1
|
Treatment and Management of Hereditary Metabolic Myopathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Joshi PR, Baty K, Hopton S, Cordts I, Falkous G, Schoser B, Blakely EL, Taylor RW, Deschauer M. Progressive external ophthalmoplegia due to a recurrent de novo m.15990C>T MT-TP (mt-tRNA Pro) gene variant. Neuromuscul Disord 2020; 30:346-350. [PMID: 32305257 DOI: 10.1016/j.nmd.2020.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 11/25/2022]
Abstract
Progressive external ophthalmoplegia is typically associated with single or multiple mtDNA deletions but occasionally mtDNA single nucleotide variants within mitochondrial transfer RNAs (mt-tRNAs) are identified. We report a 34-year-old female sporadic patient with progressive external ophthalmoplegia accompanied by exercise intolerance but neither fixed weakness nor multisystemic involvement. Histopathologically, abundant COX-deficient fibres were present in muscle with immunofluorescence analysis confirming the loss of mitochondrial complex I and IV proteins. Molecular genetic analysis identified a rare heteroplasmic m.15990C>T mt-tRNAPro variant reported previously in a single patient with childhood-onset myopathy. The variant in our patient was restricted to muscle. Single muscle fibre analysis identified higher heteroplasmy load in COX-deficient fibres than COX-normal fibres, confirming segregation of high heteroplasmic load with a biochemical defect. Our case highlights the phenotypic variability typically observed with pathogenic mt-tRNA mutations, whilst the identification of a second case with the m.15990C>T mutation not only confirms pathogenicity but shows that de novo mt-tRNA point mutations can arise in multiple, unrelated patients.
Collapse
Affiliation(s)
- Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Germany.
| | - Karen Baty
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sila Hopton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Isabell Cordts
- Department of Neurology, Technical University Munich, School of Medicine, Munich, Germany
| | - Gavin Falkous
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, Munich, Germany
| | - Emma L Blakely
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcus Deschauer
- Department of Neurology, Technical University Munich, School of Medicine, Munich, Germany
| |
Collapse
|
3
|
Kraya T, Deschauer M, Joshi PR, Zierz S, Gaul C. Prevalence of Headache in Patients With Mitochondrial Disease: A Cross-Sectional Study. Headache 2017; 58:45-52. [PMID: 29139113 DOI: 10.1111/head.13219] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mitochondrial diseases are a heterogeneous group of diseases with different phenotypes and genotypes. Headache and, particularly migraine, seems to occur often in patients with MELAS and in patients with CPEO phenotypes. The International Classification of Headache Disorders (ICHD-3 beta) has classified headache as a secondary entity only in MELAS patients. Other headache phenotypes in mitochondrial diseases are not considered in ICHD-3beta. In this study, we analyzed headache phenomenology in a large group of patients with mitochondrial disorders. METHODS A cross-sectional questionnaire-based study on 85 patients with mitochondrial disease with different genotypes and phenotypes was conducted between 2010 and 2011. A structured headache questionnaire according to ICHD-2 was used followed by a telephone interview by a headache expert. Prevalence and characteristics of headache could be analyzed in 42 patients. Headache diagnosis was correlated with genotypes and phenotypes. In addition, the mtDNA haplotype H was analyzed. RESULTS Headache was reported in 29/42 (70%; 95% CI, from 55.1 to 83.0%) of the patients. Tension-type headache (TTH) showed the highest prevalence in 16/42 (38%; 95% CI, from 23.4 to 52.8%) patients, followed by migraine and probable migraine in 12/42 (29%; 95% CI, from 14.9 to 42.2%) patients. Nine of the 42 (21%; 95% CI, from 9 to 33.8%) patients reported two different headache types. Patients with the mtDNA mutation m.3243A > G (n = 8) and MELAS (n = 7) showed the highest prevalence of headaches (88% and 85%, respectively). In patients with the CPEO phenotype (n = 32), headache occurred in 14/18 (78%; 95% CI, from 58.6 to 97%) of patients with single deletions, and in 7/13 (54%; 95% CI, from 26.7 to 80.9%) patients with multiple mtDNA deletions. There were no association between the mtDNA haplotype Hand the headache-diagnosis. CONCLUSIONS The prevalence of headache was higher in patients with mitochondrial diseases than reported in the general population. In all phenotype and genotype groups, TTH was more frequent than migraine. The data also show that the current ICHD-3 beta exclusively focused on MELAS syndrome as vasculopathy does not consider the broader spectrum of headache phenotypes in mitochondrial disorders.
Collapse
Affiliation(s)
- Torsten Kraya
- Department of Neurology, University Hospital Halle-Saale, Halle, Saale, Germany
| | | | - Pushpa Raj Joshi
- Department of Neurology, University Hospital Halle-Saale, Halle, Saale, Germany
| | - Stephan Zierz
- Department of Neurology, University Hospital Halle-Saale, Halle, Saale, Germany
| | - Charly Gaul
- Headache and Migraine Clinic, Königstein, Germany
| |
Collapse
|
4
|
Hanisch F, Kornhuber M, Alston CL, Taylor RW, Deschauer M, Zierz S. SANDO syndrome in a cohort of 107 patients with CPEO and mitochondrial DNA deletions. J Neurol Neurosurg Psychiatry 2015; 86:630-4. [PMID: 25143630 DOI: 10.1136/jnnp-2013-306748] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 07/23/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The sensory ataxic neuropathy with dysarthria and ophthalmoparesis (SANDO) syndrome is a subgroup of mitochondrial chronic progressive external ophthalmoplegia (CPEO)-plus disorders associated with multiple mitochondrial DNA (mtDNA) deletions. There is no systematic survey on SANDO in patients with CPEO with either single or multiple large-scale mtDNA deletions. METHODS In this retrospective analysis, we characterised the frequency, the genetic and clinical phenotype of 107 index patients with mitochondrial CPEO (n=66 patients with single and n=41 patients with multiple mtDNA deletions) and assessed these for clinical evidence of a SANDO phenotype. Patients with multiple mtDNA deletions were additionally screened for mutations in the nuclear-encoded POLG, SLC25A4, PEO1 and RRM2B genes. The clinical, histological and genetic data of 11 patients with SANDO were further analysed. RESULTS None of the 66 patients with single, large-scale mtDNA deletions fulfilled the clinical criteria of SANDO syndrome. In contrast, 9 of 41 patients (22%) with multiple mtDNA deletions and two additional family members fulfilled the clinical criteria for SANDO. Within this subgroup, multiple mtDNA deletions were associated with the following nuclear mutations: POLG (n=6), PEO1 (n=2), unidentified (n=2). The combination of sensory ataxic neuropathy with ophthalmoparesis (SANO) was observed in 70% of patients with multiple mtDNA deletions but only in 4% with single deletions. The combination of CPEO and sensory ataxic neuropathy (SANO, incomplete SANDO) was found in 43% of patients with multiple mtDNA deletions but not in patients with single deletions. CONCLUSION The SANDO syndrome seems to indicate a cluster of symptoms within the wide range of multisystemic symptoms associated with mitochondrial CPEO. SANO seems to be the most frequent phenotype associated with multiple mtDNA deletions in our cohort but not or is rarely associated with single, large-scale mtDNA deletions.
Collapse
Affiliation(s)
- Frank Hanisch
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Malte Kornhuber
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, UK
| | - Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Lehmann D, Schubert K, Joshi PR, Hardy SA, Tuppen HAL, Baty K, Blakely EL, Bamberg C, Zierz S, Deschauer M, Taylor RW. Pathogenic mitochondrial mt-tRNA(Ala) variants are uniquely associated with isolated myopathy. Eur J Hum Genet 2015; 23:1735-8. [PMID: 25873012 PMCID: PMC4519577 DOI: 10.1038/ejhg.2015.73] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 11/09/2022] Open
Abstract
Pathogenic mitochondrial DNA (mtDNA) point mutations are associated with a wide range of clinical phenotypes, often involving multiple organ systems. We report two patients with isolated myopathy owing to novel mt-tRNA(Ala) variants. Muscle biopsy revealed extensive histopathological findings including cytochrome c oxidase (COX)-deficient fibres. Pyrosequencing confirmed mtDNA heteroplasmy for both mutations (m.5631G>A and m.5610G>A) whilst single-muscle fibre segregation studies (revealing statistically significant higher mutation loads in COX-deficient fibres than in COX-positive fibres), hierarchical mutation segregation within patient tissues and decreased steady-state mt-tRNA(Ala) levels all provide compelling evidence of pathogenicity. Interestingly, both patients showed very high-mutation levels in all tissues, inferring that the threshold for impairment of oxidative phosphorylation, as evidenced by COX deficiency, appears to be extremely high for these mt-tRNA(Ala) variants. Previously described mt-tRNA(Ala) mutations are also associated with a pure myopathic phenotype and demonstrate very high mtDNA heteroplasmy thresholds, inferring at least some genotype:phenotype correlation for mutations within this particular mt-tRNA gene.
Collapse
Affiliation(s)
- Diana Lehmann
- Department of Neurology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Kathrin Schubert
- Department of Neurology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Pushpa R Joshi
- Department of Neurology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Steven A Hardy
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Helen A L Tuppen
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Karen Baty
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Emma L Blakely
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | | | - Stephan Zierz
- Department of Neurology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Marcus Deschauer
- Department of Neurology, University of Halle-Wittenberg, Halle (Saale), Germany
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Joshi PR, Vetterke M, Hauburger A, Tacik P, Stoltenburg G, Hanisch F. Functional relevance of mitochondrial abnormalities in sporadic inclusion body myositis. J Clin Neurosci 2014; 21:1959-63. [PMID: 25311418 DOI: 10.1016/j.jocn.2014.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/21/2014] [Accepted: 05/30/2014] [Indexed: 10/24/2022]
Abstract
Cytochrome c oxidase (COX)-deficient fibers and multiple mitochondrial DNA (mtDNA) deletions are frequent findings in sporadic inclusion body myositis (s-IBM). However, the functional impact of these defects is not known. We investigated oxygen desaturation during exercise using the forearm exercise test, accumulation of lactate during exercise using a cycle ergometry test and mitochondrial changes (COX-deficient fibers, biochemical activities of respiratory chain complexes, multiple mtDNA deletions by long-range polymerase chain reaction) in 10 patients with s-IBM and compared the findings with age and sex-matched normal and diseased controls (without mitochondrial disorders) as well as patients with mitochondrial disorder due to nuclear gene defects resulting in multiple mtDNA deletions (MITO group). The mean age of the s-IBM patients was 68.2 ± 5.7 years (range: 56-75). Patients with s-IBM had statistically significantly reduced oxygen desaturation (ΔsO2) during the handgrip exercise (p<0.05) and elevated peak serum lactate levels during cycle ergometry compared to normal controls (p<0.05). The percentage of COX-deficient fibers in s-IBM and MITO patients was significantly increased compared to normal controls (p<0.01). Five out of nine s-IBM patients had multiple mtDNA deletions. Thirty-three percent of s-IBM patients showed an increased citrate synthase content and decreased activities of complex IV (COX). The biochemical pattern of respiratory chain complexes in patients with s-IBM and MITO was similar. Histopathological analysis showed similar changes in s-IBM and MITO due to nuclear gene defects. Functional tests reflecting mitochondrial impairment suggest a contribution of mitochondrial defects to disease-related symptoms such as fatigue and exertion-induced symptoms.
Collapse
Affiliation(s)
- Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Mirjam Vetterke
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Anja Hauburger
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Pawel Tacik
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gisela Stoltenburg
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; Institute of Cell Biology and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Hanisch
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
7
|
Lehmann D, Schubert K, Joshi PR, Baty K, Blakely EL, Zierz S, Taylor RW, Deschauer M. A novel m.7539C>T point mutation in the mt-tRNA(Asp) gene associated with multisystemic mitochondrial disease. Neuromuscul Disord 2014; 25:81-4. [PMID: 25447692 PMCID: PMC4317191 DOI: 10.1016/j.nmd.2014.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
Mitochondrial transfer RNA (mt-tRNA) mutations are the commonest sub-type of mitochondrial (mtDNA) mutations associated with human disease. We report a patient with multisytemic disease characterised by myopathy, spinal ataxia, sensorineural hearing loss, cataract and cognitive impairment in whom a novel m.7539C>T mt-tRNA(Asp) transition was identified. Muscle biopsy revealed extensive histopathological findings including cytochrome c oxidase (COX)-deficient fibres. Pyrosequencing confirmed mtDNA heteroplasmy for the mutation whilst single muscle fibre segregation studies revealed statistically significant higher mutation loads in COX-deficient fibres than in COX-positive fibres. Absence from control databases, hierarchical mt-tRNA mutation segregation within tissues, and occurrence at conserved sequence positions, further confirm this novel mt-tRNA mutation to be pathogenic. To date only three mt-tRNA(Asp) gene mutations have been described with clear evidence of pathogenicity. The novel m.7539C>T mt-tRNA(Asp) gene mutation extends the spectrum of pathogenic mutations in this gene, further supporting the notion that mt-tRNA(Asp) gene mutations are associated with multisystemic disease presentations.
Collapse
Affiliation(s)
- Diana Lehmann
- Department of Neurology, University of Halle-Wittenberg, Ernst-Grube-Str. 40, Halle/Saale 06097, Germany
| | - Kathrin Schubert
- Department of Neurology, University of Halle-Wittenberg, Ernst-Grube-Str. 40, Halle/Saale 06097, Germany
| | - Pushpa R Joshi
- Department of Neurology, University of Halle-Wittenberg, Ernst-Grube-Str. 40, Halle/Saale 06097, Germany
| | - Karen Baty
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Emma L Blakely
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Stephan Zierz
- Department of Neurology, University of Halle-Wittenberg, Ernst-Grube-Str. 40, Halle/Saale 06097, Germany
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Marcus Deschauer
- Department of Neurology, University of Halle-Wittenberg, Ernst-Grube-Str. 40, Halle/Saale 06097, Germany.
| |
Collapse
|
8
|
Twinkle mutations in two Chinese families with autosomal dominant progressive external ophthalmoplegia. Neurol Sci 2013; 35:443-8. [PMID: 24091712 DOI: 10.1007/s10072-013-1557-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Autosomal dominant progressive external ophthalmoplegia (adPEO) is a common adult onset mitochondrial disease caused by mutations in nuclear DNA (nDNA). Twinkle is one of the nuclear genes associated with adPEO. Clinical, histochemical, and molecular genetics findings of 6 patients from two Chinese families with adPEO were reported. Two point mutations (c.1423G>C, p.A475P and c.1061G>C, p.R354P) of Twinkle gene have been found. Multiple mtDNA deletions were also detected in patient's muscle and fibroblasts. This study confirms two mutations in Chinese adPEO families, which were first reported in the Chinese population.
Collapse
|
9
|
Arnold JJ, Smidansky ED, Moustafa IM, Cameron CE. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:948-60. [PMID: 22551784 DOI: 10.1016/j.bbagrm.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022]
Abstract
Transcription of the human mitochondrial genome is required for the expression of 13 subunits of the respiratory chain complexes involved in oxidative phosphorylation, which is responsible for meeting the cells' energy demands in the form of ATP. Also transcribed are the two rRNAs and 22 tRNAs required for mitochondrial translation. This process is accomplished, with the help of several accessory proteins, by the human mitochondrial RNA polymerase (POLRMT, also known as h-mtRNAP), a nuclear-encoded single-subunit DNA-dependent RNA polymerase (DdRp or RNAP) that is distantly related to the bacteriophage T7 class of single-subunit RNAPs. In addition to its role in transcription, POLRMT serves as the primase for mitochondrial DNA replication. Therefore, this enzyme is of fundamental importance for both expression and replication of the human mitochondrial genome. Over the past several years rapid progress has occurred in understanding POLRMT and elucidating the molecular mechanisms of mitochondrial transcription. Important accomplishments include development of recombinant systems that reconstitute human mitochondrial transcription in vitro, determination of the X-ray crystal structure of POLRMT, identification of distinct mechanisms for promoter recognition and transcription initiation, elucidation of the kinetic mechanism for POLRMT-catalyzed nucleotide incorporation and discovery of unique mechanisms of mitochondrial transcription inhibition including the realization that POLRMT is an off target for antiviral ribonucleoside analogs. This review summarizes the current understanding of POLRMT structure-function, mechanism and inhibition. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
10
|
Dündar H, Ozgül RK, Yalnızoğlu D, Erdem S, Oğuz KK, Tuncel D, Temuçin CM, Dursun A. Identification of a novel Twinkle mutation in a family with infantile onset spinocerebellar ataxia by whole exome sequencing. Pediatr Neurol 2012; 46:172-7. [PMID: 22353293 DOI: 10.1016/j.pediatrneurol.2011.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/22/2011] [Indexed: 01/29/2023]
Abstract
Whole exome sequencing combined with homozygosity mapping comprises a genetic diagnostic tool to identify genetic defects in families with multiple affected members, compatible with presumed autosomal recessively inherited neurometabolic/neurogenetic disease. These tools were applied to a family with two individuals manifesting ataxia, associated with peripheral sensory neuropathy, athetosis, seizures, deafness, and ophthalmoplegia. A novel homozygous missense mutation c.1366C>G (L456V) in C10orf2 (the Twinkle gene) was identified, confirming infantile onset spinocerebellar ataxia in the probands. Signs in infantile onset spinocerebellar ataxia follow a fairly distinct pattern, affecting early development, followed by ataxia and loss of skills. However, this very rare disease was previously reported only in Finland. We suggest that infantile onset spinocerebellar ataxia should be more frequently considered in the differential diagnosis of neurometabolic diseases in childhood. Next-generation sequencing and its use along with homozygosity mapping offer highly promising techniques for molecular diagnosis, especially in small families affected with very rare neurometabolic disorders such as infantile onset spinocerebellar ataxia.
Collapse
Affiliation(s)
- Halil Dündar
- Metabolism Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Martin-Negrier ML, Sole G, Jardel C, Vital C, Ferrer X, Vital A. TWINKLE gene mutation: report of a French family with an autosomal dominant progressive external ophthalmoplegia and literature review. Eur J Neurol 2010; 18:436-41. [DOI: 10.1111/j.1468-1331.2010.03171.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Longley MJ, Humble MM, Sharief FS, Copeland WC. Disease variants of the human mitochondrial DNA helicase encoded by C10orf2 differentially alter protein stability, nucleotide hydrolysis, and helicase activity. J Biol Chem 2010; 285:29690-702. [PMID: 20659899 DOI: 10.1074/jbc.m110.151795] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Missense mutations in the human C10orf2 gene, encoding the mitochondrial DNA (mtDNA) helicase, co-segregate with mitochondrial diseases such as adult-onset progressive external ophthalmoplegia, hepatocerebral syndrome with mtDNA depletion syndrome, and infantile-onset spinocerebellar ataxia. To understand the biochemical consequences of C10orf2 mutations, we overproduced wild type and 20 mutant forms of human mtDNA helicase in Escherichia coli and developed novel schemes to purify the recombinant enzymes to near homogeneity. A combination of molecular crowding, non-ionic detergents, Mg(2+) ions, and elevated ionic strength was required to combat insolubility and intrinsic instability of certain mutant variants. A systematic biochemical assessment of the enzymes included analysis of DNA binding affinity, DNA helicase activity, the kinetics of nucleotide hydrolysis, and estimates of thermal stability. In contrast to other studies, we found that all 20 mutant variants retain helicase function under optimized in vitro conditions despite partial reductions in DNA binding affinity, nucleotide hydrolysis, or thermal stability for some mutants. Such partial defects are consistent with the delayed presentation of mitochondrial diseases associated with mutation of C10orf2.
Collapse
Affiliation(s)
- Matthew J Longley
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
13
|
Fratter C, Gorman GS, Stewart JD, Buddles M, Smith C, Evans J, Seller A, Poulton J, Roberts M, Hanna MG, Rahman S, Omer SE, Klopstock T, Schoser B, Kornblum C, Czermin B, Lecky B, Blakely EL, Craig K, Chinnery PF, Turnbull DM, Horvath R, Taylor RW. The clinical, histochemical, and molecular spectrum of PEO1 (Twinkle)-linked adPEO. Neurology 2010; 74:1619-26. [PMID: 20479361 DOI: 10.1212/wnl.0b013e3181df099f] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Mutations in the Twinkle (PEO1) gene are a recognized cause of autosomal dominant progressive external ophthalmoplegia (adPEO), resulting in the accumulation of multiple mitochondrial DNA (mtDNA) deletions and cytochrome c oxidase (COX)-deficient fibers in skeletal muscle secondary to a disorder of mtDNA maintenance. Patients typically present with isolated extraocular muscle involvement, with little apparent evidence of the clinical heterogeneity documented in other mtDNA maintenance disorders, in particular POLG-related disease. METHODS We reviewed the clinical, histochemical, and molecular genetics analysis of 33 unreported patients from 26 families together with all previous cases described in the literature to define the clinical phenotype associated with PEO1 mutations. RESULTS Ptosis and ophthalmoparesis were almost universal clinical features among this cohort, with 52% (17/33) reporting fatigue and 33% (11/33) having mild proximal myopathy. Features consistent with CNS involvement were rarely described; however, in 24% (8/33) of the patients, cardiac abnormalities were reported. Mitochondrial histochemical changes observed in muscle showed remarkable variability, as did the secondary mtDNA deletions, which in some patients were only detected by PCR-based assays and not Southern blotting. Moreover, we report 7 novel PEO1 variants. CONCLUSIONS Our data suggest a shared clinical phenotype with variable mild multiorgan involvement, and that the contribution of PEO1 mutations as a cause of adPEO may well be underestimated. Direct sequencing of the PEO1 gene should be considered in adPEO patients prior to muscle biopsy.
Collapse
Affiliation(s)
- C Fratter
- Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1378-88. [PMID: 20417176 DOI: 10.1016/j.bbabio.2010.04.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Mitochondria are organelles whose main function is to generate power by oxidative phosphorylation. Some of the essential genes required for this energy production are encoded by the mitochondrial genome, a small circular double stranded DNA molecule. Human mtDNA is replicated by a specialized machinery distinct from the nuclear replisome. Defects in the mitochondrial replication machinery can lead to loss of genetic information by deletion and/or depletion of the mtDNA, which subsequently may cause disturbed oxidative phosphorylation and neuromuscular symptoms in patients. We discuss here the different components of the mitochondrial replication machinery and their role in disease. We also review the mode of mammalian mtDNA replication.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-40530 Gothenburg, Sweden.
| | | |
Collapse
|
15
|
Bohlega S, Van Goethem G, Al Semari A, Löfgren A, Al Hamed M, Van Broeckhoven C, Kambouris M. Novel Twinkle gene mutation in autosomal dominant progressive external ophthalmoplegia and multisystem failure. Neuromuscul Disord 2009; 19:845-8. [PMID: 19853444 DOI: 10.1016/j.nmd.2009.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/29/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
A Saudi Arabian family presented with adult onset autosomal dominant progressive external ophthalmoplegia (adPEO) complicated by late onset reversible failure of the CNS, respiratory, hepatic, and endocrine systems. Clinical findings were suggestive of mitochondrial dysfunction and multiple mitochondrial DNA deletions were demonstrated on long range and real time polymerase chain reaction assays but not on Southern blotting. The disorder is caused by a novel heterozygous PEO1 mutation predicting a Leu360Gly substitution in the twinkle protein. The peculiar clinical presentation expands the variable phenotype observed in adPEO and Twinkle gene mutations.
Collapse
Affiliation(s)
- S Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hong D, Bi H, Yao S, Wang Z, Yuan Y. Clinical phenotype of autosomal dominant progressive external ophthalmoplegia in a family with a novel mutation in the C10orf2 gene. Muscle Nerve 2009; 41:92-9. [DOI: 10.1002/mus.21439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Van Hove JLK, Cunningham V, Rice C, Ringel SP, Zhang Q, Chou PC, Truong CK, Wong LJC. Finding twinkle in the eyes of a 71-year-old lady: a case report and review of the genotypic and phenotypic spectrum of TWINKLE-related dominant disease. Am J Med Genet A 2009; 149A:861-7. [PMID: 19353676 DOI: 10.1002/ajmg.a.32731] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Progressive external ophthalmoplegia (PEO) can be caused by a disorder characterized by multiple mitochondrial DNA (mtDNA) deletions due to mutations in the TWINKLE gene, encoding a mtDNA helicase. We describe a 71-year-old woman who had developed PEO at age 55 years. She had cataracts, diabetes, paresthesias, cognitive defects, memory problems, hearing loss, and sensory ataxia. She had muscle weakness with ragged red fibers on biopsy. MRI showed static white matter changes. A c.908G>A substitution (p.R303Q) in the TWINKLE gene was identified. Multiple mtDNA deletions were detected in muscle but not blood by a PCR-based method, but not by Southern blot analysis. MtDNA copy number was maintained in blood and muscle. A systematic literature search was used to identify the genotypic and phenotypic spectrum of dominant TWINKLE-related disease. Patients were adults with PEO and symptoms including myopathy, neuropathy, dysarthria or dysphagia, sensory ataxia, and parkinsonism. Diabetes, cataract, memory loss, hearing loss, and cardiac problems were infrequent. All reported mutations clustered between amino acids 303 and 508 with no mutations at the N-terminal half of the gene. The TWINKLE gene should be analyzed in adults with PEO even in the absence of mtDNA deletions in muscle on Southern blot analysis, and of a family history for PEO. The pathogenic mutations identified 5' beyond the linker region suggest a functional role for this part of the protein despite the absence of a primase function in humans. In our patient, the pathogenesis involved multiple mtDNA deletions without reduction in mtDNA copy number.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, University of Colorado Denver, Denver, Colorado 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sologub MY, Kochetkov SN, Temiakov DE. Transcription and its regulation in mammalian and human mitochondria. Mol Biol 2009. [DOI: 10.1134/s0026893309020034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Spinazzola A, Zeviani M. Mitochondrial diseases: a cross-talk between mitochondrial and nuclear genomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:69-84. [PMID: 20225020 DOI: 10.1007/978-90-481-2813-6_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than one billion years ago, mitochondria were free-living prokaryotic organisms with their own DNA. However, during the evolution, ancestral genes have been transferred from the mitochondrial to the nuclear genome so that mtDNA became dependent on numerous nucleus-encoded factors for its integrity, replication and expression. Mutations in any of these factors may alter the cross-talk between the two genomes and cause Mendelian diseases that affect mtDNA integrity or expression.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milano, Italy
| | | |
Collapse
|
20
|
Jeppesen TD, Schwartz M, Colding-Jørgensen E, Krag T, Hauerslev S, Vissing J. Phenotype and clinical course in a family with a new de novo Twinkle gene mutation. Neuromuscul Disord 2008; 18:306-9. [DOI: 10.1016/j.nmd.2007.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 09/24/2007] [Accepted: 10/08/2007] [Indexed: 11/30/2022]
|
21
|
Rivera H, Blázquez A, Carretero J, Alvarez-Cermeño JC, Campos Y, Cabello A, Gonzalez-Vioque E, Borstein B, Garesse R, Arenas J, Martín MA. Mild ocular myopathy associated with a novel mutation in mitochondrial twinkle helicase. Neuromuscul Disord 2007; 17:677-80. [PMID: 17614277 DOI: 10.1016/j.nmd.2007.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/08/2007] [Accepted: 05/16/2007] [Indexed: 11/22/2022]
Abstract
Autosomal dominant PEO is associated with mutations in a number of nuclear genes affecting the intergenomic communication with mitochondrial DNA. We report a Spanish family showing a mild phenotype characterized by autosomal dominant ocular myopathy and morphological signs of mitochondrial dysfunction, that harboured a novel c.1071G>C (p.R357P) mutation in the hot-spot linker region of the twinkle protein.
Collapse
Affiliation(s)
- Henry Rivera
- Centro de Investigación, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In the course of evolution, mitochondria lost their independence, and mtDNA became “slave” of nDNA, depending on numerous nucleus-encoded factors for its integrity, replication and expression. Mutations in any of these factors may alter the cross-talk between the two genomes and cause diseases that affect mtDNA integrity or expression, being inherited as mendelian traits.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Unit of Molecular Neurogenetics, C. Besta Neurological Institute-Foundation IRCCS, via Libero Temolo 4, Milano, 20126, Italy
| | | |
Collapse
|
23
|
Abstract
Mitochondrial diseases are disorders caused by impairment of the mitochondrial respiratory chain, characterized by clinical-genetic heterogeneity and frequent multisystemic involvement. It is difficult to establish a precise genotype/phenotype correlation and obtain a definitive nosology. Today's genetic classification distinguishes disorders caused by defects in the mitochondrial genome (sporadic or maternally-inherited) from disorders caused by defects in the nuclear genome (autosomally-inherited). We report an updated classification, briefly review the main clinical syndromes and describe the most recent genetic knowledge.
Collapse
Affiliation(s)
- M Filosto
- Neurological Clinic, Section for Neuromuscular Diseases and Neuropathies, University Hospital Spedali Civili of Brescia, Brescia, Italy.
| | | |
Collapse
|
24
|
Bonawitz ND, Clayton DA, Shadel GS. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell 2007; 24:813-25. [PMID: 17189185 DOI: 10.1016/j.molcel.2006.11.024] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria contain their own DNA (mtDNA) that is expressed and replicated by nucleus-encoded factors imported into the organelle. Recently, the core human mitochondrial transcription machinery has been defined, comprising a bacteriophage-related mtRNA polymerase (POLRMT), an HMG-box transcription factor (h-mtTFA), and two transcription factors (h-mtTFB1 and h-mtTFB2) that also serve as rRNA methyltransferases. Here, we describe these transcription components as well as recent insights into the mechanism of human mitochondrial transcription initiation and its regulation. We also discuss novel roles for the mitochondrial transcription machinery beyond transcription initiation, including priming of mtDNA replication, packaging of mtDNA, coordination of ribosome biogenesis, and coupling of transcription to translation.
Collapse
Affiliation(s)
- Nicholas D Bonawitz
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
25
|
Taylor RW, Chinnery PF, Turnbull DM. Investigation of metabolic myopathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:193-204. [PMID: 18809001 DOI: 10.1016/s0072-9752(07)86009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
26
|
Oldfors A, Tulinius M. Mitochondrial encephalomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 86:125-165. [PMID: 18808998 DOI: 10.1016/s0072-9752(07)86006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
27
|
Shutt TE, Gray MW. Twinkle, the Mitochondrial Replicative DNA Helicase, Is Widespread in the Eukaryotic Radiation and May Also Be the Mitochondrial DNA Primase in Most Eukaryotes. J Mol Evol 2006; 62:588-99. [PMID: 16612544 DOI: 10.1007/s00239-005-0162-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 11/30/2005] [Indexed: 10/24/2022]
Abstract
Recently, the human protein responsible for replicative mtDNA helicase activity was identified and designated Twinkle. Twinkle has been implicated in autosomal dominant progressive external ophthalmoplegia (adPEO), a mitochondrial disorder characterized by mtDNA deletions. The Twinkle protein appears to have evolved from an ancestor shared with the bifunctional primase-helicase found in the T-odd bacteriophages. However, the question has been raised as to whether human Twinkle possesses primase activity, due to amino acid sequence divergence and absence of a zinc-finger motif thought to play an integral role in DNA binding. To date, a primase protein participating in mtDNA replication has not been identified in any eukaryote. Here we investigate the wider phylogenetic distribution of Twinkle by surveying and analyzing data from ongoing EST and genome sequencing projects. We identify Twinkle homologues in representatives from five of six major eukaryotic assemblages ("supergroups") and present the sequence of the complete Twinkle gene from two members of Amoebozoa, a supergroup of amoeboid protists at the base of the opisthokont (fungal/metazoan) radiation. Notably, we identify conserved primase motifs including the zinc finger in all Twinkle sequences outside of Metazoa. Accordingly, we propose that Twinkle likely serves as the primase as well as the helicase for mtDNA replication in most eukaryotes whose genome encodes it, with the exception of Metazoa.
Collapse
Affiliation(s)
- Timothy E Shutt
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, and Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
28
|
Abstract
Mitochondrial DNA (mtDNA) depends on numerous nuclear encoded factors and a constant supply of deoxyribonucleoside triphosphates (dNTP), for its maintenance and replication. The function of proteins involved in nucleotide metabolism is perturbed in a heterogeneous group of disorders associated with depletion, multiple deletions, and mutations of the mitochondrial genome. Disturbed homeostasis of the mitochondrial dNTP pools are likely the underlying cause. Understanding of the biochemical and molecular basis of these disorders will promote the development of new therapeutic approaches. This article reviews the current knowledge of deoxyribonucleotide metabolism in relation to disorders affecting mtDNA integrity.
Collapse
Affiliation(s)
- Ann Saada
- Metabolic Disease Unit, Shaare Zedek Medical Center, Jerusalem, Israel.
| |
Collapse
|
29
|
Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders--past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1659:115-20. [PMID: 15576042 DOI: 10.1016/j.bbabio.2004.09.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 12/22/2022]
Abstract
A number of epidemiological studies of mitochondrial disease have been carried out over the last decade, clearly demonstrating that mitochondrial disorders are far more common than was previously accepted. This review summarizes current knowledge of the prevalence of human mitochondrial disorders--data that has important implications for the provision of health care and adequate resources for research into the pathogenesis and treatment of these disorders.
Collapse
|
30
|
Deschauer M, Hudson G, Müller T, Taylor RW, Chinnery PF, Zierz S. A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 2005; 15:311-5. [PMID: 15792871 DOI: 10.1016/j.nmd.2004.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/29/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Only four different mutations in the adenine nucleotide translocator 1 (ANT1) gene have been found in families with progressive external ophthalmoplegia (PEO). We report a novel heterozygous C to A transversion at nucleotide 269 in the ANT1 gene in a German family with PEO, predicted to convert a highly conserved alanine at codon 90 to aspartic acid. The mutation was identified in three siblings with PEO, one of them additionally suffered from schizoaffective disorder. Microsatellite analysis showed that the mutation was dominant and inherited from the mother who did not carry the mutation in blood, indicating germ-line mosaicism.
Collapse
Affiliation(s)
- Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Deschauer M, Krasnianski A, Zierz S, Taylor RW. False-Positive Diagnosis of a Single, Large-Scale Mitochondrial DNA Deletion by Southern Blot Analysis: The Role of Neutral Polymorphisms. ACTA ACUST UNITED AC 2004; 8:395-9. [PMID: 15684869 DOI: 10.1089/gte.2004.8.395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Single, large-scale deletions of mitochondrial DNA (mtDNA) are a common finding in the molecular investigation of patients with suspected mitochondrial disorders and are typically detected by Southern blot analysis of muscle DNA that has been linearized by a single cutter enzyme (BamHI or PvuII). We describe our investigations of a 47-year-old woman with exercise intolerance, myalgia, and ptosis who underwent a muscle biopsy for a suspected mitochondrial genetic abnormality. Southern blot analysis after digestion of muscle DNA with BamHI revealed the apparent presence of two mtDNA species, indicative of a heteroplasmic deletion of 2.0-2.5 kb in length involving approximately 50% of all molecules. Contrary to this observation, longrange polymerase chain reaction (PCR) amplified only wild-type mtDNA. Sequence analysis revealed that the patient harbored two previously recognized control region polymorphisms, a homoplasmic 16390G>A variant that introduces a new BamHI site and a heteroplasmic 16390G>A change that abolishes this site, thus explaining the initial false-positive testing for a heteroplasmic mtDNA deletion. Our findings highlight the potential problems associated with the diagnosis of mitochondrial genetic disease and emphasize the need to confirm positive cases of mtDNA deletions using more than one enzyme or an independent method such as long-range PCR amplification.
Collapse
Affiliation(s)
- Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06097, Halle/Saale, Germany.
| | | | | | | |
Collapse
|
32
|
Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N, Poulton J, Jalanko A, Spelbrink JN, Holt IJ, Suomalainen A. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 2004; 13:3219-27. [PMID: 15509589 DOI: 10.1093/hmg/ddh342] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mechanisms of mitochondrial DNA (mtDNA) maintenance have recently gained wide interest owing to their role in inherited diseases as well as in aging. Twinkle is a new mitochondrial 5'-3' DNA helicase, defects of which we have previously shown to underlie a mitochondrial disease, progressive external ophthalmoplegia with multiple mtDNA deletions. Mouse Twinkle is highly similar to the human counterpart, suggesting conserved function. Here, we have characterized the mouse Twinkle gene and expression profile and report that the expression patterns are not conserved between human and mouse, but are synchronized with the adjacent gene MrpL43, suggesting a shared promoter. To elucidate the in vivo role of Twinkle in mtDNA maintenance, we generated two transgenic mouse lines overexpressing wild-type Twinkle. We could demonstrate for the first time that increased expression of Twinkle in muscle and heart increases mtDNA copy number up to 3-fold higher than controls, more than any other factor reported to date. Additionally, we utilized cultured human cells and observed that reduced expression of Twinkle by RNA interference mediated a rapid drop in mtDNA copy number, further supporting the in vivo results. These data demonstrate that Twinkle helicase is essential for mtDNA maintenance, and that it may be a key regulator of mtDNA copy number in mammals.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Department of Neurology and Programme of Neurosciences, University of Helsinki, 00290 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Taylor RW, Schaefer AM, Barron MJ, McFarland R, Turnbull DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 2004; 14:237-45. [PMID: 15019701 DOI: 10.1016/j.nmd.2003.12.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 11/24/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
Mitochondrial respiratory chain abnormalities are an important cause of neuromuscular disease and may be due to defects of either the mitochondrial or nuclear genome. On account of the clinical and genetic heterogeneity exhibited by the mitochondrial myopathies, their investigation and diagnosis remains a challenge, requiring a combination of techniques including muscle histochemistry, biochemical assessment of respiratory chain function and molecular genetic studies. Here, we describe a step-by-step approach to the clinical and laboratory diagnosis of mitochondrial muscle disease, highlighting the many potential problems that can hinder reaching the correct diagnosis.
Collapse
Affiliation(s)
- Robert W Taylor
- Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|