen peroxide: Oxidation of biogenic amines by amino oxidase from Pisum sativum. Enzyme Microb Technol 2018; 115:73-80. [PMID: 29859605 DOI: 10.1016/j.enzmictec.2018.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 11/26/2022]
Abstract
Diamine oxidase (DAO) from Pisum sativum is an enzyme that catalyzes the degradation of biogenic amines (BA) present in wine, producing harmless aldehydes and hydrogen peroxide (H2O2). H2O2 promotes a rapid inactivation of the immobilized enzyme. At first glance, co-immobilization of DAO and catalase (CAT) could improve the elimination of the released hydrogen peroxide. Two different co-immobilized derivatives were prepared: (a) both enzymes co-localized and homogeneously distributed across the whole structure of a porous support, and (b) both enzymes we de-localized inside the porous support: DAO immobilized on the outer part of the porous support and catalase immobilized in the inner part. Co-localized derivatives were seven-fold more effective than de-localized ones for the elimination of hydrogen peroxide inside the porous support. In addition to that, the degradation of putrescine by DAO was three-fold more rapid when using both co-localized enzymes. The optimal co-localized derivative (containing 1.25 mg of DAO plus 25 mg of CAT per g of support) promoted the instantaneous elimination of 91% H2O2 released inside the porous support during putrescine oxidation. This optimal derivative preserves 92% of activity after three reaction cycles and DAO immobilized without catalase only preserves 41% of activity. Co-localization seems to be the key strategy to immobilize two sequential enzymes. When enzymes are immobilized in close proximity to each other in a co-localized pattern, the generation of byproducts as H2O2 is strongly reduced.
Collapse
Affiliation(s)
- Paz García-García
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), 28049, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
31
|
Griffiths WJ, Gilmore I, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, Bigger BW, Wu THY, Goenka A, Ghosh A, Jones SA, Wang Y. Identification of unusual oxysterols and bile acids with 7-oxo or 3β,5α,6β-trihydroxy functions in human plasma by charge-tagging mass spectrometry with multistage fragmentation. J Lipid Res 2018; 59:1058-1070. [PMID: 29626102 PMCID: PMC5983402 DOI: 10.1194/jlr.d083246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC), and its hydrolysis product cholestane-3β,5α,6β-triol (3β,5α,6β-triol) are normally minor oxysterols in human samples; however, in disease, their levels may be greatly elevated. This is the case in plasma from patients suffering from some lysosomal storage disorders, e.g., Niemann-Pick disease type C, or the inborn errors of sterol metabolism, e.g., Smith-Lemli-Opitz syndrome and cerebrotendinous xanthomatosis. A complication in the analysis of 7-OC and 5,6-EC is that they can also be formed ex vivo from cholesterol during sample handling in air, causing confusion with molecules formed in vivo. When formed endogenously, 7-OC, 5,6-EC, and 3β,5α,6β-triol can be converted to bile acids. Here, we describe methodology based on chemical derivatization and LC/MS with multistage fragmentation (MSn) to identify the necessary intermediates in the conversion of 7-OC to 3β-hydroxy-7-oxochol-5-enoic acid and 5,6-EC and 3β,5α,6β-triol to 3β,5α,6β-trihydroxycholanoic acid. Identification of intermediate metabolites is facilitated by their unusual MSn fragmentation patterns. Semiquantitative measurements are possible, but absolute values await the synthesis of isotope-labeled standards.
Collapse
Affiliation(s)
| | - Ian Gilmore
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Eylan Yutuc
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Jonas Abdel-Khalik
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Peter J Crick
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Thomas Hearn
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Alison Dickson
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Teresa Hoi-Yee Wu
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Arunabha Ghosh
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Yuqin Wang
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom.
| |
Collapse
|
32
|
Griffiths WJ, Wang Y. An update on oxysterol biochemistry: New discoveries in lipidomics. Biochem Biophys Res Commun 2018; 504:617-622. [PMID: 29421651 PMCID: PMC6381446 DOI: 10.1016/j.bbrc.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
Oxysterols are oxidised derivatives of cholesterol or its precursors post lanosterol. They are intermediates in the biosynthesis of bile acids, steroid hormones and 1,25-dihydroxyvitamin D3. Although often considered as metabolic intermediates there is a growing body of evidence that many oxysterols are bioactive and their absence or excess may be part of the cause of a disease phenotype. Using global lipidomics approaches oxysterols are underrepresented encouraging the development of targeted approaches. In this article, we discuss recent discoveries important in oxysterol biochemistry and some of the targeted lipidomic approaches used to make these discoveries. Oxysterols can regulate both the innate and adaptive immune systems. Oxysterols can be tumour suppressors and on cometabolites. Oxysterols can inhibit or activate the Hh signalling pathway.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
33
|
An ARV1 homologue from a filarial nematode is functional in yeast. J Helminthol 2017; 93:12-20. [PMID: 29183411 DOI: 10.1017/s0022149x17001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The transmembrane protein, ARV1, plays a key role in intracellular sterol homeostasis by controlling sterol distribution and cellular uptake. To date, only the ARV1s from yeast and humans have been characterized to some extent. In this study, the ARV1 of an animal filarial parasite, Setaria digitata (SdARV1), was characterized; its cDNA was 761 bp and encoded a protein of 217 amino acids, with a predicted molecular weight of 25 kDa, containing a highly conserved ARV1 homology domain and three transmembrane domains in the bioinformatic analyses. Information required to cluster members belonging to a particular taxon has been revealed in phylogenetic analyses of ARV1 sequences derived from different organisms. Reverse transcription-polymerase chain reaction (RT-PCR) analyses indicated that SdARV1 was expressed in different developmental stages - microfilariae and adult male and female worms. Experiments carried out with a single copy of the SdARV1 under the control of the PMA-1 promoter in a temperature-sensitive Saccharomyces cerevisiae mutant strain indicated full complementation of the mutant phenotype, with growth at a non-permissive temperature (37°C). Microscopic observations of cellular morphology with Gram staining revealed alteration of the shape from shrunken to oval, in mutant and complemented strains, respectively. Assessment of free sterol levels extracted from mutant yeast and complemented strains indicated that the level of sterol was significantly higher in the former compared to the latter, which had sterol levels similar to those of the wild type. Thus, the results of the current study suggest that SdARV1 is ubiquitously expressed in different developmental stages of S. digitata, and that it is a true functional homologue of mammalian and yeast ARV1s, which have crucial phylogenetic information that follows classical evolutionary trends. Finally, this is the first study to report the biological function of nematode ARV1.
Collapse
|
34
|
El-Naggar NEA, Deraz SF, Soliman HM, El-Deeb NM, El-Shweihy NM. Purification, characterization and amino acid content of cholesterol oxidase produced by Streptomyces aegyptia NEAE 102. BMC Microbiol 2017; 17:76. [PMID: 28356065 PMCID: PMC5372259 DOI: 10.1186/s12866-017-0988-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is an increasing demand on cholesterol oxidase for its various industrial and clinical applications. The current research was focused on extracellular cholesterol oxidase production under submerged fermentation by a local isolate previously identified as Streptomyces aegyptia NEAE 102. The crude enzyme extract was purified by two purification steps, protein precipitation using ammonium sulfate followed by ion exchange chromatography using DEAE Sepharose CL-6B. The kinetic parameters of purified cholesterol oxidase from Streptomyces aegyptia NEAE 102 were studied. RESULTS The best conditions for maximum cholesterol oxidase activity were found to be 105 min of incubation time, an initial pH of 7 and temperature of 37 °C. The optimum substrate concentration was found to be 0.4 mM. The higher thermal stability behavior of cholesterol oxidase was at 50 °C. Around 63.86% of the initial activity was retained by the enzyme after 20 min of incubation at 50 °C. The apparent molecular weight of the purified enzyme as sized by sodium dodecyl sulphate-polyacryalamide gel electrophoresis was approximately 46 KDa. On DEAE Sepharose CL-6B column cholesterol oxidase was purified to homogeneity with final specific activity of 16.08 U/mg protein and 3.14-fold enhancement. The amino acid analysis of the purified enzyme produced by Streptomyces aegyptia NEAE 102 illustrated that, cholesterol oxidase is composed of 361 residues with glutamic acid as the most represented amino acid with concentration of 11.49 μg/mL. CONCLUSIONS Taking into account the extracellular production, wide pH tolerance, thermal stability and shelf life, cholesterol oxidase produced by Streptomyces aegyptia NEAE 102 suggested that the enzyme could be industrially useful.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Sahar F Deraz
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - Hoda M Soliman
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nehal M El-Deeb
- Biopharmacetical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nancy M El-Shweihy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
35
|
|
36
|
Alexander S, Baraneedharan P, Balasubrahmanyan S, Ramaprabhu S. Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Kamala K, Sivaperumal P. Biomedical Applications of Enzymes From Marine Actinobacteria. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 80:107-123. [PMID: 28215321 DOI: 10.1016/bs.afnr.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described.
Collapse
Affiliation(s)
- K Kamala
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India.
| | - P Sivaperumal
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, India
| |
Collapse
|
38
|
Suriya J, Bharathiraja S, Manivasagan P, Kim SK. Enzymes From Rare Actinobacterial Strains. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 79:67-98. [PMID: 27770864 DOI: 10.1016/bs.afnr.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter.
Collapse
Affiliation(s)
- J Suriya
- School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Bharathiraja
- CAS in Marine Biology, Annamalai University, Porto Novo, Tamil Nadu, India
| | - P Manivasagan
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea.
| | - S-K Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea; Specialized Graduate School Science & Technology Convergence, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
39
|
El-Naggar NEA, El-Shweihy NM, El-Ewasy SM. Identification and statistical optimization of fermentation conditions for a newly isolated extracellular cholesterol oxidase-producing Streptomyces cavourensis strain NEAE-42. BMC Microbiol 2016; 16:217. [PMID: 27646045 PMCID: PMC5029000 DOI: 10.1186/s12866-016-0830-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Due to broad range of clinical and industrial applications of cholesterol oxidase, isolation and screening of bacterial strains producing extracellular form of cholesterol oxidase is of great importance. RESULTS One hundred and thirty actinomycete isolates were screened for their cholesterol oxidase activity. Among them, a potential culture, strain NEAE-42 is displayed the highest extracellular cholesterol oxidase activity. It was selected and identified as Streptomyces cavourensis strain NEAE-42. The optimization of different process parameters for cholesterol oxidase production by Streptomyces cavourensis strain NEAE-42 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables were screened using Plackett-Burman experimental design. Cholesterol, initial pH and (NH4)2SO4 were the most significant positive independent variables affecting cholesterol oxidase production. Central composite design was chosen to elucidate the optimal concentrations of the selected process variables on cholesterol oxidase production. It was found that, cholesterol oxidase production by Streptomyces cavourensis strain NEAE-42 after optimization process was 20.521U/mL which is higher than result obtained from the basal medium before screening process using Plackett-Burman (3.31 U/mL) with a fold of increase 6.19. CONCLUSIONS The cholesterol oxidase level production obtained in this study (20.521U/mL) by the statistical method is higher than many of the reported values.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934 Egypt
| | - Nancy M. El-Shweihy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934 Egypt
| | - Sara M. El-Ewasy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934 Egypt
| |
Collapse
|
40
|
Griffiths WJ, Abdel-Khalik J, Crick PJ, Yutuc E, Wang Y. New methods for analysis of oxysterols and related compounds by LC-MS. J Steroid Biochem Mol Biol 2016; 162:4-26. [PMID: 26639636 DOI: 10.1016/j.jsbmb.2015.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022]
Abstract
Oxysterols are oxygenated forms of cholesterol or its precursors. They are formed enzymatically and via reactive oxygen species. Oxysterols are intermediates in bile acid and steroid hormone biosynthetic pathways and are also bioactive molecules in their own right, being ligands to nuclear receptors and also regulators of the processing of steroid regulatory element-binding proteins (SREBPs) to their active forms as transcription factors regulating cholesterol and fatty acid biosynthesis. Oxysterols are implicated in the pathogenesis of multiple disease states ranging from atherosclerosis and cancer to multiple sclerosis and other neurodegenerative diseases including Alzheimer's and Parkinson's disease. Analysis of oxysterols is challenging on account of their low abundance in biological systems in comparison to cholesterol, and due to the propensity of cholesterol to undergo oxidation in air to generate oxysterols with the same structures as those present endogenously. In this article we review the mass spectrometry-based methods for oxysterol analysis paying particular attention to analysis by liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- William J Griffiths
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Jonas Abdel-Khalik
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Peter J Crick
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Eylan Yutuc
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Yuqin Wang
- College of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
41
|
Nagaraj V, Kazim AS, Helgeson J, Lewold C, Barik S, Buda P, Reinbothe TM, Wennmalm S, Zhang E, Renström E. Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol. Mol Endocrinol 2016; 30:1059-1069. [PMID: 27533789 PMCID: PMC5045496 DOI: 10.1210/me.2016-1023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca2+ spike frequency and Ca2+ influx and explained by enhanced single Ca2+ channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes.
Collapse
Affiliation(s)
- Vini Nagaraj
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Abdulla S Kazim
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Johan Helgeson
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Clemens Lewold
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Satadal Barik
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Pawel Buda
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Thomas M Reinbothe
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Stefan Wennmalm
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Enming Zhang
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Erik Renström
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| |
Collapse
|
42
|
Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing. Bioelectrochemistry 2016; 110:79-90. [DOI: 10.1016/j.bioelechem.2016.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 01/04/2023]
|
43
|
Flower like Bi structures on Pt surface facilitating effective cholesterol biosensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:183-189. [DOI: 10.1016/j.msec.2016.03.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 11/22/2022]
|
44
|
Zhang YM, Li HY, Hu C, Sheng HF, Zhang Y, Lin BR, Zhou GX. Ergosterols from the Culture Broth of Marine Streptomyces anandii H41-59. Mar Drugs 2016; 14:E84. [PMID: 27153073 PMCID: PMC4882558 DOI: 10.3390/md14050084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/05/2022] Open
Abstract
An actinomycete strain, H41-59, isolated from sea sediment in a mangrove district, was identified as Streptomyces anandii on the basis of 16S rDNA gene sequence analysis as well as the investigation of its morphological, physiological and biochemical characteristics. Three new ergosterols, ananstreps A-C (1-3), along with ten known ones (4-13), were isolated from the culture broth of this strain. The gross structures of these new compounds were elucidated on the basis of extensive analysis of spectroscopic data, including HR-ESI-MS, and NMR. The cytotoxicities of these isolates against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268, and human lung cancer cell line NCI-H460 and their antibacterial activities in inhibiting the growth of Candida albicans and some other pathogenic microorganisms were tested. Compounds 3-8, 10 and 11 displayed cytotoxicity with IC50 values in a range from 13.0 to 27.8 μg/mL. However, all the tested compounds showed no activity on C. albicans and other bacteria at the test concentration of 1 mg/mL with the paper disc diffusion method.
Collapse
Affiliation(s)
- Yang-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hong-Yu Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Chen Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Hui-Fan Sheng
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510632, China.
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Bi-Run Lin
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510632, China.
| | | |
Collapse
|
45
|
Protein engineering of microbial cholesterol oxidases: a molecular approach toward development of new enzymes with new properties. Appl Microbiol Biotechnol 2016; 100:4323-36. [DOI: 10.1007/s00253-016-7497-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
46
|
Witkowska Nery E. Analysis of Glucose, Cholesterol and Uric Acid. ANALYSIS OF SAMPLES OF CLINICAL AND ALIMENTARY INTEREST WITH PAPER-BASED DEVICES 2016. [DOI: 10.1007/978-3-319-28672-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
47
|
Haque S, Khan S, Wahid M, Mandal RK, Tiwari D, Dar SA, Paul D, Areeshi MY, Jawed A. Modeling and optimization of a continuous bead milling process for bacterial cell lysis using response surface methodology. RSC Adv 2016. [DOI: 10.1039/c5ra26893a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic representation of the modeling and optimization of continuous bead milling process for efficient bacterial cell lysis.
Collapse
Affiliation(s)
- Shafiul Haque
- Department of Biosciences
- Jamia Millia Islamia
- A Central University
- New Delhi
- India
| | - Saif Khan
- Department of Clinical Nutrition
- College of Applied Medical Sciences
- University of Ha'il
- Ha'il
- Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit
- College of Nursing and Allied Health Sciences
- Jazan University
- Jazan
- Saudi Arabia
| | - Raju K. Mandal
- Research and Scientific Studies Unit
- College of Nursing and Allied Health Sciences
- Jazan University
- Jazan
- Saudi Arabia
| | - Dileep Tiwari
- Catalysis and Peptide Research Unit
- School of Health Sciences
- University of KwaZulu-Natal
- Durban
- South Africa
| | - Sajad A. Dar
- Research and Scientific Studies Unit
- College of Nursing and Allied Health Sciences
- Jazan University
- Jazan
- Saudi Arabia
| | - Debarati Paul
- Amity Institute of Biotechnology
- Amity University
- Noida
- India
| | - Mohammed Y. Areeshi
- Research and Scientific Studies Unit
- College of Nursing and Allied Health Sciences
- Jazan University
- Jazan
- Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit
- College of Nursing and Allied Health Sciences
- Jazan University
- Jazan
- Saudi Arabia
| |
Collapse
|
48
|
Kasabe PJ, Mali GT, Dandge PB. Assessment of alkaline cholesterol oxidase purified from Rhodococcus sp. PKPD-CL for its halo tolerance, detergent and organic solvent stability. Protein Expr Purif 2015; 116:30-41. [DOI: 10.1016/j.pep.2015.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/09/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
49
|
Kumari L, Kanwar SS. Purification and Characterization of an Extracellular Cholesterol Oxidase of Bacillus subtilis Isolated from Tiger Excreta. Appl Biochem Biotechnol 2015; 178:353-67. [PMID: 26453032 DOI: 10.1007/s12010-015-1877-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
A mesophilic Bacillus sp. initially isolated from tiger excreta and later identified as a Bacillus subtilis strain was used to produce an extracellular cholesterol oxidase (COX) in cholesterol-enriched broth. This bacterial isolate was studied for the production of COX by manipulation of various physicochemical parameters. The extracellular COX was successfully purified from the cell-free culture broth of B. subtilis by successive salting out with ammonium sulfate, dialysis, and riboflavin-affinity chromatography. The purified COX was characterized for its molecular mass/structure and stability. The enzyme possessed some interesting properties such as high native Mr (105 kDa), multimeric (pentamer of ∼21 kDa protein) nature, organic solvent compatibility, and a half-life of ∼2 h at 37 °C. The bacterial COX exhibited ∼22 % higher activity in potassium phosphate buffer (pH 7.5) in the presence of a nonionic detergent Triton X-100 at 0.05 % (v/v). The K m and V max value of COX of B. subtilis COX were found to be 3.25 mM and 2.17 μmol min ml(-1), respectively. The purified COX showed very little cytotoxicity associated with it.
Collapse
Affiliation(s)
- Lata Kumari
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171 005, India.
| | - Shamsher S Kanwar
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171 005, India.
| |
Collapse
|
50
|
In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1146-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|