1
|
Abstract
Prostaglandins, particularly PGE2, are important to adult bone and joint health, but how prostaglandins act on growth plate cartilage to affect bone growth is unclear. We show that growth plate cartilage is distinct from articular cartilage with respect to cyclooxygenase (COX)-2 mRNA expression; although articular chondrocytes express very little COX-2, COX-2 expression is high in growth plate chondrocytes and is increased by IGF-I. In bovine primary growth plate chondrocytes, ATDC5 cells, and human metatarsal explants, inhibition of COX activity with nonsteroidal antiinflammatory drugs (NSAIDs) inhibits chondrocyte proliferation and ERK activation by IGF-I. This inhibition is reversed by prostaglandin E2 and prostacyclin (PGI2) but not by prostaglandin D2 or thromboxane B2. Inhibition of COX activity in young mice by ip injections of NSAIDs causes dwarfism. In growth plate chondrocytes, inhibition of proliferation and ERK activation by NSAIDs is reversed by forskolin, 8-bromoadenosine, 3',5'-cAMP and a prostacyclin analog, iloprost. The inhibition of proliferation and ERK activation by celecoxib is also reversed by 8CPT-2Me-cAMP, an activator of Epac, implicating the small G protein Rap1 in the pathway activated by iloprost. These results imply that prostacyclin is required for proper growth plate development and bone growth.
Collapse
Affiliation(s)
- Michele R Hutchison
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | |
Collapse
|
2
|
Abstract
Osteoporosis is a skeletal disorder characterized by low bone mass and micro-architectural deterioration of bone tissue with a consequent increase in bone fragility and susceptibility to fracture. Evidence is now accumulating from human studies that programming of bone growth might be an important contributor to the later risk of osteoporotic fracture. Body weight in infancy is a determinant of adult bone mineral content, as well as of the basal levels of activity of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) and hypothalamo-pituitary-adrenal (HPA) axes, and recent work has suggested a central role for vitamin D. Epidemiological studies have shown that maternal smoking and nutrition during pregnancy influence intrauterine skeletal mineralization. Childhood growth rates have been directly linked to the risk of hip fracture many decades later, and now evidence is emerging from experimental animal studies that support these observational data. Recent studies have also highlighted epigenetic phenomena as potential mechanisms underlying the findings from epidemiological studies.
Collapse
|
3
|
Doroudi M, Schwartz Z, Boyan BD. Phospholipase A2 activating protein is required for 1α,25-dihydroxyvitamin D3 dependent rapid activation of protein kinase C via Pdia3. J Steroid Biochem Mol Biol 2012; 132:48-56. [PMID: 22484374 DOI: 10.1016/j.jsbmb.2012.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/12/2012] [Accepted: 03/06/2012] [Indexed: 11/25/2022]
Abstract
1α,25-Dihydroxyvitamin D(3) (1,25D3) regulates musculoskeletal cells via two different mechanisms: vitamin D receptor (VDR)-dependent gene transcription and rapid membrane-signaling via VDR as well as protein disulfide isomerase, family A, member 3 (Pdia3). In chondrocytes from the costochondral cartilage growth zone (GC), ligand binding to Pdia3 causes a rapid increase in phospholipase A(2) (PLA(2)) activity leading to release of arachidonic acid and formation of lysophospholipid (LPL). LPL activates phospholipase C (PLC), and resulting inositol trisphosphate (IP(3)) and diacylglycerol contribute to PKCα activation and downstream activation of ERK1/2. PLA(2) activating protein (PLAA) is increased in the growth zone of rat growth plates suggesting that it mediates the 1,25D3-dependent pathway. This study examined the role of PLAA in mediating 1,25D3-dependent PKC activation using GC cells and MC3T3-E1 wild-type and PLAA-silenced osteoblasts as models. PLAA, Pdia3, and caveolin-1 (Cav-1) were detected in plasma membranes and caveolae of GC and MC3T3-E1 cells. Pdia3-immunoprecipitated samples were positive for PLAA only after 1,25D3 treatment. Cav-1 was detected when immunoprecipitated with anti-Pdia3 and anti-PLAA in both vehicle and 1,25D3 treated cells. These observations were confirmed by immunohistochemistry. 1,25D3 failed to activate PLA(2) and PKC or cause PGE(2) release in PLAA-silenced cells. PLAA-antibody successfully blocked the PLAA protein and consequently suppressed PKC activity in GC and MC3T3-E1 cells. Crosslinking studies confirmed the localization of PLAA on the extracellular face on the plasma membrane in untreated MC3T3-E1 cells. Taken together, our results suggest that PLAA is an important mediator of 1α,25(OH)(2)D(3) rapid membrane mediated signaling. 1α,25(OH)(2)D(3) likely causes conformational changes bringing Pdia3 into proximity with PLAA, and aiding in transducing the signal from caveolae to the plasma membrane.
Collapse
Affiliation(s)
- Maryam Doroudi
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
4
|
Chang Y, Zhang L, Wang C, Jia XY, Wei W. Paeoniflorin inhibits function of synoviocytes pretreated by rIL-1α and regulates EP4 receptor expression. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1275-1282. [PMID: 21840386 DOI: 10.1016/j.jep.2011.07.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To investigate the effect of the Paeoniflorin (Pae), a main active component of total glucosides of paeony (TGP) extracted from the root of Paeonia lactiflora, on regulation of synoviocytes cultured from rats collagen-induced arthritis (CIA) in vitro. MATERIALS AND METHODS CIA was induced in male Sprague-Dawley rats immunized with chicken type II collagen (CCII) in Freund's complete adjuvant. The levels of interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), prostaglandin E(2) (PGE(2)) and cyclic adenosine monophosphate (cAMP) were measured by radioimmunoassay. The proliferation responses was determined by the 3-(4,5-2dimethylthiazal-2yl) 2,5-diphenyltetrazoliumbromide (MTT) assay. Expression of E-prostanoid (EP(4)) receptor was detected by Western blotting technique. RESULTS Treatment of Pae (2.5, 12.5, 62.5 μg/ml) significantly decreased the production of IL-1 and TNF-α. Recombinant interleukin-1 (rIL-1α) (10 ng/ml) apparently stimulated synoviocyte, thymocyte and splenocyte proliferation, and Pae (12.5, 62.5 μg/ml) inhibited abnormal proliferation responses stimulated by rIL-1α. Moreover, rIL-1α time- and concentration-dependently increased production of PGE(2). The production of PGE(2) produced by synoviocytes from CIA rats significantly inhibited by administration of Pae (12.5, 62.5 μg/ml). rIL-1α (10 ng/ml) decreased cAMP of synoviocytes cells treated for 24h. Similarly rIL-1α (0.1, 1, 10 ng/ml) induced a concentration-dependent decrease in the production of cAMP at 24h. Pae (12.5, 62.5 μg/ml) increased the production of cAMP in synoviocytes. The immunoblot, Pae (12.5, 62.5 μg/ml) apparently increased the expression of EP(4) receptor in synoviocytes stimulated by rIL-1α (10 ng/ml). CONCLUSIONS The present study indicates that Pae might exert its anti-inflammatory effects through suppressing synoviocytes function and regulating immune cells responses in CIA rats, which might be associated with its ability to up-regulate the E-prostanoid (EP(4)) receptor protein expression and modulate intracellular cAMP level.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Benzoates/pharmacology
- Blotting, Western
- Bridged-Ring Compounds/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen Type II
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Glucosides/pharmacology
- Interleukin-1alpha/metabolism
- Male
- Monoterpenes
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP4 Subtype/drug effects
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Recombinant Proteins/metabolism
- Spleen/drug effects
- Spleen/immunology
- Synovial Membrane/drug effects
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Thymocytes/drug effects
- Thymocytes/immunology
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, Meishan Road, Hefei 230032, Anhui Province, China.
| | | | | | | | | |
Collapse
|
5
|
Lui JCK, Andrade AC, Forcinito P, Hegde A, Chen W, Baron J, Nilsson O. Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone 2010; 46:1380-90. [PMID: 20096814 PMCID: PMC3418671 DOI: 10.1016/j.bone.2010.01.373] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 01/02/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Growth plates are spatially polarized and structured into three histologically and functionally distinct layers-the resting zone (RZ), proliferative zone (PZ), and hypertrophic zone (HZ). With age, growth plates undergo functional and structural senescent changes including declines of growth rate, proliferation rate, growth plate height and cell number. To explore the mechanisms responsible for spatially-associated differentiation and temporally-associated senescence of growth plate in an unbiased manner, we used microdissection to collect individual growth plate zones from proximal tibiae of 1-week rats and the PZ and early hypertrophic zones of growth plates from 3-, 6-, 9-, and 12-week rats and analyzed gene expression using microarray. We then used bioinformatic approaches to identify significant changes in biological functions, molecular pathways, transcription factors and also to identify specific gene products that can be used as molecular markers for individual zones or for temporal development.
Collapse
Affiliation(s)
- Julian C. K. Lui
- Developmental Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892
| | - Anenisia C. Andrade
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Woman and Child Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Patricia Forcinito
- Developmental Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892
| | | | - WeiPing Chen
- The Genomics Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, 20892
| | - Jeffrey Baron
- Developmental Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892
| | - Ola Nilsson
- Center for Molecular Medicine and Pediatric Endocrinology Unit, Department of Woman and Child Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
6
|
Maternal diet, behaviour and offspring skeletal health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1760-72. [PMID: 20617058 PMCID: PMC2872349 DOI: 10.3390/ijerph7041760] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/10/2010] [Accepted: 04/15/2010] [Indexed: 12/22/2022]
Abstract
Osteoporotic fracture has a major impact upon health, both in terms of acute and long term disability and economic cost. Peak bone mass, achieved in early adulthood, is a major determinant of osteoporosis risk in later life. Poor early growth predicts reduced bone mass, and so risk of fracture in later life. Maternal lifestyle, body build and 25(OH) vitamin D status predict offspring bone mass. Recent work has suggested epigenetic mechanisms as key to these observations. This review will explore the role of the early environment in determining later osteoporotic fracture risk.
Collapse
|
7
|
Li X, Ellman M, Muddasani P, Wang JHC, Cs-Szabo G, van Wijnen AJ, Im HJ. Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. ACTA ACUST UNITED AC 2009; 60:513-23. [PMID: 19180509 DOI: 10.1002/art.24258] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To elucidate the pathophysiologic links between prostaglandin E(2) (PGE(2)) and osteoarthritis (OA) by characterizing the catabolic effects of PGE(2) and its unique receptors in human adult articular chondrocytes. METHODS Human adult articular chondrocytes were cultured in monolayer or alginate beads with and without PGE(2) and/or agonists of EP receptors, antagonists of EP receptors, and cytokines. Cell survival, proliferation, and total proteoglycan synthesis and accumulation were measured in alginate beads. Chondrocyte-related gene expression and phosphatidylinositol 3-kinase/Akt signaling were assessed by real-time reverse transcription-polymerase chain reaction and Western blotting, respectively, using a monolayer cell culture model. RESULTS Stimulation of human articular chondrocytes with PGE(2) through the EP2 receptor suppressed proteoglycan accumulation and synthesis, suppressed aggrecan gene expression, did not appreciably affect expression of matrix-degrading enzymes, and decreased the type II collagen:type I collagen ratio. EP2 and EP4 receptors were expressed at higher levels in knee cartilage than in ankle cartilage and in a grade-dependent manner. PGE(2) titration combined with interleukin-1 (IL-1) synergistically accelerated expression of pain-associated molecules such as inducible nitric oxide synthase and IL-6. Finally, stimulation with exogenous PGE(2) or an EP2 receptor-specific agonist inhibited activation of Akt that was induced by insulin-like growth factor 1. CONCLUSION PGE(2) exerts an antianabolic effect on human adult articular cartilage in vitro, and EP2 and EP4 receptor antagonists may represent effective therapeutic agents for the treatment of OA.
Collapse
Affiliation(s)
- Xin Li
- Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
8
|
Developmental origins of osteoporotic fracture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [PMID: 19227545 DOI: 10.1007/978-1-4020-8749-3_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
|
9
|
Watanabe Y, Namba A, Honda K, Aida Y, Matsumura H, Shimizu O, Suzuki N, Tanabe N, Maeno M. IL-1beta stimulates the expression of prostaglandin receptor EP4 in human chondrocytes by increasing production of prostaglandin E2. Connect Tissue Res 2009; 50:186-93. [PMID: 19444759 DOI: 10.1080/03008200802588451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Prostaglandin (PG) E(2), which exerts its actions via the PG receptors EP1-4, is produced from arachidonic acid by cyclooxygenase (COX)-1 and COX-2. The aim of this study was to investigate the mechanisms by which interleukin (IL)-1beta induces the expression of PG receptors in cultured human chondrocytes and to explore the role of PGE(2) in this process. The cells were cultured with 0, 10, or 100 U/mL IL-1beta with or without 1 muM celecoxib, a specific inhibitor of COX-2, for up to 28 days. Expression of the genes encoding COX-1, COX-2, and EP1-4 was quantified using real-time PCR, and expression of the corresponding proteins was examined using immunohistochemical staining. PGE(2) production was determined using ELISA. IL-1beta treatment caused a marked dose- and time-dependent increase in the levels of PGE(2), COX-2, and EP4 as compared with the untreated control. It did not affect the expression of COX-1, and it decreased the expression of EP1 and EP2. EP3 expression was not detected in either the absence or the presence of IL-1beta. When celecoxib was also present, IL-1beta failed to stimulate PGE(2) production and EP4 expression, but its stimulatory effect on COX-2 expression and its inhibitory effect on EP1 and EP2 expression were unchanged. IL-1beta increases the production of PGE(2), COX-2, and the PG receptor EP4 in cultured human chondrocytes. The increase in EP4 expression appears to be a result of the increased PGE(2) production.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Nihon University Graduate School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mastbergen SC, Bijlsma JWJ, Lafeber FPJG. Synthesis and release of human cartilage matrix proteoglycans are differently regulated by nitric oxide and prostaglandin-E2. Ann Rheum Dis 2008; 67:52-8. [PMID: 17485421 DOI: 10.1136/ard.2006.065946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Recent studies showed beneficial effects of COX-2 inhibition on proteoglycan turnover of both IL-1beta/tumour necrosis factor alpha (TNFalpha) damaged cartilage and of osteoarthritic cartilage. Although proteoglycan release and content were normalised, proteoglycan synthesis was only partially influenced. Prostaglandin-E2 is the main product formed by COX-2. We therefore evaluate the role of prostaglandin-E2 in relation to nitric oxide in disturbing cartilage proteoglycan turnover. METHODS Human healthy cartilage, alone or in the presence of IL-1beta+TNFalpha, was cultured for 7 days with or without prostaglandin-E2 or the selective COX-2 inhibitor (celecoxib 10 microM). Changes in cartilage matrix proteoglycan turnover, levels of prostaglandin-E2 and nitric oxide were determined. RESULTS Proteoglycan synthesis and release of the cartilage were not affected by prostaglandin-E2 alone. Addition of IL-1beta+TNFalpha to healthy cartilage resulted in inhibition of proteoglycan synthesis and increase in proteoglycan release. When prostaglandin-E2 was added, in addition to IL-1beta+TNFalpha, proteoglycan release increased further, but proteoglycan synthesis was not influenced further. Addition of a selective COX-2 inhibitor to the IL-1beta+TNFalpha treated cartilage inhibited the enhanced prostaglandin-E2 production and almost completely normalised proteoglycan release, whereas synthesis remained unaffected. Also, the enhanced NO-levels remained elevated. Prostaglandin-E2 levels correlated significantly with proteoglycan release, whereas NO levels correlated significantly with proteoglycan synthesis. CONCLUSION The present results suggest involvement of prostaglandin-E2 in enhanced cartilage proteoglycan release but not synthesis, although healthy cartilage has to be sensitised by IL-1beta+tumour necrosis factor alpha (TNFalpha). IL-1beta+TNFalpha induced NO seems to be involved in inhibition of proteoglycan synthesis, independent of prostaglandin-E2, and thus seems insensitive to regulation by (selective) COX-2 inhibitors.
Collapse
Affiliation(s)
- S C Mastbergen
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
11
|
Abstract
Prostanoid pathway in hair follicle gained closer attention since trichogenic side-effects on hair growth has been observed concomitantly with prostaglandin F(2alpha) receptor (FP) agonist treatment of intraocular pressure. We thus investigated prostanoid receptor distribution in anagen hair follicle and different cell types from hair and skin. Using RT-PCR, Western blot and immunohistochemistry (IHC), we found that all receptors were present in hair follicle. This data shed new light on an underestimated complex network involved in hair growth control. Indeed most of these receptors showed a wide spectrum of expression in cultured cells and the whole hair follicle. Using IHC, we observed that expression of prostaglandin E(2) receptors (EP(2), EP(3), EP(4)), prostaglandin D(2) receptor (DP(2)), prostanoid thromboxane A(2) receptor (TP) and to a lesser extent EP(1) involved several hair follicle compartments. On the opposite, Prostaglandin I(2) receptor (IP) and DP(1) were more specifically expressed in hair cuticle layer and outer root sheath (ORS) basal layer, respectively. FP expression was essentially restricted to ORS companion layer and dermal papilla (DP). Although extracting a clear functional significance from this intricate network remains open challenge, FP labelling, i.e. could explain the biological effect of PGF(2alpha) on hair regrowth, by directly modulating DP function.
Collapse
|
12
|
Malorni W, Campesi I, Straface E, Vella S, Franconi F. Redox features of the cell: a gender perspective. Antioxid Redox Signal 2007; 9:1779-801. [PMID: 17822369 DOI: 10.1089/ars.2007.1596] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse subcellular activities, including cell proliferation,differentiation and, in some instances, cell injury and death. The implications of reactive species inhuman pathology have also been studied in detail. However, although the role of free radicals in the pathogenesis of human diseases has been extensively analyzed in different systems (i.e., in vitro, ex vivo, and in vivo),it is still far from elucidated. In particular, the possible role of gender 4 differences in human pathophysiology associated with reactive species is a promising new field of investigation. Although the complex scenario this presents is still incomplete, important gender-associated "redox features" of cells have already been described in the literature. Here we summarize the different aspects of redox-associated molecules and enzymes in regard to gender differences in terms of the intracellular production and biochemical activity of reactive species. These are often associated with the pathogenetic mechanisms underlying several human morbidities(e.g., degenerative diseases) and can represent a specific target for new pharmacologic strategies. Gender differences may thus pose an important challenge for future studies aimed at the clinical management of diseases characterized by a redox imbalance.
Collapse
Affiliation(s)
- Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita', Rome, Italy.
| | | | | | | | | |
Collapse
|
13
|
Ashton N, Al-Wasil SH, Bond H, Berry JL, Denton J, Freemont AJ. The effect of a low-protein diet in pregnancy on offspring renal calcium handling. Am J Physiol Regul Integr Comp Physiol 2007; 293:R759-65. [PMID: 17567711 DOI: 10.1152/ajpregu.00523.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low birth weight humans and rats exposed to a low-protein diet in utero have reduced bone mineral content. Renal calcium loss during the period of rapid skeletal growth is associated with bone loss. Because young rats exposed to low protein display altered renal function, we tested the hypothesis that renal calcium excretion is perturbed in this model. Pregnant Wistar rats were fed isocalorific diets containing either 18% (control) or 9% (low) protein throughout gestation. Using standard renal clearance techniques, Western blotting for renal calcium transport proteins, and assays for Na+-K+-ATPase activity and serum calcitropic hormones, we characterized calcium handling in 4-wk-old male offspring. Histomorphometric analyses of femurs revealed a reduction in trabecular bone mass in low-protein rats. Renal calcium (control vs. low protein: 10.4 ± 2.1 vs. 27.6 ± 4.5 nmol·min−1·100 g body wt−1; P < 0.01) and sodium excretion were increased, but glomerular filtration rate was reduced in low-protein animals. Total plasma calcium was reduced in low-protein rats ( P < 0.01), but ionized calcium, serum calcitropic hormone concentrations, and total body calcium did not differ. There was no significant change in plasma membrane Ca2+-ATPase pump, epithelial calcium channel, or calbindin-D28K expression in low-protein rat kidneys. However, Na+-K+-ATPase activity was 36% lower ( P < 0.05) in low-protein rats. These data suggest that the hypercalciuria of low-protein rats arises through a reduction in passive calcium reabsorption in the proximal tubule rather than active distal tubule uptake. This may contribute to the reduction in bone mass observed in this model.
Collapse
Affiliation(s)
- Nick Ashton
- Faculty of Life Sciences, University of Manchester, 1.124 Stopford Bldg., Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Alvarez-Soria MA, Largo R, Sanchez-Pernaute O, Calvo E, Egido J, Herrero-Beaumont G. Prostaglandin E2 receptors EP1 and EP4 are up-regulated in rabbit chondrocytes by IL-1β, but not by TNFα. Rheumatol Int 2007; 27:911-7. [PMID: 17401567 DOI: 10.1007/s00296-007-0328-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 02/24/2007] [Indexed: 10/23/2022]
Abstract
Prostaglandin E2 (PGE2) exerts its actions through the binding of the high affinity EP receptors. We wanted to evaluate the regulation of EP1 and EP4, and the expression of cyclooxygenase (COX)-2, main enzyme responsible for PGE2 synthesis in inflammatory situations, in healthy rabbit chondrocytes stimulated with inflammatory mediators locally increased during osteoarthritis. Articular chondrocytes obtained from healthy rabbits were stimulated with interleukin (IL)-1beta (0.1-100 u/ml) or tumour necrosis factor (TNF)alpha (100 ng/ml). Where indicated, cells were preincubated with non-steroidal antiinflammatory drugs (NSAIDs) (10(-6) M) to inhibit PGE2 synthesis. IL-1beta induced a dose and time-dependent increase in EP1, EP4 and COX-2 expression. However, TNFalpha presence did not induce a significant modification in EP1, EP4 or COX-2 gene expression at any time of study. NSAID presence significantly inhibited PGE2 release but did not modify the EP receptors or COX-2 expression induced by IL-1beta. Our results indicate that EP1 and EP4 receptors, and COX-2 are up-regulated in IL-1beta-stimulated chondrocytes, while no significant modifications are observed in TNFalpha-stimulated cells. NSAIDs were unable to modify the expression of these mediators induced by IL-1beta. Therefore, the increase in PGE2 synthesis, induced by IL-1beta, does not seem to mediate the increase in EP receptor expression, in rabbit chondrocytes.
Collapse
Affiliation(s)
- M Angeles Alvarez-Soria
- Joint and Bone Research Unit, Fundación Jiménez Díaz, Universidad Autónoma, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Brochhausen C, Neuland P, Kirkpatrick CJ, Nüsing RM, Klaus G. Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ--prostaglandin E2 dependent proliferation of growth plate chondrocytes. Arthritis Res Ther 2006; 8:R78. [PMID: 16646980 PMCID: PMC1526634 DOI: 10.1186/ar1948] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 11/10/2022] Open
Abstract
Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferation. Furthermore, we analysed the expression and spatial distribution of cyclooxygenase (COX)-1 and COX-2 and PGE2 receptor types EP1, EP2, EP3 and EP4 in the growth plate in situ and in vitro. PGE2 synthesis was determined by mass spectrometry, cell proliferation by DNA [3H]-thymidine incorporation, mRNA expression of cyclooxygenases and EP receptors by RT-PCR on cultured cells and in homogenized growth plates. To determine cellular expression, frozen sections of rat tibial growth plate and primary chondrocyte cultures were stained using immunohistochemistry with polyclonal antibodies directed towards COX-1, COX-2, EP1, EP2, EP3, and EP4. Cultured growth plate chondrocytes transiently secreted PGE2 into the culture medium. Although both enzymes were expressed in chondrocytes in vitro and in vivo, it appears that mainly COX-2 contributed to PGE2-dependent proliferation. Exogenously added PGE2 stimulated DNA synthesis in a dose-dependent fashion and gave a bell-shaped curve with a maximum at 10-8 M. The EP1/EP3 specific agonist sulprostone and the EP1-selective agonist ONO-D1-004 increased DNA synthesis. The effect of PGE2 was suppressed by ONO-8711. The expression of EP1, EP2, EP3, and EP4 receptors in situ and in vitro was observed; EP2 was homogenously expressed in all zones of the growth plate in situ, whereas EP1 expression was inhomogenous, with spared cells in the reserve zone. In cultured cells these four receptors were expressed in a subset of cells only. The most intense staining for the EP1 receptor was found in polygonal cells surrounded by matrix. Expression of receptor protein for EP3 and EP4 was observed also in rat growth plates. In cultured chrondrocytes, however, only weak expression of EP3 and EP4 receptor was detected. We suggest that in growth plate chondrocytes, COX-2 is responsible for PGE2 release, which stimulates cell proliferation via the EP1 receptor.
Collapse
Affiliation(s)
| | - Pia Neuland
- Department of Pediatrics, Philipps-University, Marburg, Germany
| | | | - Rolf M Nüsing
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | - Günter Klaus
- Department of Pediatrics, Philipps-University, Marburg, Germany
| |
Collapse
|
16
|
Boyan BD, Wang L, Wong KL, Jo H, Schwartz Z. Plasma membrane requirements for 1alpha,25(OH)2D3 dependent PKC signaling in chondrocytes and osteoblasts. Steroids 2006; 71:286-90. [PMID: 16325216 DOI: 10.1016/j.steroids.2005.09.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] acts on chondrocytes and osteoblasts through traditional nuclear Vitamin D receptor (VDR) mechanisms as well as through rapid actions on plasma membranes that initiate intracellular signaling pathways. We have investigated the mechanisms involved in activation of protein kinase C (PKC) and downstream biological responses that depend on the latter pathway. These studies show that PKC activation depends on presence of a membrane receptor ERp60 and rapid increases in phospholipase A(2) (PLA(2)) activity. Cells that are responsive to 1alpha,25(OH)(2)D(3) express PLA(2) activating protein (PLAA), suggesting a link between ERp60 and PLA(2). Increased PLA(2) results in increased arachidonic acid release and formation of lysophospholipid, which then activates phospholipase C beta (PLCbeta), leading to rapid formation of inositol-trisphosphate (IP3) and diacylglycerol (DAG). PLA(2), PLC, and DAG are all associated with lipid rafts including caveolae in many cells, suggesting that the caveolar environment may be an important mediator of PKC activation by 1alpha,25(OH)(2)D(3). Here, we use the VDR(-/-) mouse costochondral cartilage growth plate to examine the expression of ERp60 and PLAA in vivo in 1alpha,25(OH)(2)D(3)-responsive hypertrophic chondrocytes (growth zone cells) and in resting zone cells that do not respond to this Vitamin D metabolite in vitro. In addition, we determined if intact lipid rafts are required for the response of rat costochondral cartilage growth zone cells to 1alpha,25(OH)(2)D(3). The results show that ERp60 and PLAA are localized to 1alpha,25(OH)(2)D(3)-responsive growth zone cells and metaphyseal osteoblasts, even in VDR(-/-) mice. Disruption of lipid rafts using beta-cyclodextrin blocks the activation of PKC by 1alpha,25(OH)(2)D(3) and reduces the ability of 1alpha,25(OH)(2)D(3) to regulate [(35)S]-sulfate incorporation.
Collapse
Affiliation(s)
- Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia, Tech and Emory University, Georgia Institute of Technology, Atlanta, 30332-0363, USA.
| | | | | | | | | |
Collapse
|
17
|
Thomas W, Coen N, Faherty S, Flatharta CO, Harvey BJ. Estrogen induces phospholipase A2 activation through ERK1/2 to mobilize intracellular calcium in MCF-7 cells. Steroids 2006; 71:256-65. [PMID: 16375935 DOI: 10.1016/j.steroids.2005.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/05/2005] [Accepted: 10/31/2005] [Indexed: 12/29/2022]
Abstract
The principal secreted estrogen, 17beta-estradiol rapidly activates signaling cascades that regulate important physiological processes including ion transport across membranes, cytosolic pH and cell proliferation. These effects have been extensively studied in the MCF-7 estrogen-responsive human breast carcinoma cell line. Here, we demonstrate that a physiological concentration of 17beta-estradiol caused a rapid, synchronous and transient increase in intracellular calcium concentration in a confluent monolayer of MCF-7 cells 2-3 min after treatment. This response was abolished when cells were pre-incubated with the phospholipase A(2) (PLA(2)) inhibitor quinacrine or with the cyclooxygenase inhibitor indomethacin. The translocation of GFP-cPLA(2)alpha to perinuclear membranes occurred 1-2 min after 17beta-estradiol treatment; this translocation was concurrent with the transient phosphorylation of cPLA(2)alpha at serine residue 505. The phosphorylation and translocation of cPLA(2) were sensitive to inhibition of the extracellular signal regulated kinase (ERK) signaling cascade and occurred simultaneously with a transient activation of ERK. The phosphorylation of cPLA(2) could be stimulated by membrane impermeable 17beta-estradiol conjugated to bovine serum albumen and was blocked by an antagonist of the classical estrogen receptor. Here we show, for the first time, that PLA(2) and the eicosanoid biosynthetic pathway are involved in the 17beta-estradiol induced rapid calcium responses of breast cancer cells.
Collapse
Affiliation(s)
- Warren Thomas
- Charitable Infirmary Trust Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Beaumont Hospital, P.O. Box 9063, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
18
|
Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int 2006; 17:337-47. [PMID: 16331359 DOI: 10.1007/s00198-005-2039-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
Osteoporosis is a major cause of morbidity and mortality through its association with age-related fractures. Although most effort in fracture prevention has been directed at retarding the rate of age-related bone loss and reducing the frequency and severity of trauma among elderly people, evidence is growing that peak bone mass is an important contributor to bone strength during later life. The normal patterns of skeletal growth have been well characterised in cross-sectional and longitudinal studies. It has been confirmed that boys have higher bone mineral content (BMC), but not volumetric bone density, than girls. Furthermore, there is a dissociation between the peak velocities for height gain and bone mineral accrual in both genders. Puberty is the period during which volumetric density appears to increase in both axial and appendicular sites. Many factors influence the accumulation of bone mineral during childhood and adolescence, including heredity, gender, diet, physical activity, endocrine status, and sporadic risk factors such as cigarette smoking. In addition to these modifiable factors during childhood, evidence has also accrued that fracture risk might be programmed during intrauterine life. Epidemiological studies have demonstrated a relationship between birth weight, weight in infancy, and adult bone mass. This appears to be mediated through modulation of the set-point for basal activity of pituitary-dependent endocrine systems such as the HPA and GH/IGF-1 axes. Maternal smoking, diet (particularly vitamin D deficiency), and physical activity also appear to modulate bone mineral acquisition during intrauterine life; furthermore, both low birth size and poor childhood growth are directly linked to the later risk of hip fracture. The optimisation of maternal nutrition and intrauterine growth should also be included within preventive strategies against osteoporotic fracture, albeit for future generations.
Collapse
Affiliation(s)
- Cyrus Cooper
- MRC Epidemiology Resource Centre and Centre for Developmental Origins of Health and Adult Disease, University of Southampton, Southampton General Hospital, Southampton , SO16 6YD, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Kanda N, Koike S, Watanabe S. Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. J Pharmacol Exp Ther 2005; 315:796-804. [PMID: 16081678 DOI: 10.1124/jpet.105.091645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Atopic dermatitis is characterized by increased skin innervation. The expression of neurotrophin-4 is enhanced in the epidermal keratinocytes of lesions with atopic dermatitis and may be related to hyperinnervation in these lesions. Prostaglandin E(2) (PGE(2)) levels are increased in lesions with atopic dermatitis; thus, PGE(2) may be involved in the development of this disease. We examined the in vitro effects of PGE(2) on neurotrophin-4 production in human keratinocytes. PGE(2) and EP1/EP3 agonist sulprostone increased neurotrophin-4 secretion and mRNA levels without altering its mRNA stability. Antisense Sp1 oligodeoxynucleotide and Sp1 inhibitor mithramycin A suppressed PGE(2) and sulprostone-induced neurotrophin-4 expression, indicating the requirement for Sp1 for expression. PGE(2) or sulprostone markedly enhanced the phosphorylation, DNA binding, and transcriptional activity of Sp1 and modestly increased Sp1 mRNA and protein levels. PGE(2) or sulprostone induced the membrane translocation of protein kinase Calpha and the phosphorylation of extracellular signal-regulated kinase (ERK). PGE(2)-induced increases in neurotrophin-4 expression, Sp1 transcriptional and DNA-binding activity, Sp1 mRNA and protein levels, and ERK phosphorylation were suppressed by antisense EP3 oligodeoxynucleotide, inhibitors of phosphatidylinositol-specific phospholipase C, conventional protein kinase C, and mitogen-activated protein kinase/ERK kinase 1 (MEK1). These results suggest that PGE(2) enhances neurotrophin-4 production by activating Sp1 via the EP3/phosphatidylinositol-specific phospholipase C/protein kinase Calpha/MEK1/ERK pathway. PGE(2) may promote innervation in skin lesions with atopic dermatitis via the induction of neurotrophin-4.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
20
|
Schwartz Z, Graham EJ, Wang L, Lossdörfer S, Gay I, Johnson-Pais TL, Carnes DL, Sylvia VL, Boyan BD. Phospholipase A2 activating protein (PLAA) is required for 1alpha,25(OH)2D3 signaling in growth plate chondrocytes. J Cell Physiol 2005; 203:54-70. [PMID: 15368540 DOI: 10.1002/jcp.20212] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phospholipase A2 (PLA2) is pivotal in the rapid membrane-mediated actions of 1,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3]. Microarray analysis indicated that PLA2 activating protein (PLAA) mRNA is upregulated 6-fold before rat growth plate cells exhibit 1alpha,25(OH)2D3-dependent protein kinase C (PKC) increases, suggesting that it plays an important role in 1alpha,25(OH)2D3's mechanism of action. PLAA mRNA was confirmed in 1alpha,25(OH)2D3-responsive growth zone (prehypertrophic and upper hypertrophic cell zones) chondrocytes by RT-PCR and Northern blot in vitro and by in situ hybridization in vivo. PLAA protein was shown by Western blot and immunohistochemistry. PLAAs role in 1alpha,25(OH)2D3 signaling was evaluated in growth zone cell cultures using PLAA peptide. Arachidonic acid release was increased as was PLA2-specific activity in plasma membranes and matrix vesicles. PKCalpha, but not PKCbeta, PKCepsilon, or PKCzeta, was increased. PLAAs effect was comparable to that of 1alpha,25(OH)2D3 and was additive with 1alpha,25(OH)2D3. PLA2 inhibitors quinacrine and AACOCF3, and cyclooxygenase inhibitor indomethacin blocked the effect of PLAA peptide on PKC, indicating arachidonic acid and its metabolites were involved. This was confirmed using exogenous arachidonic acid. Prostaglandin acted via EP1 based on inhibition by SC19220 and not via EP2 since AH6809 had no effect. Like 1alpha,25(OH)2D3, PLAA peptide also increased activity of phospholipase C-specific activity via beta-1 and beta-3 isoforms, but not delta-1 or gamma-1; the effect of PLAA was via lysophospholipid but not via arachidonic acid. PLAA peptide decreased [3H]-thymidine incorporation to 50% of the decrease caused by 1alpha,25(OH)2D3. In contrast, PLAA peptide increased alkaline phosphatase-specific activity and proteoglycan production in a manner similar to 1alpha,25(OH)2D3. This indicates that PLAA is a specific activator of PLA2 in growth plate chondrocytes, and suggests that it mediates the membrane effect of 1alpha,25(OH)2D3, thereby modulating physiological response.
Collapse
Affiliation(s)
- Z Schwartz
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Clark CA, Schwarz EM, Zhang X, Ziran NM, Drissi H, O'Keefe RJ, Zuscik MJ. Differential regulation of EP receptor isoforms during chondrogenesis and chondrocyte maturation. Biochem Biophys Res Commun 2005; 328:764-76. [PMID: 15694412 DOI: 10.1016/j.bbrc.2004.11.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Indexed: 01/22/2023]
Abstract
Regulation of chondrogenesis and chondrocyte maturation by prostaglandins has been a topic of interest during recent years. Particular focus on this area derives from the realization that inhibition of prostaglandin synthesis with non-steroidal anti-inflammatory drugs could impact these cartilage-related processes which are important in skeletal development and are recapitulated during bone healing either post-trauma or post-surgery. In addition to reviewing the relevant literature focused on prostaglandin synthesis and signaling through the G-protein coupled EP receptors, we present novel findings that establish the expression profile of EP receptors in chondroprogenitors and chondrocytes. Further, we begin to examine the signaling that may be involved with the transduction of PGE2 effects in these cells. Our findings suggest that EP2 and EP4 receptor activation of cAMP metabolism may represent a central axis of events that facilitate the impact of PGE2 on the processes of mesenchymal stem cell commitment to chondrogenesis and ultimate chondrocyte maturation.
Collapse
Affiliation(s)
- Christine A Clark
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Aoyama T, Liang B, Okamoto T, Matsusaki T, Nishijo K, Ishibe T, Yasura K, Nagayama S, Nakayama T, Nakamura T, Toguchida J. PGE2 signal through EP2 promotes the growth of articular chondrocytes. J Bone Miner Res 2005; 20:377-89. [PMID: 15746982 DOI: 10.1359/jbmr.041122] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 09/13/2004] [Accepted: 10/15/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED EP2 was identified as the major PGE2 receptor expressed in articular cartilage. An EP2 agonist increased intracellular cAMP in articular chondrocytes, stimulating DNA synthesis in both monolayer and 3D cultures. Hence, the EP2 agonist may be a potent therapeutic agent for degenerative cartilage diseases. INTRODUCTION Prostaglandin E2 (PGE2) exhibits pleiotropic effects in various types of tissue through four types of receptors, EP1-4. We examined the expression of EPs and effects of agonists for each EP on articular chondrocytes. MATERIALS AND METHODS The expression of each EP in articular chondrocytes was examined by immunohistochemistry and RT-PCR. A chondrocyte cell line, MMA2, was established from articular cartilage of p53(-/-) mice and used to analyze the effects of agonists for each EP. A search for molecules downstream of the PGE2 signal through the EP2 agonist was made by cDNA microarray analysis. The growth-promoting effect of the EP2 agonist on chondrocytes surrounded by cartilage matrix was examined in an organ culture of rat femora. RESULTS AND CONCLUSION EP2 was identified as the major EP expressed in articular cartilage. Treatment of MMA2 cells with specific agonists for each EP showed that only the EP2 agonist significantly increased intracellular cAMP levels in a dose-dependent manner. Gene expression profiling of MMA2 revealed a set of genes upregulated by the EP2 agonist, including several growth-promoting and apoptosis-protecting genes such as the cyclin D1, fibronectin, integrin alpha5, AP2alpha, and 14-3-3gamma genes. The upregulation of these genes by the EP2 agonist was confirmed in human articular chondrocytes by quantitative mRNA analysis. On treatment with the EP2 agonist, human articular chondrocytes showed an increase in the incorporation of 5-bromo-2-deoxyuracil (BrdU), and the organ culture of rat femora showed an increase of proliferating cell nuclear antigen (PCNA) staining in articular chondrocytes surrounded by cartilage matrix, suggesting growth-promoting effects of the PGE2 signal through EP2 in articular cartilage. These results suggested that the PGE2 signal through EP2 enhances the growth of articular chondrocytes, and the EP2 agonist is a candidate for a new therapeutic compound for the treatment of degenerative cartilage diseases.
Collapse
Affiliation(s)
- Tomoki Aoyama
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Caristi S, Piraino G, Cucinotta M, Valenti A, Loddo S, Teti D. Prostaglandin E2 induces interleukin-8 gene transcription by activating C/EBP homologous protein in human T lymphocytes. J Biol Chem 2005; 280:14433-42. [PMID: 15659384 DOI: 10.1074/jbc.m410725200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of prostaglandin E(2) (PGE(2)) in regulating the synthesis of the pro-inflammatory chemokine interleukin-8 (IL-8) in T lymphocytes is not yet defined, even though it may reduce or enhance IL-8 synthesis in other cell types. Here, we demonstrate that, in human T cells, PGE(2) induced IL-8 mRNA transcription through prostaglandin E(2) receptors 1- and 4-dependent signal transduction pathways leading to the activation of the transcription factor C/EBP homologous protein (CHOP), never before implicated in IL-8 transcription. Several kinases, including protein kinase C, Src family tyrosine kinases, phosphatidylinositol 3-kinase, and p38 MAPK, were involved in PGE(2)-induced CHOP activation and IL-8 production. The transactivation of the IL-8 promoter by CHOP was NF-kappaB-independent. Our data suggest that PGE(2) acts as a potent pro-inflammatory mediator by inducing IL-8 gene transcription in activated T cells through different signal transduction pathways leading to CHOP activation. These findings show the complexity with which PGE(2) regulates IL-8 synthesis by inhibiting or enhancing its production depending on the cell types and environmental conditions.
Collapse
MESH Headings
- Adult
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/metabolism
- CD28 Antigens/biosynthesis
- Densitometry
- Dinoprostone/physiology
- Electrophoresis, Polyacrylamide Gel
- Humans
- Inflammation
- Interleukin-8/biosynthesis
- Interleukin-8/metabolism
- Jurkat Cells
- Lymphocyte Activation
- Models, Biological
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Promoter Regions, Genetic
- Protein Kinase C/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Prostaglandin E/chemistry
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes/metabolism
- Time Factors
- Transcription Factor CHOP
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
- p38 Mitogen-Activated Protein Kinases/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Silvana Caristi
- Department of Experimental Pathology and Microbiology, University of Messina, 98125 Messina, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Zhang X, Ziran N, Goater JJ, Schwarz EM, Puzas JE, Rosier RN, Zuscik M, Drissi H, O'Keefe RJ. Primary murine limb bud mesenchymal cells in long-term culture complete chondrocyte differentiation: TGF-beta delays hypertrophy and PGE2 inhibits terminal differentiation. Bone 2004; 34:809-17. [PMID: 15121012 DOI: 10.1016/j.bone.2003.12.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 12/01/2003] [Accepted: 12/08/2003] [Indexed: 10/26/2022]
Abstract
In vitro models of endochondral bone formation using both primary and immortalized cells have provided insight regarding factors and signaling pathways involved in chondrocyte maturation and endochondral bone formation. However, primary murine cell culture models of chondrocyte differentiation have not been established but have enormous potential due to the possible use of cells from transgenic and knockout animals. Here, we show that stage E11.5 embryonic murine limb bud mesenchymal stem cells in micromass cell culture progress through the stages of chondrogenesis, chondrocyte hypertrophy, terminal differentiation, and matrix calcification. This cell culture system recapitulated the sequential expression of genes that characterize chondrocyte differentiation, including Sox9, col2, colX, MMP13, VEGF, and osteocalcin. TGF-beta treatment for up to 21 days markedly delayed the rate of chondrocyte maturation and inhibited matrix calcification and its related gene expression. In TGF-beta-treated cultures, the hypertrophic and terminal differentiation markers colX, VEGF, MMP13, and osteocalcin were reduced or absent. PGE2 had minimal effects on chondrocyte hypertrophy but delayed terminal differentiation and matrix calcification. Thus, primary murine mesenchymal cells sequentially differentiate through the various stages of chondrocyte maturation and establish a model whereby the role of specific signaling molecules can be examined in cells derived from transgenic or knockout mice.
Collapse
Affiliation(s)
- Xinping Zhang
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Boyan BD, Jennings EG, Wang L, Schwartz Z. Mechanisms regulating differential activation of membrane-mediated signaling by 1alpha,25(OH)2D3 and 24R,25(OH)2D3. J Steroid Biochem Mol Biol 2004; 89-90:309-15. [PMID: 15225791 DOI: 10.1016/j.jsbmb.2004.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin D metabolites 1alpha,25(OH)(2)D(3) and 24R,25(OH)(2)D(3) regulate endochondral ossification in a cell maturation-dependent manner via membrane-mediated mechanisms. 24R,25(OH)(2)D(3) stimulates PKC activity in chondrocytes from the growth plate resting zone, whereas 1alpha,25(OH)(2)D(3) stimulates PKC in growth zone chondrocytes. We used the rat costochondral growth plate cartilage cell model to study how these responses are differentially regulated. 1alpha,25(OH)(2)D(3) acts on PKC, MAP kinase, and downstream physiological responses via phosphatidylinositol-specific PLC-beta; 24R,25(OH)(2)D(3) acts via PLD. In both cases, diacylglycerol (DAG) is increased, activating PKC. Both cell types possess membrane and nuclear receptors for 1alpha,25(OH)(2)D(3), but the mechanisms that render the 1alpha,25(OH)(2)D(3) pathway silent in resting zone cells or the 24R,25(OH)(2)D(3) pathway silent in growth zone cells are unclear. PLA(2) is pivotal in this process. 1alpha,25(OH)(2)D(3) stimulates PLA(2) activity in growth zone cells and 24R,25(OH)(2)D(3) inhibits PLA(2) activity in resting zone cells. Both processes result in PKC activation. To understand how negative regulation of PLA(2) results in increased PKC activity in resting zone cells, we used PLA(2) activating peptide to stimulate PLA(2) activity and examined cell response. PLAP is not expressed in resting zone cells in vivo, supporting the hypothesis that PLA(2) activation is inhibitory to 24R,25(OH)(2)D(3) action in these cells.
Collapse
Affiliation(s)
- B D Boyan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive NW, Atlanta, GE 30332, USA.
| | | | | | | |
Collapse
|
26
|
Miyamoto M, Ito H, Mukai S, Kobayashi T, Yamamoto H, Kobayashi M, Maruyama T, Akiyama H, Nakamura T. Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthritis Cartilage 2003; 11:644-52. [PMID: 12954235 DOI: 10.1016/s1063-4584(03)00118-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Prostaglandin E(2)(PGE(2)) has been reported to stimulate chondrocyte differentiation. However, the precise actions and signal transduction pathways of PGE(2)in cartilage are largely unknown. Our purpose is to identify which of the four PGE(2)receptor subtype(s), EP1-4, mediates the action of PGE(2)on chondrocyte differentiation. DESIGN We used primary chondrocytes derived from the resting zone of rat rib cartilage. The effects on chondrocyte differentiation were assessed by measuring the Alcian blue-stainable proteoglycan content and the expression levels of type II collagen mRNA by Northern blot analysis. The expression of the four PGE(2)receptor subtypes in rat primary chondrocytes was examined by reverse transcription-polymerase chain reaction. RESULTS PGE(2)stimulated the accumulation of proteoglycan and up-regulated the expression of type II collagen mRNA in primary chondrocytes. Dibutyryl cAMP, a cell-permeable analog of cAMP, an important intracellular mediator of PGE(2)signaling, also enhanced the expression of type II collagen mRNA and proteoglycan accumulation in chondrocytes. No EP agonist alone induced the expression of type II collagen mRNA. However, simultaneous administration of EP2 and EP4 agonists at high concentrations cooperatively induced the expression of type II collagen mRNA, mimicking the PGE(2)effect. The simultaneous stimulation of EP2 and EP4 also cooperatively enhanced proteoglycan accumulation and intracellular cAMP production. Moreover, an EP4 antagonist partially blocked the stimulatory actions of PGE(2)on the expression of type II collagen mRNA. CONCLUSION These results suggest that simultaneous stimulation of EP2 and EP4 is necessary and sufficient to elicit the effect of PGE(2)on rat primary chondrocyte differentiation.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Collagen Type II/biosynthesis
- Collagen Type II/genetics
- Cyclic AMP/biosynthesis
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Male
- Proteoglycans/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Up-Regulation
Collapse
Affiliation(s)
- M Miyamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schwartz Z, Shaked D, Hardin RR, Gruwell S, Dean DD, Sylvia VL, Boyan BD. 1alpha,25(OH)2D3 causes a rapid increase in phosphatidylinositol-specific PLC-beta activity via phospholipase A2-dependent production of lysophospholipid. Steroids 2003; 68:423-37. [PMID: 12798493 DOI: 10.1016/s0039-128x(03)00044-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1alpha,25(OH)(2)D(3) activates protein kinase C (PKC) in rat growth plate chondrocytes via mechanisms involving phosphatidylinositol-specific phospholipase C (PI-PLC) and phospholipase A(2) (PLA(2)). The purpose of this study was to determine if 1alpha,25(OH)(2)D(3) activates PI-PLC directly or through a PLA(2)-dependent mechanism. We determined which PLC isoforms are present in the growth plate chondrocytes, and determined which isoform(s) of PLC is(are) regulated by 1alpha,25(OH)(2)D(3). Inhibitors and activators of PLA(2) were used to assess the inter-relationship between these two phospholipid-signaling pathways. PI-PLC activity in lysates of prehypertrophic and upper hypertrophic zone (growth zone) cells that were incubated with 1alpha,25(OH)(2)D(3), was increased within 30s with peak activity at 1-3 min. PI-PLC activity in resting zone cells was unaffected by 1alpha,25(OH)(2)D(3). 1beta,25(OH)(2)D(3), 24R,25(OH)(2)D(3), actinomycin D and cycloheximide had no effect on PLC in lysates of growth zone cells. Thus, 1alpha,25(OH)(2)D(3) regulation of PI-PLC enzyme activity is stereospecific, cell maturation-dependent, and nongenomic. PLA(2)-activation (mastoparan or melittin) increased PI-PLC activity to the same extent as 1alpha,25(OH)(2)D(3); PLA(2)-inhibition (quinacrine, oleyloxyethylphosphorylcholine (OEPC), or AACOCF(3)) reduced the effect of 1alpha,25(OH)(2)D(3). Neither arachidonic acid (AA) nor its metabolites affected PI-PLC. In contrast, lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) activated PI-PLC (LPE>LPC). 1alpha,25(OH)(2)D(3) stimulated PI-PLC and PKC activities via Gq; GDPbetaS inhibited activity, but pertussis toxin did not. RT-PCR showed that the cells express PLC-beta1a, PLC-beta1b, PLC-beta3 and PLC-gamma1 mRNA. Antibodies to PLC-beta1 and PLC-beta3 blocked the 1alpha,25(OH)(2)D(3) effect; antibodies to PLC-delta and PLC-gamma did not. Thus, 1alpha,25(OH)(2)D(3) regulates PLC-beta through PLA(2)-dependent production of lysophospholipid.
Collapse
Affiliation(s)
- Z Schwartz
- Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Pizauro Junior JM, Ciancaglini P, Macari M. Discondroplasia tibial: mecanismos de lesão e controle. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2002. [DOI: 10.1590/s1516-635x2002000300001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A discondroplasia tibial (DT) é atribuída a uma assincronia no processo de diferenciação dos condrócitos, levando à formação de uma camada de condrócitos pré-hipertróficos e de uma cartilagem na tíbia proximal que não é calcificada, mas é resistente à invasão vascular. Além disso, tem sido proposto que, na discondroplasia tíbial, a etapa final do processo de calcificação não ocorre devido ao fato de que os efetores de alguns genes, relacionados com o mecanismo de calcificação do disco de crescimento podem apresentar algumas de suas propriedades químicas ou biológicas alteradas e/ou não serem expressos. Nesse sentido, a compreensão do mecanismo de ação e o papel das biomoléculas e dos minerais relacionados com a discondroplasia tibial poderão contribuir para o conhecimento de doenças do tecido ósseo e estabelecer estratégias de prevenção e tratamento.
Collapse
|
29
|
McCoy JM, Wicks JR, Audoly LP. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest 2002. [DOI: 10.1172/jci0215528] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
30
|
McCoy JM, Wicks JR, Audoly LP. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest 2002; 110:651-8. [PMID: 12208866 PMCID: PMC151107 DOI: 10.1172/jci15528] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder leading to bone and cartilage destruction. A substantial body of evidence suggests that prostaglandin E2 (PGE2) contributes to the pathogenesis of RA, and nonsteroidal anti-inflammatory drugs, inhibitors of the synthesis of PGE2 and other prostanoids, continue to be used in the treatment of this disease. To begin to understand the mechanism by which prostaglandins modulate the pathophysiology of this disease, we examined mice lacking each of the four known PGE2 (EP) receptors after generation of collagen antibody-induced arthritis, an animal model of RA. Homozygous deletion of the EP1, EP2, or EP3 receptors did not affect the development of arthritis, whereas EP4 receptor-deficient mice showed decreased incidence and severity of disease. These animals also showed reduced inflammation as assessed by circulating IL-6 and serum amyloid A levels. Joint histopathology of EP4(-/-) animals revealed reduced bone destruction, proteoglycan loss, and type II collagen breakdown in cartilage compared with EP4(+/+) mice. Furthermore, liver and macrophages isolated from EP4(-/-) animals produced significantly less IL-1 beta and IL-6 than control samples. Thus, PGE2 contributes to disease progression at least in part by binding to the EP4 receptor. Antagonists of this receptor might therefore provide novel agents for the treatment of RA.
Collapse
Affiliation(s)
- Jennifer M McCoy
- Pfizer Global Research and Development, Department of Inflammation and Pathology, Groton, Connecticut 06340, USA
| | | | | |
Collapse
|
31
|
Schwartz Z, Ehland H, Sylvia VL, Larsson D, Hardin RR, Bingham V, Lopez D, Dean DD, Boyan BD. 1alpha,25-dihydroxyvitamin D(3) and 24R,25-dihydroxyvitamin D(3) modulate growth plate chondrocyte physiology via protein kinase C-dependent phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase. Endocrinology 2002; 143:2775-86. [PMID: 12072413 DOI: 10.1210/endo.143.7.8889] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane-mediated increases in protein kinase C (PKC) activity and PKC-dependent physiological responses of growth plate chondrocytes to vitamin D metabolites depend on the state of endochondral maturation; 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)] regulates growth zone (GC) cells, whereas 24R,25-(OH)(2)D(3) regulates resting zone (RC) cells. Different mechanisms, including protein kinase A signaling, mediate the effects of 1alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) on PKC, suggesting that different mechanisms may also regulate any MAPK involvement in the physiological responses. This study used confluent cultures of rat costochondral chondrocytes as a model. 1alpha,25-(OH)(2)D(3) stimulated MAPK specific activity in GC in a time- and dose-dependent manner, evident within 9 min. 24R,25-(OH)(2)D(3) stimulated MAPK in RC; increases were dose dependent, occurred after 9 min, and were greatest at 90 min. In both cells the effect was due to ERK1/2 activation (p42 > p44 in GC; p42 = p44 in RC). MAPK activation was dependent on PKC, but not protein kinase A. The effect of 1alpha,25-(OH)(2)D(3) required phospholipase C, and the effect of 24R,25-(OH)(2)D(3) required phospholipase D. Inhibition of cyclooxygenase activity reduced the effect of 1alpha,25-(OH)(2)D(3) on MAPK in GC and enhanced the effect of 24R,25-(OH)(2)D(3) in RC. Based on MAPK inhibition with PD98059, ERK1/2 MAPK mediated the effect of 24R,25-(OH)(2)D(3) on [(3)H]thymidine incorporation and [(35)S]sulfate incorporation by RC, but only partially mediated the effect of 1alpha,25-(OH)(2)D(3) on GC. ERK1/2 was not involved in the regulation of alkaline phosphatase specific activity by either metabolite. This paper supports the hypothesis that 1alpha,25-(OH)(2)D(3) regulates the physiology of GC via rapid membrane-mediated signaling pathways, and some, but not all, of the response to 1alpha,25-(OH)(2)D(3) is via the ERK family of MAPKs. In contrast, 24R,25-(OH)(2)D(3) exerts its effects on RC via PKC-dependent MAPK. Whereas 1alpha,25-(OH)(2)D(3) increases MAPK activity via phospholipase C and increased prostaglandin production, 24R,25-(OH)(2)D(3) increases MAPK via phospholipase D and decreased prostaglandin production. The cell specificity, metabolite stereospecificity, and the dependence on PKC argue for the participation of membrane receptors for 1alpha,25-(OH)(2)D(3) and 24R,25-(OH)(2)D(3) in the regulation of ERK1/2 in the growth plate.
Collapse
Affiliation(s)
- Z Schwartz
- Department of Orthopedics, University of Texas Health Science Center, San Antonio 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Rosado E, Schwartz Z, Sylvia VL, Dean DD, Boyan BD. Transforming growth factor-beta1 regulation of growth zone chondrocytes is mediated by multiple interacting pathways. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1590:1-15. [PMID: 12063164 DOI: 10.1016/s0167-4889(02)00194-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor beta 1 (TGF-beta1) affects growth plate chondrocytes through Smad-mediated mechanisms and has been shown to increase protein kinase C (PKC). This study determined if PKC mediates the physiological response of rat costochondral growth zone (GC) chondrocytes to TGF-beta1; if the physiological response occurs via type II or type III TGF-beta receptors, and, if so, which receptor mediates the increase in PKC; and the signal transduction pathways involved. Treatment of confluent GC cells with TGF-beta1 stimulated [(3)H]thymidine and [(35)S]sulfate incorporation as well as alkaline phosphatase (ALPase) and PKC specific activities. Inhibition of PKC with chelerythrine, staurosporine, or H-7 caused a dose-dependent decrease in these parameters, indicating that PKC signaling was involved. TGF-beta1-dependent PKC and the physiological response of GC cells to TGF-beta1 was reversed by anti-type II TGF-beta receptor antibody and soluble type II TGF-beta receptor, showing that TGF-beta1 mediates these effects through the type II receptor. The increase in [3H]thymidine incorporation and ALPase specific activity were also regulated by protein kinase A (PKA) signaling, since the effects of TGF-beta1 were partially blocked by the PKA inhibitor H-8. The mechanism of TGF-beta1 activation of PKC is through phospholipase A(2) (PLA(2)) and not through phospholipase C (PLC). Arachidonic acid increased PKC in control cultures and was additive with TGF-beta1. Prostanoids are required, as indomethacin blocked the effect of TGF-beta1, and Cox-1, but not Cox-2, is involved. TGF-beta1 stimulates prostaglandin E(2) (PGE(2)) production and exogenous PGE(2) stimulates PKC, but not as much as TGF-beta1, suggesting that PGE(2) is not sufficient for all of the prostaglandin effect. In contrast, TGF-beta1 was not regulated by diacylglycerol; neither dioctanoylglycerol (DOG) nor inhibition of diacylglycerol kinase with R59022 had an effect. G-proteins mediate TGF-beta1 signaling at different levels in the cascade. TGF-beta1-dependent increases in PGE(2) levels and PKC were augmented by the G protein activator GTP gamma S, whereas inhibition of G-protein activity via GDP beta S, pertussis toxin, or cholera toxin blocked stimulation of PKC by TGF-beta1, indicating that both G(i) and G(s) are involved. Inhibition of PKA with H-8 partially blocked TGF-beta1-dependent PKC, suggesting that PKA inhibition on the physiological response was via PKA regulation of PKC signaling. This indicates that multiple interacting signaling pathways are involved: TGF-beta1 stimulates PLA(2) and prostaglandin release via the action of Cox-1 on arachidonic acid. PGE(2) activates the EP2 receptor, leading to G-protein-dependent activation of PKA. PKA signaling results in increased PKC activity and PKC signaling regulates proliferation, differentiation, and matrix synthesis.
Collapse
Affiliation(s)
- Enrique Rosado
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Osteoporosis is a major cause of morbidity and mortality through its association with age-related fractures. Although most effort in fracture prevention has been directed at retarding the rate of age-related bone loss, and reducing the frequency and severity of trauma among elderly people, evidence is growing that peak bone mass is an important contributor to bone strength during later life. The normal patterns of skeletal growth have been well characterized in cross-sectional and longitudinal studies. It has been confirmed that boys have higher bone mineral content, but not volumetric bone density, than girls. Furthermore, in both genders there is a dissociation between the peak velocities for height gain and bone mineral accrual. Puberty is the period during which volumetric density appears to increase in both axial and appendicular sites. Many factors influence the accumulation of bone mineral during childhood and adolescence, including heredity, gender, diet, physical activity, endocrine status and sporadic risk factors such as cigarette smoking. Measures for maximizing bone mineral acquisition, particularly through encouraging physical activity and adequate dietary calcium intake, are likely to affect the risk of fracture in later generations. In addition to these modifiable factors during childhood, evidence has also accrued that the risk of fracture might be programmed during intrauterine life. Epidemiological studies have demonstrated a relationship between birthweight, weight in infancy and adult bone mass. This appears to be mediated through modulation of the set-point for basal activity of pituitary-dependent endocrine systems such as the hypothalamic - pitutiary - adrenal (HPA) and growth hormone/insulin-like growth factor I (GH/IGF-I) axes. Maternal smoking, diet and physical activity levels appear to modulate bone mineral acquisition during intrauterine life; furthermore, both low birth size and poor childhood growth are directly linked to the later risk of hip fracture. The optimization of maternal nutrition and intrauterine growth should also be included within preventive strategies against osteoporotic fracture, albeit for future generations.
Collapse
Affiliation(s)
- M K Javaid
- MRC Environmental Epidemiology Unit, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | |
Collapse
|
34
|
Schwartz Z, Sylvia VL, Larsson D, Nemere I, Casasola D, Dean DD, Boyan BD. 1alpha,25(OH)2D3 regulates chondrocyte matrix vesicle protein kinase C (PKC) directly via G-protein-dependent mechanisms and indirectly via incorporation of PKC during matrix vesicle biogenesis. J Biol Chem 2002; 277:11828-37. [PMID: 11805100 DOI: 10.1074/jbc.m110398200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix vesicles are extracellular organelles involved in mineral formation that are regulated by 1alpha,25(OH)(2)D(3). Prior studies have shown that protein kinase C (PKC) activity is involved in mediating the effects of 1alpha,25(OH)(2)D(3) in both matrix vesicles and plasma membranes. Here, we examined the regulation of matrix vesicle PKC by 1alpha,25(OH)(2)D(3) during biogenesis and after deposition in the matrix. When growth zone costochondral chondrocytes were treated for 9 min with 1alpha,25(OH)(2)D(3), PKCzeta in matrix vesicles was inhibited, while PKCalpha in plasma membranes was increased. In contrast, after treatment for 12 or 24 h, PKCzeta in matrix vesicles was increased, while PKCalpha in plasma membranes was unchanged. The effect of 1alpha,25(OH)(2)D(3) was stereospecific and metabolite-specific. Monensin blocked the increase in matrix vesicle PKC after 24 h, suggesting the secosteroid-regulated packaging of PKC. In addition, the 1alpha,25(OH)(2)D(3) membrane vitamin D receptor (1,25-mVDR) was involved, since a specific antibody blocked the 1alpha,25(OH)(2)D(3)-dependent changes in PKC after both long and short treatment times. In contrast, antibodies to annexin II had no effect, and there was no evidence for the presence of the nuclear VDR on Western blots. To investigate the signaling pathways involved in regulating matrix vesicle PKC activity after biosynthesis, matrix vesicles were isolated and then treated for 9 min with 1alpha,25(OH)(2)D(3) in the presence and absence of specific inhibitors. Inhibition of phosphatidylinositol-phospholipase C, phospholipase D, or G(i)/G(s) had no effect. However, inhibition of G(q) blocked the effect of 1alpha,25(OH)(2)D(3). The rapid effect of 1alpha,25(OH)(2)D(3) also involved the 1,25-mVDR. Moreover, arachidonic acid was found to stimulate PKC when added directly to isolated matrix vesicles. These results indicate that matrix vesicle PKC is regulated by 1alpha,25(OH)(2)D(3) at three levels: 1) during matrix vesicle biogenesis; 2) through direct action on the membrane; and 3) through production of other factors such as arachidonic acid.
Collapse
|
35
|
Thomas B, Thirion S, Humbert L, Tan L, Goldring MB, Béréziat G, Berenbaum F. Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 in human articular chondrocytes: role of p38 mitogen-activated protein kinase. Biochem J 2002; 362:367-73. [PMID: 11853544 PMCID: PMC1222396 DOI: 10.1042/0264-6021:3620367] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrocyte dedifferentiation has been noted in osteoarthritic cartilage, but the contribution of this phenomenon is poorly understood. Interleukin (IL)-1beta, the major pro-inflammatory cytokine found in osteoarthritic synovial fluid, induces the dedifferentiation of cultured articular chondrocytes, whereas E-series prostaglandins (PGE) are capable of inducing cell differentiation. Since PGE(2) synthesis is up-regulated by IL-1beta, we addressed the question of whether the state of chondrocyte differentiation may influence the production of IL-1-induced PGE(2) by modulating cyclooxygenase (COX)-2 expression. Immortalized human articular chondrocytes, (tsT/AC62) cultured in monolayer after passage through alginate matrix (alg+) produced 5-fold greater amounts of PGE(2) than continuous monolayer cultures (alg-) after stimulation with IL-1beta. Moreover, IL-1beta induced COX-2 expression at 0.01 ng/ml in (alg+) cells, whereas a 100-fold higher dose of cytokine was necessary for stimulation in (alg-) cells. SB203580, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor, completely abolished the IL-1beta-induced COX-2 mRNA. Overexpression of p38 MAPK induces a COX-2 reporter, whereas overexpression of dominant negative p38 MAPK represses IL-1beta-induced promoter expression. Interestingly, IL-1beta-induced p38 MAPK activity was greatly enhanced in (alg+) compared with (alg-) cells. Our results suggest that differentiated articular chondrocytes are highly responsive to IL-1beta and that p38 MAPK mediates this response by inducing COX-2 gene expression.
Collapse
Affiliation(s)
- Béatrice Thomas
- UPRES-A CNRS 7079, Université Pierre et Marie Curie, 7 Quai Saint-Bernard, 75252 Paris Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|