1
|
Arroyo M, Casas-Delucchi C, Pabba M, Prorok P, Pradhan S, Rausch C, Lehmkuhl A, Maiser A, Buschbeck M, Pasque V, Bernstein E, Luck K, Cardoso M. Histone variant macroH2A1 regulates synchronous firing of replication origins in the inactive X chromosome. Nucleic Acids Res 2024; 52:11659-11688. [PMID: 39189450 PMCID: PMC11514477 DOI: 10.1093/nar/gkae734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
MacroH2A has been linked to transcriptional silencing, cell identity, and is a hallmark of the inactive X chromosome (Xi). However, it remains unclear whether macroH2A plays a role in DNA replication. Using knockdown/knockout cells for each macroH2A isoform, we show that macroH2A-containing nucleosomes slow down replication progression rate in the Xi reflecting the higher nucleosome stability. Moreover, macroH2A1, but not macroH2A2, regulates the number of nano replication foci in the Xi, and macroH2A1 downregulation increases DNA loop sizes corresponding to replicons. This relates to macroH2A1 regulating replicative helicase loading during G1 by interacting with it. We mapped this interaction to a phenylalanine in macroH2A1 that is not conserved in macroH2A2 and the C-terminus of Mcm3 helicase subunit. We propose that macroH2A1 enhances the licensing of pre-replication complexes via DNA helicase interaction and loading onto the Xi.
Collapse
Affiliation(s)
- Maria Arroyo
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Maruthi K Pabba
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Sunil K Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Andreas Maiser
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, LMU Munich, Munich 81377, Germany
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Camí de les Escoles, 08916 Badalona, Barcelona, Spain
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-Cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, NY, NY 10029, USA
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
2
|
Yin X, Zeng D, Liao Y, Tang C, Li Y. The Function of H2A Histone Variants and Their Roles in Diseases. Biomolecules 2024; 14:993. [PMID: 39199381 PMCID: PMC11352661 DOI: 10.3390/biom14080993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation, which is characterized by reversible and heritable genetic alterations without changing DNA sequences, has recently been increasingly studied in diseases. Histone variant regulation is an essential component of epigenetic regulation. The substitution of canonical histones by histone variants profoundly alters the local chromatin structure and modulates DNA accessibility to regulatory factors, thereby exerting a pivotal influence on gene regulation and DNA damage repair. Histone H2A variants, mainly including H2A.Z, H2A.B, macroH2A, and H2A.X, are the most abundant identified variants among all histone variants with the greatest sequence diversity. Harboring varied chromatin occupancy and structures, histone H2A variants perform distinct functions in gene transcription and DNA damage repair. They are implicated in multiple pathophysiological mechanisms and the emergence of different illnesses. Cancer, embryonic development abnormalities, neurological diseases, metabolic diseases, and heart diseases have all been linked to histone H2A variant alterations. This review focuses on the functions of H2A histone variants in mammals, including H2A.Z, H2A.B, macroH2A, and H2A.X, and their current roles in various diseases.
Collapse
Affiliation(s)
- Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yingjun Liao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.Y.); (D.Z.); (Y.L.); (C.T.)
- Hunan Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
3
|
Recoules L, Tanguy Le Gac N, Moutahir F, Bystricky K, Lavigne AC. Recruitment of the Histone Variant MacroH2A1 to the Pericentric Region Occurs upon Chromatin Relaxation and Is Responsible for Major Satellite Transcriptional Regulation. Cells 2023; 12:2175. [PMID: 37681907 PMCID: PMC10486525 DOI: 10.3390/cells12172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Heterochromatin formation plays a pivotal role in regulating chromatin organization and influences nuclear architecture and genome stability and expression. Amongst the locations where heterochromatin is found, the pericentric regions have the capability to attract the histone variant macroH2A1. However, the factors and mechanisms behind macroH2A1 incorporation into these regions have not been explored. In this study, we probe different conditions that lead to the recruitment of macroH2A1 to pericentromeric regions and elucidate its underlying functions. Through experiments conducted on murine fibroblastic cells, we determine that partial chromatin relaxation resulting from DNA damage, senescence, or histone hyper-acetylation is necessary for the recruitment of macroH2A1 to pericentric regions. Furthermore, macroH2A1 is required for upregulation of noncoding pericentric RNA expression but not for pericentric chromatin organization. Our findings shed light on the functional rather than structural significance of macroH2A1 incorporation into pericentric chromatin.
Collapse
Affiliation(s)
- Ludmila Recoules
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Nicolas Tanguy Le Gac
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Fatima Moutahir
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| | - Kerstin Bystricky
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
- Institut Universitaire de France (IUF), F-75231 Paris, France
| | - Anne-Claire Lavigne
- Centre de Biologie Intégrative (CBI), MCD, Université de Toulouse Paul Sabatier, UPS, Université de Toulouse, UT, CNRS, F-31062 Toulouse, France; (L.R.); (N.T.L.G.); (F.M.)
| |
Collapse
|
4
|
Sano R, Koyama K, Fukuoka N, Ueno H, Yamamura S, Suzuki T. Single-Cell Microarray Chip with Inverse-Tapered Wells to Maintain High Ratio of Cell Trapping. MICROMACHINES 2023; 14:492. [PMID: 36838192 PMCID: PMC9959924 DOI: 10.3390/mi14020492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
A single-cell microarray (SCM) influenced by gravitational force is expected to be one of the simple methods in various fields such as DNA analysis and antibody production. After trapping the cells in the SCM chip, it is necessary to remove the liquid from the SCM to wash away the un-trapped cells on the chip and treat the reagents for analysis. The flow generated during this liquid exchange causes the trapped cells to drop out of conventional vertical wells. In this study, we propose an inverse-tapered well to keep trapped cells from escaping from the SCM. The wells with tapered side walls have a reduced force of flow toward the opening, which prevents trapped cells from escaping. The proposed SCM chip was fabricated using 3D photolithography and polydimethylsiloxane molding techniques. In the trapping experiment using HeLa cells, the cell residual rate increased more than two-fold for the SCM chip with the inverse-tapered well with a taper angle of 30° compared to that for the conventional vertical SCM chip after multiple rounds of liquid exchanges. The proposed well structure increases the number of trapped cells and decreases the cell dropout rate to improve the efficiency of cellular analysis.
Collapse
Affiliation(s)
- Ryota Sano
- Division of Mechanical Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kentaro Koyama
- Division of Mechanical Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Narumi Fukuoka
- Division of Mechanical Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Hidetaka Ueno
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, Kobe 650-0047, Japan
| | - Shohei Yamamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu 761-0395, Japan
| | - Takaaki Suzuki
- Division of Mechanical Science and Technology, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
5
|
Chiodi V, Domenici MR, Biagini T, De Simone R, Tartaglione AM, Di Rosa M, Lo Re O, Mazza T, Micale V, Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J 2021; 35:e21793. [PMID: 34320234 DOI: 10.1096/fj.202100569r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Gene expression and epigenetic processes in several brain regions regulate physiological processes such as cognitive functions and social behavior. MacroH2A1.1 is a ubiquitous variant of histone H2A that regulates cell stemness and differentiation in various organs. Whether macroH2A1.1 has a modulatory role in emotional behavior is unknown. Here, we employed macroH2A1.1 knock-out (-/- ) mice to perform a comprehensive battery of behavioral tests, and an assessment of hippocampal synaptic plasticity (long-term potentiation) accompanied by whole hippocampus RNA sequencing. MacroH2A1.1-/- mice exhibit a stunningly enhancement both of sociability and of active stress-coping behavior, reflected by the increased social behavior in social activity tests and higher mobility time in the forced swim test, respectively. They also display an increased hippocampal synaptic plasticity, accompanied by significant neurotransmission transcriptional networks changes. These results suggest that systemic depletion of histone macroH2A1.1 supports an epigenetic control necessary for hippocampal function and social behavior.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,ERA Chair in Translational Stem Cell Biology, Medical University-Varna, Varna, Bulgaria.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
6
|
Lone IN, Sengez B, Hamiche A, Dimitrov S, Alotaibi H. The Role of Histone Variants in the Epithelial-To-Mesenchymal Transition. Cells 2020; 9:cells9112499. [PMID: 33213091 PMCID: PMC7698467 DOI: 10.3390/cells9112499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a physiological process activated during early embryogenesis, which continues to shape tissues and organs later on. It is also hijacked by tumor cells during metastasis. The regulation of EMT has been the focus of many research groups culminating in the last few years and resulting in an elaborate transcriptional network buildup. However, the implication of epigenetic factors in the control of EMT is still in its infancy. Recent discoveries pointed out that histone variants, which are key epigenetic players, appear to be involved in EMT control. This review summarizes the available data on histone variants' function in EMT that would contribute to a better understanding of EMT itself and EMT-related diseases.
Collapse
Affiliation(s)
- Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
| | - Burcu Sengez
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67400 Illkirch, France;
| | - Stefan Dimitrov
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey; (I.N.L.); (B.S.); (S.D.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir 35340, Turkey
- Correspondence: ; Tel.: +90-232-299-4100 (ext. 5071)
| |
Collapse
|
7
|
Rchiad Z, Haidar M, Ansari HR, Tajeri S, Mfarrej S, Ben Rached F, Kaushik A, Langsley G, Pain A. Novel tumour suppressor roles for GZMA and RASGRP1 in Theileria annulata-transformed macrophages and human B lymphoma cells. Cell Microbiol 2020; 22:e13255. [PMID: 32830401 PMCID: PMC7685166 DOI: 10.1111/cmi.13255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumours that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced leukocyte transformation. Dataset comparisons highlighted a small set of genes associated with Theileria-transformed leukocyte dissemination. The roles of Granzyme A (GZMA) and RAS guanyl-releasing protein 1 (RASGRP1) were verified by CRISPR/Cas9-mediated knockdown. Knocking down expression of GZMA and RASGRP1 in attenuated macrophages led to a regain in their dissemination in Rag2/γC mice confirming their role as dissemination suppressors in vivo. We further evaluated the roles of GZMA and RASGRP1 in human B lymphomas by comparing the transcriptome of 934 human cancer cell lines to that of Theileria-transformed bovine host cells. We confirmed dampened dissemination potential of human B lymphomas that overexpress GZMA and RASGRP1. Our results provide evidence that GZMA and RASGRP1 have a novel tumour suppressor function in both T. annulata-infected bovine host leukocytes and in human B lymphomas.
Collapse
Affiliation(s)
- Zineb Rchiad
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France.,Centre de Coalition, Innovation, et de prévention des Epidémies au Maroc (CIPEM), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Malak Haidar
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Hifzur Rahman Ansari
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Shahin Tajeri
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Sara Mfarrej
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abhinav Kaushik
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, France
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
RNA-Guided Genomic Localization of H2A.L.2 Histone Variant. Cells 2020; 9:cells9020474. [PMID: 32085641 PMCID: PMC7072763 DOI: 10.3390/cells9020474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular basis of residual histone retention after the nearly genome-wide histone-to-protamine replacement during late spermatogenesis is a critical and open question. Our previous investigations showed that in postmeiotic male germ cells, the genome-scale incorporation of histone variants TH2B-H2A.L.2 allows a controlled replacement of histones by protamines to occur. Here, we highlight the intrinsic ability of H2A.L.2 to specifically target the pericentric regions of the genome and discuss why pericentric heterochromatin is a privileged site of histone retention in mature spermatozoa. We observed that the intranuclear localization of H2A.L.2 is controlled by its ability to bind RNA, as well as by an interplay between its RNA-binding activity and its tropism for pericentric heterochromatin. We identify the H2A.L.2 RNA-binding domain and demonstrate that in somatic cells, the replacement of H2A.L.2 RNA-binding motif enhances and stabilizes its pericentric localization, while the forced expression of RNA increases its homogenous nuclear distribution. Based on these data, we propose that the specific accumulation of RNA on pericentric regions combined with H2A.L.2 tropism for these regions are responsible for stabilizing H2A.L.2 on these regions in mature spermatozoa. This situation would favor histone retention on pericentric heterochromatin.
Collapse
|
9
|
Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem 2019; 63:59-74. [DOI: 10.1042/ebc20180062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
The eukaryotic genome is regulated in the context of chromatin. Specialized histones, known as histone variants, incorporate into chromatin to replace their canonical counterparts and represent an important layer of regulation to diversify the structural characteristics and functional outputs of chromatin. MacroH2A is an unusual histone variant with a bulky C-terminal non-histone domain that distinguishes it from all other histones. It is a critical player in stabilizing differentiated cell identity by posing as a barrier to somatic cell reprogramming toward pluripotency and acts as a tumor suppressor in a wide range of cancers. MacroH2A histones are generally regarded as repressive variants that are enriched at the inactive X chromosome (Xi) and broad domains across autosomal chromatin. Recent studies have shed light on to how macroH2A influences transcriptional outputs within distinct genomic contexts and revealed new intriguing molecular functions of macroH2A variants beyond transcriptional regulation. Furthermore, the mechanisms of its mysterious chromatin deposition are beginning to be unraveled, facilitating our understanding of its complex regulation of genome function.
Collapse
|
10
|
Sato Y, Stasevich TJ, Kimura H. Visualizing the Dynamics of Inactive X Chromosomes in Living Cells Using Antibody-Based Fluorescent Probes. Methods Mol Biol 2018; 1861:91-102. [PMID: 30218362 DOI: 10.1007/978-1-4939-8766-5_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inactive X chromosome (Xi) harbors characteristic epigenetic features, including the enrichment of histone H3 lysine 27 trimethylation (H3K27me3) and H4 lysine 20 monomethylation (H4K20me1) as well as a lack of histone acetylation. Recently, these modifications have been visualized not only in fixed specimen, but also in living cells via probes derived from modification-specific antibodies. The probes include fluorescently labeled antigen binding fragments (Fabs), which can be loaded into cells, as well as genetically encoded single-chain variable fragments tagged with the green fluorescent protein. We refer to the latter as modification specific intracellular antibodies, or "mintbodies" for short. By using Fabs or mintbodies to target Xi-specific modifications, the dynamics of Xi in living cells can be visualized.
Collapse
Affiliation(s)
- Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Timothy J Stasevich
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan. .,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
11
|
Funaya S, Aoki F. Regulation of zygotic gene activation by chromatin structure and epigenetic factors. J Reprod Dev 2017; 63:359-363. [PMID: 28579579 PMCID: PMC5593087 DOI: 10.1262/jrd.2017-058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the
mid-one-cell stage, which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression pattern of one-cell embryos is unique and changes dramatically at the two-cell
stage. However, the mechanism regulating this alteration has not yet been elucidated. It has been shown that chromatin structure and epigenetic factors change dynamically between the one- and two-cell stages. In this article, we
review the characteristics of transcription, chromatin structure, and epigenetic factors in one- and two-cell mouse embryos and discuss the involvement of chromatin structure and epigenetic factors in the alteration of
transcription that occurs between these stages.
Collapse
Affiliation(s)
- Satoshi Funaya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
12
|
Marzorati S, Lleo A, Carbone M, Gershwin ME, Invernizzi P. The epigenetics of PBC: The link between genetic susceptibility and environment. Clin Res Hepatol Gastroenterol 2016; 40:650-659. [PMID: 27341761 DOI: 10.1016/j.clinre.2016.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/30/2016] [Accepted: 05/13/2016] [Indexed: 02/04/2023]
Abstract
Primary biliary cholangitis (PBC) previously known as primary biliary cirrhosis is an autoimmune disease-associated with progressive cholestasis, the presence of autoreactive T cell and characteristic serological autoantibodies. Genetic and genome-wide association studies (GWAS) have recently shed light on the genetic background of PBC. Besides that some causal nucleotide changes and mechanisms remain largely unknown as suggested for example, by the observation that monozygotic twins have an identical DNA sequence even if presents some phenotypic differences that may be consequences of different exposures to environmental stressors. For this reason, it is believed that epigenetic mechanisms may be involved in PBC pathogenesis, as already demonstrated in many autoimmune diseases and can eventually provide an understanding that has been missed from genetics alone. This review will focus on the most commonly studied epigenetic modifications already demonstrated in PBC; special attention will be paid also to other epigenetic mechanisms so far not demonstrated in PBC patients, but that could increase our understanding in PBC pathogenesis.
Collapse
Affiliation(s)
- Simona Marzorati
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Ana Lleo
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marco Carbone
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA; Program for Autoimmune Liver Diseases, Section of Digestive Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Monza (MB), Italy.
| |
Collapse
|
13
|
Moretti C, Vaiman D, Tores F, Cocquet J. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. Epigenetics Chromatin 2016; 9:47. [PMID: 27795737 PMCID: PMC5081929 DOI: 10.1186/s13072-016-0099-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During meiosis, the X and Y chromosomes are transcriptionally silenced. The persistence of repressive chromatin marks on the sex chromatin after meiosis initially led to the assumption that XY gene silencing persists to some extent in spermatids. Considering the many reports of XY-linked genes expressed and needed in the post-meiotic phase of mouse spermatogenesis, it is still unclear whether or not the mouse sex chromatin is a repressive or permissive environment, after meiosis. RESULTS To determine the transcriptional and chromatin state of the sex chromosomes after meiosis, we re-analyzed ten ChIP-Seq datasets performed on mouse round spermatids and four RNA-seq datasets from male germ cells purified at different stages of spermatogenesis. For this, we used the last version of the genome (mm10/GRCm38) and included reads that map to several genomic locations in order to properly interpret the high proportion of sex chromosome-encoded multicopy genes. Our study shows that coverage of active epigenetic marks H3K4me3 and Kcr is similar on the sex chromosomes and on autosomes. The post-meiotic sex chromatin nevertheless differs from autosomal chromatin in its enrichment in H3K9me3 and its depletion in H3K27me3 and H4 acetylation. We also identified a posttranslational modification, H3K27ac, which specifically accumulates on the Y chromosome. In parallel, we found that the X and Y chromosomes are enriched in genes expressed post-meiotically and display a higher proportion of spermatid-specific genes compared to autosomes. Finally, we observed that portions of chromosome 14 and of the sex chromosomes share specific features, such as enrichment in H3K9me3 and the presence of multicopy genes that are specifically expressed in round spermatids, suggesting that parts of chromosome 14 are under the same evolutionary constraints than the sex chromosomes. CONCLUSIONS Based on our expression and epigenomic studies, we conclude that, after meiosis, the mouse sex chromosomes are no longer silenced but are nevertheless regulated differently than autosomes and accumulate different chromatin marks. We propose that post-meiotic selective constraints are at the basis of the enrichment of spermatid-specific genes and of the peculiar chromatin composition of the sex chromosomes and of parts of chromosome 14.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel Vaiman
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frederic Tores
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Julie Cocquet
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
14
|
Lee MK, Cheong HS, Koh Y, Ahn KS, Yoon SS, Shin HD. Genetic Association of PARP15 Polymorphisms with Clinical Outcome of Acute Myeloid Leukemia in a Korean Population. Genet Test Mol Biomarkers 2016; 20:696-701. [PMID: 27610459 DOI: 10.1089/gtmb.2016.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS Some members of the poly ADP-ribose polymerase (PARP) protein family have been regarded as targets for the therapeutic inhibition of cancer. Among these PARP genes, poly ADP-ribose polymerase family, member 15 (PARP15) is a candidate gene for cancer development due to its ability to regulate gene transcription and its reported association with apoptosis. The current study investigated the possible association between PARP15 single-nucleotide polymorphisms and the risk of acute myeloid leukemia (AML). In addition, we analyzed the effects of the PARP15 polymorphisms on the clinical phenotypes associated with cytosine arabinose (AraC) chemotherapy in AML patients. METHODS Ten PARP15 polymorphisms were genotyped via TaqMan assay in a total of 344 Korean subjects, including 103 AML patients and 241 normal controls. The genetic effects of the polymorphisms on the risk of AML and the clinical phenotypes were analyzed using Statistical Analysis System (SAS) software. RESULTS The results from a Cox regression analysis for overall survival revealed that two polymorphisms were associated with increased overall survival and the signal for rs17208928 was retained after correcting for multiple tests (pcorr < 0.05). CONCLUSIONS These results suggest the possibility that the PARP15 gene may be a potential therapeutic target in AML patients although much larger scale studies are needed for validation.
Collapse
Affiliation(s)
- Min Kyung Lee
- 1 Department of Life Science, Sogang University , Seoul, Republic of Korea
| | - Hyun Sub Cheong
- 2 Cancer Research Institute, Seoul National University Hospital , Seoul, Republic of Korea.,3 Department of Genetic Epidemiology, SNP Genetics, Inc. , Seoul, Republic of Korea
| | - Youngil Koh
- 4 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Kwang-Sung Ahn
- 5 Functional Genome Institute , PDXen Biosystem, Inc., Seoul, Republic of Korea
| | - Sung-Soo Yoon
- 2 Cancer Research Institute, Seoul National University Hospital , Seoul, Republic of Korea.,4 Department of Internal Medicine, Seoul National University College of Medicine , Seoul, Republic of Korea.,6 Clinical Research Institute, Seoul National University Hospital , Seoul, Republic of Korea
| | - Hyoung Doo Shin
- 1 Department of Life Science, Sogang University , Seoul, Republic of Korea.,3 Department of Genetic Epidemiology, SNP Genetics, Inc. , Seoul, Republic of Korea
| |
Collapse
|
15
|
Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol 2016; 7:1419. [PMID: 27656178 PMCID: PMC5013053 DOI: 10.3389/fmicb.2016.01419] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotypes 3 and 4 are zoonotic, whereas those from genotypes 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy, and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College ParkMD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park MD, USA
| |
Collapse
|
16
|
Wu C, Nan Y, Zhang YJ. New insights into hepatitis E virus virus–host interaction: interplay with host interferon induction. Future Virol 2015. [DOI: 10.2217/fvl.15.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Hepatitis E virus (HEV) is a fecal–oral-transmitted viral pathogen causing several large outbreaks of hepatitis across the world. HEV-mediated hepatitis has a mortality rate from 0.5 to 3% in young adults but is up to 30% in pregnant women. HEV is also a zoonotic pathogen as it has been isolated from different mammalian hosts including the pig, rabbit, rat, ferret, bat and deer. As an invading pathogen, HEV needs to overcome the host innate immune response to establish infection. Notable progress has been recently made in HEV mechanisms of antagonizing the host innate immune responses. In this review, we elaborate on the HEV interplay with host interferon induction while briefly summarizing the major aspects of HEV biology and host interferon induction to assist the understanding of the virus–host interaction.
Collapse
Affiliation(s)
- Chunyan Wu
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine & Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Yuchen Nan
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine & Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine & Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
17
|
Maclary E, Hinten M, Harris C, Kalantry S. Long nonoding RNAs in the X-inactivation center. Chromosome Res 2014; 21:601-614. [PMID: 24297756 DOI: 10.1007/s10577-013-9396-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The X-inactivation center is a hotbed of functional long noncoding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two X-chromosomes is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable and divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation. In the last 25 years, the discovery and functional characterization has firmly established X-linked long noncoding RNAs as key players in choreographing X-chromosome inactivation.
Collapse
Affiliation(s)
- Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
18
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
19
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | | |
Collapse
|
20
|
Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V, Barbry P, Debernardi A, Brambilla C, Brambilla E, Rousseaux S, Khochbin S. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene 2010; 29:5171-81. [PMID: 20581866 DOI: 10.1038/onc.2010.259] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells frequently express genes normally active in male germ cells. ATAD2 is one of them encoding a conserved factor harbouring an AAA type ATPase domain and a bromodomain. We show here that ATAD2 is highly expressed in testis as well as in many cancers of different origins and that its high expression is a strong predictor of rapid mortality in lung and breast cancers. These observations suggest that ATAD2 acts on upstream and basic cellular processes to enhance oncogenesis in a variety of unrelated cell types. Accordingly, our functional studies show that ATAD2 controls chromatin dynamics, genome transcriptional activities and apoptotic cell response. We could also highlight some of the important intrinsic properties of its two regulatory domains, including a functional cross-talk between the AAA ATPase domain and the bromodomain. Altogether, these data indicate that ATAD2 overexpression in somatic cells, by acting on basic properties of chromatin, may contribute to malignant transformation.
Collapse
|
21
|
Chang CC, Gao S, Sung LY, Corry GN, Ma Y, Nagy ZP, Tian XC, Rasmussen TP. Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer. Cell Reprogram 2010; 12:43-53. [PMID: 20132012 DOI: 10.1089/cell.2009.0043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Breton A, LE Bourhis D, Audouard C, Vignon X, Lelièvre JM. Nuclear profiles of H3 histones trimethylated on Lys27 in bovine (Bos taurus) embryos obtained after in vitro fertilization or somatic cell nuclear transfer. J Reprod Dev 2010; 56:379-88. [PMID: 20431250 DOI: 10.1262/jrd.09-182a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3 trimethylation on lysine 27 is one of the histone modifications associated with chromatin of silenced regions. H3K27me3 labeling is initially asymmetrical between pronuclei in mammalian embryos, and then it is remodeled during early development. However, in mouse embryos obtained after somatic cell nuclear transfer (SCNT), H3K27me3 histones inherited from the somatic female cell and associated with X chromosome inactivation have been reported to escape remodeling. Using immunostaining, we investigated the remodeling of H3K27me3 in Bos taurus embryos obtained after in vitro fertilization (IVF) and SCNT. In this species, transfer-induced chromatin remodeling can be clearly separated from embryonic genome activation (EGA), which occurs at the 8-16-cell stage, and cloning by SCNT is 10 times more successful than in the mouse. In early IVF bovine embryos, dense H3K27me3 labeling was localized in the pericentric heterochromatin as recently described in the mouse. Labeling was however unevenly distributed up to the 8-cell stage, suggesting that the parental genomes partitioned before EGA. In female IVF blastocysts, a somatic-like female profile appeared in 21% of the trophoblast cells. This profile, which had one major nuclear H3K27me3 patch, the putative inactive X chromosome (Xi), was absent in male blastocysts. In contrast, the somatic-like female H3K27me3 profile was observed in the majority of the nuclei of female bovine SCNT embryos before EGA. At the 8-16-cell stage, this profile was transiently replaced by pericentric-like labeling in most nuclei. Immunostaining of mitotic chromosomes suggested that the ratio of H3K27me3 labeling in pericentric heterochromatin vs. euchromatin was then rapidly altered. Finally, Xi-like H3K27me3 staining appeared again in trophoblast cells in female SCNT blastocysts. These results suggest a role for EGA in H3K27me3 remodeling, which affects the heterochromatin inherited from the donor cell or produced during development.
Collapse
Affiliation(s)
- Amandine Breton
- INRA, ENVA UMR 1198 Biologie du Développement et Reproduction, France
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Bellmann K, Charette SJ, Nadeau PJ, Poirier DJ, Loranger A, Landry J. The mechanism whereby heat shock induces apoptosis depends on the innate sensitivity of cells to stress. Cell Stress Chaperones 2010; 15:101-13. [PMID: 19557548 PMCID: PMC2866974 DOI: 10.1007/s12192-009-0126-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/16/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022] Open
Abstract
The cellular response to heat shock (HS) is a paradigm for many human diseases collectively known as "protein conformation diseases" in which the accumulation of misfolded proteins induces cell death. Here, we analyzed how cells having a different apoptotic threshold die subsequent to a treatment with HS. Cells with a low apoptotic threshold mainly induced apoptosis through activation of conventional stress kinase signaling pathways. By contrast, cells with a high apoptotic threshold also died by apoptosis but likely after the accumulation of heat-aggregated proteins as revealed by the formation of aggresomes in these cells, which were associated with the generation of atypical nuclear deformations. Inhibition of the proteasome or expression of an aggregation prone protein produced similar nuclear alterations. Furthermore, elevated levels of chaperones markedly suppressed both HS-induced nuclear deformations and apoptosis induced upon protein aggregation whereas they had little effect on stress kinase-mediated apoptosis. We conclude that the relative contribution of stress signaling pathways and the accumulation of protein aggregates to cell death by apoptosis is related to the innate sensitivity of cells to deadly insults.
Collapse
Affiliation(s)
- Kerstin Bellmann
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Steve J. Charette
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Québec, QC Canada G1V 4G5
| | - Philippe J. Nadeau
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Dominic J. Poirier
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Anne Loranger
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| | - Jacques Landry
- Centre de recherche en cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, 9 rue McMahon, Québec, QC Canada G1R 2J6
| |
Collapse
|
25
|
Llères D, James J, Swift S, Norman DG, Lamond AI. Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. ACTA ACUST UNITED AC 2009; 187:481-96. [PMID: 19948497 PMCID: PMC2779238 DOI: 10.1083/jcb.200907029] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FRET analysis of cell lines expressing fluorescently tagged histones on separate nucleosomes demonstrates that variations in chromosome compaction occur during mitosis. We present a quantitative Förster resonance energy transfer (FRET)–based assay using multiphoton fluorescence lifetime imaging microscopy (FLIM) to measure chromatin compaction at the scale of nucleosomal arrays in live cells. The assay uses a human cell line coexpressing histone H2B tagged to either enhanced green fluorescent protein (FP) or mCherry FPs (HeLaH2B-2FP). FRET occurs between FP-tagged histones on separate nucleosomes and is increased when chromatin compacts. Interphase cells consistently show three populations of chromatin with low, medium, or high FRET efficiency, reflecting spatially distinct regions with different levels of chromatin compaction. Treatment with inhibitors that either increase chromatin compaction (i.e., depletion of adenosine triphosphate) or decrease chromosome compaction (trichostatin A) results in a parallel increase or decrease in the FLIM–FRET signal. In mitosis, the assay showed variation in compaction level, as reflected by different FRET efficiency populations, throughout the length of all chromosomes, increasing to a maximum in late anaphase. These data are consistent with extensive higher order folding of chromatin fibers taking place during anaphase.
Collapse
Affiliation(s)
- David Llères
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | |
Collapse
|
26
|
Dross N, Spriet C, Zwerger M, Müller G, Waldeck W, Langowski J. Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 2009; 4:e5041. [PMID: 19347038 PMCID: PMC2660426 DOI: 10.1371/journal.pone.0005041] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/05/2009] [Indexed: 01/09/2023] Open
Abstract
Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.
Collapse
Affiliation(s)
- Nicolas Dross
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corentin Spriet
- Biophotonique Cellulaire Fonctionelle, IRI, Parc de la Haute Borne, Villeneuve d'Ascq, France
| | - Monika Zwerger
- Division of Functional Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriele Müller
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Waldemar Waldeck
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
27
|
Mietton F, Sengupta AK, Molla A, Picchi G, Barral S, Heliot L, Grange T, Wutz A, Dimitrov S. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol Cell Biol 2009; 29:150-6. [PMID: 18936163 PMCID: PMC2612491 DOI: 10.1128/mcb.00997-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/04/2008] [Accepted: 10/10/2008] [Indexed: 01/05/2023] Open
Abstract
We studied the enrichment and distribution of the histone variant mH2A1 in the condensed inactive X (Xi) chromosome. By using highly specific antibodies against mH2A1 and stable HEK 293 cell lines expressing either green fluorescent protein (GFP)-mH2A1 or GFP-H2A, we found that the Xi chromosome contains approximately 1.5-fold more mH2A1 than the autosomes. To determine the in vivo distribution of mH2A1 along the X chromosome, we used a native chromatin immunoprecipitation-on-chip technique. DNA isolated from mH2A1-immunoprecipitated nucleosomes from either male or female mouse liver were hybridized to tiling microarrays covering 5 kb around most promoters or the entire X chromosome. The data show that mH2A1 is uniformly distributed across the entire Xi chromosome. Interestingly, a stronger mH2A1 enrichment along the pseudoautosomal X chromosome region was observed in both sexes. Our results indicate a potential role for macroH2A in large-scale chromosome structure and genome stability.
Collapse
Affiliation(s)
- Flore Mietton
- Institut Albert Bonniot, INSERM/UJF-U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Platani M, Lamond AI. Nuclear organisation and subnuclear bodies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2008; 35:1-22. [PMID: 15113077 DOI: 10.1007/978-3-540-74266-1_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Melpomeni Platani
- Wellcome Trust Biocentre, MSI/WTB Complex, DD1 5EH, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
29
|
Salstrom JL. X-inactivation and the dynamic maintenance of gene silencing. Mol Genet Metab 2007; 92:56-62. [PMID: 17604203 DOI: 10.1016/j.ymgme.2007.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 01/25/2023]
Abstract
X-inactivation has long been a topic of fascination for educators, researchers, and clinicians alike. From complex patterns of inheritance to phenotypic variation among females with X-linked traits, a myriad of hypothesis and interpretations exist. Once thought to be random yet complete, X-inactivation has proven itself the poster child of the exception rather than the rule. Indeed, patterns of X-inactivation are all too often non-random, and many X-linked genes are capable of escaping X-inactivation. Similarly, X-inactivation is well-known for being stably maintained for life, but some previously inactivated X-linked genes reactivate with increasing age. Moreover, recent papers illustrate that X-inactivation can be challenged in other ways, thereby rendering the stability of X-inactivation compromised. This review describes factors involved in the maintenance of X-inactivation as we know it and discusses these emerging data that suggest a more dynamic model of the maintenance of X-inactivation may be in order.
Collapse
Affiliation(s)
- Jennifer L Salstrom
- Department of Human Genetics, David Geffen School of Medicine at UCLA, 6505 Gonda Center-Mail Code 708822, 695 Charles E Young Drive South, Los Angeles, CA 90095-708822, USA.
| |
Collapse
|
30
|
Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007; 397:84-93. [PMID: 17544228 PMCID: PMC2755200 DOI: 10.1016/j.gene.2007.04.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied by extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews our current understanding of the structure, assembly and function of these SAHF at a cellular level. The possible contribution of SAHF to tumor suppression and tissue aging is also critically discussed.
Collapse
Affiliation(s)
- Peter D Adams
- W446, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
31
|
Chen T, Muratore TL, Schaner-Tooley CE, Shabanowitz J, Hunt DF, Macara IG. N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nat Cell Biol 2007; 9:596-603. [PMID: 17435751 PMCID: PMC4624279 DOI: 10.1038/ncb1572] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/12/2007] [Indexed: 11/09/2022]
Abstract
Regulator of chromatin condensation 1 (RCC1) is the only known guanine nucleotide-exchange factor for the Ran GTPase and has pivotal roles in nucleo-cytoplasmic transport, mitosis, and nuclear-envelope assembly. RCC1 associates dynamically with chromatin through binding to histones H2A and/or H2B in a Ran-regulated manner. Here, we report that, unexpectedly, the amino-terminal serine or proline residue of RCC1 is uniquely methylated on its alpha-amino group. Methylation requires removal of the initiating methionine, and the presence of proline and lysine at positions 3 and 4, respectively. Methylation-defective mutants of RCC1 bind less effectively than wild-type protein to chromatin during mitosis, which causes spindle-pole defects. We propose a bimodal attachment mechanism for RCC1 in which the tail promotes stable RCC1 association with chromatin through DNA binding in an alpha-N-methylation-dependent manner. These data provide the first known function for N-terminal protein methylation.
Collapse
Affiliation(s)
- Ting Chen
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine University of Virginia, Charlottesville, VA 22908–0577, USA
| | - Tara L. Muratore
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904–4319, USA
| | - Christine E. Schaner-Tooley
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine University of Virginia, Charlottesville, VA 22908–0577, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904–4319, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904–4319, USA
- Department of Pathology, University of Virginia, Charlottesville, VA 22908–0904, USA
| | - Ian G. Macara
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine University of Virginia, Charlottesville, VA 22908–0577, USA
- Correspondence should be addressed to I.G.M. ()
| |
Collapse
|
32
|
Nusinow DA, Hernández-Muñoz I, Fazzio TG, Shah GM, Kraus WL, Panning B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 2007; 282:12851-9. [PMID: 17322296 DOI: 10.1074/jbc.m610502200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in modulating chromatin structure, regulation of gene expression, and sensing DNA damage. Here, we report that PARP-1 enzymatic activity is inhibited by macroH2A, a vertebrate histone H2A variant that is enriched on facultative heterochromatin. MacroH2A family members have a large C-terminal non-histone domain (NHD) and H2A-like histone domain. MacroH2A1.2 and PARP-1 interact in vivo and in vitro via the NHD. The NHD of each macroH2A family member was sufficient to inhibit PARP-1 enzymatic activity in vitro. The NHD of macroH2A1.2 was a mixed inhibitor of PARP-1 catalytic activity, with affects on both catalytic activity and the substrate binding affinity of PARP-1. Depletion of PARP-1 by RNA interference caused reactivation of a reporter gene on the inactive X chromosome, demonstrating that PARP-1 participates in the maintenance of silencing. These results suggest that one function of macroH2A in gene silencing is to inhibit PARP-1 enzymatic activity, and this may affect PARP-1 association with chromatin.
Collapse
Affiliation(s)
- Dmitri A Nusinow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
33
|
Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007; 27:2343-58. [PMID: 17242207 PMCID: PMC1820509 DOI: 10.1128/mcb.02019-06] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Senescence is characterized by an irreversible cell proliferation arrest. Specialized domains of facultative heterochromatin, called senescence-associated heterochromatin foci (SAHF), are thought to contribute to the irreversible cell cycle exit in many senescent cells by repressing the expression of proliferation-promoting genes such as cyclin A. SAHF contain known heterochromatin-forming proteins, such as heterochromatin protein 1 (HP1) and the histone H2A variant macroH2A, and other specialized chromatin proteins, such as HMGA proteins. Previously, we showed that a complex of histone chaperones, histone repressor A (HIRA) and antisilencing function 1a (ASF1a), plays a key role in the formation of SAHF. Here we have further dissected the series of events that contribute to SAHF formation. We show that each chromosome condenses into a single SAHF focus. Chromosome condensation depends on the ability of ASF1a to physically interact with its deposition substrate, histone H3, in addition to its cochaperone, HIRA. In cells entering senescence, HP1gamma, but not the related proteins HP1alpha and HP1beta, becomes phosphorylated on serine 93. This phosphorylation is required for efficient incorporation of HP1gamma into SAHF. Remarkably, however, a dramatic reduction in the amount of chromatin-bound HP1 proteins does not detectably affect chromosome condensation into SAHF. Moreover, abundant HP1 proteins are not required for the accumulation in SAHF of histone H3 methylated on lysine 9, the recruitment of macroH2A proteins, nor other hallmarks of senescence, such as the expression of senescence-associated beta-galactosidase activity and senescence-associated cell cycle exit. Based on our results, we propose a stepwise model for the formation of SAHF.
Collapse
Affiliation(s)
- Rugang Zhang
- Department of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
34
|
LI S, LIU H. Functions of histone H2A variants. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00385.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kimura H, Takizawa N, Allemand E, Hori T, Iborra FJ, Nozaki N, Muraki M, Hagiwara M, Krainer AR, Fukagawa T, Okawa K. A novel histone exchange factor, protein phosphatase 2Cgamma, mediates the exchange and dephosphorylation of H2A-H2B. ACTA ACUST UNITED AC 2006; 175:389-400. [PMID: 17074886 PMCID: PMC2064517 DOI: 10.1083/jcb.200608001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A-H2B, we identified protein phosphatase (PP) 2C gamma subtype (PP2Cgamma/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A-H2B. The disruption of PP2Cgamma in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cgamma-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Nuclear Function and Dynamics Unit, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Doyen CM, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 2006; 25:4234-44. [PMID: 16957777 PMCID: PMC1570437 DOI: 10.1038/sj.emboj.7601310] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/31/2006] [Indexed: 11/08/2022] Open
Abstract
The histone variant H2A.Bbd appeared to be associated with active chromatin, but how it functions is unknown. We have dissected the properties of nucleosome containing H2A.Bbd. Atomic force microscopy (AFM) and electron cryo-microscopy (cryo-EM) showed that the H2A.Bbd histone octamer organizes only approximately 130 bp of DNA, suggesting that 10 bp of each end of nucleosomal DNA are released from the octamer. In agreement with this, the entry/exit angle of the nucleosomal DNA ends formed an angle close to 180 degrees and the physico-chemical analysis pointed to a lower stability of the variant particle. Reconstitution of nucleosomes with swapped-tail mutants demonstrated that the N-terminus of H2A.Bbd has no impact on the nucleosome properties. AFM, cryo-EM and chromatin remodeling experiments showed that the overall structure and stability of the particle, but not its property to interfere with the SWI/SNF induced remodeling, were determined to a considerable extent by the H2A.Bbd docking domain. These data show that the whole H2A.Bbd histone fold domain is responsible for the unusual properties of the H2A.Bbd nucleosome.
Collapse
Affiliation(s)
- Cécile-Marie Doyen
- Institut Albert Bonniot, INSERM U309, La Tronche cedex, France
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Fabien Montel
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Thierry Gautier
- Institut Albert Bonniot, INSERM U309, La Tronche cedex, France
| | - Hervé Menoni
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Cyril Claudet
- CNRS, Laboratoire de Spectrometrie Physique, UMR 5588, St Martin d'Heres Cedex, France
| | | | - Dimitri Angelov
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ali Hamiche
- Institut André Lwoff, CNRS UPR 9079, Villejuif, France
| | - Jan Bednar
- CNRS, Laboratoire de Spectrometrie Physique, UMR 5588, St Martin d'Heres Cedex, France
| | - Cendrine Faivre-Moskalenko
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Philippe Bouvet
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France. Tel./Fax: +33 4 72 72 8016; E-mail:
| | - Stefan Dimitrov
- Institut Albert Bonniot, INSERM U309, La Tronche cedex, France
- Laboratoire Joliot-Curie, Ecole Normale Supérieure de Lyon, Lyon, France
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69007 Lyon, France. Tel.: +33 4 76 54 94 73; Fax: +33 4 76 54 95 95; E-mail:
| |
Collapse
|
37
|
Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848-67. [PMID: 16847345 DOI: 10.1101/gad.1422906] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian females have two X chromosomes and males have only one. This has led to the evolution of special mechanisms of dosage compensation. The inactivation of one X chromosome in females equalizes gene expression between the sexes. This process of X-chromosome inactivation (XCI) is a remarkable example of long-range, monoallelic gene silencing and facultative heterochromatin formation, and the questions surrounding it have fascinated biologists for decades. How does the inactivation of more than a thousand genes on one X chromosome take place while the other X chromosome, present in the same nucleus, remains genetically active? What are the underlying mechanisms that trigger the initial differential treatment of the two X chromosomes? How is this differential treatment maintained once it has been established, and how are some genes able to escape the process? Does the mechanism of X inactivation vary between species and even between lineages? In this review, X inactivation is considered in evolutionary terms, and we discuss recent insights into the epigenetic changes and developmental timing of this process. We also review the discovery and possible implications of a second form of dosage compensation in mammals that deals with the unique, potentially haploinsufficient, status of the X chromosome with respect to autosomal gene expression.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
38
|
Juszczynski P, Kutok JL, Li C, Mitra J, Aguiar RCT, Shipp MA. BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol Cell Biol 2006; 26:5348-59. [PMID: 16809771 PMCID: PMC1592708 DOI: 10.1128/mcb.02351-05] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BAL1 is a transcription modulator that is overexpressed in chemoresistant, diffuse large B-cell lymphomas (DLBCLs). BAL1 complexes with a recently described DELTEX family member termed BBAP. Herein, we characterized BAL1 and BBAP expression in primary DLBCL subtypes defined by their comprehensive transcriptional profiles. BAL1 and BBAP were most abundant in lymphomas with a brisk host inflammatory response, designated host response (HR) tumors. Although these DLBCLs include significant numbers of tumor-infiltrating lymphocytes and interdigitating dendritic cells, BAL1 and BBAP were expressed primarily by malignant B cells, prompting speculation that the genes might be induced by host-derived inflammatory mediators such as gamma interferon (IFN-gamma). In fact, IFN-gamma induced BAL1 and BBAP expression in DLBCL cell lines; doxycycline-induced BAL1 also increased the expression of multiple IFN-stimulated genes, directly implicating BAL1 in an IFN signaling pathway. We show that BAL1 and BBAP are located on chromosome 3q21 in a head-to-head orientation and are regulated by a IFN-gamma-responsive bidirectional promoter. BBAP regulates the subcellular localization of BAL1 by a dynamic shuttling mechanism, highlighting the functional requirement for coordinated BBAP and BAL1 expression. IFN-gamma-induced BAL1/BBAP expression contributes to the molecular signature of HR DLBCLs and highlights the interplay between the inflammatory infiltrate and malignant B cells in these tumors.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Chromosomes, Human, Pair 3/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Janus Kinase 2
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutation
- Neoplasm Proteins/genetics
- Poly(ADP-ribose) Polymerases
- Promoter Regions, Genetic
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- RNA Interference
- RNA, Small Interfering/genetics
- Recombinant Proteins
- Subcellular Fractions/metabolism
- Ubiquitin-Protein Ligases/antagonists & inhibitors
- Ubiquitin-Protein Ligases/genetics
Collapse
|
39
|
Changolkar LN, Pehrson JR. macroH2A1 histone variants are depleted on active genes but concentrated on the inactive X chromosome. Mol Cell Biol 2006; 26:4410-20. [PMID: 16738309 PMCID: PMC1489112 DOI: 10.1128/mcb.02258-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a novel thiol affinity chromatography approach to purify macroH2A1-containing chromatin fragments, we examined the distribution of macroH2A1 histone variants in mouse liver chromatin. We found that macroH2A1 was depleted on the transcribed regions of active genes. This depletion was observed on all of the 20 active genes that we probed, with only one site showing a small amount of enrichment. In contrast, macroH2A1 was concentrated on the inactive X chromosome, consistent with our previous immunofluorescence studies. This preferential localization was seen on genes that are active in liver, genes that are inactive in liver, and intergenic regions but was absent from four regions that escape X inactivation. These results support the hypothesis that macroH2As function as transcriptional repressors. Also consistent with this hypothesis is our finding that the heterochromatin protein HP1beta copurifies with the macroH2A1-containing chromatin fragments. This study presents the first detailed examination of the distribution of macroH2A1 variants on specific sequences. Our results indicate that macroH2As have complex distribution patterns that are influenced by both local factors and long-range mechanisms.
Collapse
Affiliation(s)
- Lakshmi N Changolkar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
40
|
Robert A, Smadja-Lamère N, Landry MC, Champagne C, Petrie R, Lamarche-Vane N, Hosoya H, Lavoie JN. Adenovirus E4orf4 hijacks rho GTPase-dependent actin dynamics to kill cells: a role for endosome-associated actin assembly. Mol Biol Cell 2006; 17:3329-44. [PMID: 16687574 PMCID: PMC1483059 DOI: 10.1091/mbc.e05-12-1146] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/12/2006] [Accepted: 04/27/2006] [Indexed: 11/11/2022] Open
Abstract
The adenovirus early region 4 ORF4 protein (E4orf4) triggers a novel death program that bypasses classical apoptotic pathways in human cancer cells. Deregulation of the cell cytoskeleton is a hallmark of E4orf4 killing that relies on Src family kinases and E4orf4 phosphorylation. However, the cytoskeletal targets of E4orf4 and their role in the death process are unknown. Here, we show that E4orf4 translocates to cytoplasmic sites and triggers the assembly of a peculiar juxtanuclear actin-myosin network that drives polarized blebbing and nuclear shrinkage. We found that E4orf4 activates the myosin II motor and triggers de novo actin polymerization in the perinuclear region, promoting endosomes recruitment to the sites of actin assembly. E4orf4-induced actin dynamics requires interaction with Src family kinases and involves a spatial regulation of the Rho GTPases pathways Cdc42/N-Wasp, RhoA/Rho kinase, and Rac1, which make distinct contributions. Remarkably, activation of the Rho GTPases is required for induction of apoptotic-like cell death. Furthermore, inhibition of actin dynamics per se dramatically impairs E4orf4 killing. This work provides strong support for a causal role for endosome-associated actin dynamics in E4orf4 killing and in the regulation of cancer cell fate.
Collapse
Affiliation(s)
- Amélie Robert
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Nicolas Smadja-Lamère
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Marie-Claude Landry
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Claudia Champagne
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| | - Ryan Petrie
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec H3A 2B2, Canada; and
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec H3A 2B2, Canada; and
| | - Hiroshi Hosoya
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Josée N. Lavoie
- *Centre de Recherche en Cancérologie de l’Université Laval, L’Hôtel-Dieu de Québec, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Québec G1R 2J6, Canada
| |
Collapse
|
41
|
Chakravarthy S, Luger K. The histone variant macro-H2A preferentially forms "hybrid nucleosomes". J Biol Chem 2006; 281:25522-31. [PMID: 16803903 DOI: 10.1074/jbc.m602258200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The histone domain of macro-H2A, which constitutes the N-terminal one third of this histone variant, is only 64% identical to major H2A. We have shown previously that the main structural differences in a nucleosome in which both H2A moieties have been replaced by macro-H2A reside in the only point of contact between the two histone dimers, the L1-L1 interface of macro-H2A. Here we show that the L1 loop of macro-H2A is responsible for the increased salt-dependent stability of the histone octamer, with implications for the nucleosome assembly pathway. It is unknown whether only one or both of the H2A-H2B dimers within a nucleosome are replaced with H2A variant containing nucleosomes in vivo. We demonstrate that macro-H2A preferentially forms hybrid nucleosomes containing one chain each of major H2A and macro-HA in vitro. The 2.9-A crystal structure of such a hybrid nucleosome shows significant structural differences in the L1-L1 interface when comparing with homotypic major H2A- and macro-H2A-containing nucleosomes. Both homotypic and hybrid macro-nucleosome core particles (NCPs) are resistant to chaperone-assisted H2A-H2B dimer exchange. Together, our findings suggest that the histone domain of macro-H2A modifies the dynamic properties of the nucleosome. We propose that the possibility of forming hybrid macro-NCP adds yet another level of complexity to variant nucleosome structure and function.
Collapse
Affiliation(s)
- Srinivas Chakravarthy
- Howard Hughes Medical Institute and Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | |
Collapse
|
42
|
Valley CM, Pertz LM, Balakumaran BS, Willard HF. Chromosome-wide, allele-specific analysis of the histone code on the human X chromosome. Hum Mol Genet 2006; 15:2335-47. [PMID: 16787966 DOI: 10.1093/hmg/ddl159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Variation in the composition of chromatin has been proposed to generate a 'histone code' that epigenetically regulates gene expression in a variety of eukaryotic systems. As a result of the process of X chromosome inactivation, chromatinon the mammalian inactive X chromosome (Xi) is marked by several modifications, including histone hypoacetylation, trimethylation of lysine 9 on histone H3 (H3TrimK9) and substitution of core histone H2A with the histone variant MacroH2A. H3TrimK9 is a well-studied marker for heterochromatin in many organisms, but the distribution and function of MacroH2A are less clear. Cytologically, the Xi in human cells comprises alternating and largely non-overlapping approximately 10-15 Mb domains marked by MacroH2A and H3TrimK9. To examine the genomic deposition of MacroH2A, H3TrimK9 and acetylated histone H4 modifications on the Xi at higher resolution, we used chromatin immunoprecipitation in combination with a SNP-based assay to distinguish the Xi and active X (Xa) in a diploid female cell line and to determine quantitatively the relative enrichment of these histone code elements on the Xi relative to the Xa. Although we found a majority of sites were enriched for either MacroH2A or H3TrimK9 in a manner consistent with the cytological appearance of the Xi, a range of different histone code types were detected at different sites along the X. These findings suggest that the nature of the heterochromatin histone code associated with X inactivation may be more heterogeneous than previously thought and imply that gene silencing can be achieved by a variety of different epigenetic mechanisms whose genomic, evolutionary or developmental basis is now amenable to investigation.
Collapse
Affiliation(s)
- Cory M Valley
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
43
|
Angelov D, Bondarenko VA, Almagro S, Menoni H, Mongélard F, Hans F, Mietton F, Studitsky VM, Hamiche A, Dimitrov S, Bouvet P. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 2006; 25:1669-79. [PMID: 16601700 PMCID: PMC1440837 DOI: 10.1038/sj.emboj.7601046] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/21/2006] [Indexed: 11/09/2022] Open
Abstract
Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A-H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A-H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription.
Collapse
Affiliation(s)
- Dimitar Angelov
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Vladimir A Bondarenko
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Sébastien Almagro
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Hervé Menoni
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabien Mongélard
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| | - Fabienne Hans
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Flore Mietton
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Vasily M Studitsky
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | - Ali Hamiche
- Institut André Lwoff, CNRS UPR 9079, Villejuif, France
| | - Stefan Dimitrov
- Laboratoire Joliot-Curie, Lyon, France
- Institut Albert Bonniot, INSERM U309, La Tronche Cedex, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5161/INRA 1237/IFR128 Biosciences, Lyon-Gerland, France
- Laboratoire Joliot-Curie, Lyon, France
| |
Collapse
|
44
|
Boulard M, Gautier T, Mbele GO, Gerson V, Hamiche A, Angelov D, Bouvet P, Dimitrov S. The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 2006; 26:1518-26. [PMID: 16449661 PMCID: PMC1367197 DOI: 10.1128/mcb.26.4.1518-1526.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker.
Collapse
Affiliation(s)
- Mathieu Boulard
- Institut Albert Bonniot, INSERM U309, 38706 La Tronche Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Doyen CM, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S. Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 2006; 26:1156-64. [PMID: 16428466 PMCID: PMC1347033 DOI: 10.1128/mcb.26.3.1156-1164.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
macroH2A (mH2A) is an unusual histone variant consisting of a histone H2A-like domain fused to a large nonhistone region. In this work, we show that histone mH2A represses p300- and Gal4-VP16-dependent polymerase II transcription, and we have dissected the mechanism by which this repression is realized. The repressive effect of mH2A is observed at the level of initiation but not at elongation of transcription, and mH2A interferes with p300-dependent histone acetylation. The nonhistone region of mH2A is responsible for both the repression of initiation of transcription and the inhibition of histone acetylation. In addition, the presence of this domain of mH2A within the nucleosome is able to block nucleosome remodeling and sliding of the histone octamer to neighboring DNA segments by the remodelers SWI/SNF and ACF. These data unambiguously identify mH2A as a strong transcriptional repressor and show that the repressive effect of mH2A is realized on at least two different transcription activation chromatin-dependent pathways: histone acetylation and nucleosome remodeling.
Collapse
|
46
|
Abstract
In many multicellular organisms, males have one X chromosome and females have two. Dosage compensation refers to a regulatory mechanism that insures the equalization of X-linked gene products in males and females. The mechanism has been studied at the molecular level in model organisms belonging to three distantly related taxa; in these organisms, equalization is achieved by shutting down one of the two X chromosomes in the somatic cells of females, by decreasing the level of transcription of the two doses of X-linked genes in females relative to males, or by increasing the level of transcription of the single dose of X-linked genes in males. The study of dosage compensation in these different forms has revealed the existence of an amazing number of interacting chromatin remodeling mechanisms that affect the function of entire chromosomes.
Collapse
Affiliation(s)
- John C Lucchesi
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
47
|
Choo JH, Kim JD, Chung JH, Stubbs L, Kim J. Allele-specific deposition of macroH2A1 in imprinting control regions. Hum Mol Genet 2006; 15:717-24. [PMID: 16421169 DOI: 10.1093/hmg/ddi485] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the imprinting control regions (ICRs) of Xist, Peg3, H19/Igf2, Gtl2/Dlk1 and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other differentially methylated regions of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.
Collapse
Affiliation(s)
- Jung Ha Choo
- Department of Biological Sciences, Center for BioModular Multi-scale Systems, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Recent research suggests that minor changes in the primary sequence of the conserved histones may become major determinants for the chromatin structure regulating gene expression and other DNA-related processes. An analysis of the involvement of different core histone variants in different nuclear processes and the structure of different variant nucleosome cores shows that this may indeed be so. Histone variants may also be involved in demarcating functional regions of the chromatin. We discuss in this review why two of the four core histones show higher variation. A comparison of the status of variants in yeast with those from higher eukaryotes suggests that histone variants have evolved in synchrony with functional requirement of the cell.
Collapse
|
49
|
Chakravarthy S, Bao Y, Roberts VA, Tremethick D, Luger K. Structural characterization of histone H2A variants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:227-34. [PMID: 16117653 DOI: 10.1101/sqb.2004.69.227] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S Chakravarthy
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
50
|
Chakravarthy S, Gundimella SKY, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K. Structural characterization of the histone variant macroH2A. Mol Cell Biol 2005; 25:7616-24. [PMID: 16107708 PMCID: PMC1190287 DOI: 10.1128/mcb.25.17.7616-7624.2005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/15/2005] [Accepted: 06/06/2005] [Indexed: 11/20/2022] Open
Abstract
macroH2A is an H2A variant with a highly unusual structural organization. It has a C-terminal domain connected to the N-terminal histone domain by a linker. Crystallographic and biochemical studies show that changes in the L1 loop in the histone fold region of macroH2A impact the structure and potentially the function of nucleosomes. The 1.6-A X-ray structure of the nonhistone region reveals an alpha/beta fold which has previously been found in a functionally diverse group of proteins. This region associates with histone deacetylases and affects the acetylation status of nucleosomes containing macroH2A. Thus, the unusual domain structure of macroH2A integrates independent functions that are instrumental in establishing a structurally and functionally unique chromatin domain.
Collapse
Affiliation(s)
- Srinivas Chakravarthy
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|