1
|
Lin Y, Zhang Q, Tong W, Wang Y, Wu L, Xiao H, Tang X, Dai M, Ye Z, Chai R, Zhang S. Conditional Overexpression of Net1 Enhances the Trans-Differentiation of Lgr5 + Progenitors into Hair Cells in the Neonatal Mouse Cochlea. Cell Prolif 2025; 58:e13787. [PMID: 39675772 PMCID: PMC11969244 DOI: 10.1111/cpr.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Sensorineural hearing loss is mainly caused by damage to hair cells (HC), which cannot be regenerated spontaneously in adult mammals once damaged. Cochlear Lgr5+ progenitors are characterised by HC regeneration capacity in neonatal mice, and we previously screened several new genes that might induce HC regeneration from Lgr5+ progenitors. Net1, a guanine nucleotide exchange factor, is one of the screened new genes and is particularly active in cancer cells and is involved in cell proliferation and differentiation. Here, to explore in vivo roles of Net1 in HC regeneration, Net1 loxp/loxp mice were constructed and crossed with Lgr5 CreER/+ mice to conditionally overexpress (cOE) Net1 in cochlear Lgr5+ progenitors. We observed a large number of ectopic HCs in Lgr5 CreER/+ Net1 loxp/loxp mouse cochlea, which showed a dose-dependent effect. Moreover, the EdU assay was unable to detect any EdU+/Sox2+ supporting cells, while lineage tracing showed significantly more regenerated tdTomato+ HCs in Lgr5 CreER/+ Net1 loxp/loxp tdTomato mice, which indicated that Net1 cOE enhanced HC regeneration by inducing the direct trans-differentiation of Lgr5+ progenitors rather than mitotic HC regeneration. Additionally, qPCR results showed that the transcription factors related to HC regeneration, including Atoh1, Gfi1 and Pou4f3, were significantly upregulated and are probably the mechanism behind the HC regeneration induced by Net1. In conclusion, our study provides new evidence for the role of Net1 in enhancing HC regeneration in the neonatal mouse cochlea.
Collapse
Affiliation(s)
- Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Qiuyue Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Leilei Wu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijingChina
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
2
|
Medd MM, Yon JE, Dong H. RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:124. [PMID: 39996845 PMCID: PMC11854763 DOI: 10.3390/cimb47020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD.
Collapse
Affiliation(s)
- Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Jayden E. Yon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Hongxin Dong
- Stephen M. Stahl Center for Psychiatric Neuroscience, Departments of Psychiatry & Behavioral Sciences and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Hu X, Wang Y, Wang R, Pu Y, Jin R, Nie Y, Shuai X. The hybrid lipoplex induces cytoskeletal rearrangement via autophagy/RhoA signaling pathway for enhanced anticancer gene therapy. Nat Commun 2025; 16:339. [PMID: 39747218 PMCID: PMC11696071 DOI: 10.1038/s41467-024-55727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025] Open
Abstract
Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery. By modulating autophagy, RhoA signaling, and cytoskeletal dynamics, we achieve a 20-fold increase in gene expression with high tissue specificity in solid tumors. Furthermore, the system is applied to co-deliver a p53 plasmid and an MDM2 inhibitor, demonstrating significant synergistic antitumor effects in hepatocellular and lung carcinomas.
Collapse
Affiliation(s)
- Xueyi Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yichun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, P. R. China
| |
Collapse
|
4
|
Yang Q, Yu H, Du S, Li Q. Overexpression of CDC42 causes accumulation of DNA damage leading to failure of oogenesis in triploid Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 282:136769. [PMID: 39490852 DOI: 10.1016/j.ijbiomac.2024.136769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Triploid Pacific oyster Crassostrea gigas exhibits notable differences in fecundity, with the majority being sterile individuals, referred to as female β, which produce few oocytes, while a minority are fertile individuals, referred to as female α, which produce abundant oocytes. However, the molecular mechanisms underlying these differences in triploid fecundity remain poorly understood. CDC42 has been implicated in processes related to increased DNA damage and genomic instability. Here, we investigate the crucial role of CDC42 in DNA damage repair during oogenesis in triploid C. gigas. Immunofluorescence analysis of γH2AX, a marker for DNA double-stranded breaks, showed significantly higher levels of DNA damage in gonadal cells of triploids compared to diploids, particularly in female β. Histological and ultrastructural analyses revealed abnormal germ cells, termed β gonia, characterized by giant nuclei condensed into irregular chromosome-like chromatin, present in triploid gonadal follicles. RNAseq and proteomic analyses revealed significantly elevated CDC42 expression in triploid gonads compared to the diploids. Inhibition of CDC42 activity in triploids using ZCL278, a CDC42-specific inhibitor, resulted in a significant reduction in DNA damage, increased oocyte numbers, and a decrease in β gonia count. Transcriptome profiling revealed that CDC42 inhibition upregulated the PI3K-AKT signaling pathway along with DNA repair activation. Overall, our findings suggest that overexpression of CDC42 during oogenesis in triploid C. gigas impedes DNA repair, leading to the accumulation of DNA damage, and consequently, oogenesis blockade and abnormal germ cell differentiation. Conversely, inhibition of CDC42 activity activates the PI3K-AKT signaling pathway and promotes DNA repair, thereby mitigating DNA damage and facilitating oogenesis in triploids. This study provides new insights into the molecular mechanisms of sterility in female triploid C. gigas.
Collapse
Affiliation(s)
- Qiong Yang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
5
|
Togra C, Dhage R, Rajyaguru PI. Tdh3 and Rom2 are functional modulators of a conserved condensate-resident RNA-binding protein, Scd6, in Saccharomyces cerevisiae. Genetics 2024; 228:iyae127. [PMID: 39093296 DOI: 10.1093/genetics/iyae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/07/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Arginine-glycine-glycine motif proteins play a crucial role in determining mRNA fate. Suppressor of clathrin deficiency 6 (Scd6) is a conserved arginine-glycine-glycine motif containing ribonucleoprotein (RNP) condensate-resident, translation repressor, and decapping activator protein in Saccharomyces cerevisiae. Identifying protein factors that can modulate Scd6 function is critical to understanding the regulation of mRNA fate by Scd6. In this study, using an approach that combined mRNA tethering assay with flow cytometry, we screened 50 genes for their role in modulating the translation repression activity of Scd6. We identified 8 conserved modulators with human homologs. Of these, we further characterized in detail guanine nucleotide exchange factor Rho1 multicopy suppressor 2 (Rom2) and glycolytic enzyme triose phosphate dehydrogenase 3 (Tdh3), which, respectively, impede and promote translation repression activity of Scd6. Our study reveals that Rom2 negatively regulates the arginine methylation of Scd6 and antagonizes its localization to P-bodies. Tdh3, on the other hand, promotes Scd6 interaction with Hmt1, thereby promoting the arginine methylation of Scd6 and enhanced eIF4G1 interaction, which is known to promote its repression activity. Identifying these novel modulators provides exciting new insights into the role of a metabolic enzyme of the glycolytic pathway and guanine nucleotide exchange factor implicated in the cell wall integrity pathway in regulating Scd6 function and, thereby, cytoplasmic mRNA fate.
Collapse
Affiliation(s)
- Chitra Togra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Riya Dhage
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
6
|
Liang Z, Dondorp DC, Chatzigeorgiou M. The ion channel Anoctamin 10/TMEM16K coordinates organ morphogenesis across scales in the urochordate notochord. PLoS Biol 2024; 22:e3002762. [PMID: 39173068 PMCID: PMC11341064 DOI: 10.1371/journal.pbio.3002762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/20/2024] [Indexed: 08/24/2024] Open
Abstract
During embryonic development, tissues and organs are gradually shaped into their functional morphologies through a series of spatiotemporally tightly orchestrated cell behaviors. A highly conserved organ shape across metazoans is the epithelial tube. Tube morphogenesis is a complex multistep process of carefully choreographed cell behaviors such as convergent extension, cell elongation, and lumen formation. The identity of the signaling molecules that coordinate these intricate morphogenetic steps remains elusive. The notochord is an essential tubular organ present in the embryonic midline region of all members of the chordate phylum. Here, using genome editing, pharmacology and quantitative imaging in the early chordate Ciona intestinalis we show that Ano10/Tmem16k, a member of the evolutionarily ancient family of transmembrane proteins called Anoctamin/TMEM16 is essential for convergent extension, lumen expansion, and connection during notochord morphogenesis. We find that Ano10/Tmem16k works in concert with the plasma membrane (PM) localized Na+/Ca2+ exchanger (NCX) and the endoplasmic reticulum (ER) residing SERCA, RyR, and IP3R proteins to establish developmental stage specific Ca2+ signaling molecular modules that regulate notochord morphogenesis and Ca2+ dynamics. In addition, we find that the highly conserved Ca2+ sensors calmodulin (CaM) and Ca2+/calmodulin-dependent protein kinase (CaMK) show an Ano10/Tmem16k-dependent subcellular localization. Their pharmacological inhibition leads to convergent extension, tubulogenesis defects, and deranged Ca2+ dynamics, suggesting that Ano10/Tmem16k is involved in both the "encoding" and "decoding" of developmental Ca2+ signals. Furthermore, Ano10/Tmem16k mediates cytoskeletal reorganization during notochord morphogenesis, likely by altering the localization of 2 important cytoskeletal regulators, the small GTPase Ras homolog family member A (RhoA) and the actin binding protein Cofilin. Finally, we use electrophysiological recordings and a scramblase assay in tissue culture to demonstrate that Ano10/Tmem16k likely acts as an ion channel but not as a phospholipid scramblase. Our results establish Ano10/Tmem16k as a novel player in the prevertebrate molecular toolkit that controls organ morphogenesis across scales.
Collapse
Affiliation(s)
- Zonglai Liang
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
7
|
Zhong Z, Li Z, Li Y, Jiang L, Kong Q, Chen W, Feng S. RhoA vesicle trafficking-mediated transglutaminase 2 membrane translocation promotes IgA1 mesangial deposition in IgA nephropathy. JCI Insight 2023; 8:e160374. [PMID: 37811653 PMCID: PMC10619437 DOI: 10.1172/jci.insight.160374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Transglutaminase 2 (TGase2) has been shown to contribute to the mesangial IgA1 deposition in a humanized mouse model of IgA nephropathy (IgAN), but the mechanism is not fully understood. In this study, we found that inhibition of TGase2 activity could dramatically decrease the amount of polymeric IgA1 (pIgA1) isolated from patients with IgAN that interacts with human mesangial cells (HMC). TGase2 was expressed both in the cytosol and on the membrane of HMC. Upon treatment with pIgA1, there were more TGase2 recruited to the membrane. Using a cell model of mesangial deposition of pIgA1, we identified 253 potential TGase2-associated proteins in the cytosolic fraction and observed a higher concentration of cellular vesicles and increased expression of Ras homolog family member A (RhoA) in HMC after pIgA1 stimulation. Both the amount of pIgA1 deposited on HMC and membrane TGase2 level were decreased by inhibition of the vesicle trafficking pathway. Mechanistically, TGase2 was found to be coprecipitated with RhoA in the cellular vesicles. Membrane TGase2 expression was greatly increased by overexpression of RhoA, while it was reduced by knockdown of RhoA. Our in vitro approach demonstrated that TGase2 was transported from the cytosol to the membrane through a RhoA-mediated vesicle-trafficking pathway that can facilitate pIgA1 interaction with mesangium in IgAN.
Collapse
Affiliation(s)
- Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Yanjie Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lanping Jiang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Qingyu Kong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| | - Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
8
|
Powers RM, Daza R, Koehler AE, Courchet J, Calabrese B, Hevner RF, Halpain S. Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1. Mol Biol Cell 2022; 33:ar64. [PMID: 35352947 PMCID: PMC9561856 DOI: 10.1091/mbc.e21-12-0623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuron navigator 1 (Nav1) is a cytoskeleton-associated protein expressed during brain development that is necessary for proper neuritogenesis, but the underlying mechanisms are poorly understood. Here we show that Nav1 is present in elongating axon tracts during mouse brain embryogenesis. We found that depletion of Nav1 in cultured neurons disrupts growth cone morphology and neurotrophin-stimulated neuritogenesis. In addition to regulating both F-actin and microtubule properties, Nav1 promotes actin-rich membrane ruffles in the growth cone and promotes macropinocytosis at those membrane ruffles, including internalization of the TrkB receptor for the neurotrophin brain-derived neurotropic factor (BDNF). Growth cone macropinocytosis is important for downstream signaling, neurite targeting, and membrane recycling, implicating Nav1 in one or more of these processes. Depletion of Nav1 also induces transient membrane blebbing via disruption of signaling in the Rho GTPase signaling pathway, supporting the novel role of Nav1 in dynamic actin-based membrane regulation at the cell periphery. These data demonstrate that Nav1 works at the interface of microtubules, actin, and plasma membrane to organize the cell periphery and promote uptake of growth and guidance cues to facilitate neural morphogenesis during development.
Collapse
Affiliation(s)
- Regina M. Powers
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Ray Daza
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Alanna E. Koehler
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Julien Courchet
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, 69008 Lyon Cedex, France
| | - Barbara Calabrese
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,Department of Pathology, University of California, San Diego, La Jolla, CA 92161
| | - Shelley Halpain
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037,*Address correspondence to: Shelley Halpain ()
| |
Collapse
|
9
|
Ortin‐Martinez A, Yan NE, Tsai ELS, Comanita L, Gurdita A, Tachibana N, Liu ZC, Lu S, Dolati P, Pokrajac NT, El‐Sehemy A, Nickerson PEB, Schuurmans C, Bremner R, Wallace VA. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021; 40:e107264. [PMID: 34494680 PMCID: PMC8591540 DOI: 10.15252/embj.2020107264] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.
Collapse
Affiliation(s)
- Arturo Ortin‐Martinez
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nicole E Yan
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Akshay Gurdita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Zhongda C Liu
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Suying Lu
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
| | - Parnian Dolati
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Neno T Pokrajac
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Ahmed El‐Sehemy
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Philip E B Nickerson
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Carol Schuurmans
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Sunnybrook Research InstituteTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Valerie A Wallace
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| |
Collapse
|
10
|
Perino A, Velázquez-Villegas LA, Bresciani N, Sun Y, Huang Q, Fénelon VS, Castellanos-Jankiewicz A, Zizzari P, Bruschetta G, Jin S, Baleisyte A, Gioiello A, Pellicciari R, Ivanisevic J, Schneider BL, Diano S, Cota D, Schoonjans K. Central anorexigenic actions of bile acids are mediated by TGR5. Nat Metab 2021; 3:595-603. [PMID: 34031591 PMCID: PMC7610881 DOI: 10.1038/s42255-021-00398-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
Bile acids (BAs) are signalling molecules that mediate various cellular responses in both physiological and pathological processes. Several studies report that BAs can be detected in the brain1, yet their physiological role in the central nervous system is still largely unknown. Here we show that postprandial BAs can reach the brain and activate a negative-feedback loop controlling satiety in response to physiological feeding via TGR5, a G-protein-coupled receptor activated by multiple conjugated and unconjugated BAs2 and an established regulator of peripheral metabolism3-8. Notably, peripheral or central administration of a BA mix or a TGR5-specific BA mimetic (INT-777) exerted an anorexigenic effect in wild-type mice, while whole-body, neuron-specific or agouti-related peptide neuronal TGR5 deletion caused a significant increase in food intake. Accordingly, orexigenic peptide expression and secretion were reduced after short-term TGR5 activation. In vitro studies demonstrated that activation of the Rho-ROCK-actin-remodelling pathway decreases orexigenic agouti-related peptide/neuropeptide Y (AgRP/NPY) release in a TGR5-dependent manner. Taken together, these data identify a signalling cascade by which BAs exert acute effects at the transition between fasting and feeding and prime the switch towards satiety, unveiling a previously unrecognized role of physiological feedback mediated by BAs in the central nervous system.
Collapse
Affiliation(s)
- Alessia Perino
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura A Velázquez-Villegas
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México D.F., Mexico
| | - Nadia Bresciani
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yu Sun
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Qingyao Huang
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Valérie S Fénelon
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | | | - Philippe Zizzari
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Giuseppe Bruschetta
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sungho Jin
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Aiste Baleisyte
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Sabrina Diano
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, F-3300, Bordeaux, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Chen ZH, Ni QZ, Zhang XP, Ma N, Feng JK, Wang K, Li JJ, Xie D, Ma XY, Cheng SQ. NET1 promotes HCC growth and metastasis in vitro and in vivo via activating the Akt signaling pathway. Aging (Albany NY) 2021; 13:10672-10687. [PMID: 33839702 PMCID: PMC8064201 DOI: 10.18632/aging.202845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/13/2021] [Indexed: 01/22/2023]
Abstract
Neuroepithelial cell transforming gene 1 (NET1), a member of the guanine nucleotide exchange factor family, is involved in various cancers, including gastric cancer, breast cancer and glioma. However, the role of NET1 in hepatocellular carcinoma (HCC) remains largely uncovered. In this study, we found that NET1 expression was upregulated in HCC, and that upregulated NET1 expression was closely associated with poor prognosis and some clinical characteristics in HCC patients. Whilst forced expression of NET1 in HCC cells was observed to significantly promote cell growth and metastasis in vitro and in vivo; downregulation of NET1 was shown to exhibit an opposite inhibitory effect. RNA-seq analysis and gene set enrichment analysis demonstrated that knockdown of NET1 significantly suppressed the level of Akt phosphorylation level and the expression of Akt downstream genes in HCC cells. Moreover, MK2206, a potent Akt inhibitor was shown to block the NET1-induced effects in HCC. Taken together, this study demonstrated that, through the Akt signaling pathway, NET1 plays an oncogenic role in HCC progression and metastasis. Hence, NET1 may potentially be used as a potential therapeutic target and prognostic marker of HCC.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China.,Department of General Surgery, Zhejiang Provincial Armed Police Corps Hospital, Hangzhou 310051, Zhejiang Province, China
| | - Qian-Zhi Ni
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiu-Ping Zhang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing-Yuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
The structure and function of protein kinase C-related kinases (PRKs). Biochem Soc Trans 2021; 49:217-235. [PMID: 33522581 PMCID: PMC7925014 DOI: 10.1042/bst20200466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
The protein kinase C-related kinase (PRK) family of serine/threonine kinases, PRK1, PRK2 and PRK3, are effectors for the Rho family small G proteins. An array of studies have linked these kinases to multiple signalling pathways and physiological roles, but while PRK1 is relatively well-characterized, the entire PRK family remains understudied. Here, we provide a holistic overview of the structure and function of PRKs and describe the molecular events that govern activation and autoregulation of catalytic activity, including phosphorylation, protein interactions and lipid binding. We begin with a structural description of the regulatory and catalytic domains, which facilitates the understanding of their regulation in molecular detail. We then examine their diverse physiological roles in cytoskeletal reorganization, cell adhesion, chromatin remodelling, androgen receptor signalling, cell cycle regulation, the immune response, glucose metabolism and development, highlighting isoform redundancy but also isoform specificity. Finally, we consider the involvement of PRKs in pathologies, including cancer, heart disease and bacterial infections. The abundance of PRK-driven pathologies suggests that these enzymes will be good therapeutic targets and we briefly report some of the progress to date.
Collapse
|
13
|
Eduardo da Silva L, Russo LC, Forti FL. Overactivated Cdc42 acts through Cdc42EP3/Borg2 and NCK to trigger DNA damage response signaling and sensitize cells to DNA-damaging agents. Exp Cell Res 2020; 395:112206. [PMID: 32739212 DOI: 10.1016/j.yexcr.2020.112206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/23/2022]
Abstract
The small GTPase Cdc42, a member of the Rho family, regulates essential biological processes such as cytoskeleton remodeling, migration, vesicular trafficking and cell cycle. It was demonstrated that Cdc42 overactivation through different molecular strategies increases cell sensitivity to genotoxic stress and affects the phosphorylation status of DNA damage response proteins by unknown mechanisms. By using a combination of approaches including affinity purification/mass spectrometry (AP/MS) and colocalization microscopy analysis we were able to identify Cdc42EP3/Borg2 as a putative molecular effector of these molecular and cellular events that seem to be independent of cell line or DNA damage stimuli. We then investigated the influence of Cdc42EP3/Borg2 and other potential protein partners, such as the NCK and Septin2 proteins, which could mediate cellular responses to genotoxic stress under different backgrounds of Cdc42 activity. Clonogenic assays showed a reduced cell survival when ectopically expressing the Cdc42EP3/Borg2, NCK2 or Septin2 in an overactivated Cdc42-dependent background. Moreover, endogenous NCK appears to relocate into the nucleus upon Cdc42 overactivation, especially under genotoxic stress, and promotes the suppression of Chk1 phosphorylation. In sum, our findings reinforce Cdc42 as an important player involved in the DNA damage response acting through Cdc42EP3/Borg2 and NCK proteins following genomic instability conditions.
Collapse
Affiliation(s)
- Luiz Eduardo da Silva
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Lilian Cristina Russo
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | - Fabio Luis Forti
- Laboratory of Biomolecular Systems Signaling, Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage. Nat Commun 2020; 11:42. [PMID: 31896748 PMCID: PMC6940362 DOI: 10.1038/s41467-019-13894-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
DNA damage and metabolic disorders are intimately linked with premature disease onset but the underlying mechanisms remain poorly understood. Here, we show that persistent DNA damage accumulation in tissue-infiltrating macrophages carrying an ERCC1-XPF DNA repair defect (Er1F/−) triggers Golgi dispersal, dilation of endoplasmic reticulum, autophagy and exosome biogenesis leading to the secretion of extracellular vesicles (EVs) in vivo and ex vivo. Macrophage-derived EVs accumulate in Er1F/− animal sera and are secreted in macrophage media after DNA damage. The Er1F/− EV cargo is taken up by recipient cells leading to an increase in insulin-independent glucose transporter levels, enhanced cellular glucose uptake, higher cellular oxygen consumption rate and greater tolerance to glucose challenge in mice. We find that high glucose in EV-targeted cells triggers pro-inflammatory stimuli via mTOR activation. This, in turn, establishes chronic inflammation and tissue pathology in mice with important ramifications for DNA repair-deficient, progeroid syndromes and aging. DNA damage is associated with metabolic disorders, but the mechanism in unclear. Here, the authors show that persistent DNA damage induced by lack of the endonuclease XPF-ERCC1 triggers extracellular vesicle biogenesis in tissue infiltrating macrophages, and that vesicle uptake stimulates glucose uptake in recipient cells, leading to increased inflammation.
Collapse
|
15
|
Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019; 8:cells8121478. [PMID: 31766364 PMCID: PMC6952795 DOI: 10.3390/cells8121478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.
Collapse
|
16
|
Nipah Virus-Like Particle Egress Is Modulated by Cytoskeletal and Vesicular Trafficking Pathways: a Validated Particle Proteomics Analysis. mSystems 2019; 4:4/5/e00194-19. [PMID: 31551400 PMCID: PMC6759566 DOI: 10.1128/msystems.00194-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classified as a biosafety level 4 (BSL4) select agent, Nipah virus (NiV) is a deadly henipavirus in the Paramyxoviridae family, with a nearly 75% mortality rate in humans, underscoring its global and animal health importance. Elucidating the process of viral particle production in host cells is imperative both for targeted drug design and viral particle-based vaccine development. However, little is understood concerning the functions of cellular machinery in paramyxoviral and henipaviral assembly and budding. Recent studies showed evidence for the involvement of multiple NiV proteins in viral particle formation, in contrast to the mechanisms understood for several paramyxoviruses as being reliant on the matrix (M) protein alone. Further, the levels and purposes of cellular factor incorporation into viral particles are largely unexplored for the paramyxoviruses. To better understand the involvement of cellular machinery and the major structural viral fusion (F), attachment (G), and matrix (M) proteins, we performed proteomics analyses on virus-like particles (VLPs) produced from several combinations of these NiV proteins. Our findings indicate that NiV VLPs incorporate vesicular trafficking and actin cytoskeletal factors. The involvement of these biological processes was validated by experiments indicating that the perturbation of key factors in these cellular processes substantially modulated viral particle formation. These effects were most impacted for NiV-F-modulated viral particle formation either autonomously or in combination with other NiV proteins, indicating that NiV-F budding relies heavily on these cellular processes. These findings indicate a significant involvement of the NiV fusion protein, vesicular trafficking, and actin cytoskeletal processes in efficient viral particle formation.IMPORTANCE Nipah virus is a zoonotic biosafety level 4 agent with high mortality rates in humans. The genus to which Nipah virus belongs, Henipavirus, includes five officially recognized pathogens; however, over 20 species have been identified in multiple continents within the last several years. As there are still no vaccines or treatments for NiV infection, elucidating its process of viral particle production is imperative both for targeted drug design as well as for particle-based vaccine development. Developments in high-throughput technologies make proteomic analysis of isolated viral particles a highly insightful approach to understanding the life cycle of pathogens such as Nipah virus.
Collapse
|
17
|
Godínez-Solís Y, Solís-Heredia MDJ, Roa-Espitia A, Parra-Forero LY, Hernández-González EO, Hernández-Ochoa I, Quintanilla-Vega B. Low concentrations of lead decrease the sperm fertilization ability by altering the acrosome reaction in mice. Toxicol Appl Pharmacol 2019; 380:114694. [PMID: 31356930 DOI: 10.1016/j.taap.2019.114694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022]
Abstract
Lead (Pb) exposure at high concentrations is associated with poor sperm quality, acrosome alterations, and low fertilization rate. Sperm capacitation and the acrosome reaction (AR) are required for successful fertilization. Actin polymerization is crucial for correct capacitation, and small GTPases, such as RhoA, Rac1, and Cdc42, are involved. This study aimed to evaluate the effects of Pb on sperm fertilization ability, capacitation, AR, and the mechanisms involved in mice exposed to low Pb concentrations. CD1 mice were exposed to 0.01% Pb2+ for 45 days through their drinking water and their spermatozoa were collected from the cauda epididymis-vas deferens to evaluate the following: AR (oAR: initial, sAR: spontaneous, and iAR: induced) using the PNA-FITC assay, sperm capacitation (P-Tyr levels), actin polymerization (phalloidin-TRITC), MDA production (stress oxidative marker), the RhoA, Rac1, and Cdc42 protein levels, and the in vitro fertilization (IVF). After the treatment, the blood Pb (PbB) concentration was 9.4 ± 1.6 μg/dL. Abnormal sperm morphology and the oAR increased (8 and 19%, respectively), whereas the iAR decreased (15%) after a calcium ionophore challenge, and the actin polymerization decreased in the sperm heads (59%) and tails (42%). Rac1 was the only Rho protein to significantly decrease (33%). Spermatozoa from the Pb-treated mice showed a significant reduction in the fertilization rate (19%). Our data suggest that Pb exposure at environmental concentrations (PbB < 10 μg/dL) decreases the acrosome function and affects the sperm fertilization ability; this is probably a consequence of the low Rac1 levels, which did not allow adequate actin polymerization to occur.
Collapse
|
18
|
Post-translational modifications of serotonin transporter. Pharmacol Res 2019; 140:7-13. [PMID: 30394319 DOI: 10.1016/j.phrs.2018.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022]
Abstract
The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. Studies using in vivo and in vitro model systems demonstrated that diverse post-translational modifications, including phosphorylation, glycosylation, serotonylation, and disulfide bond formation, all favorably influences SERT conformation and allows the transporter to function most efficiently. This review discusses the post-translational modifications and their importance on the structure, maturation, and serotonin (5-HT) uptake ability of SERT. Finally, we discuss how these modifications are altered in diabetes mellitus and subsequently impairs the 5-HT uptake ability of SERT.
Collapse
|
19
|
The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus Res 2019; 263:27-33. [PMID: 30639190 PMCID: PMC7173133 DOI: 10.1016/j.virusres.2019.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Different stages of the rotavirus lifecycle depend on the dynamics of the actin cytoskeleton. Alpha-actinin, Diaph, and the GTPase Cdc42 are important for virus entry. The GTPAse Rac1 is required for maximal viral RNA synthesis.
Numerous host factors are required for the efficient replication of rotavirus, including the activation and inactivation of several cell signaling pathways. One of the cellular structures that are reorganized during rotavirus infection is the actin cytoskeleton. In this work, we report that the dynamics of the actin microfilaments are important at different stages of the virus life cycle, specifically, during virus internalization and viral RNA synthesis at 6 h post-infection. Our results show that the actin-binding proteins alpha-actinin 4 and Diaph, as well as the Rho-family small GTPase Cdc42 are necessary for an efficient virus entry, while GTPase Rac1 is required for maximal viral RNA synthesis.
Collapse
|
20
|
Córdoba S, Estella C. The transcription factor Dysfusion promotes fold and joint morphogenesis through regulation of Rho1. PLoS Genet 2018; 14:e1007584. [PMID: 30080872 PMCID: PMC6095628 DOI: 10.1371/journal.pgen.1007584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/16/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The mechanisms that control tissue patterning and cell behavior are extensively studied separately, but much less is known about how these two processes are coordinated. Here we show that the Drosophila transcription factor Dysfusion (Dysf) directs leg epithelial folding and joint formation through the regulation of Rho1 activity. We found that Dysf-induced Rho1 activity promotes apical constriction specifically in folding epithelial cells. Here we show that downregulation of Rho1 or its downstream effectors cause defects in fold and joint formation. In addition, Rho1 and its effectors are sufficient to induce the formation of epithelial folds when misexpressed in a flat epithelium. Furthermore, as apoptotic cells can actively control tissue remodeling, we analyzed the role of cell death in the formation of tarsal folds and its relation to Rho1 activity. Surprisingly, we found no defects in this process when apoptosis is inhibited. Our results highlight the coordination between a patterning transcription factor and the cellular processes that cause the cell shape changes necessary to sculpt a flat epithelium into a three dimensional structure. Epithelial morphogenesis drives the formation of organs and the acquisition of body shape. Changes in cell behavior such as cell proliferation, cell shape or apoptosis contribute to the remodeling of the epithelia from a simple layer to a three dimensional structure. These changes have to be precisely regulated by an underlying patterning network to control the final shape of an organ. However, how these two processes are coordinated is mostly unknown. In this work we use the formation of the fly leg joints as a model to study how Dysfusion (Dysf), a patterning transcription factor, regulates the cellular mechanisms that form the folds in the leg discs epithelium. We have found that dysf modulates the localization and activity of Rho1, a key regulator of the acto-myosin cytoskeleton, to drive cell apical constriction and epithelial folding in the leg disc. Furthermore, in this work we provide proof of the direct requirements of Rho1 and its downstream effectors in fold and joint formation. We conclude that Dysf-regulated Rho1 activity controls the cell shape changes that sculpt leg joints.
Collapse
Affiliation(s)
- Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-CSIC, Madrid, Spain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM)-CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Schröder A, Benski A, Oltmanns A, Just I, Rohrbeck A, Pich A. MS-based quantification of RhoA/B and RhoC ADP-ribosylation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:268-271. [PMID: 29933219 DOI: 10.1016/j.jchromb.2018.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/22/2018] [Accepted: 06/03/2018] [Indexed: 02/02/2023]
Abstract
Mono ADP-ribosylation is a common characteristic of bacterial toxins resulting to aberrant activation or inactivation of target proteins. The C3 exoenzyme of Clostridium botulinum (C3bot) ADP-ribosylates the small GTPases RhoA, RhoB and RhoC, leading to inactivation of these important regulators and impaired down-stream signaling. Quantification of ADP-ribosylation using gel migration assays, antibodies, and radioactivity-based methods are limited. Therefore a novel LC-MS-based method to specifically determine and quantify ADP-ribosylation of Rho GTPases was established. A heavy labeled protein standard that contained ADP-ribosylation specific peptides in similar amounts in ADP ribosylated and non ADP ribosylated form was used for relative quantification in vivo. In a proof of principle experiment HT22 cells were treated with C3bot and the kinetics of RhoA/B and RhoC ADP-ribosylation were determined in vivo.
Collapse
Affiliation(s)
- Anke Schröder
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Anastasia Benski
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anne Oltmanns
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ingo Just
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Astrid Rohrbeck
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
22
|
Hu HF, Xu WW, Wang Y, Zheng CC, Zhang WX, Li B, He QY. Comparative Proteomics Analysis Identifies Cdc42-Cdc42BPA Signaling as Prognostic Biomarker and Therapeutic Target for Colon Cancer Invasion. J Proteome Res 2017; 17:265-275. [PMID: 29072916 DOI: 10.1021/acs.jproteome.7b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis is one of the major causes of treatment failure in the patients with colon cancer. The aim of our study is to find key proteins and pathways that drive invasion and metastasis in colon cancer. Eight rounds of selection of cancer cells invading through matrigel-coated chamber were performed to obtain highly invasive colon cancer sublines HCT116-I8 and RKO-I8. Stable Isotope Labeling by Amino Acids in Cell Culture technology was used to identify the differently expressed proteins, and the proteomics data were analyzed by ingenuity pathway analysis. PAK1-PBD immunoprecipitation combined with Western blot were carried out to determine Cdc42 activity, and qRT-PCR and Western blot were used to determine gene expression. The functional role of Cdc42BPA and Cdc42 pathway in colon cancer invasion was studied by loss-of-function experiments including pharmacological blockade, siRNA knockdown, chamber invasion, and WST-1 assays. Human colon cancer tissue microarray was analyzed by immunohistochemistry for overexpression of Cdc42BPA and its correlation with clinicopathological parameters and patient survival outcomes. HCT116-I8 and RKO-I8 cells showed significantly stronger invasive potential as well as decreased E-cadherin and increased vimentin expressions compared with parental cells. The differently expressed proteins in I8 cells compared with parental cells were identified. Bioinformatics analysis of proteomics data suggested that Cdc42BPA protein and Cdc42 signaling pathway are important for colon cancer invasion, which was confirmed by experimental data showing upregulation of Cdc42BPA and higher expression of active GTP-bound form of Cdc42 in HCT116-I8 and RKO-I8 cells. Functionally, pharmacological and genetic blockade of Cdc42BPA and Cdc42 signaling markedly suppressed colon cancer cell invasion and reversed epithelial mesenchymal transition process. Furthermore, compared with adjacent normal tissues, Cdc42BPA expression was significantly higher in colon cancer tissues and further upregulated in metastatic tumors in lymph nodes. More importantly, Cdc42BPA expression was correlated with metastasis and poor survival of the patients with colon cancer. This study provides the first evidence that Cdc42BPA and Cdc42 signaling are important for colon cancer invasion, and Cdc42BPA has potential implications for colon cancer prognosis and treatment.
Collapse
Affiliation(s)
- Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wei-Xia Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
23
|
Zhang Y, Wang QC, Liu J, Xiong B, Cui XS, Kim NH, Sun SC. The small GTPase CDC42 regulates actin dynamics during porcine oocyte maturation. J Reprod Dev 2017; 63:505-510. [PMID: 28781348 PMCID: PMC5649100 DOI: 10.1262/jrd.2017-034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian oocyte undergoes an asymmetric division during meiotic maturation, producing a small polar body and a haploid gamete. This process involves the dynamics of actin filaments, and the guanosine triphosphatase (GTPase) protein superfamily is a major regulator of actin assembly. In the present study, the small GTPase CDC42 was shown to participate in the meiotic maturation of porcine oocytes. Immunofluorescent staining showed that CDC42 was mainly localized at the periphery of the oocytes, and accumulated with microtubules. Deactivation of CDC42 protein activity with the effective inhibitor ML141 caused a decrease in actin distribution in the cortex, which resulted in a failure of polar body extrusion. Moreover, western blot analysis revealed that besides the Cdc42-N-WASP pathway previously reported in mouse oocytes, the expression of ROCK and p-cofilin, two molecules involved in actin dynamics, was also decreased after CDC42 inhibition during porcine oocyte maturation. Thus, our study demonstrates that CDC42 is an indispensable protein during porcine oocyte meiosis, and CDC42 may interact with N-WASP, ROCK, and cofilin in the assembly of actin filaments during porcine oocyte maturation.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiao-Chu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Short interfering RNA targeting Net1 reduces the angiogenesis and tumor growth of in vivo cervical squamous cell carcinoma through VEGF down-regulation. Hum Pathol 2017; 65:113-122. [DOI: 10.1016/j.humpath.2017.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/18/2017] [Accepted: 04/29/2017] [Indexed: 12/22/2022]
|
25
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
26
|
da Silva RMP, van der Zwaag D, Albertazzi L, Lee SS, Meijer EW, Stupp SI. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres. Nat Commun 2016; 7:11561. [PMID: 27194204 PMCID: PMC4874009 DOI: 10.1038/ncomms11561] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022] Open
Abstract
The dynamic behaviour of supramolecular systems is an important dimension of their potential functions. Here, we report on the use of stochastic optical reconstruction microscopy to study the molecular exchange of peptide amphiphile nanofibres, supramolecular systems known to have important biomedical functions. Solutions of nanofibres labelled with different dyes (Cy3 and Cy5) were mixed, and the distribution of dyes inserting into initially single-colour nanofibres was quantified using correlative image analysis. Our observations are consistent with an exchange mechanism involving monomers or small clusters of molecules inserting randomly into a fibre. Different exchange rates are observed within the same fibre, suggesting that local cohesive structures exist on the basis of β-sheet discontinuous domains. The results reported here show that peptide amphiphile supramolecular systems can be dynamic and that their intermolecular interactions affect exchange patterns. This information can be used to generate useful aggregate morphologies for improved biomedical function. Dynamic behaviour in supramolecular systems is an important aspect of their functionality. Here, the authors use stochastic optical reconstruction microscopy to unveil structural diversity in self-assembled peptide amphiphile nanofibres, with potential relevance to biomedical applications.
Collapse
Affiliation(s)
- Ricardo M P da Silva
- Simpson Querrey Institute for BioNanotechnology (SQI), Northwestern University, Chicago, Illinois 60611, USA.,Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands.,Craniofacial Development &Stem Cell Biology, King's College London, London, SE1 9RT, UK
| | - Daan van der Zwaag
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands
| | - Lorenzo Albertazzi
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands.,Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Sungsoo S Lee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - E W Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven MB 5600, The Netherlands
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology (SQI), Northwestern University, Chicago, Illinois 60611, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
27
|
Baratchi S, Almazi JG, Darby W, Tovar-Lopez FJ, Mitchell A, McIntyre P. Shear stress mediates exocytosis of functional TRPV4 channels in endothelial cells. Cell Mol Life Sci 2016; 73:649-66. [PMID: 26289129 PMCID: PMC11108432 DOI: 10.1007/s00018-015-2018-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023]
Abstract
Mechanosensitive ion channels are implicated in the biology of touch, pain, hearing and vascular reactivity; however, the identity of these ion channels and the molecular basis of their activation is poorly understood. We previously found that transient receptor potential vanilloid 4 (TRPV4) is a receptor operated ion channel that is sensitised and activated by mechanical stress. Here, we investigated the effects of mechanical stimulation on TRPV4 localisation and activation in native and recombinant TRPV4-expressing cells. We used a combination of total internal reflection fluorescence microscopy, cell surface biotinylation assay and Ca(2+) imaging with laser scanning confocal microscope to show that TRPV4 is expressed in primary vascular endothelial cells and that shear stress sensitises the response of TRPV4 to its agonist, GSK1016790A. The sensitisation was attributed to the recruitment of intracellular pools of TRPV4 to the plasma membrane, through the clathrin and dynamin-mediated exocytosis. The translocation was dependent on ILK/Akt signalling pathway, release of Ca(2+) from intracellular stores and we demonstrated that shear stress stimulated phosphorylation of TRPV4 at tyrosine Y110. Our findings implicate calcium-sensitive TRPV4 translocation in the regulation of endothelial responses to mechanical stimulation.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
| | - Juhura G Almazi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
| | - William Darby
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia
| | - Francisco J Tovar-Lopez
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Arnan Mitchell
- School of Electrical and Computer Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, VIC, 3083, Australia.
| |
Collapse
|
28
|
Panuzzo C, Volpe G, Cibrario Rocchietti E, Casnici C, Crotta K, Crivellaro S, Carrà G, Lorenzatti R, Peracino B, Torti D, Morotti A, Camacho-Leal MP, Defilippi P, Marelli O, Saglio G. New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia. Oncoscience 2015; 2:880-91. [PMID: 26682280 PMCID: PMC4671955 DOI: 10.18632/oncoscience.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Gisella Volpe
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | | | - Claudia Casnici
- Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan, Milan, Italy
| | - Katia Crotta
- Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan, Milan, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Roberta Lorenzatti
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| | | | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ornella Marelli
- Department of Medical Biotechnologies and Translational Medicine, School of Medicine, University of Milan, Milan, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
29
|
Höfling S, Scharnert J, Cromme C, Bertrand J, Pap T, Schmidt MA, Rüter C. Manipulation of pro-inflammatory cytokine production by the bacterial cell-penetrating effector protein YopM is independent of its interaction with host cell kinases RSK1 and PRK2. Virulence 2015; 5:761-71. [PMID: 25513777 DOI: 10.4161/viru.29062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effector protein Yersinia outer protein M (YopM) of Yersinia enterocolitica has previously been identified and characterized as the first bacterial cell-penetrating protein (CPP). We found that recombinant YopM (rYopM) enters different eukaryotic cell types and downregulates the expression of several pro-inflammatory cytokines (e.g., tumor necrosis factor-α [TNF-α]) after autonomous translocation. After infection with Y. enterocolitica or transfection of host cells, YopM interacts with isoforms of the two kinases ribosomal S6 protein kinase (RSK) and protein kinase C-related kinase (PRK). This interaction caused sustained RSK activation due to interference with dephosphorylation. Here we demonstrate by co-immunoprecipitation that rYopM interacts with RSK and PRK following cell-penetration. We show that autonomously translocated rYopM forms a trimeric complex with different RSK and PRK isoforms. Furthermore, we constructed a series of truncated versions of rYopM to map the domain required for the formation of the complex. The C-terminus of rYopM was identified to be essential for the interaction with RSK1, whereas any deletion in rYopM's leucin-rich repeat domains abrogated PRK2 binding. Moreover, we found that the interaction of cell-penetrating rYopM with RSK led to enhanced autophosphorylation of this kinase at serine 380. Finally, we investigated whether downstream signaling of the trimeric rYopM-RSK/PRK complex modulates the expression of pro-inflammatory TNF-α. Here, we could exclude that interaction with RSK1 and PRK2 is essential for the anti-inflammatory effects of rYopM.
Collapse
Affiliation(s)
- Sabrina Höfling
- a Institute of Infectiology; Center for Molecular Biology of Inflammation (ZMBE); University of Münster; Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Ayre DC, Elstner M, Smith NC, Moores ES, Hogan AM, Christian SL. Dynamic regulation of CD24 expression and release of CD24-containing microvesicles in immature B cells in response to CD24 engagement. Immunology 2015; 146:217-33. [PMID: 26059947 DOI: 10.1111/imm.12493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/26/2022] Open
Abstract
The glycophosphatidylinositol-anchored cell surface receptor CD24 (also called heat-stable antigen) promotes the apoptosis of progenitor and precursor B-lymphocytes. However, the immediate proximal events that occur after engagement of CD24 in B cells are not precisely understood. Using a bioinformatics analysis of mouse (Mus musculus) gene expression data from the Immunological Genome Project, we found that known vesicle trafficking and cellular organization genes have similar expression patterns to CD24 during B-cell development in the bone marrow. We therefore hypothesized that CD24 regulates vesicle trafficking. We first validated that antibody-mediated engagement of CD24 induces apoptosis in the mouse WEHI-231 cell line and mouse primary bone marrow-derived B cells. We next found that CD24 surface protein expression is rapidly and dynamically regulated in both WEHI-231 cells and primary immature B cells in response to engagement of CD24. The change in surface expression was not mediated by classical endocytosis or exocytosis. However, we found that CD24-bearing plasma membrane-derived extracellular microvesicles were released in response to CD24 engagement. Furthermore, in response to CD24 engagement we observed a clear exchange of CD24 between different populations of B cells. Hence, we show that engagement of CD24 in immature B cells results in a dynamic regulation of surface CD24 protein and a redistribution of CD24 within the population.
Collapse
Affiliation(s)
- D Craig Ayre
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Marcus Elstner
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nicole C Smith
- Cold-Ocean, Deep Sea Research Facility, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Emily S Moores
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew M Hogan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
31
|
Abstract
The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue. Deregulation of P-Rex1 and P-Rex2 expression occurs in many types of cancer, and P-Rex2 is frequently mutated in melanoma. Both GEFs promote tumor growth or metastasis. This review critically evaluates the P-Rex literature and tools available and highlights exciting recent developments and open questions.
Collapse
|
32
|
Arreola R, Becerril-Villanueva E, Cruz-Fuentes C, Velasco-Velázquez MA, Garcés-Alvarez ME, Hurtado-Alvarado G, Quintero-Fabian S, Pavón L. Immunomodulatory effects mediated by serotonin. J Immunol Res 2015; 2015:354957. [PMID: 25961058 PMCID: PMC4417587 DOI: 10.1155/2015/354957] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 11/17/2022] Open
Abstract
Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.
Collapse
Affiliation(s)
- Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Enrique Becerril-Villanueva
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Carlos Cruz-Fuentes
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Marco Antonio Velasco-Velázquez
- School of Medicine, National Autonomous University of Mexico, Avenida Universidad 3000, Coyoacan, 04510 Mexico City, DF, Mexico
| | - María Eugenia Garcés-Alvarez
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| | - Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
| | - Saray Quintero-Fabian
- Genetics Unit Nutrition of Biomedical Research Institute of Universidad Nacional Autónoma de México at Instituto Nacional de Pediatría, Avenida del Iman No. 1, cuarto piso, Colonia Insurgentes-Cuicuilco, Coyoacan, 04530 Mexico City, DF, Mexico
| | - Lenin Pavón
- Department of Psychoimmunology, National Institute of Psychiatry, “Ramón de la Fuente”, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
| |
Collapse
|
33
|
Lian G, Sheen VL. Cytoskeletal proteins in cortical development and disease: actin associated proteins in periventricular heterotopia. Front Cell Neurosci 2015; 9:99. [PMID: 25883548 PMCID: PMC4381626 DOI: 10.3389/fncel.2015.00099] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/07/2015] [Indexed: 01/28/2023] Open
Abstract
The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH), a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation), heterotopia (impaired initial migration) and disruption along the neuroependymal lining (impaired cell-cell adhesion). Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.
Collapse
Affiliation(s)
- Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, MA, USA
| |
Collapse
|
34
|
Braun AC, Hendrick J, Eisler SA, Schmid S, Hausser A, Olayioye MA. The Rho-specific GAP protein DLC3 coordinates endocytic membrane trafficking. J Cell Sci 2015; 128:1386-99. [PMID: 25673874 DOI: 10.1242/jcs.163857] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Membrane trafficking is known to be coordinated by small GTPases, but the identity of their regulators, the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) that ensure balanced GTPase activation at different subcellular sites is largely elusive. Here, we show in living cells that deleted in liver cancer 3 (DLC3, also known as STARD8) is a functional Rho-specific GAP protein, the loss of which enhances perinuclear RhoA activity. DLC3 is recruited to Rab8-positive membrane tubules and is required for the integrity of the Rab8 and Golgi compartments. Depletion of DLC3 impairs the transport of internalized transferrin to the endocytic recycling compartment (ERC), which is restored by the simultaneous downregulation of RhoA and RhoB. We further demonstrate that DLC3 loss interferes with epidermal growth factor receptor (EGFR) degradation associated with prolonged receptor signaling. Taken together, these findings identify DLC3 as a novel component of the endocytic trafficking machinery, wherein it maintains organelle integrity and regulates membrane transport through the control of Rho activity.
Collapse
Affiliation(s)
- Anja C Braun
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Janina Hendrick
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
35
|
Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus. J Neurosci 2014; 34:10022-33. [PMID: 25057204 DOI: 10.1523/jneurosci.2868-13.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leptin is a critical neurotrophic factor for the development of neuronal pathways and synaptogenesis in the hypothalamus. Leptin receptors are also found in other brain regions, including the hippocampus, and a postnatal surge in leptin correlates with a time of rapid growth of dendritic spines and synapses in the hippocampus. Leptin is critical for normal hippocampal dendritic spine formation as db/db mice, which lack normal leptin receptor signaling, have a reduced number of dendritic spines in vivo. Leptin also positively influences hippocampal behaviors, such as cognition, anxiety, and depression, which are critically dependent on dendritic spine number. What is not known are the signaling mechanisms by which leptin initiates spine formation. Here we show leptin induces the formation of dendritic protrusions (thin headless, stubby and mushroom shaped spines), through trafficking and activation of TrpC channels in cultured hippocampal neurons. Leptin-activation of the TrpC current is dose dependent and blocked by targeted knockdown of the leptin receptor. The nonselective TrpC channel inhibitors SKF96365 and 2-APB or targeted knockdown of TrpC1 or 3, but not TrpC5, channels also eliminate the leptin-induced current. Leptin stimulates the phosphorylation of CaMKIγ and β-Pix within 5 min and their activation is required for leptin-induced trafficking of TrpC1 subunits to the membrane. Furthermore, we show that CaMKIγ, CaMKK, β-Pix, Rac1, and TrpC1/3 channels are all required for both the leptin-sensitive current and leptin-induced spine formation. These results elucidate a critical pathway underlying leptin's induction of dendritic morphological changes that initiate spine and excitatory synapse formation.
Collapse
|
36
|
A functional and protein-protein interaction analysis of neuroepithelial cell transforming gene 1 in hepatocellular carcinoma. Tumour Biol 2014; 35:11219-27. [DOI: 10.1007/s13277-014-2454-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/05/2014] [Indexed: 01/26/2023] Open
|
37
|
Baier A, Ndoh VNE, Lacy P, Eitzen G. Rac1 and Rac2 control distinct events during antigen-stimulated mast cell exocytosis. J Leukoc Biol 2014; 95:763-774. [PMID: 24399839 DOI: 10.1189/jlb.0513281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 02/02/2023] Open
Abstract
The release of preformed mediators from immune cells is through a process described as exocytosis. In mast cells, exocytosis is regulated by several coordinated intracellular signaling pathways. Here, we investigated the role of the hematopoietic-specific Rho GTPase, Rac2, and the ubiquitously expressed Rac1, in controlling mast cell exocytosis. These two isoforms showed equivalent levels of expression in mouse BMMCs. Although Rac1 and Rac2 share 92% sequence identity, they were not functionally redundant, as Rac2-/- BMMCs were defective in exocytosis, even though Rac1 levels were unaffected. Antigen-stimulated WT mast cells underwent a series of morphological transitions: initial flattening, followed by actin-mediated peripheral membrane ruffling and calcium influx, which preceded exocytosis. Whereas membrane ruffling was unaffected in Rac2-/- BMMCs, calcium influx was decreased significantly. Calcium influx was studied further by examining SOCE. In Rac2-/- BMMCs, the activation of PLCγ1 and calcium release from intracellular stores occurred normally; however, activation of plasma membrane calcium channels was defective, shown by the lack of extracellular calcium influx and a reduction of YFP-STIM1 puncta at the plasma membrane. Additionally, we used the small molecule Rac inhibitor, EHT 1864, to target Rac signaling acutely in WT BMMCs. EHT 1864 blocked exocytosis and membrane ruffling completely in conjunction with exocytosis. Our findings suggest that antigen-stimulated membrane ruffling in mast cells is a Rac1-mediated process, as this persisted in the absence of Rac2. Therefore, we define distinct modes of Rac-regulated mast cell exocytosis: Rac2-mediated calcium influx and Rac1-mediated membrane ruffling.
Collapse
Affiliation(s)
| | - Vivian N E Ndoh
- Department of Cell Biology and
- Department of Medicine, University of Örebro, Örebro, Sweden
| | - Paige Lacy
- The Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | | |
Collapse
|
38
|
Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 2013; 14:7089-108. [PMID: 23538840 PMCID: PMC3645678 DOI: 10.3390/ijms14047089] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023] Open
Abstract
Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.
Collapse
Affiliation(s)
- Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Mark Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail:
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980
| |
Collapse
|
39
|
Luckashenak N, Wähe A, Breit K, Brakebusch C, Brocker T. Rho-family GTPase Cdc42 controls migration of Langerhans cells in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 190:27-35. [PMID: 23209325 DOI: 10.4049/jimmunol.1201082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epidermal Langerhans cells (LCs) of the skin represent the prototype migratory dendritic cell (DC) subtype. In the skin, they take up Ag, migrate to the draining lymph nodes, and contribute to Ag transport and immunity. Different depletion models for LCs have revealed contrasting roles and contributions of this cell type. To target the migratory properties of DCs, we generated mice lacking the Rho-family GTPase Cdc42 specifically in DCs. In these animals, the initial seeding of the epidermis with LCs is functional, resulting in slightly reduced Langerhans cell numbers. However, Cdc42-deficient LCs fail to leave the skin in steady state as well as upon stimulation, as they do not enter the skin-draining afferent lymph vessels. Similarly, also other Cdc42-deficient migratory DC subsets fail to home properly to the corresponding draining lymph nodes. We used this novel mouse model, in which LCs are locked out, to demonstrate that these cells contribute substantially to priming of Ag-specific CD4 and CD8 T cell responses upon epicutaneous immunization, but could not detect a role in the induction of contact hypersensitivity to various doses of hapten.
Collapse
Affiliation(s)
- Nancy Luckashenak
- Institute for Immunology, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | | | | | | | | |
Collapse
|
40
|
Iizuka M, Kimura K, Wang S, Kato K, Amano M, Kaibuchi K, Mizoguchi A. Distinct distribution and localization of Rho-kinase in mouse epithelial, muscle and neural tissues. Cell Struct Funct 2012; 37:155-75. [PMID: 22986902 DOI: 10.1247/csf.12018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTP-binding protein Rho plays a crucial role in a wide variety of cellular functions through various effector proteins. Rho-kinase is a key effector protein of Rho, which is composed of two isoforms, ROCK1 and ROCK2. To clarify the site of action of ROCK1 and ROCK2, we performed immunofluorescence and immunoelectron microscopic analyses using isoform-specific antibodies in mouse tissues. In the large and small intestines, ROCK1 immunoreactivity was predominantly identified in epithelial cells, and ROCK2 immunoreactivity was negligible. In these epithelial cells, ROCK1 immunoreactivity was distributed on plasma membranes, while ROCK1 immunogold signals were localized at cell-cell contacts and cell adhesion sites, especially at the adherens junctions at the ultrastructural level. In the bladder epithelium, however, ROCK1 and ROCK2 signals were identified at intermediate filaments, and ROCK2 signals were also observed in nuclei. In the three types of muscular cells-smooth, cardiac, and skeletal muscle cells-ROCK1 and ROCK2 also showed differential distribution. ROCK1 signals were localized at actin filaments, plasma membranes, and vesicles near plasma membranes in smooth muscle cells; at the lysosomes in skeletal muscle cells; and were undetectable in cardiac muscle cells. ROCK2 signals were localized at actin filaments and centrosomes in smooth muscle cells, at intercalated discs in cardiac muscle cells, and at Z-discs and sarcoplasmic reticulum in skeletal muscle cells. In the brain, ROCK1 immunoreactivity was distributed in glia, whereas ROCK2 immunoreactivity was observed in neurons. These results indicate that the two isoforms of Rho-kinase distribute differentially to accomplish their specific functions.
Collapse
Affiliation(s)
- Michiro Iizuka
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy. Proc Natl Acad Sci U S A 2012; 109:11324-9. [PMID: 22733750 DOI: 10.1073/pnas.1113811109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V(1393)I, K(1584)E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V(1393)I) and TRPM6(K(1584)E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T(1391)) and TRPM6(S(1583)). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V(1393)I) and TRPM6(K(1584)E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V(1393)I) and TRPM6(K(1584)E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6.
Collapse
|
42
|
Sanyal S, Claessen JHL, Ploegh HL. A viral deubiquitylating enzyme restores dislocation of substrates from the endoplasmic reticulum (ER) in semi-intact cells. J Biol Chem 2012; 287:23594-603. [PMID: 22619172 DOI: 10.1074/jbc.m112.365312] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminally misfolded glycoproteins are ejected from the endoplasmic reticulum (ER) to the cytosol and are destroyed by the ubiquitin proteasome system. A dominant negative version of the deubiquitylating enzyme Yod1 (Yod1C160S) causes accumulation of dislocation substrates in the ER. Failure to remove ubiquitin from the dislocation substrate might therefore stall the reaction at the exit site from the ER. We hypothesized that addition of a promiscuous deubiquitylase should overcome this blockade and restore dislocation. We monitored ER-to-cytosol transport of misfolded proteins in cells permeabilized at high cell density by perfringolysin O, a pore-forming cytolysin. This method allows ready access of otherwise impermeant reagents to the intracellular milieu with minimal dilution of cytoplasmic components. We show that addition of the purified Epstein-Barr virus deubiquitylase to semi-intact cells indeed initiates dislocation of a stalled substrate intermediate, resulting in stabilization of substrates in the cytosol. Our data provide new mechanistic insight in the dislocation reaction and support a model where failure to deubiquitylate an ER-resident protein occludes the dislocon and causes upstream misfolded intermediates to accumulate.
Collapse
Affiliation(s)
- Sumana Sanyal
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
43
|
Luo R, Akpan IO, Hayashi R, Sramko M, Barr V, Shiba Y, Randazzo PA. GTP-binding protein-like domain of AGAP1 is protein binding site that allosterically regulates ArfGAP protein catalytic activity. J Biol Chem 2012; 287:17176-17185. [PMID: 22453919 DOI: 10.1074/jbc.m111.334458] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AGAPs are a subtype of Arf GTPase-activating proteins (GAPs) with 11 members in humans. In addition to the Arf GAP domain, the proteins contain a G-protein-like domain (GLD) with homology to Ras superfamily proteins and a PH domain. AGAPs bind to clathrin adaptors, function in post Golgi membrane traffic, and have been implicated in glioblastoma. The regulation of AGAPs is largely unexplored. Other enzymes containing GTP binding domains are regulated by nucleotide binding. However, nucleotide binding to AGAPs has not been detected. Here, we found that neither nucleotides nor deleting the GLD of AGAP1 affected catalysis, which led us to hypothesize that the GLD is a protein binding site that regulates GAP activity. Two-hybrid screens identified RhoA, Rac1, and Cdc42 as potential binding partners. Coimmunoprecipitation confirmed that AGAP1 and AGAP2 can bind to RhoA. Binding was mediated by the C terminus of RhoA and was independent of nucleotide. RhoA and the C-terminal peptide from RhoA increased GAP activity specifically for the substrate Arf1. In contrast, a C-terminal peptide from Cdc42 neither bound nor activated AGAP1. Based on these results, we propose that AGAPs are allosterically regulated through protein binding to the GLD domain.
Collapse
Affiliation(s)
- Ruibai Luo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Itoro O Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Ryo Hayashi
- Department of Chemistry, Faculty of Science and Engineering, Saga University, Honjo, Saga 840-8502, Japan
| | - Marek Sramko
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Valarie Barr
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Yoko Shiba
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892.
| |
Collapse
|
44
|
Liu Y, Echtermeyer F, Thilo F, Theilmeier G, Schmidt A, Schülein R, Jensen BL, Loddenkemper C, Jankowski V, Marcussen N, Gollasch M, Arendshorst WJ, Tepel M. The proteoglycan syndecan 4 regulates transient receptor potential canonical 6 channels via RhoA/Rho-associated protein kinase signaling. Arterioscler Thromb Vasc Biol 2011; 32:378-85. [PMID: 22155451 DOI: 10.1161/atvbaha.111.241018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Syndecan 4 (Sdc4) modulates signal transduction and regulates activity of protein channels. Sdc4 is essential for the regulation of cellular permeability. We hypothesized that Sdc4 may regulate transient receptor potential canonical 6 (TRPC6) channels, a determinant of glomerular permeability, in a RhoA/Rho-associated protein kinase-dependent manner. METHODS AND RESULTS Sdc4 knockout (Sdc4(-/-)) mice showed increased glomerular filtration rate and ameliorated albuminuria under baseline conditions and after bovine serum albumin overload (each P<0.05). Using reverse transcription-polymerase chain reaction and immunoblotting, Sdc4(-/-) mice showed reduced TRPC6 mRNA by 79% and TRPC6 protein by 82% (each P<0.05). Sdc4(-/-) mice showed an increased RhoA activity by 87% and increased phosphorylation of ezrin in glomeruli by 48% (each P<0.05). Sdc4 knockdown in cultured podocytes reduced TRPC6 gene expression and reduced the association of TRPC6 with plasma membrane and TRPC6-mediated calcium influx and currents. Sdc4 knockdown inactivated negative regulatory protein Rho GTPase activating protein by 33%, accompanied by a 41% increase in RhoA activity and increased phosphorylation of ezrin (P<0.05). Conversely, overexpression of Sdc4 reduced RhoA activity and increased TRPC6 protein and TRPC6-mediated calcium influx and currents. CONCLUSIONS Our results establish a previously unknown function of Sdc4 for regulation of TRPC6 channels and support the role of Sdc4 for the regulation of glomerular permeability.
Collapse
Affiliation(s)
- Ying Liu
- Odense University Hospital and University of Southern Denmark, Institute for Molecular Medicine, Cardiovascular and Renal Research, Institute of Clinical Research, Winsløwparken 21.3, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Serbanovic-Canic J, Cvejic A, Soranzo N, Stemple DL, Ouwehand WH, Freson K. Silencing of RhoA nucleotide exchange factor, ARHGEF3, reveals its unexpected role in iron uptake. Blood 2011; 118:4967-76. [PMID: 21715309 PMCID: PMC3208301 DOI: 10.1182/blood-2011-02-337295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/13/2011] [Indexed: 11/20/2022] Open
Abstract
Genomewide association meta-analysis studies have identified > 100 independent genetic loci associated with blood cell indices, including volume and count of platelets and erythrocytes. Although several of these loci encode known regulators of hematopoiesis, the mechanism by which most sequence variants exert their effect on blood cell formation remains elusive. An example is the Rho guanine nucleotide exchange factor, ARHGEF3, which was previously implicated by genomewide association meta-analysis studies in bone cell biology. Here, we report on the unexpected role of ARHGEF3 in regulation of iron uptake and erythroid cell maturation. Although early erythroid differentiation progressed normally, silencing of arhgef3 in Danio rerio resulted in microcytic and hypochromic anemia. This was rescued by intracellular supplementation of iron, showing that arhgef3-depleted erythroid cells are fully capable of hemoglobinization. Disruption of the arhgef3 target, RhoA, also produced severe anemia, which was, again, corrected by iron injection. Moreover, silencing of ARHGEF3 in erythromyeloblastoid cells K562 showed that the uptake of transferrin was severely impaired. Taken together, this is the first study to provide evidence for ARHGEF3 being a regulator of transferrin uptake in erythroid cells, through activation of RHOA.
Collapse
Affiliation(s)
- Jovana Serbanovic-Canic
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
46
|
Bagi Z, Feher A, Cassuto J, Akula K, Labinskyy N, Kaley G, Koller A. Increased availability of angiotensin AT 1 receptors leads to sustained arterial constriction to angiotensin II in diabetes - role for Rho-kinase activation. Br J Pharmacol 2011; 163:1059-68. [PMID: 21385178 DOI: 10.1111/j.1476-5381.2011.01307.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Antagonists of angiotensin AT(1) receptors elicit beneficial vascular effects in diabetes mellitus. We hypothesized that diabetes induces sustained availability of AT(1) receptors, causing enhanced arterial constriction to angiotensin II. EXPERIMENTAL APPROACH To assess functional availability of AT(1) receptors, constrictions to successive applications of angiotensin II were measured in isolated skeletal muscle resistance arteries (∼150 µm) of Zucker diabetic fatty (ZDF) rats and of their controls (+/Fa), exposed acutely to high glucose concentrations (HG, 25 mM, 1 h). AT(1) receptors on cell membrane surface were measured by immunofluorescence. KEY RESULTS Angiotensin II-induced constrictions to first applications were greater in arteries of ZDF rats (maximum: 82 ± 3% original diameter) than in those from +/Fa rats (61 ± 5%). Constrictions to repeated angiotensin II administration were decreased in +/Fa arteries (20 ± 6%), but were maintained in ZDF arteries (67 ± 4%) and in +/Fa arteries vessels exposed to HG (65 ± 6%). In ZDF arteries and in HG-exposed +/Fa arteries, Rho-kinase activities were enhanced. The Rho-kinase inhibitor, Y27632 inhibited sustained constrictions to angiotensin II in ZDF arteries and in +/Fa arteries exposed to HG. Levels of surface AT(1) receptors on cultured vascular smooth muscle cells (VSMCs) were decreased by angiotensin II but were maintained in VSMCs exposed to HG. In VSMCs exposed to HG and treated with Y27632, angiotensin II decreased surface AT(1) receptors. CONCLUSIONS AND IMPLICATIONS In diabetes, elevated glucose concentrations activate Rho-kinase which inhibits internalization or facilitates recycling of AT(1) receptors, leading to increased functional availability of AT(1) receptors and sustained angiotensin II-induced arterial constriction.
Collapse
Affiliation(s)
- Zsolt Bagi
- Department of Physiology, New York Medical College, Valhalla, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Mao H, Zhang L, Yang Y, Sun J, Deng B, Feng J, Shao Q, Feng A, Song B, Qu X. RhoBTB2 (DBC2) functions as tumor suppressor via inhibiting proliferation, preventing colony formation and inducing apoptosis in breast cancer cells. Gene 2011; 486:74-80. [DOI: 10.1016/j.gene.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/10/2011] [Accepted: 07/10/2011] [Indexed: 12/30/2022]
|
48
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
49
|
Harrington AW, St Hillaire C, Zweifel LS, Glebova NO, Philippidou P, Halegoua S, Ginty DD. Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 2011; 146:421-34. [PMID: 21816277 DOI: 10.1016/j.cell.2011.07.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/02/2011] [Accepted: 07/09/2011] [Indexed: 12/15/2022]
Abstract
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.
Collapse
Affiliation(s)
- Anthony W Harrington
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Govek EE, Hatten ME, Van Aelst L. The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 2011; 71:528-53. [PMID: 21557504 DOI: 10.1002/dneu.20850] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, NY 10065, USA
| | | | | |
Collapse
|