1
|
Deshpande G, Das S, Roy AE, Ratnaparkhi GS. A face-off between Smaug and Caspar modulates primordial germ cell count and identity in Drosophila embryos. Fly (Austin) 2025; 19:2438473. [PMID: 39718186 DOI: 10.1080/19336934.2024.2438473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Proper formation and specification of Primordial Germ Cells (PGCs) is of special significance as they gradually transform into Germline Stem Cells (GSCs) that are ultimately responsible for generating the gametes. Intriguingly, not only the PGCs constitute the only immortal cell type but several specific determinants also underlying PGC specification such as Vasa, Nanos and Germ-cell-less are conserved through evolution. In Drosophila melanogaster, PGC formation and specification depends on two independent factors, the maternally deposited specialized cytoplasm (or germ plasm) enriched in germline determinants, and the mechanisms that execute the even partitioning of these determinants between the daughter cells. Prior work has shown that Oskar protein is necessary and sufficient to assemble the functional germ plasm, whereas centrosomes associated with the nuclei that invade the germ plasm are responsible for its equitable distribution. Our recent data suggests that Caspar, the Drosophila orthologue of human Fas-associated factor-1 (FAF1) is a novel regulator that modulates both mechanisms that underlie the determination of PGC fate. Consistently, early blastoderm embryos derived from females compromised for caspar display reduced levels of Oskar and defective centrosomes.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Subhradip Das
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Adheena Elsa Roy
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research, Pune, India
| |
Collapse
|
2
|
Chen R, Grill S, Lin B, Saiduddin M, Lehmann R. Origin and establishment of the germline in Drosophila melanogaster. Genetics 2025; 229:iyae217. [PMID: 40180587 PMCID: PMC12005264 DOI: 10.1093/genetics/iyae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
The continuity of a species depends on germ cells. Germ cells are different from all the other cell types of the body (somatic cells) as they are solely destined to develop into gametes (sperm or egg) to create the next generation. In this review, we will touch on 4 areas of embryonic germ cell development in Drosophila melanogaster: the assembly and function of germplasm, which houses the determinants for germ cell specification and fate and the mitochondria of the next generation; the process of pole cell formation, which will give rise to primordial germ cells (PGCs); the specification of pole cells toward the PGC fate; and finally, the migration of PGCs to the somatic gonadal precursors, where they, together with somatic gonadal precursors, form the embryonic testis and ovary.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Sherilyn Grill
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariyah Saiduddin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Molcho J, Albagly D, Levy T, Manor R, Aflalo ED, Alfaro-Montoya J, Sagi A. Regulation of early spermatogenesis in the giant prawn Macrobrachium rosenbergii by a GCL homolog†. Biol Reprod 2024; 110:1000-1011. [PMID: 38408206 PMCID: PMC11094379 DOI: 10.1093/biolre/ioae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
The germ cell-less gene is crucial for gonad development in various organisms. Early interventions in its expression suggested a regulatory role at the mitotic stages of spermatogenesis, and its early knockout resulted in complete sterility in Drosophila. Genomic and transcriptomic data available for the catadromous giant prawn Macrobrachium rosenbergii enabled the identification of a germ cell-less homolog for this species, which we termed MroGCL (mRNA accession number OQ533056). An open reading frame containing 494 amino acids and a typical evolutionarily conserved BTB/POZ domain suggests possible protein-protein interaction functions in keeping with the Drosophila germ cell-less protein. Genomic mapping of MroGCL showed a full length of 120 896 bases. Analysis of the temporal expression of MroGCL showed constant expression in early prawn embryonic and larval stages, but a significant increase 10 days after metamorphosis when crucial sexual differentiation processes occur in prawns. In adult animals, high expression was detected in the gonads compared to the somatic tissues. RNAi-based knock-down experiments showed that both the silenced and control groups reached advanced spermatogenic stages, but that there was a significant decrease in the yield of spermatozoa in about half of the silenced animals. This finding supports our hypothesis that MroGCL is crucial for mitosis during early stage spermatogenesis. In conclusion, this study contributes to the understanding of crustacean gonad development and provides a stepping stone in the development of environmentally valuable sterile crustacean populations.
Collapse
Affiliation(s)
- Jonathan Molcho
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dana Albagly
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Life Sciences, Achva Academic College, Arugot, Israel
| | | | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Piccinini G, Milani L. Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics. EvoDevo 2023; 14:2. [PMID: 36717890 PMCID: PMC9885605 DOI: 10.1186/s13227-022-00207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic. RESULTS Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences. CONCLUSIONS Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.
Collapse
Affiliation(s)
- Giovanni Piccinini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Sun JJ, Sun ZH, Wei JL, Ding J, Song J, Chang YQ. Identification and functional analysis of foxl2 and nodal in sea cucumber, Apostichopus japonicus. Gene Expr Patterns 2022; 44:119245. [PMID: 35381371 DOI: 10.1016/j.gep.2022.119245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 11/28/2022]
Abstract
Sea cucumber (Apostichopus japonicus) is an important mariculture species in China. To date, the mechanisms of sex determination and differentiation in sea cucumber remain unclear. Identifying sex-specific molecular markers is an effective method for revealing the genetic basis of sex determination and sex differentiation. In this study, foxl2 and nodal homologous genes were identified in A. japonicus. Foxl2 exhibited dynamic and sexually dimorphic expression patterns in the gonads, with prominent expression in the ovaries and minimal expression in the testis according to real-time quantitative PCR (RT-qPCR) study. As nodal was specifically expressed in the ovary, it could serve as an ovary-specific marker in sea cucumber. Additionally, knockdown of foxl2 or nodal using RNA interference (RNAi) led to the down-regulation of piwi, germ cell-less, and dmrt1, suggesting that foxl2 and nodal may play important roles in gonad maintenance of sea cucumber. Overall, this study adds to our understanding of the roles of foxl2 and nodal in the gonadal development of A. japonicus, which provides further insight into the mechanisms of sea cucumber sex determination and differentiation.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Zhi-Hui Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jin-Liang Wei
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Jian Song
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Colonnetta MM, Goyal Y, Johnson HE, Syal S, Schedl P, Deshpande G. Preformation and epigenesis converge to specify primordial germ cell fate in the early Drosophila embryo. PLoS Genet 2022; 18:e1010002. [PMID: 34986144 PMCID: PMC8765614 DOI: 10.1371/journal.pgen.1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate. Proper specification of primordial germ cells (PGCs) is crucial as PGCs serve as the precursors of germline stem cells. To specify PGC fate, invertebrates rely upon cell autonomous preformation involving maternally deposited germ plasm. In Drosophila melanogaster, to insulate newly formed PGCs from the adverse effects of the cell-cell signaling pathways, germ plasm determinants silence transcription and attenuate the cell cycle. However, our data on the BMP signaling pathway challenge this long-held view of PGC specification and suggest that appropriate specification of embryonic PGCs is sensitive to the BMP ligand, decapentaplegic (dpp), and its cognate receptor, thickveins. We find that PGCs are not only capable of responding to BMP signals from the soma, but also that these signals impact the proper determination of the germ cells. Based on these unanticipated similarities between mammals and flies, we propose a model integrating contribution of both the cell-autonomous (preformation) and non-autonomous (epigenesis) pathways during PGC determination. Consistent with the model, we have observed dominant genetic interactions between, oskar, the maternal determinant of PGC fate, and the BMP pathway ligand dpp.
Collapse
Affiliation(s)
- Megan M. Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yogesh Goyal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sapna Syal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
7
|
Colonnetta MM, Lym LR, Wilkins L, Kappes G, Castro EA, Ryder PV, Schedl P, Lerit DA, Deshpande G. Antagonism between germ cell-less and Torso receptor regulates transcriptional quiescence underlying germline/soma distinction. eLife 2021; 10:54346. [PMID: 33459591 PMCID: PMC7843132 DOI: 10.7554/elife.54346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transcriptional quiescence, an evolutionarily conserved trait, distinguishes the embryonic primordial germ cells (PGCs) from their somatic neighbors. In Drosophila melanogaster, PGCs from embryos maternally compromised for germ cell-less (gcl) misexpress somatic genes, possibly resulting in PGC loss. Recent studies documented a requirement for Gcl during proteolytic degradation of the terminal patterning determinant, Torso receptor. Here we demonstrate that the somatic determinant of female fate, Sex-lethal (Sxl), is a biologically relevant transcriptional target of Gcl. Underscoring the significance of transcriptional silencing mediated by Gcl, ectopic expression of a degradation-resistant form of Torso (torsoDeg) can activate Sxl transcription in PGCs, whereas simultaneous loss of torso-like (tsl) reinstates the quiescent status of gcl PGCs. Intriguingly, like gcl mutants, embryos derived from mothers expressing torsoDeg in the germline display aberrant spreading of pole plasm RNAs, suggesting that mutual antagonism between Gcl and Torso ensures the controlled release of germ-plasm underlying the germline/soma distinction.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Lauren R Lym
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Lillian Wilkins
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Gretchen Kappes
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elias A Castro
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Pearl V Ryder
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
8
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
9
|
Syal S, Ng C, Kim Y, Janbieh J, Govind S, Deshpande G. Reactive oxygen species signaling in primordial germ cell development in Drosophila embryos. Genesis 2020; 58:e23362. [PMID: 32302036 DOI: 10.1002/dvg.23362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022]
Abstract
REDOX mechanisms that induce biosynthesis of the reactive oxygen species (ROS) have attracted considerable attention due to both the deleterious and beneficial responses elicited by the reactive radical. In several organisms including Drosophila melanogaster, modulation of ROS activity is thought to be crucial for the maintenance of cell fates in developmental contexts. Interestingly, REDOX mechanisms have been shown to be involved in maintaining progenitor fate of stem cells as well as their proliferation and differentiation. Here, we have explored the possible functions of ROS during proper specification and developmental progression of embryonic primordial germ cells (PGCs). Indicating its potential involvement in these processes, ROS can be detected in the embryonic PGCs and the surrounding somatic cells from very early stages of embryogenesis. Using both "loss" and "gain" of function mutations in two different components of the REDOX pathway, we show that ROS levels are likely to be critical in maintaining germ cell behavior, including their directed migration. Altering the activity of a putative regulator of ROS also adversely influences the ability of PGCs to adhere to one another in cellular blastoderm embryos, suggesting potential involvement of this pathway in orchestrating different phases of germ cell migration.
Collapse
Affiliation(s)
- Sapna Syal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Chris Ng
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yunah Kim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Javier Janbieh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Shubha Govind
- The Graduate Center of the City University of New York, New York, New York, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
10
|
Quan H, Arsala D, Lynch JA. Transcriptomic and functional analysis of the oosome, a unique form of germ plasm in the wasp Nasonia vitripennis. BMC Biol 2019; 17:78. [PMID: 31601213 PMCID: PMC6785909 DOI: 10.1186/s12915-019-0696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The oosome is the germline determinant in the wasp Nasonia vitripennis and is homologous to the polar granules of Drosophila. Despite a common evolutionary origin and developmental role, the oosome is morphologically quite distinct from polar granules. It is a solid sphere that migrates within the cytoplasm before budding out and forming pole cells. RESULTS To gain an understanding of both the molecular basis of oosome development and the conserved essential features of germ plasm, we quantified and compared transcript levels between embryo fragments that contained the oosome and those that did not. The identity of the differentially localized transcripts indicated that Nasonia uses a distinct set of molecules to carry out conserved germ plasm functions. In addition, functional testing of a sample of localized transcripts revealed potentially novel mechanisms of ribonucleoprotein assembly and pole cell cellularization in the wasp. CONCLUSIONS Our results demonstrate that the composition of germ plasm varies significantly within Holometabola, as very few mRNAs share localization to the oosome and polar granules. Some of this variability appears to be related to the unique properties of the oosome relative to the polar granules in Drosophila, and some may be related to differences in pole formation between species. This work will serve as the basis for further investigation into the patterns of germline determinant evolution among insects, the molecular basis of the unique properties of the oosome, and the incorporation of novel components into developmental networks.
Collapse
Affiliation(s)
- Honghu Quan
- Department of Pathology and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
11
|
Trcek T, Lehmann R. Germ granules in Drosophila. Traffic 2019; 20:650-660. [PMID: 31218815 PMCID: PMC6771631 DOI: 10.1111/tra.12674] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/26/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Germ granules are hallmarks of all germ cells. Early ultrastructural studies in Drosophila first described these membraneless granules in the oocyte and early embryo as filled with amorphous to fibrillar material mixed with RNA. Genetic studies identified key protein components and specific mRNAs that regulate germ cell‐specific functions. More recently these ultrastructural studies have been complemented by biophysical analysis describing germ granules as phase‐transitioned condensates. In this review, we provide an overview that connects the composition of germ granules with their function in controlling germ cell specification, formation and migration, and illuminate these mysterious condensates as the gatekeepers of the next generation.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York
| |
Collapse
|
12
|
Asaoka M, Hanyu-Nakamura K, Nakamura A, Kobayashi S. Maternal Nanos inhibits Importin-α2/Pendulin-dependent nuclear import to prevent somatic gene expression in the Drosophila germline. PLoS Genet 2019; 15:e1008090. [PMID: 31091233 PMCID: PMC6519790 DOI: 10.1371/journal.pgen.1008090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/13/2019] [Indexed: 01/15/2023] Open
Abstract
Repression of somatic gene expression in germline progenitors is one of the critical mechanisms involved in establishing the germ/soma dichotomy. In Drosophila, the maternal Nanos (Nos) and Polar granule component (Pgc) proteins are required for repression of somatic gene expression in the primordial germ cells, or pole cells. Pgc suppresses RNA polymerase II-dependent global transcription in pole cells, but it remains unclear how Nos represses somatic gene expression. Here, we show that Nos represses somatic gene expression by inhibiting translation of maternal importin-α2 (impα2) mRNA. Mis-expression of Impα2 caused aberrant nuclear import of a transcriptional activator, Ftz-F1, which in turn activated a somatic gene, fushi tarazu (ftz), in pole cells when Pgc-dependent transcriptional repression was impaired. Because ftz expression was not fully activated in pole cells in the absence of either Nos or Pgc, we propose that Nos-dependent repression of nuclear import of transcriptional activator(s) and Pgc-dependent suppression of global transcription act as a 'double-lock' mechanism to inhibit somatic gene expression in germline progenitors.
Collapse
Affiliation(s)
- Miho Asaoka
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
13
|
Lebedeva LA, Yakovlev KV, Kozlov EN, Schedl P, Deshpande G, Shidlovskii YV. Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 2018; 53:579-595. [PMID: 30280955 PMCID: PMC8729227 DOI: 10.1080/10409238.2018.1506733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
Abstract
In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.
Collapse
Affiliation(s)
| | - Konstantin V. Yakovlev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Eugene N. Kozlov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Yulii V. Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
14
|
Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 2018; 13:e0196500. [PMID: 29709000 PMCID: PMC5927453 DOI: 10.1371/journal.pone.0196500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Localized maternal mRNAs play important roles in embryogenesis, e.g. the establishment of embryonic axes and the developmental cell fate specification, in various animal species. In ascidians, a group of maternal mRNAs, called postplasmic/PEM RNAs, is localized to a subcellular structure, called the Centrosome-Attracting Body (CAB), which contains the ascidian germ plasm, and is inherited by the germline cells during embryogenesis. Posterior end mark (Pem), a postplasmic/PEM RNAs member, represses somatic gene expression in the germline during cleavage stages by inhibition of RNA polymerase II activity. However, the functions of other postplasmic/ PEM RNAs members in germline formation are largely unknown. In this study, we analyzed the functions of two postplasmic/PEM RNAs, Popk-1 and Zf-1, in transcriptional regulation in the germline cells. We show that Popk-1 contributes to transcriptional quiescence by controlling the size of the CAB and amount of Pem protein translated at the CAB. Our studies also indicated that zygotic expression of a germline gene starts around the onset of gastrulation and that the decrease of Pem protein is necessary and sufficient for the zygotic germline gene expression. Finally, further studies showed that the decrease of the Pem protein level is facilitated by Zf-1. Taken together, we propose that postplasmic/PEM RNAs such as Popk-1 and Zf-1 control the protein level of the transcriptional repressor Pem and regulate its transcriptional state in the ascidian germline.
Collapse
|
15
|
Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 2018; 115:1819-1824. [PMID: 29432152 PMCID: PMC5828605 DOI: 10.1073/pnas.1716512115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the first crucial steps of animal development is to distinguish the anterior versus the posterior pole of the embryo, i.e., the AP axis. If this process fails, embryos may develop two mirror image tails or heads. In the fly Drosophila, the mother provides the signals required for AP axis formation, while in vertebrates, gene activity of the embryo is required as well. We identified two genes whose knockdown leads to double-tail phenotypes in the beetle Tribolium, representing the insect-typical short-germ embryogenesis. Intriguingly, embryo polarity depends on zygotic gene activities and Wnt signaling. Hence, short-germ insect axis formation is more similar to vertebrates than the mechanism employed by Drosophila. The distinction of anterior versus posterior is a crucial first step in animal embryogenesis. In the fly Drosophila, this axis is established by morphogenetic gradients contributed by the mother that regulate zygotic target genes. This principle has been considered to hold true for insects in general but is fundamentally different from vertebrates, where zygotic genes and Wnt signaling are required. We investigated symmetry breaking in the beetle Tribolium castaneum, which among insects represents the more ancestral short-germ embryogenesis. We found that maternal Tc-germ cell-less is required for anterior localization of maternal Tc-axin, which represses Wnt signaling and promotes expression of anterior zygotic genes. Both RNAi targeting Tc-germ cell-less or double RNAi knocking down the zygotic genes Tc-homeobrain and Tc-zen1 led to the formation of a second growth zone at the anterior, which resulted in double-abdomen phenotypes. Conversely, interfering with two posterior factors, Tc-caudal and Wnt, caused double-anterior phenotypes. These findings reveal that maternal and zygotic mechanisms, including Wnt signaling, are required for establishing embryo polarity and induce the segmentation clock in a short-germ insect.
Collapse
|
16
|
Lerit DA, Shebelut CW, Lawlor KJ, Rusan NM, Gavis ER, Schedl P, Deshpande G. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation. Cell Rep 2017; 18:831-839. [PMID: 28122234 DOI: 10.1016/j.celrep.2016.12.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022] Open
Abstract
The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.
Collapse
Affiliation(s)
- Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Conrad W Shebelut
- School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen J Lawlor
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Cooley L. How Primordial Germ Cells Destroy Somatic Signals. Dev Cell 2017; 42:107-108. [PMID: 28742996 DOI: 10.1016/j.devcel.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The Germ Cell-Less (GCL) protein is a key regulator of primordial germ cell (PGC) formation in Drosophila embryos. Reporting in this issue of Developmental Cell, Pae et al. (2017) show that GCL blocks somatic cell fate by specifically destroying the Torso Receptor Tyrosine Kinase.
Collapse
Affiliation(s)
- Lynn Cooley
- Departments of Genetics, Cell Biology and Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
18
|
Pae J, Cinalli RM, Marzio A, Pagano M, Lehmann R. GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Dev Cell 2017; 42:130-142.e7. [PMID: 28743001 DOI: 10.1016/j.devcel.2017.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 05/15/2017] [Accepted: 06/27/2017] [Indexed: 11/29/2022]
Abstract
The separation of germline from somatic lineages is fundamental to reproduction and species preservation. Here, we show that Drosophila Germ cell-less (GCL) is a critical component in this process by acting as a switch that turns off a somatic lineage pathway. GCL, a conserved BTB (Broad-complex, Tramtrack, and Bric-a-brac) protein, is a substrate-specific adaptor for Cullin3-RING ubiquitin ligase complex (CRL3GCL). We show that CRL3GCL promotes PGC fate by mediating degradation of Torso, a receptor tyrosine kinase (RTK) and major determinant of somatic cell fate. This mode of RTK degradation does not depend upon receptor activation but is prompted by release of GCL from the nuclear envelope during mitosis. The cell-cycle-dependent change in GCL localization provides spatiotemporal specificity for RTK degradation and sequesters CRL3GCL to prevent it from participating in excessive activities. This precisely orchestrated mechanism of CRL3GCL function and regulation defines cell fate at the single-cell level.
Collapse
Affiliation(s)
- Juhee Pae
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Ryan M Cinalli
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Antonio Marzio
- HHMI, Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michele Pagano
- HHMI, Department of Biochemistry and Molecular Pharmacology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Ruth Lehmann
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
19
|
Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol Phylogenet Evol 2017; 112:230-243. [DOI: 10.1016/j.ympev.2017.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
|
20
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
21
|
Robert VJ, Garvis S, Palladino F. Repression of somatic cell fate in the germline. Cell Mol Life Sci 2015; 72:3599-620. [PMID: 26043973 PMCID: PMC11113910 DOI: 10.1007/s00018-015-1942-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
Abstract
Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.
Collapse
Affiliation(s)
- Valérie J Robert
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Steve Garvis
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Francesca Palladino
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
22
|
Sellars MJ, Trewin C, McWilliam SM, Glaves RSE, Hertzler PL. Transcriptome profiles of Penaeus (Marsupenaeus) japonicus animal and vegetal half-embryos: identification of sex determination, germ line, mesoderm, and other developmental genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:252-265. [PMID: 25634056 DOI: 10.1007/s10126-015-9613-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
There is virtually no knowledge of the molecular events controlling early embryogenesis in Penaeid shrimp. A combination of controlled spawning environment, shrimp embryo micro-dissection techniques, and next-generation sequencing was used to produce transcriptome EST datasets of Penaeus japonicus animal and vegetal half-embryos. Embryos were collected immediately after spawning, and then blastomeres were separated at the two-cell stage and allowed to develop to late gastrulation, then pooled for RNA isolation and cDNA synthesis. Ion Torrent sequencing of cDNA from approximately 500 pooled animal and vegetal half-embryos from multiple spawnings resulted in 560,516 and 493,703 reads, respectively. Reads from each library were assembled and Gene Ontogeny analysis produced 3479 annotated animal contigs and 4173 annotated vegetal contigs, with 159/139 hits for developmental processes in the animal/vegetal contigs, respectively. Contigs were subject to BLAST for selected developmental toolbox genes. Some of the genes found included the sex determination genes sex-lethal and transformer; the germ line genes argonaute 1, boule, germ cell-less, gustavus, maelstrom, mex-3, par-1, pumilio, SmB, staufen, and tudor; the mesoderm genes brachyury, mef2, snail, and twist; the axis determination/segmentation genes β-catenin, deformed, distal-less, engrailed, giant, hairy, hunchback, kruppel, orthodenticle, patched, tailless, and wingless/wnt-8c; and a number of cell-cycle regulators. Animal and vegetal contigs were computationally subtracted from each other to produce sets unique to either half-embryo library. Genes expressed only in the animal half included bmp1, kruppel, maelstrom, and orthodenticle. Genes expressed only in the vegetal half included boule, brachyury, deformed, dorsal, engrailed, hunchback, spalt, twist, and wingless/wnt-8c.
Collapse
Affiliation(s)
- Melony J Sellars
- CSIRO Agriculture Flagship, Integrated Sustainable Aquaculture, Dutton Park, Qld, 4102, Australia,
| | | | | | | | | |
Collapse
|
23
|
A spindle-independent cleavage pathway controls germ cell formation in Drosophila. Nat Cell Biol 2013; 15:839-45. [PMID: 23728423 PMCID: PMC3818562 DOI: 10.1038/ncb2761] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/16/2013] [Indexed: 01/08/2023]
Abstract
The primordial germ cells (PGCs) are the first cells to form during Drosophila melanogaster embryogenesis. While the process of somatic cell formation has been studied in detail, the mechanics of PGC formation are poorly understood. Here, using 4D multi-photon imaging combined with genetic and pharmacological manipulations, we find that PGC formation requires an anaphase spindle-independent cleavage pathway. In addition to utilizing core regulators of cleavage, including the small GTPase RhoA (Drosophila Rho) and the Rho associated kinase, ROCK (Drosophila Rok), we show that this pathway requires Germ cell-less (Gcl), a conserved BTB-domain protein not previously implicated in cleavage mechanics. This alternate form of cell formation suggests that organisms have evolved multiple molecular strategies for regulating the cytoskeleton during cleavage.
Collapse
|
24
|
Novo M, Riesgo A, Fernández-Guerra A, Giribet G. Pheromone evolution, reproductive genes, and comparative transcriptomics in mediterranean earthworms (annelida, oligochaeta, hormogastridae). Mol Biol Evol 2013; 30:1614-29. [PMID: 23596327 DOI: 10.1093/molbev/mst074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals inhabiting cryptic environments are often subjected to morphological stasis due to the lack of obvious agents driving selection, and hence chemical cues may be important drivers of sexual selection and individual recognition. Here, we provide a comparative analysis of de novo-assembled transcriptomes in two Mediterranean earthworm species with the objective to detect pheromone proteins and other reproductive genes that could be involved in cryptic speciation processes, as recently characterized in other earthworm species. cDNA libraries of unspecific tissue of Hormogaster samnitica and three different tissues of H. elisae were sequenced in an Illumina Genome Analyzer II or Hi-Seq. Two pheromones, Attractin and Temptin were detected in all tissue samples and both species. Attractin resulted in a reliable marker for phylogenetic inference. Temptin contained multiple paralogs and was slightly overexpressed in the digestive tissue, suggesting that these pheromones could be released with the casts. Genes involved in sexual determination and fertilization were highly expressed in reproductive tissue. This is thus the first detailed analysis of the molecular machinery of sexual reproduction in earthworms.
Collapse
Affiliation(s)
- Marta Novo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, USA.
| | | | | | | |
Collapse
|
25
|
Maintaining sufficient nanos is a critical function for polar granule component in the specification of primordial germ cells. G3-GENES GENOMES GENETICS 2012; 2:1397-403. [PMID: 23173091 PMCID: PMC3484670 DOI: 10.1534/g3.112.004192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022]
Abstract
Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell–specific expression of Nos is sufficient to ameliorate the pgc phenotype.
Collapse
|
26
|
Gjerstorff MF, Rösner HI, Pedersen CB, Greve KBV, Schmidt S, Wilson KL, Mollenhauer J, Besir H, Poulsen FM, Møllegaard NE, Ditzel HJ. GAGE cancer-germline antigens are recruited to the nuclear envelope by germ cell-less (GCL). PLoS One 2012; 7:e45819. [PMID: 23029259 PMCID: PMC3447759 DOI: 10.1371/journal.pone.0045819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/22/2012] [Indexed: 01/21/2023] Open
Abstract
GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2β, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two-hybrid analysis and pull-down experiments of GCL polypeptides, GCL residues 209–320 (which includes the BACK domain) were deduced sufficient for association with GAGE proteins. GAGE mRNAs and GCL mRNA were demonstrated in human testis and most types of cancers, and at the protein level GAGE members and GCL were co-expressed in cancer cell lines. Structural studies of GAGE proteins revealed no distinct secondary or tertiary structure, suggesting they are intrinsically disordered. Interestingly GAGE proteins formed stable complexes with dsDNA in vitro at physiological concentrations, and GAGE12I bound several different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells.
Collapse
Affiliation(s)
- Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sabour D, Schöler HR. Reprogramming and the mammalian germline: the Weismann barrier revisited. Curr Opin Cell Biol 2012; 24:716-23. [PMID: 22947493 DOI: 10.1016/j.ceb.2012.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/08/2012] [Accepted: 08/20/2012] [Indexed: 01/17/2023]
Abstract
The germline represents a unique cell type that can transmit genetic material to the next generation. During early embryonic development, somatic cells give rise to a small population of cells known as germ cells, which eventually differentiate into mature gametes. Germ cells undergo a process of removing and resetting relevant epigenetic information, mainly by DNA demethylation. This extensive epigenetic reprogramming leads to the conversion of germ cells into immortal cells that can pass on the genome to the next generation. In the absence of germline-specific reprogramming, germ cells would preserve the old, parental epigenetic memory, which would prevent the transfer of heritable information to the offspring. On the contrary, somatic cells cannot reset epigenetic information by preserving the full methylation pattern on imprinting genes. In this review, we focus on the capacity of germ cells and somatic cells (soma) to transfer genetic information to the next generation, and thus revisit the Weismann theory of heredity.
Collapse
Affiliation(s)
- Davood Sabour
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, D-48149 Münster, Germany
| | | |
Collapse
|
28
|
Abstract
The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency.
Collapse
Affiliation(s)
- Celina E. Juliano
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - S. Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
29
|
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.
| | | |
Collapse
|
30
|
Richardson BE, Lehmann R. Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nat Rev Mol Cell Biol 2010; 11:37-49. [PMID: 20027186 PMCID: PMC4521894 DOI: 10.1038/nrm2815] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulated migration of cells is essential for development and tissue homeostasis, and aberrant cell migration can lead to an impaired immune response and the progression of cancer. Primordial germ cells (PGCs), precursors to sperm and eggs, have to migrate across the embryo to reach somatic gonadal precursors, where they carry out their function. Studies of model organisms have revealed that, despite important differences, several features of PGC migration are conserved. PGCs require an intrinsic motility programme and external guidance cues to survive and successfully migrate. Proper guidance involves both attractive and repulsive cues and is mediated by protein and lipid signalling.
Collapse
Affiliation(s)
- Brian E Richardson
- Howard Hughes Medical Institute, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York University, New York, 10016, USA
| | | |
Collapse
|
31
|
Moore J, Han H, Lasko P. Bruno negatively regulates germ cell-less expression in a BRE-independent manner. Mech Dev 2009; 126:503-16. [PMID: 19393317 DOI: 10.1016/j.mod.2009.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 12/24/2022]
Abstract
Mechanisms of post-transcriptional control are essential during Drosophila oogenesis and embryogenesis to sequester gene products in discrete regions and ultimately achieve embryonic asymmetry. Maternal germ cell-less (gcl) mRNA accumulates in the pole plasm of the embryo before Gcl protein is detectable. gcl mRNA, but not Gcl protein, can also be detected in somatic regions of the embryo, suggesting that gcl RNA is subject to translational control. We find that Gcl is expressed during oogenesis, and that it is regulated by the translational repressor Bruno (Bru). Increased levels of Gcl are observed in the oocyte when Bru level is reduced, and overexpression of Bru reduces Gcl expression. Consistently, reduction of the maternal dosage of Bruno leads to ectopic Gcl expression in the embryo, which, in turn, represses anterior hückebein (hkb) expression. Bru binds directly to the gcl 3'UTR in vitro, but, surprisingly, this binding is independent of a BRE (Bruno response element)-like motif. This motif is also not required for in vivo repression of Gcl expression during oogenesis or early embryogenesis. Bru binds the gcl 3'UTR via its C-terminal domain, which includes RNA recognition motif 3 (RRM3), with little or no contribution from the remainder of the protein. We conclude that repression by Bruno during oogenesis is required to restrict Gcl expression in the early embryo and that Bru represses gcl expression in a manner that involves RRM3 and a sequence unrelated to the BRE.
Collapse
Affiliation(s)
- Jocelyn Moore
- Developmental Biology Research Initiative (DBRI) and Department of Biology, McGill University, Que., Canada
| | | | | |
Collapse
|
32
|
Kurth HM, Mochizuki K. 2'-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA (NEW YORK, N.Y.) 2009; 15:675-85. [PMID: 19240163 PMCID: PMC2661841 DOI: 10.1261/rna.1455509] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/17/2008] [Indexed: 05/23/2023]
Abstract
Small RNAs approximately 20-30 nucleotides (nt) in length regulate gene expression at the transcriptional and post-transcriptional levels. In the plant Arabidopsis, all small RNAs are 3'-terminal 2'-O-methylated by HEN1, whereas only a subset of small RNAs carry this modification in metazoans. This methylation is known to stabilize small RNAs, but its biological significance remains unclear. In the ciliated protozoan Tetrahymena thermophila, two classes of small RNAs have been identified: RNAs approximately 28-29 nt long (scnRNAs) that are expressed only during sexual reproduction, and constitutively expressed approximately 23-24 nt siRNAs. In this study, we demonstrate that scnRNAs, but not siRNAs, are 2'-O-methylated at their 3' ends. The Tetrahymena HEN1 homolog Hen1p is responsible for scnRNA 2'-O-methylation. Loss of Hen1p causes a gradual reduction in the level and length of scnRNAs, defects in programmed DNA elimination, and inefficient production of sexual progeny. Therefore, Hen1p-mediated 2'-O-methylation stabilizes scnRNA and ensures DNA elimination in Tetrahymena. This study clearly shows that 3'-terminal 2'-O-methylation on a selected class of small RNAs regulates the function of a specific RNAi pathway.
Collapse
Affiliation(s)
- Henriette M Kurth
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
33
|
Nakamura A, Seydoux G. Less is more: specification of the germline by transcriptional repression. Development 2009; 135:3817-27. [PMID: 18997110 DOI: 10.1242/dev.022434] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, the germline is the only lineage that transmits genetic information to the next generation. Although the founder cells of this lineage are specified differently in invertebrates and vertebrates, recent studies have shown that germline specification in C. elegans, Drosophila and mouse depends on the global inhibition of mRNA transcription. Different strategies are used in each organism, but remarkably most target the same two processes: transcriptional elongation and chromatin remodeling. This convergence suggests that a repressed genome is essential to preserve the unique developmental potential of the germline.
Collapse
Affiliation(s)
- Akira Nakamura
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|
34
|
Guven-Ozkan T, Nishi Y, Robertson SM, Lin R. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 2008; 135:149-60. [PMID: 18854162 PMCID: PMC2652481 DOI: 10.1016/j.cell.2008.07.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.
Collapse
Affiliation(s)
- Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Scott M. Robertson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
35
|
Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 2008; 178:235-43. [PMID: 18202370 DOI: 10.1534/genetics.107.083212] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Caenorhabditis elegans embryos, specification of the germ lineage depends on PIE-1, a maternal protein that blocks mRNA transcription in germline blastomeres. Studies in mammalian cell culture have suggested that PIE-1 inhibits P-TEFb, a kinase that phosphorylates serine 2 in the carboxyl-terminal domain (CTD) repeats of RNA polymerase II during transcriptional elongation. We have tested this hypothesis using an in vivo complementation assay for PIE-1 function. Our results support the view that PIE-1 inhibits P-TEFb using the CTD-like motif YAPMAPT. This activity is required to block serine 2 phosphorylation in germline blastomeres, but unexpectedly is not essential for transcriptional repression or specification of the germline. We find that sequences outside of the YAPMAPT are required to inhibit serine 5 phosphorylation, and that this second inhibitory mechanism is essential for transcriptional repression and specification of the germ lineage. Our results suggest that PIE-1 uses partially redundant mechanisms to block transcription by targeting both the initiation and elongation phases of the transcription cycle.
Collapse
|
36
|
Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 2008; 9:129-40. [PMID: 18197165 DOI: 10.1038/nrg2295] [Citation(s) in RCA: 630] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.
Collapse
|
37
|
Abstract
Germline stem cells (GSCs) in Drosophila are a valuable model to explore of how adult stem cells are regulated in vivo. Genetic dissection of this system has shown that stem cell fate is determined and maintained by the stem cell's somatic microenvironment or niche. In Drosophila gonads, the stem cell niche -- the cap cell cluster in females and the hub in males -- acts as a signaling center to recruit GSCs from among a small population of undifferentiated primordial germ cells (PGCs). Short-range signals from the niche specify and regulate stem cell fate by maintaining the undifferentiated state of the PGCs next to the niche. Germline cells that do not receive the niche signals because of their location assume the default fate and differentiate. Once GSCs are specified, adherens junctions maintain close association between the stem cells and their niche and help to orient stem cell division so that one daughter is displaced from the niche and differentiates. In females, stem cell fate depends on bone morphogenetic protein (BMP) signals from the cap cells; in males, hub cells express the cytokine-like ligand Unpaired, which activates the Janus kinase-signal transducers and activators of transcription (Jak-Stat) pathway in stem cells. Although the signaling pathways operating between the niche and stem cells are different, there are common general features in both males and females, including the arrangement of cell types, many of the genes used, and the logic of the system that maintains stem cell fate.
Collapse
|
38
|
Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M, Schmidt A, Jenuwein T, Reuter G. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 2007; 26:103-15. [PMID: 17434130 DOI: 10.1016/j.molcel.2007.02.025] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/21/2006] [Accepted: 02/28/2007] [Indexed: 11/19/2022]
Abstract
Epigenetic indexing of chromatin domains by histone lysine methylation requires the balanced coordination of methyltransferase and demethylase activities. Here, we show that SU(VAR)3-3, the Drosophila homolog of the human LSD1 amine oxidase, demethylates H3K4me2 and H3K4me1 and facilitates subsequent H3K9 methylation by SU(VAR)3-9. Su(var)3-3 mutations suppress heterochromatic gene silencing, display elevated levels of H3K4me2, and prevent extension of H3K9me2 at pericentric heterochromatin. SU(VAR)3-3 colocalizes with H3K4me2 in interband regions and is abundant during embryogenesis and in syncytial blastoderm, where it appears concentrated at prospective heterochromatin during cycle 14. In embryos of Su(var)3-3/+ females, H3K4me2 accumulates in primordial germ cells, and the deregulated expansion of H3K4me2 antagonizes heterochromatic H3K9me2 in blastoderm cells. Our data indicate an early developmental function for the SU(VAR)3-3 demethylase in controlling euchromatic and heterochromatic domains and reveal a hierarchy in which SU(VAR)3-3-mediated removal of activating histone marks is a prerequisite for subsequent heterochromatin formation by H3K9 methylation.
Collapse
Affiliation(s)
- Thomas Rudolph
- Institute of Biology, Developmental Genetics, Martin Luther University Halle, D-06120 Halle, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Detecting positive darwinian selection in brain-expressed genes during human evolution. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0062-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Walker AK, Boag PR, Blackwell TK. Transcription reactivation steps stimulated by oocyte maturation in C. elegans. Dev Biol 2006; 304:382-93. [PMID: 17291483 PMCID: PMC1913287 DOI: 10.1016/j.ydbio.2006.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 12/09/2006] [Accepted: 12/19/2006] [Indexed: 01/02/2023]
Abstract
Developing oocytes produce materials that will support early embryonic development then cease transcription before fertilization. Later, a distinct transcription program is established in the embryo. Little is understood about how these global gene regulation transitions are effected. We have investigated in C. elegans how oocyte transcription is influenced by maturation, a process that releases meiotic arrest and prepares for fertilization. By monitoring transcription-associated phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD), we find that oocyte transcription shuts down independently of maturation. Surprisingly, maturation signals then induce CTD phosphorylation that is associated specifically with transcription initiation steps and accumulates to high levels when expression of the CTD phosphatase FCP-1 is inhibited. This CTD phosphorylation is also uncovered when a ubiquitylation pathway is blocked, or when maturation is stimulated precociously. CTD phosphorylation is similarly detected during embryonic mitosis, when transcription is also largely silenced. We conclude that oocyte maturation signals induce abortive transcription events in which FCP-1 may recycle phosphorylated Pol II and that analogous processes may occur during mitosis. Our findings suggest that maturation signals may initiate preparations for embryonic transcription, possibly as part of a broader program that begins the transition from maternal to zygotic gene expression.
Collapse
|
41
|
Megosh HB, Cox DN, Campbell C, Lin H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Curr Biol 2006; 16:1884-94. [PMID: 16949822 DOI: 10.1016/j.cub.2006.08.051] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/27/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The germ plasm has long been demonstrated to be necessary and sufficient for germline determination, with translational regulation playing a key role in the process. Beyond this, little is known about molecular activities underlying germline determination. RESULTS We report the function of Drosophila PIWI, DICER-1, and dFMRP (Fragile X Mental Retardation Protein) in germline determination. PIWI is a maternal component of the polar granule, a germ-plasm-specific organelle essential for germline specification. Depleting maternal PIWI does not affect OSK or VASA expression or abdominal patterning but leads to failure in pole-plasm maintenance and primordial-germ-cell (PGC) formation, whereas doubling and tripling the maternal piwi dose increases OSK and VASA levels correspondingly and doubles and triples the number of PGCs, respectively. Moreover, PIWI forms a complex with dFMRP and DICER-1, but not with DICER-2, in polar-granule-enriched fractions. Depleting DICER-1, but not DICER-2, also leads to a severe pole-plasm defect and a reduced PGC number. These effects are also seen, albeit to a lesser extent, for dFMRP, another component of the miRISC complex. CONCLUSIONS Because DICER-1 is required for the miRNA pathway and DICER-2 is required for the siRNA pathway yet neither is required for the rasiRNA pathway, our data implicate a crucial role of the PIWI-mediated miRNA pathway in regulating the levels of OSK, VASA, and possibly other genes involved in germline determination in Drosophila.
Collapse
Affiliation(s)
- Heather B Megosh
- Department of Cell Biology and Duke University Medical Center, Durham, North Carolina 27705, USA
| | | | | | | |
Collapse
|
42
|
Gamberi C, Johnstone O, Lasko P. Drosophila RNA Binding Proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:43-139. [PMID: 16487790 DOI: 10.1016/s0074-7696(06)48002-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.
Collapse
Affiliation(s)
- Chiara Gamberi
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
43
|
Tifft KE, Segura-Totten M, Lee KK, Wilson KL. Barrier-to-autointegration factor-like (BAF-L): a proposed regulator of BAF. Exp Cell Res 2005; 312:478-87. [PMID: 16337940 DOI: 10.1016/j.yexcr.2005.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 11/25/2022]
Abstract
Barrier-to-autointegration factor (BAF) is an essential chromatin protein conserved in metazoans. BAF has roles in nuclear assembly, chromatin organization, gene expression, and gonad development and is exploited by retroviruses. BAF forms stable dimers that bind nonspecifically to dsDNA and specifically to LEM-domain proteins (e.g., LAP2beta, emerin, MAN1), homeodomain transcription factors, histones, and lamin A. We characterized a protein named BAF-Like (BAF-L) that in humans is 40% identical to BAF. Overexpression studies in HeLa cells show that BAF-L, like BAF, is a predominantly nuclear protein. Recombinant BAF-L forms stable homodimers and heterodimerizes with BAF in vitro and also interacts with BAF in vivo. BAF-L does not bind significantly to DNA, LAP2beta, or emerin but can form ternary complexes in vitro with BAF plus DNA, or BAF plus LAP2beta. Levels of BAF-L mRNA were high in pancreas and testis, suggesting functions in the germline. BAF-L mRNA was detectable at low levels in eleven other tissues and undetectable in heart and skeletal muscle which are specifically affected by Emery-Dreifuss muscular dystrophy, a disease caused by mutations in either emerin or lamin A. We propose that BAF-L regulates BAF function via heterodimerization and might thereby influence tissue-specific roles of BAF.
Collapse
Affiliation(s)
- Kathryn E Tifft
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
44
|
Surani MA, Ancelin K, Hajkova P, Lange UC, Payer B, Western P, Saitou M. Mechanism of mouse germ cell specification: a genetic program regulating epigenetic reprogramming. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:1-9. [PMID: 16117627 DOI: 10.1101/sqb.2004.69.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- M A Surani
- Wellcome Trust Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H. Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 2005; 3:e357. [PMID: 16201836 PMCID: PMC1251493 DOI: 10.1371/journal.pbio.0030357] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 08/19/2005] [Indexed: 11/28/2022] Open
Abstract
The origin of new genes through gene duplication is fundamental to the evolution of lineage- or species-specific phenotypic traits. In this report, we estimate the number of functional retrogenes on the lineage leading to humans generated by the high rate of retroposition (retroduplication) in primates. Extensive comparative sequencing and expression studies coupled with evolutionary analyses and simulations suggest that a significant proportion of recent retrocopies represent bona fide human genes. We estimate that at least one new retrogene per million years emerged on the human lineage during the past ∼63 million years of primate evolution. Detailed analysis of a subset of the data shows that the majority of retrogenes are specifically expressed in testis, whereas their parental genes show broad expression patterns. Consistently, most retrogenes evolved functional roles in spermatogenesis. Proteins encoded by X chromosome−derived retrogenes were strongly preserved by purifying selection following the duplication event, supporting the view that they may act as functional autosomal substitutes during X-inactivation of late spermatogenesis genes. Also, some retrogenes acquired a new or more adapted function driven by positive selection. We conclude that retroduplication significantly contributed to the formation of recent human genes and that most new retrogenes were progressively recruited during primate evolution by natural and/or sexual selection to enhance male germline function. In humans, retroposition--integration into the genome of DNA reverse transcribed from mRNA--has contributed to the formation of recent functional genes selected to enhance male germline function.
Collapse
Affiliation(s)
- Ana Claudia Marques
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Isabelle Dupanloup
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Alexandre Reymond
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- 2Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Henrik Kaessmann
- 1Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
46
|
Kobayashi S, Sato K, Hayashi Y. The Role of Mitochondrial rRNAs and Nanos Protein in Germline Formation in Drosophila Embryos. Zoolog Sci 2005; 22:943-54. [PMID: 16219975 DOI: 10.2108/zsj.22.943] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Germ cells, represented by male sperm and female eggs, are specialized cells that transmit genetic material from one generation to the next during sexual reproduction. The mechanism by which multicellular organisms achieve the proper separation of germ cells and somatic cells is one of the longest standing issues in developmental biology. In many animal groups, a specialized portion of the egg cytoplasm, or germ plasm, is inherited by the cell lineage that gives rise to the germ cells (germline). Germ plasm contains maternal factors that are sufficient for germline formation. In the fruit fly, Drosophila, germ plasm is referred to as polar plasm and is distinguished histologically by the presence of polar granules, which act as a repository for the maternal factors required for germline formation. Molecular screens have so far identified several of these factors that are enriched in the polar plasm. This article focuses on the molecular functions of two such factors in Drosophila, mitochondrial ribosomal RNAs and Nanos protein, which are required for the formation and differentiation of the germline progenitors, respectively.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Myodaiji, Okazaki, Japan.
| | | | | |
Collapse
|
47
|
Ellis PJI, Clemente EJ, Ball P, Touré A, Ferguson L, Turner JMA, Loveland KL, Affara NA, Burgoyne PS. Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. Hum Mol Genet 2005; 14:2705-15. [PMID: 16087683 DOI: 10.1093/hmg/ddi304] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deletions on the mouse Y-chromosome long arm (MSYq) lead to teratozoospermia and in severe cases to infertility. We find that the downstream transcriptional changes in the testis resulting from the loss of MSYq-encoded transcripts involve upregulation of multiple X- and Y-linked spermatid-expressed genes, but not related autosomal genes. Therefore, this indicates that in normal males, there is a specific repression of X and Y (gonosomal) transcription in post-meiotic cells, which depends on MSYq-encoded transcripts. Together with the known sex ratio skew in favour of females in the offspring of fertile MSYqdel males, this strongly suggests the existence of an intragenomic conflict between X- and Y-linked genes. Two potential antagonists in this conflict are the X-linked multicopy gene Xmr and its multicopy MSYq-linked relative Sly, which are upregulated and downregulated, respectively, in the testes of MSYqdel males. Xmr is also expressed during meiotic sex chromosome inactivation (MSCI), indicating a link between the MSCI and the MSYq-dependent gonosomal repression in spermatids. We therefore propose that this repression and MSCI itself are evolutionary adaptations to maintain a normal sex ratio in the face of X/Y antagonism.
Collapse
Affiliation(s)
- Peter J I Ellis
- Department of Pathology, Mammalian Molecular Genetics Group, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Berekelya LA, Ponomarev MB, Mikryukov AA, Luchinskaya NN, Belyavsky AV. Molecular Mechanisms of Germ Line Cell Determination in Animals. Mol Biol 2005. [DOI: 10.1007/s11008-005-0073-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
49
|
Walstrom KM, Schmidt D, Bean CJ, Kelly WG. RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans. Mech Dev 2005; 122:707-20. [PMID: 15817227 DOI: 10.1016/j.mod.2004.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 12/01/2004] [Accepted: 12/02/2004] [Indexed: 11/29/2022]
Abstract
RNA helicase A (RHA) is a multifunctional protein with established roles in chromatin regulation. The protein is conserved in worms, Drosophila, and mammals, but its role in worms has not been previously studied. We found that a deletion mutant lacking rha-1 has a temperature-sensitive defect in germline transcriptional silencing, consistent with RHA-1 having a function in transcription regulation. Transcriptional desilencing in these rha-1(tm329) mutants was associated with a loss of lysine 9 methylation on histone H3 that is normally associated with silenced chromatin. Other histone modifications are also mis-localized in the germ cells in the mutants. These defects in histone modifications suggest that there is a general transcription regulation defect in the mutant worms that results in a temperature-sensitive sterile phenotype. At the restrictive temperature, the extent of germ cell mitoses is reduced, and the mutants are sterile due to defects in meiosis and gametogenesis. Our results suggest that RHA-1 is a conserved transcription regulation protein that controls germline proliferation and development in C. elegans.
Collapse
Affiliation(s)
- Katherine M Walstrom
- Division of Natural Sciences, New College of Florida, 5700 N. Tamiami Trail, Sarasota, FL 34243, USA.
| | | | | | | |
Collapse
|
50
|
Smith ED, Kudlow BA, Frock RL, Kennedy BK. A-type nuclear lamins, progerias and other degenerative disorders. Mech Ageing Dev 2005; 126:447-60. [PMID: 15722103 DOI: 10.1016/j.mad.2004.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 10/25/2004] [Accepted: 10/26/2004] [Indexed: 02/01/2023]
Abstract
Nuclear lamins were identified as core nuclear matrix constituents over 20 years ago. They have been ascribed structural roles such as maintaining nuclear integrity and assisting in nuclear envelope formation after mitosis, and have also been linked to nuclear activities including DNA replication and transcription. Recently, A-type lamin mutations have been linked to a variety of rare human diseases including muscular dystrophy, lipodystrophy, cardiomyopathy, neuropathy and progeroid syndromes (collectively termed laminopathies). Most diseases arise from dominant, missense mutations, leading to speculation as to how different mutations in the same gene can give rise to such a diverse set of diseases, some of which share little phenotypic overlap. Understanding the cellular dysfunctions that lead to laminopathies will almost certainly provide insight into specific roles of A-type lamins in nuclear organization. Here, we compare and contrast the LMNA mutations leading to laminopathies with emphasis on progerias, and discuss possible functional roles for A-type lamins in the maintenance of healthy tissues.
Collapse
Affiliation(s)
- Erica D Smith
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|