1
|
Ma X, Xu H, Lu T, Lin W, Sun L, Jawad M, Li M. Comparative miRNA transcriptome analysis reveals miR-375-3p targets cyp19a and regulates ovarian development in Medaka (Oryzias latipes). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 56:101535. [PMID: 40398208 DOI: 10.1016/j.cbd.2025.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
In teleosts, hormonal secretion from the pituitary gland exhibits significant sex plasticity, potentially linked to gonadal differentiation through the hypothalamic-pituitary-gonadal (HPG) axis. miRNAs, as transcriptional regulators, affecting gene expression by promoting mRNA degradation or suppressing translation. To explore the association between miRNAs and cyp19a and their potential role in reproduction, RNA sequencing (RNA-Seq) was conducted on male and female medaka brains. A total of 54 miRNAs were identified as significantly differentially expressed, with 45 showing female-biased expression and 9 exhibiting male-biased expression. qPCR analysis revealed that the expression levels of candidate miRNAs significantly differed between males and females as sex differentiation progressed. Additionally, cyp19a1a was highly expressed in the ovary, while cyp19a1b showed high expression in the brain. Treatment with the aromatase inhibitor exemestane (EM) induced male characteristics, leading to noticeable ovarian degeneration and cavitation. Following EM treatment, qPCR analysis showed an increase in miRNA expression, alongside a decrease in female development-related genes (foxl2, cyp19a1a, and cyp19a1b) and an increase in male development-related genes (dmy, cyp17a, and gsdf), compared to the control group. Additionally, a dual-luciferase reporter assay confirmed that miR-375-3p specifically binds to cyp19a1a and cyp19a1b. In conclusion, this study enhances the understanding of miRNA regulatory mechanisms in the brain, gonads, and reproductive development of medaka.
Collapse
Affiliation(s)
- Xinlan Ma
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China
| | - Haijing Xu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China
| | - Tengyang Lu
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China
| | - Wenkai Lin
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China
| | - Lulu Sun
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China
| | - Muhammad Jawad
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources by the Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources by the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, China.
| |
Collapse
|
2
|
Jeng SR, Wu GC, Yueh WS, Liu PH, Kuo SF, Dufour S, Chang CF. The expression profiles of cyp19a1, sf-1, esrs and gths in the brain-pituitary during gonadal sex differentiation in juvenile Japanese eels. Gen Comp Endocrinol 2024; 353:114512. [PMID: 38582176 DOI: 10.1016/j.ygcen.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17β (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Pei-Hua Liu
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, Sorbonne Université, CNRS, IRD, Paris, France; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
3
|
Peng W, Zhang Y, Song B, Yang P, Liu L. Developmental Delay and Male-Biased Sex Ratio in esr2b Knockout Zebrafish. Genes (Basel) 2024; 15:636. [PMID: 38790265 PMCID: PMC11121336 DOI: 10.3390/genes15050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The estrogen receptor signaling pathway plays an important role in vertebrate embryonic development and sexual differentiation. There are four major estrogen receptors in zebrafish: esr1, esr2a, esr2b and gper. However, the specific role of different estrogen receptors in zebrafish is not clear. To investigate the role of esr2b in zebrafish development and reproduction, this study utilized TALENs technology to generate an esr2b knockout homozygous zebrafish line. The number of eggs laid by esr2b knockout female zebrafish did not differ significantly from that of wild zebrafish. The embryonic development process of wild-type and esr2b knockout zebrafish was observed, revealing a significant developmental delay in the esr2b knockout zebrafish. Additionally, mortality rates were significantly higher in esr2b knockout zebrafish than in their wild-type counterparts at 24 hpf. The reciprocal cross experiment between esr2b knockout zebrafish and wild-type zebrafish revealed that the absence of esr2b resulted in a decline in the quality of zebrafish oocytes, while having no impact on sperm cells. The knockout of esr2b also led to an abnormal sex ratio in the adult zebrafish population, with a female-to-male ratio of approximately 1:7. The quantitative PCR (qPCR) and in situ hybridization results demonstrated a significant downregulation of cyp19ab1b expression in esr2b knockout embryos compared to wild-type embryos throughout development (at 2 dpf, 3 dpf and 4 dpf). Additionally, the estrogen-mediated induction expression of cyp19ab1b was attenuated, while the estradiol-induced upregulated expression of vtg1 was disrupted. These results suggest that esr2b is involved in regulating zebrafish oocyte development and sex differentiation.
Collapse
Affiliation(s)
- Wei Peng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Yunsheng Zhang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Bolan Song
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| | - Liangguo Liu
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China; (Y.Z.); (B.S.); (P.Y.); (L.L.)
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Changde 415000, China
| |
Collapse
|
4
|
Stennette KA, Godwin JR. Estrogenic influences on agonistic behavior in teleost fishes. Horm Behav 2024; 161:105519. [PMID: 38452611 DOI: 10.1016/j.yhbeh.2024.105519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Teleost fishes show an extraordinary diversity of sexual patterns, social structures, and sociosexual behaviors. Sex steroid hormones are key modulators of social behaviors in teleosts as in other vertebrates and act on sex steroid receptor-containing brain nuclei that form the evolutionarily conserved vertebrate social behavior network (SBN). Fishes also display important differences relative to tetrapod vertebrates that make them particularly well-suited to study the physiological mechanisms modulating social behavior. Specifically, fishes exhibit high levels of brain aromatization and have what has been proposed to be a lifelong, steroid hormone dependent plasticity in the neural substrates mediating sociosexual behavior. In this review, we examine how estrogenic signaling modulates sociosexual behaviors in teleosts with a particular focus on agonistic behavior. Estrogens have been shown to mediate agonistic behaviors in a broad range of fishes, from sexually monomorphic gonochoristic species to highly dimorphic sex changers with alternate reproductive phenotypes. These similarities across such diverse taxa contribute to a growing body of evidence that estrogens play a crucial role in the modulation of aggression in vertebrates. As analytical techniques and genomic tools rapidly advance, methods such as LC-MS/MS, snRNAseq, and CRISPR-based mutagenesis show great promise to further elucidate the mechanistic basis of estrogenic effects on social behavior in the diverse teleost lineage.
Collapse
Affiliation(s)
- Katherine A Stennette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Wang Y, Lin J, Li W, Ji G, Liu Z. Identification, Expression and Evolutional Analysis of Two cyp19-like Genes in Amphioxus. Animals (Basel) 2024; 14:1140. [PMID: 38672288 PMCID: PMC11047327 DOI: 10.3390/ani14081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The mechanism of sex determination and differentiation in animals remains a central focus of reproductive and developmental biology research, and the regulation of sex differentiation in amphioxus remains poorly understood. Cytochrome P450 Family 19 Subfamily A member 1 (CYP19A1) is a crucial sex differentiation gene that catalyzes the conversion of androgens into estrogens. In this study, we identified two aromatase-like genes in amphioxus: cyp19-like1 and cyp19-like2. The cyp19-like1 is more primitive and may represent the ancestral form of cyp19 in zebrafish and other vertebrates, while the cyp19-like2 is likely the result of gene duplication within amphioxus. To gain further insights into the expression level of these two aromatase-like, we examined their expression in different tissues and during different stages of gonad development. While the expression level of the two genes differs in tissues, both are highly expressed in the gonad primordium and are primarily localized to microsomal membrane systems. However, as development proceeds, their expression level decreases significantly. This study enhances our understanding of sex differentiation mechanisms in amphioxus and provides valuable insights into the formation and evolution of sex determination mechanisms in vertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Zhenhui Liu
- College of Marine Life Sciences, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.W.); (J.L.); (W.L.); (G.J.)
| |
Collapse
|
6
|
Rong W, Chen Y, Xiong Z, Zhao H, Li T, Liu Q, Song J, Wang X, Liu Y, Liu S. Effects of combined exposure to polystyrene microplastics and 17α-Methyltestosterone on the reproductive system of zebrafish. Theriogenology 2024; 215:158-169. [PMID: 38070215 DOI: 10.1016/j.theriogenology.2023.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Polystyrene microplastics (PS-MPs) are important carriers of pollutants in water. 17α-Methyltestosterone (MT) is a synthetic environmental endocrine disrupting chemical (EDC) with androgenic effects. To study the effects of PS-MPs and MT on zebrafish reproductive systems, zebrafish were exposed to 0 or 50 ng L-1 MT, 0.5 mg∙L-1 PS-MPs, or 50 ng∙L-1 MT + 0.5 mg∙L-1 PS-MPs for 21 d. The results showed that the different exposure reagents caused varying degrees of damage to the reproductive systems in zebrafish, with the extent of damage increasing as the exposure duration increased. Histological analysis of the gonads revealed that the ratio of mature oocytes and mature spermatozoa in the gonad decreased gradually with increased exposure time, with the ratio being Control > PS-MPs > MT > MT + PS-MPs in decreasing order. The results of quantitative real-time PCR (qRT‒PCR) showed that in female fish treated for 7 d, the expression of cyp11a mRNA was significantly reduced in all three treatment groups(MT, PS-MPs, and MT + PS-MPs), while in the group treated for 14 d with MT + PS-MPs, the expression of cyp19a1a and StAR mRNA was significantly increased. In male fish exposed for 21 d, the expression of cyp11a, cyp17a1, cyp19a1a, StAR, 3β-HSD, and 17β-HSD3 mRNA was significantly decreased in MT + PS-MPs. ELISA results showed that after 14 d of exposure, the levels of E2, LH, and FSH in the ovaries of female fish were significantly reduced in all three treatment groups. Similarly, the levels of T, E2, LH, and FSH in the testis of male fish were significantly reduced after 14 d of exposure to PS-MPs and MT + PS-MPs. Offspring of zebrafish exposed to MT and MT + PS-MPs exhibited delayed incubation time and slow development. The cross-generational toxicity of PS-MPs themselves may be negligible, but it can exacerbate the toxicity of MT, making the cross-generational effects more pronounced in the offspring, causing offspring mortality and malformations. Offspring of zebrafish exposed to MT and MT + PS-MPs exhibited delayed incubation time and slow development. In addition, MT caused malformations such as pericardial edema, yolk cysts, and spinal deformities in zebrafish during the incubation period.
Collapse
Affiliation(s)
- Weiya Rong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yue Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zijun Xiong
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Haiyan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Tongyao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Qing Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Jing Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xianzong Wang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yu Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Shaozhen Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, 030801, China; Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Jinzhong, 030801, China.
| |
Collapse
|
7
|
Zhao C, Yan J, Zhang Y, Zhang G, Wang T, Zhang K, Yin S. Effect of long-term hypoxia on the reproductive systems of female and male yellow catfish (Pelteobagrus fulvidraco). Comp Biochem Physiol B Biochem Mol Biol 2023; 267:110864. [PMID: 37187433 DOI: 10.1016/j.cbpb.2023.110864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
This study investigated the effects of different levels of hypoxia on the reproductive system of yellow catfish. Yellow catfish (Pelteobagrus fulvidraco) were exposed to three dissolved oxygen concentration levels: normoxia (6.5 ± 0.2 mg/L), moderate hypoxia (MH, 3.8 ± 0.3 mg/L) and severe hypoxia (SH, 1.9 ± 0.2 mg/L) for 30 days. The gonadosomatic index of males, not females, significantly decreased in the SH group. In the SH group, for the females, the ratio of vitellogenic follicles significantly decreased, whereas the number of atretic follicles significantly increased. In male fish, a significantly reduced number of spermatozoa was observed in both the MH and SH groups. Elevated apoptosis levels in the testes and ovaries were observed only in the SH group. Serum 17β-estradiol and vitellogenin levels in females and testosterone levels in males significantly decreased in the SH group. The concentration of 11-ketotestosterone in males significantly decreased in both the MH and SH groups. In female fish, dysregulated expression of the hypothalamic-pituitary-gonadal (HPG) axis, steroidogenesis genes, and hepatic genes related to vitellogenesis were observed only in the SH group. However, in male fish, moderate hypoxia altered the expression of HPG genes, including gnrh1, lhcgr, and amh. Moreover, the MH group significantly altered the expression of steroidogenesis genes like star, 17β-hsd, and cyp17a1. The results of this study suggest that severe hypoxia can cause reproductive defects in female and male yellow catfish. Moreover, the reproductive system of male yellow catfish is more sensitive to moderate hypoxia than that of female catfish. Our findings contribute to our understanding of the response of the teleost reproductive system to long-term hypoxia.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Jie Yan
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yufei Zhang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guosong Zhang
- School of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Tao Wang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Kai Zhang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| | - Shaowu Yin
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| |
Collapse
|
8
|
Su J, Yi S, Gao Z, Abbas K, Zhou X. DNA methylation mediates gonadal development via regulating the expression levels of cyp19a1a in loach Misgurnus anguillicaudatus. Int J Biol Macromol 2023; 235:123794. [PMID: 36828090 DOI: 10.1016/j.ijbiomac.2023.123794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
DNA methylation-mediated transcriptional regulation has been considered to significantly impact some steroidogenic enzyme genes expression. To uncover the roles of DNA methylation on the regulation of aromatase gene expression during gametogenesis in Misgurnus anguillicaudatus, the expression profiles and cellular localization of cyp19a1a and cyp19a1b were analyzed, and the landscape of DNA methylation dynamics was investigated. We found that cyp19a1a was predominantly expressed in granulosa cells of oocytes, while cyp19a1b expression was enriched in radial glial cells of the forebrain. In ovary, cyp19a1a was highly expressed until the vitellogenesis stage. The average methylation levels, especially for two CpG sites within the cAMP response element, were negatively correlated with cyp19a1a expression levels, indicating that methylation could regulate cyp19a1a transcriptional activity by modulating the binding efficiency of cAMP to its response elements. Compared with in ovary, cyp19a1a showed lower expression in testis but was hypermethylated. Cyp19a1b in female brain weakly expressed before the vitellogenesis stage, but significantly elevated at the maturation stage. In both sexes, it maintained high methylation levels in brain despite the obvious fluctuation of the cyp19a1b expression. This study revealed that DNA methylation plays a key role in establishing cyp19a1a spatiotemporal expression patterns and thus mediates gonadal development in teleosts.
Collapse
Affiliation(s)
- Junxiao Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaokui Yi
- College of Life Sciences, Huzhou University, Huzhou 313000, China.
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Khalid Abbas
- Aquaculture Biotechnology Lab, Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Xiaoyun Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Qiang J, Cao ZM, Zhu HJ, Tao YF, He J, Xu P. Knock-down of amh transcription by antisense RNA reduces FSH and increases follicular atresia in female Oreochromis niloticus. Gene 2022; 842:146792. [PMID: 35961433 DOI: 10.1016/j.gene.2022.146792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Anti-Müllerian hormone (Amh) plays an important role in regulating gonad development in teleosts. However, little is known about the effects of Amh on follicle development. In this study, we transfected the vector containing antisense RNA fragments of the amh gene to produce Nile tilapia, Oreochromis niloticus, with knocked-down Amh function in vivo. The results confirmed that the antisense RNA effectively inhibited amh transcription and Amh protein expression in female tilapia ovarian tissue. At 180 days of age, compared with control fish, female tilapia with knocked-down Amh function showed significantly increased growth and significantly decreased ovary weight and gonadosomatic index (P < 0.05). Female fish in the control group had ruddy-colored external genitalia, eggs extruded from the abdomen when gently squeezed, and most oocytes were developmental stage V. In contrast, the external genitalia of female fish with knocked-down Amh function did not have the ruddy color, no eggs extruded from the abdomen when squeezed, most oocytes were at developmental stages II and III, and considerable follicular atresia was apparent. At 180 days of age, the transcript levels of amhrII, cyp19a1a, foxl2 and sox9b in ovarian tissue, and the titers of luteinizing hormone, follicle stimulating hormone, and estradiol in the serum, were significantly lower in fish with knocked-down Amh function than in control fish (P < 0.05). We concluded that decreased serum hormone levels and an abnormal AMH signal delayed development and caused follicular degeneration in Nile tilapia with knocked-down Amh function. These findings show that antisense RNA is a feasible approach for gene silencing in fish, and represents an accurate and effective strategy to study gene function.
Collapse
Affiliation(s)
- Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Zhe-Ming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao-Jun Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
10
|
Paixão RV, Silva GF, Caetano AR, Cintra LC, Varela ES, O'Sullivan FLA. Phylogenomic and expression analysis of Colossoma macropomum cyp19a1a and cyp19a1b and their non-classical role in tambaqui sex differentiation. Gene 2022; 843:146795. [PMID: 35961435 DOI: 10.1016/j.gene.2022.146795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The genes coding for Cytochrome P450 aromatase (cyp19a1a and cyp19a1b) and estrogen (E2) receptors (esr1, esr2a and esr2b) play a conserved role in ovarian differentiation and development among teleosts. Classically, the "gonad form" of aromatase, coded by the cyp19a1a, is responsible for the ovarian differentiation in genetic females via ligation and activation of the Esr, which mediates the endocrine and exocrine signaling to allow or block the establishment of the feminine phenotype. However, in neotropical species, studies on the molecular and endocrine processes involved in gonad differentiation as well as on the effects of sex modulators are recent and scarce. In this study, we combined in silico analysis, real-time quantitative PCR (qPCR) assay and quantification of E2 plasma levels of differentiating tambaqui (Colossoma macropomum) to unveil the roles of the paralogs cypa19a1a and cyp19a1b during sex differentiation. Although the synteny of each gene is very conserved among characids, the genomic environment displays striking differences in comparison to model teleost species, with many rearrangements in cyp19a1a and cyp19a1b adjacencies and transposable element traces in both regulatory regions. The high dissimilarity (DI) of SF-1 binding motifs in cyp19a1a (DI = 10.06 to 14.90 %) and cyp19a1b (DI = 8.41 to 13.50 %) regulatory region, respectively, may reflect in an alternative pathway in tambaqui. Indeed, while low transcription of cyp19a1a was detected prior to sex differentiation, the expression of cyp19a1b and esr2a presented a large variation at this phase, which could be associated with sex-specific differential expression. Histological analysis revealed that anti-estradiol treatments did not affect gonadal sex ratios, although Fadrozole (50 mg kg-1 of food) reduced E2 plasma levels (p < 0,005) as well cyp19a1a transcription; and tamoxifen (200 mg kg-1 of food) down regulated both cyp19a1a and cyp19a1b but did not influence E2 levels. Altogether, our results bring into light new insights about the evolutionary fate of cyp19a1 paralogs in neotropical fish, which may have generated uncommon roles for the gonadal and brain forms of cyp19a1 genes and the unexpected lack of effect of endocrine disruptors on tambaqui sexual differentiation.
Collapse
Affiliation(s)
- R V Paixão
- Universidade Federal do Amazonas (UFAM), Programa de Pós-graduação em Ciência Animal e Recursos Pesqueiros, Avenida Rodrigo Otávio, CEP: 69080-900, 6200 Manaus, AM, Brazil
| | - G F Silva
- Embrapa Amazônia Ocidental, Rodovia AM-010, Km 29, Caixa Postal 319, CEP: 69010-790, Brazil
| | - A R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, C.P. 02372, CEP 70770-917, Brasília, DF, Brazil
| | - L C Cintra
- Embrapa Agricultura Digital, Avenida André Tosselo, 209, Cidade Universitária, CEP: 13083-886, Campinas, SP, Brazil
| | - E S Varela
- Embrapa Pesca e Aquicultura, Av. NS 10, cruzamento com a Av. LO 18 Sentido Norte Loteamento - Água Fria, Palmas, TO 77008-900, Brazil
| | - F L A O'Sullivan
- Embrapa Amazônia Ocidental, Rodovia AM-010, Km 29, Caixa Postal 319, CEP: 69010-790, Brazil.
| |
Collapse
|
11
|
Anitha A, Senthilkumaran B. sox19 regulates ovarian steroidogenesis in common carp. J Steroid Biochem Mol Biol 2022; 217:106044. [PMID: 34915169 DOI: 10.1016/j.jsbmb.2021.106044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
In teleost, ovarian steroidogenesis governed by the neuroendocrine system is also regulated by several transcription factors of gonadal origin. Investigating the synchronized interactions between the transcriptional and the hormonal factors is vital to comprehend the mechanisms that lead to gonadal differentiation. This study signifies the role of sry-related box (sox) 19 in ovarian steroidogenesis regulation of the common carp, Cyprinus carpio. Analysis of tissue distribution displayed higher sox19 expression in brain and ovary, and gonadal ontogeny showed higher expression of sox19 at 80 days post hatch (dph). Higher sox19 mRNA expression during spawning and increase of sox19 post human chorionic gonadotropin induction substantiate gonadotropin dependency. Estradiol-17β treatment but not 17α-methyl-di-hydroxy-testosterone to 50 dph common carp for inducing mono-sex, elevated sox19 expression substantially. Sox19 protein was observed in granulosa cells of the follicular layer in common carp ovary. Higher sox19 expression was detected in isolated granulosa and theca cells, in vitro. Transient gene silencing with sox19-siRNA caused downregulation of various ovary-related genes including those specific to activator protein-1 factors, fibroblast growth factors, wnt-signaling, steroidogenic genes along with certain transcription factors. Serum 17α, 20β-dihydroxy-4-pregnen-3-one and estradiol-17β reduced significantly post sox19 silencing, in vivo. Concomitantly, a decrease in aromatase activity was detected post sox19-siRNA treatment, in vivo. This study demonstrates the impact of sox19 in the regulation of common carp ovarian growth and steroidogenesis.
Collapse
Affiliation(s)
- Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
12
|
Senthilkumaran B, Kar S. Advances in Reproductive Endocrinology and Neuroendocrine Research Using Catfish Models. Cells 2021; 10:2807. [PMID: 34831032 PMCID: PMC8616529 DOI: 10.3390/cells10112807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Catfishes, belonging to the order siluriformes, represent one of the largest groups of freshwater fishes with more than 4000 species and almost 12% of teleostean population. Due to their worldwide distribution and diversity, catfishes are interesting models for ecologists and evolutionary biologists. Incidentally, catfish emerged as an excellent animal model for aquaculture research because of economic importance, availability, disease resistance, adaptability to artificial spawning, handling, culture, high fecundity, hatchability, hypoxia tolerance and their ability to acclimate to laboratory conditions. Reproductive system in catfish is orchestrated by complex network of nervous, endocrine system and environmental factors during gonadal growth as well as recrudescence. Lot of new information on the molecular mechanism of gonadal development have been obtained over several decades which are evident from significant number of scientific publications pertaining to reproductive biology and neuroendocrine research in catfish. This review aims to synthesize key findings and compile highly relevant aspects on how catfish can offer insight into fundamental mechanisms of all the areas of reproduction and its neuroendocrine regulation, from gametogenesis to spawning including seasonal reproductive cycle. In addition, the state-of-knowledge surrounding gonadal development and neuroendocrine control of gonadal sex differentiation in catfish are comprehensively summarized in comparison with other fish models.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India;
| | | |
Collapse
|
13
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
14
|
Kalarani A, Vinodha V, Moses IR. Inter-relations of brain neurosteroids and monoamines towards reproduction in fish. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Tine M, Kuhl H, Teske PR, Reinhardt R. Genome-wide analysis of European sea bass provides insights into the evolution and functions of single-exon genes. Ecol Evol 2021; 11:6546-6557. [PMID: 34141239 PMCID: PMC8207432 DOI: 10.1002/ece3.7507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/24/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Several studies have attempted to understand the origin and evolution of single-exon genes (SEGs) in eukaryotic organisms, including fishes, but few have examined the functional and evolutionary relationships between SEGs and multiple-exon gene (MEG) paralogs, in particular the conservation of promoter regions. Given that SEGs originate via the reverse transcription of mRNA from a "parental" MEGs, such comparisons may enable identifying evolutionarily-related SEG/MEG paralogs, which might fulfill equivalent physiological functions. Here, the relationship of SEG proportion with MEG count, gene density, intron count, and chromosome size was assessed for the genome of the European sea bass, Dicentrarchus labrax. Then, SEGs with an MEG parent were identified, and promoter sequences of SEG/MEG paralogs were compared, to identify highly conserved functional motifs. The results revealed a total count of 1,585 (8.3% of total genes) SEGs in the European sea bass genome, which was correlated with MEG count but not with gene density. The significant correlation of SEG content with the number of MEGs suggests that SEGs were continuously and independently generated over evolutionary time following species divergence through retrotranscription events, followed by tandem duplications. Functional annotation showed that the majority of SEGs are functional, as is evident from their expression in RNA-seq data used to support homology-based genome annotation. Differences in 5'UTR and 3'UTR lengths between SEG/MEG paralogs observed in this study may contribute to gene expression divergence between them and therefore lead to the emergence of new SEG functions. The comparison of nonsynonymous to synonymous changes (Ka/Ks) between SEG/MEG parents showed that 74 of them are under positive selection (Ka/Ks > 1; p = .0447). An additional fifteen SEGs with an MEG parent have a common promoter, which implies that they are under the influence of common regulatory networks.
Collapse
Affiliation(s)
- Mbaye Tine
- UFR des Sciences Agronomiques, de l'Aquaculture et des Technologies Alimentaires (S2ATA)Université Gaston Berger (UGB)Saint‐LouisSenegal
- Genome Centre at the Max‐Planck Institute for Plant Breeding ResearchKölnGermany
| | - Heiner Kuhl
- Department of Ecophysiology and AquacultureLeibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Peter R. Teske
- Department of ZoologyCentre for Ecological Genomics and Wildlife ConservationUniversity of JohannesburgJohannesburgSouth Africa
| | - Richard Reinhardt
- Genome Centre at the Max‐Planck Institute for Plant Breeding ResearchKölnGermany
| |
Collapse
|
16
|
Di Nardo G, Zhang C, Marcelli AG, Gilardi G. Molecular and Structural Evolution of Cytochrome P450 Aromatase. Int J Mol Sci 2021; 22:E631. [PMID: 33435208 PMCID: PMC7827799 DOI: 10.3390/ijms22020631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Aromatase is the cytochrome P450 enzyme converting androgens into estrogen in the last phase of steroidogenesis. As estrogens are crucial in reproductive biology, aromatase is found in vertebrates and the invertebrates of the genus Branchiostoma, where it carries out the aromatization reaction of the A-ring of androgens that produces estrogens. Here, we investigate the molecular evolution of this unique and highly substrate-selective enzyme by means of structural, sequence alignment, and homology modeling, shedding light on its key role in species conservation. The alignments led to the identification of a core structure that, together with key and unique amino acids located in the active site and the substrate recognition sites, has been well conserved during evolution. Structural analysis shows what their roles are and the reason why they have been preserved. Moreover, the residues involved in the interaction with the redox partner and some phosphorylation sites appeared late during evolution. These data reveal how highly substrate-selective cytochrome P450 has evolved, indicating that the driving forces for evolution have been the optimization of the interaction with the redox partner and the introduction of phosphorylation sites that give the possibility of modulating its activity in a rapid way.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 1023 Torino, Italy; (C.Z.); (A.G.M.)
| | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 1023 Torino, Italy; (C.Z.); (A.G.M.)
| |
Collapse
|
17
|
Maciuszek M, Pijanowski L, Pekala-Safinska A, Palichleb P, Błachut M, Verburg-van Kemenade BML, Chadzińska M. 17α-ethinylestradiol and 4-tert-octylphenol concurrently disrupt the immune response of common carp. FISH & SHELLFISH IMMUNOLOGY 2020; 107:238-250. [PMID: 33038508 DOI: 10.1016/j.fsi.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The aquatic environment is massively polluted with endocrine-disrupting compounds (EDCs) including synthetic estrogens (e.g. 17α-ethinylestradiol, EE2) and alkylphenols (e.g. 4-tert-octylphenol, 4t-OP). A major mechanism of action for estrogenic EDCs is their interaction with estrogen receptors and consequently their modulation of the action of enzymes involved in steroid conversion e.g. aromatase CYP19. We now studied the effects of EE2 and 4t-OP on the anti-bacterial immune response of common carp. We investigated effects on the number/composition of inflammatory leukocytes and on the gene expression of mediators that regulate inflammation and EDC binding. In vitro we found that high concentrations of both EE2 and 4t-OP down-regulated IFN-γ2 and IFN-γ-dependent immune responses in LPS-stimulated monocytes/macrophages. Similarly, during bacterial infection in fish, in vivo treated with EE2 and 4t-OP, decreased gene expression of il-12p35 and of ifn-γ2 was found in the focus of inflammation. Moreover, during A. salmonicida-induced infection in EE2-treated carp, but not in fish fed with 4t-OP-treated food, we found an enhanced inflammatory reaction manifested by high number of inflammatory peritoneal leukocytes, including phagocytes and higher expression of pro-inflammatory mediators (inos, il-1β, cxcl8_l2). Furthermore, in the liver, EE2 down-regulated the expression of acute phase proteins: CRPs and C3. Importantly, both in vitro and in vivo, EDCs altered the expression of estrogen receptors: nuclear (erα and erβ) and membrane (gpr30). EDCs also induced up-regulation of the cyp19b gene. Our findings reveal that contamination of the aquatic milieu with estrogenic EDCs, may considerably violate the subtle and particular allostatic interactions between the immune response and endogenous estrogens and this may have negative consequences for fish health.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Pekala-Safinska
- Department of Fish Diseases, National Veterinary Research Institute, 57 Partyzantow Ave., 24-100, Pulawy, Poland
| | - Paulina Palichleb
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Michał Błachut
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | | | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
18
|
Rajakumar A, Senthilkumaran B. Steroidogenesis and its regulation in teleost-a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:803-818. [PMID: 31940121 DOI: 10.1007/s10695-019-00752-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Steroid hormones modulate several important biological processes like metabolism, stress response, and reproduction. Steroidogenesis drives reproductive function wherein development and differentiation of undifferentiated gonads into testis or ovary, and their growth and maturation, are regulated. Steroidogenesis occurs in gonadal and non-gonadal tissues like head kidney, liver, intestine, and adipose tissue in teleosts. This process is regulated differently through multi-level modulation of promoter motif transcription factor regulation of steroidogenic enzyme genes to ultimately control enzyme activity and turnover. In view of this, understanding teleostean steroidogenesis provides major inputs for technological innovation of pisciculture. Unlike higher vertebrates, steroidal intermediates and shift in steroidogenesis is critical for gamete maturation in teleosts, more essentially oogenesis. Considering these characteristics, this review highlights the promoter regulation of steroidogenic enzyme genes by several transcription factors that are involved in teleostean steroidogenesis. It also addresses different methodologies involved in promoter regulation studies together with glucocorticoids and androgen relationship with reference to teleosts.
Collapse
Affiliation(s)
- Anbazhagan Rajakumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, 500046, India
- Present Address: Section on Molecular Endocrinology, National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892,, USA
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
19
|
Lin CJ, Maugars G, Lafont AG, Jeng SR, Wu GC, Dufour S, Chang CF. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. Gen Comp Endocrinol 2020; 291:113395. [PMID: 31981691 DOI: 10.1016/j.ygcen.2020.113395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 11/25/2022]
Abstract
Duplicated cyp19a1 genes (cyp19a1a encoding aromatase a and cyp19a1b encoding aromatase b) have been identified in an increasing number of teleost species. Cyp19a1a is mainly expressed in the gonads, while cyp19a1b is mainly expressed in the brain, specifically in radial glial cells, as largely investigated by Kah and collaborators. The third round of whole-genome duplication that specifically occurred in the teleost lineage (TWGD or 3R) is likely at the origin of the duplicated cyp19a1 paralogs. In contrast to the situation in other teleosts, our previous studies identified a single cyp19a1 in eels (Anguilla), which are representative species of a basal group of teleosts, Elopomorpha. In the present study, using genome data mining and phylogenetic and synteny analyses, we confirmed that the whole aromatase genomic region was duplicated in eels, with most aromatase-neighboring genes being conserved in duplicate in eels, as in other teleosts. These findings suggest that specific gene loss of one of the 3R-duplicated cyp19a1 paralogs occurred in Elopomorpha after TWGD. Similarly, a single cyp19a1 gene was found in the arowana, which is a representative species of another basal group of teleosts, Osteoglossomorpha. In eels, the single cyp19a1 is expressed in both the brain and the gonads, as observed for the single CYP19A1 gene present in other vertebrates. The results of phylogenetic, synteny, closest neighboring gene, and promoter structure analyses showed that the single cyp19a1 of the basal teleosts shared conserved properties with both teleost cyp19a1a and cyp19a1b paralogs, which did not allow us to conclude which of the 3R-duplicated paralogs (cyp19a1a or cyp19a1b) was lost in Elopomorpha. Elopomorpha and Osteoglossomorpha cyp19a1 genes exhibited preserved ancestral functions, including expression in both the gonad and brain. We propose that the subfunctionalization of the 3R-duplicated cyp19a1 paralogs expressed specifically in the gonad or brain occurred in Clupeocephala, after the split of Clupeocephala from Elopomorpha and Osteoglossomorpha, which represented a driving force for the conservation of both 3R-duplicated paralogs in all extant Clupeocephala. In contrast, the functional redundancy of the undifferentiated 3R-duplicated cyp19a1 paralogs in elopomorphs and osteoglossomorphs would have favored the loss of one 3R paralog in basal teleosts.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Gersende Maugars
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Anne-Gaëlle Lafont
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France.
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
20
|
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Gemmell NJ. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoterone. Biol Reprod 2019; 99:446-460. [PMID: 29272338 DOI: 10.1093/biolre/iox175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Sexual behavior in teleost fish is highly plastic. It can be attributed to the relatively few sex differences found in adult brain transcriptomes. Environmental and hormonal factors can influence sex-specific behavior. Androgen treatment stimulates behavioral masculinization. Sex dimorphic gene expression in developing teleost brains and the molecular basis for androgen-induced behavioral masculinization are poorly understood. In this study, juvenile zebrafish (Danio rerio) were treated with 100 ng/L of 17 alpha-methyltestosterone (MT) during sexual development from 20 days post fertilization to 40 days and 60 days post fertilization. We compared brain gene expression patterns in MT-treated zebrafish with control males and females using RNA-Seq to shed light on the dynamic changes in brain gene expression during sexual development and how androgens affect brain gene expression leading to behavior masculinization. We found modest differences in gene expression between juvenile male and female zebrafish brains. Brain aromatase (cyp19a1b), prostaglandin 3a synthase (ptges3a), and prostaglandin reductase 1 (ptgr1) were among the genes with sexually dimorphic expression patterns. MT treatment significantly altered gene expression relative to both male and female brains. Fewer differences were found among MT-treated brains and male brains compared to female brains, particularly at 60 dpf. MT treatment upregulated the expression of hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), deiodinase, iodothyronine, type II (dio2), and gonadotrophin releasing hormones (GnRH) 2 and 3 (gnrh2 and gnrh3) suggesting local synthesis of 11-ketotestosterone, triiodothyronine, and GnRHs in zebrafish brains which are influenced by androgens. Androgen, estrogen, prostaglandin, thyroid hormone, and GnRH signaling pathways likely interact to modulate teleost sexual behavior.
Collapse
Affiliation(s)
- Stephanie L J Lee
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, Otago, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
21
|
Venkatasubramanian H, Selvaraj V, Ramasamy M, Santhakumar K. Effect of Fadrozole Exposure on Socioreproductive Behaviors and Neurochemical Parameters in Betta splendens. Zebrafish 2018; 16:139-151. [PMID: 30523744 DOI: 10.1089/zeb.2018.1595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Induction of all-male population in Siamese fighting fish, Betta splendens, has potential application in ornamental fish trade. In addition, the sexually dimorphic nature of aggressive behavior exhibited by this species has made it into an emerging model for behavioral studies. Fadrozole, an aromatase inhibitor, which has been used widely in masculinization, has captivated us to use it in this study. Twenty one days postfertilization (dpf), B. splendens fry were subjected to discrete immersion treatment with various concentrations of fadrozole, and eventually, analyses of various socioreproductive behaviors and analyses of stress markers such as dopamine in brain samples, sex hormones, cortisol, and glucose in plasma samples were performed. We observed that 91% of 50 μg/L fadrozole treated fish developed as males. Interestingly, reproductive analyses of these males gave rise to two subgroups (A and B). Subsequent sociobehavioral analyses demonstrated a timid and subdued behavior in subgroup B males. Furthermore, estimation of stress markers such as dopamine levels in the brain tissue, cortisol, and glucose levels in blood plasma and sex hormone levels in blood plasma exhibited an endocrine disruption-mediated stress leading to altered behavior in these males. These findings will help in understanding the fadrozole-mediated masculinization and behavioral alterations following endocrine disruption.
Collapse
Affiliation(s)
- Hemagowri Venkatasubramanian
- 1 Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Velanganni Selvaraj
- 1 Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Mohankumar Ramasamy
- 2 Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Chennai, India
| | - Kirankumar Santhakumar
- 1 Zebrafish Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
22
|
Aromatase expression and function in the brain and behavior: A comparison across communication systems in teleosts. J Chem Neuroanat 2018; 94:139-153. [DOI: 10.1016/j.jchemneu.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/09/2018] [Accepted: 10/14/2018] [Indexed: 11/18/2022]
|
23
|
Guchhait R, Chatterjee A, Mukherjee D, Pramanick K. Seasonal ovarian development in relation to the gonadotropins, steroids, aromatase and steroidogenic factor 1 (SF-1) in the banded gourami, Trichogaster fasciata. Gen Comp Endocrinol 2018; 268:40-49. [PMID: 30055147 DOI: 10.1016/j.ygcen.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
The endocrine regulation of gonadal development and annual variation of key sex steroids is the basic knowledge to understand the reproductive cycle of teleost fish. Present study was aimed to investigate the levels of gonadotropins in relation to the follicular development and plasma steroids during the reproductive cycle of female Trichogaster fasciata. Female fish were sampled and ovarian development is described histologically throughout the year in relation to the seasonal variations of gonadosomatic index (GSI); follicle stimulating hormone (FSH) and luteinizing hormone (LH); three key steroids for folliculogenesis and maturation i.e. testosterone (T), 17β-estradiol (E2) and 17α20βdihydroxy4pregnen3one (17,20β-P). Relatively higher level of FSH was observed till the ovary reaches in late vitellogenic stage confirms that FSH regulates the early folliculogenesis of the ovary, whereas LH peak was observed in the postvitellogenic stage, which indicates that maturation and ovulation were controlled by LH. Seasonal steroid profiles show that both T and E2 reach its maximum level prior to the 17,20β-P which attain its peak value in the month of August. Thus, single peak values of LH and 17,20β-P coinciding with GSI peak, clearly indicates that T. fasciata breeds only once in a year. Furthermore, to elucidate the molecular basis of the reproductive cycle, this study analyzes the other key factors of ovarian function such as cyp19a1a gene expression, aromatase activity and SF-1 localization throughout the year. cyp19a1a gene expression and the aromatase activity were highest in vitellogenic stages indicate that relatively higher E2 production in this stage is regulated by FSH. Immunohistochemical localizations of aromatase and SF-1 in the cellular layer of oocytes demonstrated that aromatase is FSH-dependent and SF-1 could be regulated by both FSH and LH as relatively higher amount of aromatase was localized in the vitellogenic stage oocytes than the postvitellogenic and post germinal vesicle breakdown (post-GVBD) stages; whereas, high amount of SF-1 was observed in vitellogenic, postvitellogenic and post-GVBD stages. These data regarding the reproductive endocrinology of T. fasciata may be useful to understand the interaction between gonadotropins, steroids, aromatase and SF-1 in teleost fishes and may contribute to restoration of the ecologically important fish through artificial reproduction.
Collapse
Affiliation(s)
- Rajkumar Guchhait
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
24
|
Pal P, Moulik SR, Gupta S, Guha P, Majumder S, Kundu S, Mallick B, Pramanick K, Mukherjee D. Estrogen-regulated expression of P450arom genes in the brain and ovaries of adult female Indian climbing perch, Anabas testudineus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018; 329:29-42. [PMID: 29667754 DOI: 10.1002/jez.2158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Cytochrome P450arom (CYP19), a product of cyp19a1 gene, catalyzes the conversion of androgens to estrogens and is essential for regulation of reproductive function in vertebrates. In the present study, we isolated partial cDNA encoding the ovarian (cyp19a1a) and brain (cyp19a1b) P450arom genes from adult female perch, Anabas testudineus and investigated their regulation by estrogen in vivo. Results demonstrated that cyp19a1a and cyp19a1b predominate in ovary and brain respectively, with quantity of both attuned to reproductive cycle. To elucidate estrogen-regulated expression of cyp19a1b in brain and cyp19a1a in ovary, dose- and time-dependent studies were conducted with estrogen in vitellogenic-stage fish in the presence or absence of specific aromatase inhibitor fadrozole. Results demonstrated that treatment of fish with 17β-estradiol (E2; 1.0 μM)) for 6 days caused significant upregulation of cyp19a1b transcripts, aromatase B protein, and aromatase activity in brain in a dose- and time-dependent manner. Ovarian cyp19a1a mRNA, aromatase protein, and aromatase activity, however, was less responsive to E2 than brain. Treatment of fish with an aromatase inhibitor fadrozole for 6 days attenuated both brain and ovarian cyp19a1 mRNAs expression and stimulatory effects of E2 was also significantly reduced. These results indicate that expression of cyp19a1b in brain and cyp19a1a in ovary of adult female A. testudineus was closely associated to plasma E2 levels and seasonal reproductive cycle. Results further show apparent differential regulation of cyp19a1a and cyp19a1b expression by E2/fadrozole manipulation.
Collapse
Affiliation(s)
- Puja Pal
- Department of Zoology, Taki Government College, Taki, India
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Sujata Roy Moulik
- Department of Zoology, Chandernagore College, Chandannagar, India
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | - Sourav Kundu
- Department of Botany, West Bengal State University, Barasat, India
| | - Buddhadev Mallick
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | | | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| |
Collapse
|
25
|
Huang W, Yang P, Lv Z, Wu C, Gui J, Lou B. Cloning, expression pattern and promoter functional analysis of cyp19a1a gene in miiuy croaker. Gene 2017; 627:271-277. [DOI: 10.1016/j.gene.2017.06.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/07/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
26
|
Szwejser E, Pijanowski L, Maciuszek M, Ptak A, Wartalski K, Duda M, Segner H, Verburg-van Kemenade BML, Chadzinska M. Stress differentially affects the systemic and leukocyte estrogen network in common carp. FISH & SHELLFISH IMMUNOLOGY 2017; 68:190-201. [PMID: 28698119 DOI: 10.1016/j.fsi.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 05/02/2023]
Abstract
Both systemic and locally released steroid hormones, such as cortisol and estrogens, show immunomodulatory actions. This research gives evidence that circulating and leukocyte-derived estrogens can be involved in the regulation of the immune response in common carp, during homeostasis and upon restraining stress. It was found that stress reduced level of blood 17β-estradiol (E2) and down-regulated the gene expression of components of the "classical" estrogen system: the nuclear estrogen receptors and the aromatase CYP19, in the hypothalamus, the pituitary and in the ovaries. In contrast, higher gene expression of the nuclear estrogen receptors and cyp19a was found in the head kidney of stressed animals. Moreover, stress induced changes in the E2 level and in the estrogen sensitivity at local/leukocyte level. For the first time in fish, we showed the presence of physiologically relevant amounts of E2 and the substrates for its conversion (estrone - E1 and testosterone - T) in head kidney monocytes/macrophages and found that its production is modulated upon stress. Moreover, stress reduced the sensitivity of leukocytes towards estrogens, by down-regulation the expression of the erb and cyp19 genes in carp phagocytes. In contrast, era expression was up-regulated in the head kidney monocytes/macrophages and in PBLs derived from stressed animals. We hypothesize that, the increased expression of ERα, that was observed during stress, can be important for the regulation of leukocyte differentiation, maturation and migration. In conclusion, these results indicate that, in fish, the estrogen network can be actively involved in the regulation of the systemic and local stress response and the immune response.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Kamil Wartalski
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Malgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
27
|
Identification of genes in the hypothalamus-pituitary-gonad axis in the brain of Amur sturgeons (Acipenser schrenckii) by comparative transcriptome analysis in relation to kisspeptin treatment. Gene 2016; 595:53-61. [DOI: 10.1016/j.gene.2016.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
|
28
|
Roy Moulik S, Pal P, Majumder S, Mallick B, Gupta S, Guha P, Roy S, Mukherjee D. Gonadotropin and sf-1 regulation of cyp19a1a gene and aromatase activity during oocyte development in the rohu, L. rohita. Comp Biochem Physiol A Mol Integr Physiol 2016; 196:1-10. [PMID: 26916215 DOI: 10.1016/j.cbpa.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 aromatase (P450arom), a product of cyp19a1 gene, plays pivotal roles in vertebrate steroidogenesis and reproduction. In this study, we isolated partial cDNA encoding the ovarian (cyp19a1a) and brain (cyp19a1b) P450arom genes from adult female rohu, Labeo rohita and investigated the regulation of cyp19a1a by gonadotropin and SF-1. The cyp19a1a and cyp19a1b were expressed predominantly in the ovary and brain respectively, with quantity of the former attuned to reproductive cycle. To elucidate gonadotropin regulation of cyp19a1a mRNA expression and P450 aromatase activity for 17β-estradiol (E2) biosynthesis in vitro by the vitellogenic ovarian follicles, time- and dose-dependent studies were conducted with HCG and porcine FSH. Results demonstrated that HCG stimulated significantly higher expression of cyp19a1a mRNA and aromatase activity leading to increased biosynthesis of E2 than FSH. To understand the involvement of SF-1 to in the regulation of cyp19a1a and aromatase activity, ovarian follicles were incubated with increasing concentrations of HCG and expression of sf1gene and activation of SF-1 protein were measured. Results demonstrated that HCG significantly induced expression of sf-1 gene and activation of SF-1 protein suggesting a link between SF-1 and P450 aromatase activation in this fish ovary during gonadotropin-induced steroidogenesis.
Collapse
Affiliation(s)
- Sujata Roy Moulik
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Chandernagore College, Chandannagar, Hooghly, West Bengal 712136, India
| | - Puja Pal
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India; Department of Zoology, Taki Government College, Taki, Hasnabad, West Bengal 743429, India
| | - Suravi Majumder
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Buddhadev Mallick
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Shreyasi Gupta
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Payel Guha
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sibsankar Roy
- Molecular Endocrinology Laboratory, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Dilip Mukherjee
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
29
|
Chouchene L, Pellegrini E, Gueguen MM, Hinfray N, Brion F, Piccini B, Kah O, Saïd K, Messaoudi I, Pakdel F. Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. J Appl Toxicol 2016; 36:863-71. [DOI: 10.1002/jat.3285] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Chouchene
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Elisabeth Pellegrini
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Marie-Madeleine Gueguen
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Nathalie Hinfray
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - Benjamin Piccini
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - Olivier Kah
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Khaled Saïd
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Imed Messaoudi
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Farzad Pakdel
- Transcription, Environnement et Cancer; Institut de Recherche en Santé-Environnement-Travail (Irset), Inserm UMR 1085, Université de Rennes 1; France
| |
Collapse
|
30
|
Xing L, Esau C, Trudeau VL. Direct Regulation of Aromatase B Expression by 17β-Estradiol and Dopamine D1 Receptor Agonist in Adult Radial Glial Cells. Front Neurosci 2016; 9:504. [PMID: 26793050 PMCID: PMC4709857 DOI: 10.3389/fnins.2015.00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022] Open
Abstract
Aromatase cytochrome P450arom (cyp19) is the only enzyme that has the ability to convert androgens into estrogens. Estrogens, which are produced locally in the vertebrate brain play many fundamental roles in neuroendocrine functions, reproductive functions, socio-sexual behaviors, and neurogenesis. Radial glial cells (RGCs) are neuronal progenitor cells that are abundant in fish brains and are the exclusive site of aromatase B expression and neuroestrogen synthesis. Using a novel in vitro RGC culture preparation we studied the regulation of aromatase B by 17β-estradiol (E2) and dopamine (DA). We have established that activation of the dopamine D1 receptor (D1R) by SKF 38393 up-regulates aromatase B gene expression most likely through the phosphorylation of cyclic AMP response element binding protein (CREB). This up-regulation can be enhanced by low concentration of E2 (100 nM) through increasing the expression of D1R and the level of p-CREB protein. However, a high concentration of E2 (1 μM) and D1R agonist together failed to up-regulate aromatase B, potentially due to attenuation of esr2b expression and p-CREB levels. Furthermore, we found the up-regulation of aromatase B by E2 and DA both requires the involvement of esr1 and esr2a. The combined effect of E2 and DA agonist indicates that aromatase B in the adult teleost brain is under tight control by both steroids and neurotransmitters to precisely regulate neuroestrogen levels.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Crystal Esau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
31
|
Tokarz J, Möller G, Hrabě de Angelis M, Adamski J. Steroids in teleost fishes: A functional point of view. Steroids 2015; 103:123-44. [PMID: 26102270 DOI: 10.1016/j.steroids.2015.06.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023]
Abstract
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Gabriele Möller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, 85350 Freising-Weihenstephan, Germany; Member of German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
32
|
Xing L, McDonald H, Da Fonte DF, Gutierrez-Villagomez JM, Trudeau VL. Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells. Front Neurosci 2015; 9:310. [PMID: 26388722 PMCID: PMC4557113 DOI: 10.3389/fnins.2015.00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.
Collapse
Affiliation(s)
- Lei Xing
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Heather McDonald
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Dillon F Da Fonte
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Juan M Gutierrez-Villagomez
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| | - Vance L Trudeau
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
33
|
Senthilkumaran B, Sudhakumari CC, Mamta SK, Raghuveer K, Swapna I, Murugananthkumar R. "Brain sex differentiation" in teleosts: Emerging concepts with potential biomarkers. Gen Comp Endocrinol 2015; 220:33-40. [PMID: 26116093 DOI: 10.1016/j.ygcen.2015.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022]
Abstract
"Brain sex differentiation" in teleosts is a contentious topic of research as most of the earlier reports tend to suggest that gonadal sex differentiation drives brain sex differentiation. However, identification of sex-specific marker genes in the developing brain of teleosts signifies brain-gonadal interaction during early sexual development in lower vertebrates. In this context, the influence of gonadotropin-releasing hormone (GnRH)-gonadotropin (GTH) axis on gonadal sex differentiation, if any requires in depth analysis. Presence of seabream (sb) GnRH immunoreactivity (ir-) in the brain of XY Nile tilapia was found as early as 5days post hatch (dph) followed by qualitative reduction in the preoptic area-hypothalamus region. In contrast, in the XX female brain a steady ir- of sbGnRH was evident from 15dph. Earlier studies using sea bass already implied the importance of hypothalamic gonadotropic axis completion during sex differentiation period. Such biphasic pattern of localization was also seen in pituitary GTHs using heterologous antisera in tilapia. However, more recent analysis in the same species could not detect any sexually dimorphic pattern using homologous antisera for pituitary GTHs. Detailed studies on the development of hypothalamo-hypophyseal-gonadal axis in teleosts focusing on hypothalamic monoamines (MA) and MA-related enzymes demonstrated sex-specific differential expression of tryptophan hydroxylase (Tph) in the early stages of developing male and female brains of tilapia and catfish. The changes in Tph expression was in agreement with the levels of serotonin (5-HT) and 5-hydroxytryptophan in the preoptic area-hypothalamus. Considering the stimulatory influence of 5-HT on GnRH and GTH release, it is possible to propose a network association between these correlates during early development, which may bring about brain sex dimorphism in males. A recent study from our laboratory during female brain sex development demonstrated high expression of tyrosine hydroxylase in correlation with catecholamine levels, brain aromatase and its related transcription factors such as fushi tarazu factor 1, Ftz-f1 and fork head box protein L2, foxl2. Taken together, gender differences in the levels of various transcripts provide new perspectives on brain sex differentiation in lower vertebrates. Sexually dimorphic or differentially expressing genes may play an essential role at the level of brain in response to gonadal differentiation, which might consequentially or causatively respond to gonadal sex.
Collapse
Affiliation(s)
- Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Sajwan-Khatri Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Kavarthapu Raghuveer
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Immani Swapna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
34
|
Liu Y, Yuan C, Chen S, Zheng Y, Zhang Y, Gao J, Wang Z. Global and cyp19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under bisphenol A exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:10-16. [PMID: 25125231 DOI: 10.1016/j.aquatox.2014.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity and the effects on the steroidogenesis. In the present study, we aim to explore the effects of BPA on epigenetic modification in rare minnow Gobiocypris rarus. We have detected the global and cyp19a1a gene specific DNA methylation in gonads of adult G. rarus under BPA exposure. The global DNA methylation level was significantly increased in testis of the male fish exposed to BPA for 7 days, and it was significantly increased in the ovary following 35-days exposure. DNA methyltransferases (DNMTs) catalyze the transfer of a methyl moiety from S-adenosyl-l-methionine to the cytosine of a CpG dinucleotide. The alteration of the detected dnmts mRNA expression could affect the global DNA methylation levels following 15μg/L BPA exposure. Cytochrome P450 aromatase (CYP19A1A), is responsible for the conversion of androgens into estrogens, which plays a vital role in estrogen synthesis in gonads. In the present study, the methylation level of ovarian cyp19a1a gene was significantly suppressed and stimulated by 7- and 35-day BPA exposure, respectively. There was a significant negative correlation between cyp19a1a mRNA expression and methylation levels of the four CpGs at the 5' flanking region in the ovary of adult G. rarus following BPA exposure. So we hypothesize that there are some association between the reproductive toxicity of BPA and the global DNA methylation under BPA exposure. And the alteration of cyp19a1a expression in female G. rarus by BPA might attribute to the change of its DNA methylation status.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Bello UM, Madekurozwa MC, Groenewald HB, Aire TA, Arukwe A. The effects on steroidogenesis and histopathology of adult male Japanese quails (Coturnix coturnix japonica) testis following pre-pubertal exposure to di(n-butyl) phthalate (DBP). Comp Biochem Physiol C Toxicol Pharmacol 2014; 166:24-33. [PMID: 24983780 DOI: 10.1016/j.cbpc.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023]
Abstract
In the present study, we have investigated the effects of 30-day dietary (pre-pubertal) exposure to different doses (0 (control), 1, 10, 50, 200 and 400 mg/kg bodyweight/day) of di(n-butyl) phthalate (DBP) on Leydig cells of adult male Japanese quails by quantifying the transcript levels for P450 side-chain cleavage (p450scc), P450c17 (CYP17), and 3β- and 17β-hydroxysteroid dehydrogenase (hsd) using quantitative (real-time) polymerase chain reaction (qRT-PCR). In addition, the plasma testosterone levels were analysed using radioimmunoassay (RIA) and testis was examined for evidence of gross pathology and histopathology. Our data showed that pre-pubertal exposure to DBP produced alterations in testicular architecture as evident by poorly developed or mis-shaped testis, and altered spermatogenesis due to tubular degeneration and atrophy of seminiferous tubules especially in the high DBP dose (200 and 400 mg/kg) treated groups. In addition, DBP altered several key enzymes involved in testicular steroidogenesis pathways in an apparent dose-dependent manner. For example, biphasic effects of DBP were observed for P450scc and 3β-hsd mRNA, that were generally increasing at low dose 10 mg/kg, and thereafter, an apparent dose-dependent decrease between 50 and 400mg/kg. The steroidogenic acute regulatory (StAR) protein was at the lowest detectable limits and therefore not quantifiable. These effects did not parallel the non-significant changes observed for plasma testosterone levels. The present data is consistent with previous reports showing that DBP modulates Leydig cell steroidogenesis in several species, with a potential negative effect on reproduction in those avian species that are vulnerable to endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Umar M Bello
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Department of Veterinary Anatomy, Ahmadu Bello University, Zaria, Nigeria
| | - Mary-Catherine Madekurozwa
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Herman B Groenewald
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Tom A Aire
- Department of Anatomy and Physiology, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True Blue, St George's, Grenada
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway.
| |
Collapse
|
36
|
Maltais D, Roy RL. Effects of nonylphenol and ethinylestradiol on copper redhorse (Moxostoma hubbsi), an endangered species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:168-178. [PMID: 25063883 DOI: 10.1016/j.ecoenv.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The copper redhorse, Moxostoma hubbsi, is an endangered species endemic to Quebec. The presence of contaminants, in particular endocrine disrupting chemicals (EDCs), in its habitat has been advanced as partly responsible for the reproductive difficulties encountered by the species. In the present study, immature copper redhorse were exposed to the estrogenic surfactant nonylphenol (NP; 1, 10 and 50µg/l) and the synthetic estrogen 17α-ethinylestradiol (EE2; 10ng/l) for 21 days in a flow-through system. The endpoints investigated included general health indicators (hepatosomatic index and hematocrit), thyroid hormones, sex steroids, brain aromatase activity, plasma and mucus vitellogenin (VTG), cytochrome P4501A protein expression and ethoxyresorufin-O-deethylase activity, heat shock protein 70 (HSP70) and muscle acetylcholinesterase. Exposure to 10ng EE2/l significantly increased brain aromatase activity. Exposure to 50µg NP/l resulted in a significant reduction of plasma testosterone concentrations and a significant induction of hepatic HSP70 protein expression. NP at 50µg/l also induced plasma and mucus VTG. The presence of elevated VTG levels in the surface mucus of immature copper redhorse exposed to NP, and its correlation to plasma VTG, supports the use of mucus VTG as a non-invasive biomarker to evaluate copper redhorse exposure to EDCs in the environment and contribute to restoration efforts of the species. The results of the present study indicate that exposure to high environmentally relevant concentrations of NP and EE2 can affect molecular endpoints related to reproduction in the copper redhorse.
Collapse
Affiliation(s)
- Domynick Maltais
- Pêches et Océans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, QC, Canada G5H 3Z4.
| | - Robert L Roy
- Pêches et Océans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, QC, Canada G5H 3Z4
| |
Collapse
|
37
|
Zhang Y, Zhang S, Lu H, Zhang L, Zhang W. Genes encoding aromatases in teleosts: evolution and expression regulation. Gen Comp Endocrinol 2014; 205:151-8. [PMID: 24859258 DOI: 10.1016/j.ygcen.2014.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 aromatases, encoded by cyp19a1 genes, catalyzes the conversion of androgens to estrogens and plays important roles in the reproduction of vertebrates. Vertebrate cyp19a1 genes showed high synteny in chromosomal locations and conservation in sequences during evolution. However, amphioxus cyp19a1 does not show synteny to vertebrate cyp19a1. Teleost fish possess two copies of the cyp19a1 gene, which were postulated to result from a fish-specific genome duplication. The duplicated copies of fish cyp19a1 genes evolved into the brain and ovarian forms of cytochrome P450 aromatase genes, cyp19a1a and cyp19a1b, respectively, with different regulatory mechanisms of expression, through subfunctionalization under long-term selective pressure. In addition to the estradiol (E2) auto-regulatory loop, there may be other mechanisms responsible for the high expression of aromatase in the teleost brain. The study of the two cyp19a1 copies in teleost fish will shed light on the general evolution, function, and regulation of vertebrate cyp19a1.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shen Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huijie Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lihong Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Weimin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
38
|
Kim BM, Rhee JS, Jeong CB, Lee SJ, Lee YS, Choi IY, Lee JS. Effects of benzo[a]pyrene on whole cytochrome P450-involved molecular responses in the marine medaka Oryzias melastigma. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:232-243. [PMID: 24794342 DOI: 10.1016/j.aquatox.2014.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 06/03/2023]
Abstract
Despite being a strong toxicant for aquatic ecosystems, the effect of benzo[a]pyrene (B[a]P) on whole cytochrome P450 (CYP) biotransformation mechanisms has not been deeply investigated in aquatic organisms. To understand the mode of action of B[a]P on CYP molecular responses in fish, we analyzed the full spectrum of cyp genes and the activities of enzymes that are involved in detoxification and antioxidant defense systems after exposure to different concentrations of B[a]P over different time courses in the marine medaka, Oryzias melastigma. Upon B[a]P exposure, we found significant downregulation of cyp genes associated with steroidogenesis with decreased concentrations of actual hormones including estradiol (E2) and testosterone (11-KT), indicating that B[a]P-treated groups were closely associated with the dysfunction of hormone synthesis in a dose-dependent manner. In addition, B[a]P exposure strongly influenced transcriptional levels of antioxidant-related genes and their enzyme activities. Based on these results, we suggest that B[a]P induced the CYPs-involved systematic biotransformation mechanism with oxidative stress in the juvenile marine medaka, resulting in changes of endogenous hormonal levels and transcriptional levels of several steroidogenic metabolism-related CYPs.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Chang-Bum Jeong
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Yong Sung Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
39
|
Roggio MA, Guyón NF, Hued AC, Amé MV, Valdés ME, Giojalas LC, Wunderlin DA, Bistoni MA. Effects of the synthetic estrogen 17α-ethinylestradiol on aromatase expression, reproductive behavior and sperm quality in the fish Jenynsia multidentata. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:579-584. [PMID: 24458243 DOI: 10.1007/s00128-013-1185-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
The synthetic estrogen 17α-ethynylestradiol (EE2) has been increasingly detected in sewage effluents in the last two decades. The aim of the present study was determined if EE2 exposure adversely affected reproduction in internally fertilizing fish species Jenynsia multidentata. Sexual behavior, brain and gonadal aromatase expression as well as sperm quality were evaluated. The brain aromatase expression, reproductive behavior, spermatozoa viability and gonadosomatic index were sensitive biomarkers of EE2 effects on this species. The condition factor, hepatosomatic index, gonadal aromatase expression, sperm count and sperm velocities were unaltered after EE2 exposure. The present work highlights the importance of using a combination of several biomarkers to study the effects of estrogenic compounds, especially when trying to link these results to potential population-level effects.
Collapse
Affiliation(s)
- M A Roggio
- Fac. Cs. Ex. Fís. y Nat., Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, CP X5000JJC, Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol 2014; 46:26. [PMID: 24735220 PMCID: PMC4108122 DOI: 10.1186/1297-9686-46-26] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
Collapse
Affiliation(s)
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio 45661, USA.
| |
Collapse
|
41
|
Mills LJ, Gutjahr-Gobell RE, Zaroogian GE, Horowitz DB, Laws SC. Modulation of aromatase activity as a mode of action for endocrine disrupting chemicals in a marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:140-150. [PMID: 24418745 DOI: 10.1016/j.aquatox.2013.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/17/2013] [Accepted: 12/22/2013] [Indexed: 06/03/2023]
Abstract
The steroidogenic enzyme aromatase catalyzes the conversion of androgens to estrogens and therefore plays a central role in reproduction. In contrast to most vertebrates, teleost fish have two distinct forms of aromatase. Because brain aromatase activity in fish is up to 1000 times that in mammals, fish may be especially susceptible to negative effects from environmental endocrine-disrupting chemicals (EDCs) that impact aromatase activity. In this study, the effects of estradiol (E2), ethynylestradiol (EE2), octylphenol (OP), and androstatrienedione (ATD) on reproduction and aromatase activity in brains and gonads from the marine fish cunner (Tautogolabrus adspersus) was investigated. The purpose of the study was to explore the relationship between changes in aromatase activity and reproductive output in a marine fish, as well as compare aromatase activity to two commonly used indicators of EDC exposure, plasma vitellogenin (VTG) and gonadosomatic index (GSI). Results with E2, EE2, and ATD indicate that aromatase activity in cunner brain and ovary are affected differently by exposure to these EDCs. In the case of E2 and EE2, male brain aromatase activity was signficantly increased by these treatments, female brain aromatase activity was unaffected, and ovarian aromatase activity was significantly decreased. Treatment with the aromatase inhibitor ATD resulted in significantly decreased aromatase activity in male and female brain, but had no significant impact on ovarian aromatase activity. Regardless of test chemical, a decrease or an increase in male brain aromatase activity relative to controls was associated with decreased egg production in cunner and was also correlated with significant changes in GSI in both sexes. E2 and EE2 significantly elevated plasma VTG in males and females, while ATD had no significant effect. Treatment of cunner with OP had no significant effect on any measured endpoint. Overall, results with these exposures indicate EDCs that impact aromatase activity also affect reproductive output in spawning cunner.
Collapse
Affiliation(s)
- Lesley J Mills
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, United States.
| | - Ruth E Gutjahr-Gobell
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, United States
| | - Gerald E Zaroogian
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, United States
| | - Doranne Borsay Horowitz
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882, United States
| | - Susan C Laws
- United States Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Toxicity Assessment Division, Research Triangle Park, NC 27711, United States
| |
Collapse
|
42
|
Griffin LB, January KE, Ho KW, Cotter KA, Callard GV. Morpholino-mediated knockdown of ERα, ERβa, and ERβb mRNAs in zebrafish (Danio rerio) embryos reveals differential regulation of estrogen-inducible genes. Endocrinology 2013; 154:4158-69. [PMID: 23928376 PMCID: PMC3800766 DOI: 10.1210/en.2013-1446] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genetically distinct estrogen receptor (ER) subtypes (ERα and ERβ) play a major role in mediating estrogen actions in vertebrates, but their unique and overlapping functions are not entirely clear. Although mammals have 1 gene of each subtype (ESR1 and ESR2), teleost fish have a single esr1 (ERα) and 2 esr2 (ERβa and ERβb) genes. To determine the in vivo role of different ER isoforms in regulating estrogen-inducible transcription targets, zebrafish (Danio rerio) embryos were microinjected with esr-specific morpholino (MO) oligonucleotides to disrupt splicing of the exon III/intron III junction in the DNA-binding domain. Each MO knocked down its respective normal transcript and increased production of variants with a retained intron III (esr1 MO) or a deleted or mis-spliced exon III (esr2a and esr2b MOs). Both esr1 and esr2b MOs blocked estradiol induction of vitellogenin and ERα mRNAs, predominant hepatic genes, but esr2b was the only MO that blocked induction of cytochrome P450 aromatase B mRNA, a predominant brain gene. Knockdown of ERβa with the esr2a MO had no effect on estrogen induction of the 3 mRNAs but, when coinjected with esr1 MO, attenuated the effect of ERα knockdown. Results indicate that ERα and ERβb, acting separately or cooperatively on specific gene targets, are positive transcriptional regulators of estrogen action, but the role of ERβa, if any, is unclear. We conclude that MO technology in zebrafish embryos is an advantageous approach for investigating the interplay of ER subtypes in a true physiological context.
Collapse
Affiliation(s)
- Lucinda B Griffin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215.
| | | | | | | | | |
Collapse
|
43
|
Matsumoto Y, Buemio A, Chu R, Vafaee M, Crews D. Epigenetic control of gonadal aromatase (cyp19a1) in temperature-dependent sex determination of red-eared slider turtles. PLoS One 2013; 8:e63599. [PMID: 23762231 PMCID: PMC3676416 DOI: 10.1371/journal.pone.0063599] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/04/2013] [Indexed: 01/29/2023] Open
Abstract
In the red-eared slider turtle (Trachemys scripta), a species with temperature-dependent sex determination (TSD), the expression of the aromatase gene during gonad development is strictly limited to the female-producing temperature. The underlying mechanism remains unknown. In this study, we identified the upstream 5'-flanking region of the aromatase gene, gonad-specific promoter, and the temperature-dependent DNA methylation signatures during gonad development in the red-eared slider turtle. The 5'-flanking region of the slider aromatase exhibited sequence similarities to the aromatase genes of the American alligator, chicken, quail, and zebra finch. A putative TATA box was located 31 bp upstream of the gonad-specific transcription start site. DNA methylation at the CpG sites between the putative binding sites of the fork head domain factor (FOX) and vertebrate steroidogenic factor 1 (SF1) and adjacent TATA box in the promoter region were significantly lower in embryonic gonads at the female-producing temperature compared the male-producing temperature. A shift from male- to female-, but not from female- to male-, producing temperature changed the level of DNA methylation in gonads. Taken together these results indicate that the temperature, particularly female-producing temperature, allows demethylation at the specific CpG sites of the promoter region which leads the temperature-specific expression of aromatase during gonad development.
Collapse
Affiliation(s)
- Yuiko Matsumoto
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alvin Buemio
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Randy Chu
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Mozhgon Vafaee
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - David Crews
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
44
|
Trickler WJ, Guo X, Cuevas E, Ali SF, Paule MG, Kanungo J. Ketamine attenuates cytochrome p450 aromatase gene expression and estradiol-17β levels in zebrafish early life stages. J Appl Toxicol 2013; 34:480-8. [PMID: 23696345 DOI: 10.1002/jat.2888] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/19/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
Ketamine, a dissociative anesthetic, is a noncompetitive antagonist of N-methyl-D-aspartate-type glutamate receptors. In rodents and non-human primates as well as in zebrafish embryos, ketamine has been shown to be neurotoxic. In cyclic female rats, ketamine has been shown to decrease serum estradiol-17β (E2) levels. E2 plays critical roles in neurodevelopment and neuroprotection. Cytochrome p450 (CYP) aromatase catalyzes E2 synthesis from androgens. Although ketamine down-regulates a number of CYP enzymes in rodents, its effect on the CYP aromatase (CYP19) is not known. Zebrafish have been used as a model system for examining mechanisms underlying drug effects. Here, using wild-type (WT) zebrafish (Danio rerio) embryos, we demonstrate that ketamine significantly reduced E2 levels compared with the control. However, the testosterone level was elevated in ketamine-treated embryos. These results are concordant with data from mammalian studies. Ketamine also attenuated the expression of the ovary form of CYP aromatase (cyp19a1a) at the transcriptional level but not the brain form of aromatase, cyp19a1b. Exogenous E2 potently induced the expression of cyp19a1b and vtg 1, both validated biomarkers of estrogenicity and endocrine disruption, but not cyp19a1a expression. Attenuation of activated ERK/MAPK levels, reportedly responsible for reduced human cyp19 transcription, was also observed in ketamine-treated embryos. These results suggest that reduced E2 levels in ketamine-treated embryos may have resulted from the suppression of cyp19a1a transcription.
Collapse
Affiliation(s)
- William J Trickler
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR road, Jefferson, AR, 72079, USA; Toxicologic Pathology Associates, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR road, Jefferson, AR, 72079, USA
| | | | | | | | | | | |
Collapse
|
45
|
Johnsen H, Tveiten H, Torgersen JS, Andersen Ø. Divergent and sex-dimorphic expression of the paralogs of the Sox9-Amh-Cyp19a1 regulatory cascade in developing and adult atlantic cod (Gadus morhua
L.). Mol Reprod Dev 2013; 80:358-70. [DOI: 10.1002/mrd.22170] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/24/2013] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Øivind Andersen
- Nofima Marin; Aas, Norway
- Department of Animal and Aquaculture Sciences; Norwegian University of Life Sciences; Ås, Norway
| |
Collapse
|
46
|
Nagarajan G, Aruna A, Chang CF. Neurosteroidogenic enzymes and their regulation in the early brain of the protogynous grouper Epinephelus coioides during gonadal sex differentiation. Gen Comp Endocrinol 2013; 181:271-87. [PMID: 23168084 DOI: 10.1016/j.ygcen.2012.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
Abstract
The regulatory role of neurosteroids in the early brain during gonadal sex differentiation is unclear. The aim of this study was to investigate the expression and cellular localization of key steroidogenic enzymes in the early brain of the protogynous orange-spotted grouper Epinephelus coioides and the temporal expressions has been correlated with gonadal sex differentiation. In this study, we showed that peak neurosteroidogenesis occurs in the early brain during gonadal sex differentiation. The temporal expressions of key enzymes, cyp11a1 (cytochrome P450 side chain cleavage), hsd3b1 (3β-hydroxysteroid dehydrogenase) and cyp17a1 (cytochrome P450c17) were studied at different developmental ages (from 90- to 150-dah: days after hatching) using quantitative real-time PCR (q-PCR). q-PCR analysis indicated that the transcript expressions of cyp11a1, hsd3b1 and cyp17a1 were increased in the brain around the period of gonadal sex differentiation. Further, in situ hybridization (ISH) analysis showed that cyp11a1, hsd3b1 and cyp17a1 transcripts were widely expressed in several discrete brain regions, especially the intense expression in the forebrain, with an overall similar expression pattern. High density in the cyp19a1b/Cyp19a1b expression was detected in radial glial cells. Thus, the expression of grouper cyp19a1b/Cyp19a1b is restricted to radial glial cells, suggesting estrogens can modulate their activity. Next, by combining Cyp19a1b immunohistochemistry (IHC) with florescence ISH (FISH) of cyp11a1, hsd3b1 and cyp17a1, we showed that sub-cellular localization of cyp11a1, hsd3b1 and cyp17a1 transcripts, in partial, appeared to be in Cyp19a1b radial glial cell soma. Further, exogenous estradiol (E(2)) increased the expression of cyp17a1 and cyp19a1b/Cyp19a1b in the brain of grouper. Consequently, our results illustrated that the locally synthesized E(2) upregulated neurosteroidogenic enzymes in the early brain and suggest a role for these enzymes in the neurogenic process during gonadal sex differentiation.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | |
Collapse
|
47
|
Nicotine alters the expression of molecular markers of endocrine disruption in zebrafish. Neurosci Lett 2012; 526:133-7. [DOI: 10.1016/j.neulet.2012.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/01/2012] [Accepted: 08/13/2012] [Indexed: 01/17/2023]
|
48
|
Farmer JL, Orlando EF. Creating females? Developmental effects of 17α-ethynylestradiol on the mangrove rivulus' ovotestis. Integr Comp Biol 2012; 52:769-80. [PMID: 22927136 DOI: 10.1093/icb/ics110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interest in the occurrence and fate of trace organic contaminants in the aquatic environment and their potential effects on all organisms has increased over the past two decades. Researches on contaminants have included both natural and synthetic estrogenic contaminants, neuroactive pharmaceuticals, and other endocrine disrupting chemicals that are mediated by the androgen and progesterone receptors. Exposure to very low concentrations (ng/L or parts per trillion) of compounds such as 17α-ethynylestradiol (EE(2)), a synthetic estrogen, can affect gonadal development, viability and production of eggs, fertilization rate, and sexual differentiation in fishes. Researchers and aquaculturists have used exposures to relatively higher concentrations of androgens and estrogens, for example 17α-methyltestosterone and EE(2), respectively, to direct sexual differentiation in a number of fishes. Rivulus is an androdioecious teleost that in nature exists mostly as selfing, simultaneous hermaphrodites as well as a small number of males that outcross with hermaphrodites. No one has either collected females in the wild or created functional females in the laboratory. This study had two goals: (1) to develop a reliable protocol to produce female rivulus to enable downstream technologies such as embryo injections and (2) to investigate developmental effects of EE(2) on the sexual outcome, reproductive health, and relevant gene expression in rivulus. With these goals in mind, we exposed newly hatched rivulus to nominal concentrations of 0.1, 0.5, or 1.0 parts per million (ppm) EE(2) for 4 weeks, grew them to maturity in control water, and then compared egg production; production and viability of embryos; age of reproductive maturity; and gene expression in the brain, gonad, and liver. Expression levels of seven genes with known relevance to gonadal development and function (cyp19a1b, cyp19a1a, dmrt1, figα, ERα, ERβ, and vtg) were measured using quantitative polymerase chain reaction (PCR). There was a significant decrease in cyp19a1a gene expression in the brain, corresponding to increased exposure to EE(2). Gonadal gene expression for cyp19a1a, ERα, and dmrt1 also decreased in response to EE(2). Vtg expression in the liver was unaffected. Our hypothesis that exposure to EE(2) during gonadal differentiation would direct female development was not supported by the data. However, treated fish exhibited impaired reproductive health that included reduced expression of relevant genes and, importantly, decreased fertility, increased sterility, and delay of age of reproductive maturity. The results of this study suggest that the development and maintenance of a simultaneous hermphrodite ovotestis may be particularly sensitive to its hormonal milieu.
Collapse
Affiliation(s)
- Jennifer L Farmer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
49
|
Liu Q, Lu H, Zhang L, Xie J, Shen W, Zhang W. Homologues of sox8 and sox10 in the orange-spotted grouper Epinephelus coioides: sequences, expression patterns, and their effects on cyp19a1a promoter activities in vitro. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:86-95. [PMID: 22580033 DOI: 10.1016/j.cbpb.2012.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Sox8 and Sox10 are members of group E Sox proteins involved in a wide range of developmental processes including sex determination and neurogenesis in vertebrates. The orange-spotted grouper sox8a and sox10a homologues were isolated and characterized in the present study. Both sox8a and sox10a genes contain three exons and two introns, and encode putative proteins with typical structures of group E Sox. Sox8a was expressed in diverse tissues including the central nervous system and some peripheral tissues. In contrast, sox10a mRNA was detected primarily in the central nervous system. During embryogenesis, sox8a mRNA seemed to be de novo synthesized in the embryos from otic vesicle stage. However, sox10a mRNA was only detectable in juvenile fish 35 days post hatching and thereafter. The mRNA levels of sox8a in the gonads were not significantly different among ovarian developmental stages but increased in the testis. In vitro transfection assays showed that the Sox10a but not Sox8a up-regulated cyp19a1a promoter activities. Taken together, these results suggested that the sox8a may play roles in diverse tissues and during embryogenesis, whereas sox10a may be mainly involved in the neural regulation of juvenile and adult fish, and that certain Sox homologues may regulate the orange-spotted grouper cyp19a1a promoter.
Collapse
Affiliation(s)
- Qiongyou Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Zhang S, Zhou W, Ye X, Ge W, Cheng CHK, Lin H, Zhang W, Zhang L. Androgen rather than estrogen up-regulates brain-type cytochrome P450 aromatase (cyp19a1b) gene via tissue-specific promoters in the hermaphrodite teleost ricefield eel Monopterus albus. Mol Cell Endocrinol 2012; 350:125-35. [PMID: 22178793 DOI: 10.1016/j.mce.2011.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/30/2022]
Abstract
CYP19A1 in the brain and pituitary of vertebrates is important for reproductive and non-reproductive processes. In teleosts, it is broadly accepted that estradiol (E(2)) up-regulates cyp19a1b gene via a positive autoregulatory loop. Our present study, however, showed that E(2) did not up-regulate ricefield eel cyp19a1b in the hypothalamus and pituitary, whereas dihydrotestosterone (DHT) or testosterone (T) stimulated cyp19a1b expression only in the pituitary. Two tissue-specific promoters, namely promoter I and II directing the expression in the brain and pituitary respectively, were identified. Promoter I contained a non-consensus estrogen response element (ERE), and consequently did not respond to E(2). Promoter II contained an androgen response element (ARE) and consequently responded to DHT. Taken together, these results demonstrated a novel steroidal regulation of cyp19a1b gene expression and an alternative usage of tissue-specific cyp19a1b promoters in the brain and pituitary of a teleost species, the ricefield eel.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|