1
|
Kalibala A, Nada AA, Ishii H, El-Hussieny H. Dynamic modelling and predictive position/force control of a plant-inspired growing robot. BIOINSPIRATION & BIOMIMETICS 2024; 20:016005. [PMID: 39488077 DOI: 10.1088/1748-3190/ad8e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024]
Abstract
This paper presents the development and control of a dynamic model for a plant-inspired growing robot, termed the 'vine-robot', using the Euler-Lagrangian method. The unique growth mechanism of the vine-robot enables it to navigate complex environments by extending its body. We derive the dynamic equations of motion and employ model predictive control to regulate the task space position, orientation, and interaction forces. Simulation experiments are conducted to evaluate the performance of the proposed model and control strategy. The results demonstrate that the model effectively achieves sub-millimeter precision in the position control in both static and time varying refrence trajectroies, and sub micronewton in force control.
Collapse
Affiliation(s)
- Abdonoor Kalibala
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology, E-JUST, Alexandria, Egypt
| | - Ayman A Nada
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology, E-JUST, Alexandria, Egypt
| | - Hiroyuki Ishii
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Haitham El-Hussieny
- Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology, E-JUST, Alexandria, Egypt
| |
Collapse
|
2
|
Yen CC, Hsu CM, Jiang PL, Jauh GY. Dynamic organelle changes and autophagic processes in lily pollen germination. BOTANICAL STUDIES 2024; 65:5. [PMID: 38273136 PMCID: PMC10811312 DOI: 10.1186/s40529-024-00410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Pollen germination is a crucial process in the life cycle of flowering plants, signifying the transition of quiescent pollen grains into active growth. This study delves into the dynamic changes within organelles and the pivotal role of autophagy during lily pollen germination. Initially, mature pollen grains harbor undifferentiated organelles, including amyloplasts, mitochondria, and the Golgi apparatus. However, germination unveils remarkable transformations, such as the redifferentiation of amyloplasts accompanied by starch granule accumulation. We investigate the self-sustained nature of amylogenesis during germination, shedding light on its association with osmotic pressure. Employing BODIPY 493/503 staining, we tracked lipid body distribution throughout pollen germination, both with or without autophagy inhibitors (3-MA, NEM). Typically, lipid bodies undergo polarized movement from pollen grains into elongating pollen tubes, a process crucial for directional growth. Inhibiting autophagy disrupted this essential lipid body redistribution, underscoring the interaction between autophagy and lipid body dynamics. Notably, the presence of tubular endoplasmic reticulum (ER)-like structures associated with developing amyloplasts and lipid bodies implies their participation in autophagy. Starch granules, lipid bodies, and membrane remnants observed within vacuoles further reinforce the involvement of autophagic processes. Among the autophagy inhibitors, particularly BFA, significantly impede germination and growth, thereby affecting Golgi morphology. Immunogold labeling substantiates the pivotal role of the ER in forming autophagosome-like compartments and protein localization. Our proposed speculative model of pollen germination encompasses proplastid differentiation and autophagosome formation. This study advances our understanding of organelle dynamics and autophagy during pollen germination, providing valuable insights into the realm of plant reproductive physiology.
Collapse
Affiliation(s)
- Chih-Chung Yen
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | - Chia-Mei Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC
| | - Pei-Luen Jiang
- Department of Biotechnology, National Formosa University, Huwei Township, Yulin County, Taiwan.
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan, ROC.
- Molecular and Biological Agricultural Sciences, International Graduate Program, National Chung-Hsing University, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan.
| |
Collapse
|
3
|
Panstruga R, Antonin W, Lichius A. Looking outside the box: a comparative cross-kingdom view on the cell biology of the three major lineages of eukaryotic multicellular life. Cell Mol Life Sci 2023; 80:198. [PMID: 37418047 PMCID: PMC10329083 DOI: 10.1007/s00018-023-04843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.
Collapse
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany.
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Alexander Lichius
- inncellys GmbH, Dorfstrasse 20/3, 6082, Patsch, Austria
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| |
Collapse
|
4
|
Wang X, Pai CY, Stone DE. Gradient tracking in mating yeast depends on Bud1 inactivation and actin-independent vesicle delivery. J Biophys Biochem Cytol 2022; 221:213500. [PMID: 36156058 PMCID: PMC9516845 DOI: 10.1083/jcb.202203004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
The mating of budding yeast depends on chemotropism, a fundamental cellular process. Haploid yeast cells of opposite mating type signal their positions to one another through mating pheromones. We have proposed a deterministic gradient sensing model that explains how these cells orient toward their mating partners. Using the cell-cycle determined default polarity site (DS), cells assemble a gradient tracking machine (GTM) composed of signaling, polarity, and trafficking proteins. After assembly, the GTM redistributes up the gradient, aligns with the pheromone source, and triggers polarized growth toward the partner. Since positive feedback mechanisms drive polarized growth at the DS, it is unclear how the GTM is released for tracking. What prevents the GTM from triggering polarized growth at the DS? Here, we describe two mechanisms that are essential for tracking: inactivation of the Ras GTPase Bud1 and positioning of actin-independent vesicle delivery upgradient.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL,Howard Hughes Medical Institute, Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Chih-Yu Pai
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - David E. Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL,Correspondence to David E. Stone:
| |
Collapse
|
5
|
Damineli DSC, Portes MT, Feijó JA. Electrifying rhythms in plant cells. Curr Opin Cell Biol 2022; 77:102113. [PMID: 35809387 DOI: 10.1016/j.ceb.2022.102113] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Physiological oscillations (or rhythms) pervade all spatiotemporal scales of biological organization, either because they perform critical functions or simply because they can arise spontaneously and may be difficult to prevent. Regardless of the case, they reflect regulatory relationships between control points of a given system and offer insights as read-outs of the concerted regulation of a myriad of biological processes. Here we review recent advances in understanding ultradian oscillations (period < 24h) in plant cells, with a special focus on single-cell oscillations. Ion channels are at the center stage due to their involvement in electrical/excitabile phenomena associated with oscillations and cell-cell communication. We highlight the importance of quantitative approaches to measure oscillations in appropriate physiological conditions, which are essential strategies to deal with the complexity of biological rhythms. Future development of optogenetics techniques in plants will further boost research on the role of membrane potential in oscillations and waves across multiple cell types.
Collapse
Affiliation(s)
- Daniel S C Damineli
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP 05508-090, Brazil.
| | - Maria Teresa Portes
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| |
Collapse
|
6
|
Xiao Z, Brunel N, Tian C, Guo J, Yang Z, Cui X. Constrained Nonlinear and Mixed Effects Integral Differential Equation Models for Dynamic Cell Polarity Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:847671. [PMID: 35693156 PMCID: PMC9175011 DOI: 10.3389/fpls.2022.847671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Polar cell growth is a process that couples the establishment of cell polarity with growth and is extremely important in the growth, development, and reproduction of eukaryotic organisms, such as pollen tube growth during plant fertilization and neuronal axon growth in animals. Pollen tube growth requires dynamic but polarized distribution and activation of a signaling protein named ROP1 to the plasma membrane via three processes: positive feedback and negative feedback regulation of ROP1 activation and its lateral diffusion along the plasma membrane. In this paper, we introduce a mechanistic integro-differential equation (IDE) along with constrained semiparametric regression to quantitatively describe the interplay among these three processes that lead to the polar distribution of active ROP1 at a steady state. Moreover, we introduce a population variability by a constrained nonlinear mixed model. Our analysis of ROP1 activity distributions from multiple pollen tubes revealed that the equilibrium between the positive and negative feedbacks for pollen tubes with similar shapes are remarkably stable, permitting us to infer an inherent quantitative relationship between the positive and negative feedback loops that defines the tip growth of pollen tubes and the polarity of tip growth.
Collapse
Affiliation(s)
- Zhen Xiao
- Department of Statistics, University of California, Riverside, Riverside, CA, United States
| | - Nicolas Brunel
- Laboratoire de Mathématiques et Modélisation d'Evry, UMR CNRS 8071, ENSIIE, Évry-Courcouronnes, France
| | - Chenwei Tian
- Department of Statistics, University of California, Riverside, Riverside, CA, United States
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
A Decade of Pollen Phosphoproteomics. Int J Mol Sci 2021; 22:ijms222212212. [PMID: 34830092 PMCID: PMC8619407 DOI: 10.3390/ijms222212212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.
Collapse
|
8
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
9
|
Mosa WFA, El-Shehawi AM, Mackled MI, Salem MZM, Ghareeb RY, Hafez EE, Behiry SI, Abdelsalam NR. Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nanofertilizers foliar application. Sci Rep 2021; 11:10205. [PMID: 33986453 PMCID: PMC8119490 DOI: 10.1038/s41598-021-89885-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6-8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.
Collapse
Affiliation(s)
- Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Marwa I Mackled
- Department of Stored Product Pests, Plant Protection Institute, Agriculture Research Center (ARC), Sabahia, Alexandria, Egypt
| | - Mohamed Z M Salem
- Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt
| | - Rehab Y Ghareeb
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, 21934, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
10
|
Zhang J, Yue L, Wu X, Liu H, Wang W. Function of Small Peptides During Male-Female Crosstalk in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671196. [PMID: 33968121 PMCID: PMC8102694 DOI: 10.3389/fpls.2021.671196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and development. Successful sexual reproduction in plants requires extensive communication between male and female gametophytes, their gametes, and with the surrounding sporophytic tissues. In the past decade, it has been well-documented that small peptides participate in many important reproductive processes such as self-incompatibility, pollen tube growth, pollen tube guidance, and gamete interaction. Here, we provide a comprehensive overview of the peptides regulating the processes of male-female crosstalk in plant, aiming at systematizing the knowledge on the sexual reproduction, and signaling of plant peptides in future.
Collapse
|
11
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Lohani N, Singh MB, Bhalla PL. RNA-Seq Highlights Molecular Events Associated With Impaired Pollen-Pistil Interactions Following Short-Term Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 11:622748. [PMID: 33584763 PMCID: PMC7872974 DOI: 10.3389/fpls.2020.622748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 05/09/2023]
Abstract
The global climate change is leading to increased frequency of heatwaves with crops getting exposed to extreme temperature events. Such temperature spikes during the reproductive stage of plant development can harm crop fertility and productivity. Here we report the response of short-term heat stress events on the pollen and pistil tissues in a commercially grown cultivar of Brassica napus. Our data reveals that short-term temperature spikes not only affect pollen fitness but also impair the ability of the pistil to support pollen germination and pollen tube growth and that the heat stress sensitivity of pistil can have severe consequences for seed set and yield. Comparative transcriptome profiling of non-stressed and heat-stressed (40°C for 30 min) pollen and pistil (stigma + style) highlighted the underlying cellular mechanisms involved in heat stress response in these reproductive tissues. In pollen, cell wall organization and cellular transport-related genes possibly regulate pollen fitness under heat stress while the heat stress-induced repression of transcription factor encoding transcripts is a feature of the pistil response. Overall, high temperature altered the expression of genes involved in protein processing, regulation of transcription, pollen-pistil interactions, and misregulation of cellular organization, transport, and metabolism. Our results show that short episodes of high-temperature exposure in B. napus modulate key regulatory pathways disrupted reproductive processes, ultimately translating to yield loss. Further investigations on the genes and networks identified in the present study pave a way toward genetic improvement of the thermotolerance and reproductive performance of B. napus varieties.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Blumenschein LH, Coad MM, Haggerty DA, Okamura AM, Hawkes EW. Design, Modeling, Control, and Application of Everting Vine Robots. Front Robot AI 2020; 7:548266. [PMID: 33501315 PMCID: PMC7805729 DOI: 10.3389/frobt.2020.548266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022] Open
Abstract
In nature, tip-localized growth allows navigation in tightly confined environments and creation of structures. Recently, this form of movement has been artificially realized through pressure-driven eversion of flexible, thin-walled tubes. Here we review recent work on robots that "grow" via pressure-driven eversion, referred to as "everting vine robots," due to a movement pattern that is similar to that of natural vines. We break this work into four categories. First, we examine the design of everting vine robots, highlighting tradeoffs in material selection, actuation methods, and placement of sensors and tools. These tradeoffs have led to application-specific implementations. Second, we describe the state of and need for modeling everting vine robots. Quasi-static models of growth and retraction and kinematic and force-balance models of steering and environment interaction have been developed that use simplifying assumptions and limit the involved degrees of freedom. Third, we report on everting vine robot control and planning techniques that have been developed to move the robot tip to a target, using a variety of modalities to provide reference inputs to the robot. Fourth, we highlight the benefits and challenges of using this paradigm of movement for various applications. Everting vine robot applications to date include deploying and reconfiguring structures, navigating confined spaces, and applying forces on the environment. We conclude by identifying gaps in the state of the art and discussing opportunities for future research to advance everting vine robots and their usefulness in the field.
Collapse
Affiliation(s)
| | - Margaret M. Coad
- Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - David A. Haggerty
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Allison M. Okamura
- Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Elliot W. Hawkes
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
14
|
Ghose D, Lew D. Mechanistic insights into actin-driven polarity site movement in yeast. Mol Biol Cell 2020; 31:1085-1102. [PMID: 32186970 PMCID: PMC7346724 DOI: 10.1091/mbc.e20-01-0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 11/11/2022] Open
Abstract
Directed cell growth or migration are critical for the development and function of many eukaryotic cells. These cells develop a dynamic "front" (also called "polarity site") that can change direction. Polarity establishment involves autocatalytic accumulation of polarity regulators, including the conserved Rho-family GTPase Cdc42, but the mechanisms underlying polarity reorientation remain poorly understood. The tractable model yeast, Saccharomyces cerevisiae, relocates its polarity site when searching for mating partners. Relocation requires polymerized actin, and is thought to involve actin-mediated vesicle traffic to the polarity site. In this study, we provide a quantitative characterization of spontaneous polarity site movement as a search process and use a mechanistic computational model that combines polarity protein biochemical interactions with vesicle trafficking to probe how various processes might affect polarity site movement. Our findings identify two previously documented features of yeast vesicle traffic as being particularly relevant to such movement: tight spatial focusing of exocytosis enhances the directional persistence of movement, and association of Cdc42-directed GTPase-Activating Proteins with secretory vesicles increases the distance moved. Furthermore, we suggest that variation in the rate of exocytosis beyond simple Poisson dynamics may be needed to fully account for the characteristics of polarity site movement in vivo.
Collapse
Affiliation(s)
- Debraj Ghose
- Computational Biology and Bioinformatics, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
15
|
Vo T, Shah SB, Choy JS, Luo X. Chemotropism among populations of yeast cells with spatiotemporal resolution in a biofabricated microfluidic platform. BIOMICROFLUIDICS 2020; 14:014108. [PMID: 32002107 PMCID: PMC6980865 DOI: 10.1063/1.5128739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/07/2020] [Indexed: 05/08/2023]
Abstract
Chemotropism is an essential response of organisms to external chemical gradients that direct the growth of cells toward the gradient source. Chemotropic responses between single cells have been studied using in vitro gradients of synthetically derived signaling molecules and helped to develop a better understanding of chemotropism in multiple organisms. However, dynamic changes including spatial changes to the gradient as well as fluctuations in levels of cell generated signaling molecules can result in the redirection of chemotropic responses, which can be difficult to model with synthetic peptides and single cells. An experimental system that brings together populations of cells to monitor the population-scale chemotropic responses yet retain single cell spatiotemporal resolution would be useful to further inform on models of chemotropism. Here, we describe a microfluidic platform that can measure the chemotropic response between populations of mating yeast A- and α-cells with spatiotemporal programmability and sensitivity by positioning cell populations side by side in calcium alginate hydrogels along semipermeable membranes with micrometer spatial control. The mating phenotypes of the yeast populations were clearly observed over hours. Three distinct responses were observed depending on the distance between the A- and α-cell populations: the cells either continued to divide, arrest, and develop a stereotypical polarized projection termed a "shmoo" toward the cells of opposite mating type or formed shmoos in random directions. The results from our studies of yeast mating suggest that the biofabricated microfluidic platform can be adopted to study population-scale, spatial-sensitive cell-cell signaling behaviors that would be challenging using conventional approaches.
Collapse
Affiliation(s)
- Thanh Vo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA
| | - Sameer B. Shah
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA
| | - Xiaolong Luo
- Department of Mechanical Engineering, The Catholic University of America, Washington, D.C. 20064, USA
| |
Collapse
|
16
|
Levin M. The Computational Boundary of a "Self": Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Front Psychol 2019; 10:2688. [PMID: 31920779 PMCID: PMC6923654 DOI: 10.3389/fpsyg.2019.02688] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
All epistemic agents physically consist of parts that must somehow comprise an integrated cognitive self. Biological individuals consist of subunits (organs, cells, and molecular networks) that are themselves complex and competent in their own native contexts. How do coherent biological Individuals result from the activity of smaller sub-agents? To understand the evolution and function of metazoan creatures' bodies and minds, it is essential to conceptually explore the origin of multicellularity and the scaling of the basal cognition of individual cells into a coherent larger organism. In this article, I synthesize ideas in cognitive science, evolutionary biology, and developmental physiology toward a hypothesis about the origin of Individuality: "Scale-Free Cognition." I propose a fundamental definition of an Individual based on the ability to pursue goals at an appropriate level of scale and organization and suggest a formalism for defining and comparing the cognitive capacities of highly diverse types of agents. Any Self is demarcated by a computational surface - the spatio-temporal boundary of events that it can measure, model, and try to affect. This surface sets a functional boundary - a cognitive "light cone" which defines the scale and limits of its cognition. I hypothesize that higher level goal-directed activity and agency, resulting in larger cognitive boundaries, evolve from the primal homeostatic drive of living things to reduce stress - the difference between current conditions and life-optimal conditions. The mechanisms of developmental bioelectricity - the ability of all cells to form electrical networks that process information - suggest a plausible set of gradual evolutionary steps that naturally lead from physiological homeostasis in single cells to memory, prediction, and ultimately complex cognitive agents, via scale-up of the basic drive of infotaxis. Recent data on the molecular mechanisms of pre-neural bioelectricity suggest a model of how increasingly sophisticated cognitive functions emerge smoothly from cell-cell communication used to guide embryogenesis and regeneration. This set of hypotheses provides a novel perspective on numerous phenomena, such as cancer, and makes several unique, testable predictions for interdisciplinary research that have implications not only for evolutionary developmental biology but also for biomedicine and perhaps artificial intelligence and exobiology.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
17
|
Wang X, Tian W, Banh BT, Statler BM, Liang J, Stone DE. Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine. J Cell Biol 2019; 218:3730-3752. [PMID: 31570500 PMCID: PMC6829655 DOI: 10.1083/jcb.201901155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/06/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The mating of budding yeast depends on chemotropism, a fundamental cellular process. The two yeast mating types secrete peptide pheromones that bind to GPCRs on cells of the opposite type. Cells find and contact a partner by determining the direction of the pheromone source and polarizing their growth toward it. Actin-directed secretion to the chemotropic growth site (CS) generates a mating projection. When pheromone-stimulated cells are unable to sense a gradient, they form mating projections where they would have budded in the next cell cycle, at a position called the default polarity site (DS). Numerous models have been proposed to explain yeast gradient sensing, but none address how cells reliably switch from the intrinsically determined DS to the gradient-aligned CS, despite a weak spatial signal. Here we demonstrate that, in mating cells, the initially uniform receptor and G protein first polarize to the DS, then redistribute along the plasma membrane until they reach the CS. Our data indicate that signaling, polarity, and trafficking proteins localize to the DS during assembly of what we call the gradient tracking machine (GTM). Differential activation of the receptor triggers feedback mechanisms that bias exocytosis upgradient and endocytosis downgradient, thus enabling redistribution of the GTM toward the pheromone source. The GTM stabilizes when the receptor peak centers at the CS and the endocytic machinery surrounds it. A computational model simulates GTM tracking and stabilization and correctly predicts that its assembly at a single site contributes to mating fidelity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Wei Tian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Bryan T Banh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | | | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
18
|
Martin SG. Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J Cell Sci 2019; 132:132/11/jcs230706. [PMID: 31152053 DOI: 10.1242/jcs.230706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Laggoun F, Dardelle F, Dehors J, Falconet D, Driouich A, Rochais C, Dallemagne P, Lehner A, Mollet JC. A chemical screen identifies two novel small compounds that alter Arabidopsis thaliana pollen tube growth. BMC PLANT BIOLOGY 2019; 19:152. [PMID: 31010418 PMCID: PMC6475968 DOI: 10.1186/s12870-019-1743-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/27/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND During sexual reproduction, pollen grains land on the stigma, rehydrate and produce pollen tubes that grow through the female transmitting-tract tissue allowing the delivery of the two sperm cells to the ovule and the production of healthy seeds. Because pollen tubes are single cells that expand by tip-polarized growth, they represent a good model to study the growth dynamics, cell wall deposition and intracellular machineries. Aiming to understand this complex machinery, we used a low throughput chemical screen approach in order to isolate new tip-growth disruptors. The effect of a chemical inhibitor of monogalactosyldiacylglycerol synthases, galvestine-1, was also investigated. The present work further characterizes their effects on the tip-growth and intracellular dynamics of pollen tubes. RESULTS Two small compounds among 258 were isolated based on their abilities to perturb pollen tube growth. They were found to disrupt in vitro pollen tube growth of tobacco, tomato and Arabidopsis thaliana. We show that these 3 compounds induced abnormal phenotypes (bulging and/or enlarged pollen tubes) and reduced pollen tube length in a dose dependent manner. Pollen germination was significantly reduced after treatment with the two compounds isolated from the screen. They also affected cell wall material deposition in pollen tubes. The compounds decreased anion superoxide accumulation, disorganized actin filaments and RIC4 dynamics suggesting that they may affect vesicular trafficking at the pollen tube tip. CONCLUSION These molecules may alter directly or indirectly ROP1 activity, a key regulator of pollen tube growth and vesicular trafficking and therefore represent good tools to further study cellular dynamics during polarized-cell growth.
Collapse
Affiliation(s)
- Ferdousse Laggoun
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Flavien Dardelle
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
- Present Address: LPS-BioSciences, Bâtiment 409, Université Paris-Sud, 91400 Orsay, France
| | - Jérémy Dehors
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, CEA Grenoble, 38000 Grenoble, cedex 9 France
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Christophe Rochais
- Normandie Université, UNICAEN, Centre d’Etudes et de Recherche sur le Médicament de Normandie, CNRS 3038 INC3M, SFR ICORE, 14032, Caen, France
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, Centre d’Etudes et de Recherche sur le Médicament de Normandie, CNRS 3038 INC3M, SFR ICORE, 14032, Caen, France
| | - Arnaud Lehner
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| | - Jean-Claude Mollet
- Normandie Université, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Fédération de Recherche “NORVEGE”- FED 4277, 76000 Rouen, France
| |
Collapse
|
20
|
Abstract
Multicellular organisms, such as plants, fungi, and animals, develop organs with specialized functions. Major challenges in developing such structures include establishment of polarity along three axes (apical-basal, medio-lateral, and dorso-ventral/abaxial-adaxial), specification of tissue types and their coordinated growth, and maintenance of communication between the organ and the entire organism. The gynoecium of the model plant Arabidopsis thaliana embodies the female reproductive organ and has proven an excellent model system for studying organ establishment and development, given its division into different regions with distinct symmetries and highly diverse tissue types. Upon pollination, the gynoecium undergoes dramatic changes in morphology and developmental programming to form the seed-containing fruit. In this review, we wish to provide a detailed overview of the molecular and genetic mechanisms that are known to guide gynoecium and fruit development in A. thaliana. We describe networks of key genetic regulators and their interactions with hormonal dynamics in driving these developmental processes. The discoveries made to date clearly demonstrate that conclusions drawn from studying gynoecium and fruit development in flowering plants can be used to further our general understanding of organ formation across the plant kingdom. Importantly, this acquired knowledge is increasingly being used to improve fruit and seed crops, facilitated by the recent profound advances in genomics, cloning, and gene-editing technologies.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
21
|
Kim HS, Kim JE, Son H, Frailey D, Cirino R, Lee YW, Duncan R, Czymmek KJ, Kang S. Roles of three Fusarium graminearum membrane Ca 2+ channels in the formation of Ca 2+ signatures, growth, development, pathogenicity and mycotoxin production. Fungal Genet Biol 2017; 111:30-46. [PMID: 29175365 DOI: 10.1016/j.fgb.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Similar to animals and plants, external stimuli cause dynamic spatial and temporal changes of cytoplasmic Ca2+ in fungi. Such changes are referred as the Ca2+ signature and control cellular responses by modulating the activity or location of diverse Ca2+-binding proteins (CBPs) and also indirectly affecting proteins that interact with CBPs. To understand the mechanism underpinning Ca2+ signaling, therefore, characterization of how Ca2+ moves to and from the cytoplasm to create Ca2+ signatures under different conditions is fundamental. Three genes encoding plasma membrane Ca2+ channels in a Fusarium graminearum strain that expresses a fluorescent protein-based Ca2+ indicator in the cytoplasm were mutagenized to investigate their roles in the generation of Ca2+ signatures under different growth conditions and genetic backgrounds. The genes disrupted include CCH1 and MID1, which encode a high affinity Ca2+ uptake system, and FIG1, encoding a low affinity Ca2+ channel. Resulting mutants were also analyzed for growth, development, pathogenicity and mycotoxin production to determine how loss of each of the genes alters these traits. To investigate whether individual genes influence the function and expression of other genes, phenotypes and Ca2+ signatures of their double and triple mutants, as well as their expression patterns, were analyzed.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, Newark, DE 19711, USA
| | - Jung-Eun Kim
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel Frailey
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert Cirino
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Randall Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kirk J Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, Newark, DE 19711, USA
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Hawkes EW, Blumenschein LH, Greer JD, Okamura AM. A soft robot that navigates its environment through growth. Sci Robot 2017; 2:2/8/eaan3028. [PMID: 33157883 DOI: 10.1126/scirobotics.aan3028] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 06/23/2017] [Indexed: 11/02/2022]
Abstract
Across kingdoms and length scales, certain cells and organisms navigate their environments not through locomotion but through growth. This pattern of movement is found in fungal hyphae, developing neurons, and trailing plants, and is characterized by extension from the tip of the body, length change of hundreds of percent, and active control of growth direction. This results in the abilities to move through tightly constrained environments and form useful three-dimensional structures from the body. We report a class of soft pneumatic robot that is capable of a basic form of this behavior, growing substantially in length from the tip while actively controlling direction using onboard sensing of environmental stimuli; further, the peak rate of lengthening is comparable to rates of animal and robot locomotion. This is enabled by two principles: Pressurization of an inverted thin-walled vessel allows rapid and substantial lengthening of the tip of the robot body, and controlled asymmetric lengthening of the tip allows directional control. Further, we demonstrate the abilities to lengthen through constrained environments by exploiting passive deformations and form three-dimensional structures by lengthening the body of the robot along a path. Our study helps lay the foundation for engineered systems that grow to navigate the environment.
Collapse
Affiliation(s)
- Elliot W Hawkes
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA. .,Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Laura H Blumenschein
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Greer
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Allison M Okamura
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Ismael A, Stone DE. Yeast chemotropism: A paradigm shift in chemical gradient sensing. CELLULAR LOGISTICS 2017; 7:e1314237. [PMID: 28702274 DOI: 10.1080/21592799.2017.1314237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022]
Abstract
The ability of cells to direct their movement and growth in response to shallow chemical gradients is essential in the life cycles of all eukaryotic organisms. The signaling mechanisms underlying directional sensing in chemotactic cells have been well studied; however, relatively little is known about how chemotropic cells interpret chemical gradients. Recent studies of chemotropism in budding and fission yeast have revealed 2 quite different mechanisms-biased wandering of the polarity complex, and differential internalization of the receptor and G protein. Each of these mechanisms has been proposed to play a key role in decoding mating pheromone gradients. Here we explore how they may work together as 2 essential components of one gradient sensing machine.
Collapse
Affiliation(s)
- Amber Ismael
- Department of Cell and Developmental Biology, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
|
25
|
RLKs orchestrate the signaling in plant male-female interaction. SCIENCE CHINA-LIFE SCIENCES 2016; 59:867-77. [DOI: 10.1007/s11427-016-0118-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
|
26
|
Dou XY, Yang KZ, Ma ZX, Chen LQ, Zhang XQ, Bai JR, Ye D. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:679-92. [PMID: 26699939 PMCID: PMC5067611 DOI: 10.1111/jipb.12459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 05/06/2023]
Abstract
In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen-rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18-GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18-homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis.
Collapse
Affiliation(s)
- Xiao-Ying Dou
- Beijing Radiation Center, 12 Haidian Nanlu, Beijing 100875, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Ke-Zhen Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Zhao-Xia Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, China
| | - Jin-Rong Bai
- Beijing Radiation Center, 12 Haidian Nanlu, Beijing 100875, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan Xilu, Beijing 100193, China
| |
Collapse
|
27
|
Hafidh S, Fíla J, Honys D. Male gametophyte development and function in angiosperms: a general concept. PLANT REPRODUCTION 2016; 29:31-51. [PMID: 26728623 DOI: 10.1007/s00497-015-0272-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 05/23/2023]
Abstract
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - Jan Fíla
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
28
|
Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip. Sci Rep 2016; 6:19812. [PMID: 26804186 PMCID: PMC4726441 DOI: 10.1038/srep19812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies—consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions.
Collapse
|
29
|
Jásik J, Mičieta K, Siao W, Voigt B, Stuchlík S, Schmelzer E, Turňa J, Baluška F. Actin3 promoter reveals undulating F-actin bundles at shanks and dynamic F-actin meshworks at tips of tip-growing pollen tubes. PLANT SIGNALING & BEHAVIOR 2016; 11:e1146845. [PMID: 26980067 PMCID: PMC4883924 DOI: 10.1080/15592324.2016.1146845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 05/24/2023]
Abstract
The dynamic actin cytoskeleton of pollen tubes is both the driver of the tip growth and the organizer of cell polarity. In order to understand this fast re-arranging cytoskeletal system, we need reliable constructs expressed under relevant promoters. Here we are reporting that the Lifeact reporter, expressed under the pollen-specific Actin3 promoter, visualizes very dynamic F-actin elements both in germinating pollen grains and tip-growing pollen tubes. Importantly, we have documented very active actin polymerization at the cell periphery, especially in the bulging area during pollen germination and in the apical clear zone. Expression of the Lifeact reporter under control of the pollen-specific Actin3 promoter revealed 2 new aspects: (i) long F-actin bundles in pollen tube shanks are dynamic, showing undulating movements, (ii) subapical 'actin collars' or 'fringes' are absent.
Collapse
Affiliation(s)
- Ján Jásik
- a Comenius University Science Park, Comenius University , Bratislava , Slovakia
- b Institute of Botany, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Karol Mičieta
- a Comenius University Science Park, Comenius University , Bratislava , Slovakia
- c Department of Botany , Faculty of Natural Science, Comenius University , Bratislava , Slovakia
| | - Wei Siao
- d Department of Plant Cell Biology , IZMB, University of Bonn , Bonn , Germany
| | - Boris Voigt
- c Department of Botany , Faculty of Natural Science, Comenius University , Bratislava , Slovakia
| | - Stanislav Stuchlík
- a Comenius University Science Park, Comenius University , Bratislava , Slovakia
- e Department of Molecular Biology , Faculty of Natural Sciences , Mlynská dolina , Slovakia
| | - Elmon Schmelzer
- f Max Planck Institute for Plant Breeding Research , Köln , Germany
| | - Ján Turňa
- a Comenius University Science Park, Comenius University , Bratislava , Slovakia
- e Department of Molecular Biology , Faculty of Natural Sciences , Mlynská dolina , Slovakia
| | - František Baluška
- b Institute of Botany, Slovak Academy of Sciences , Bratislava , Slovakia
- d Department of Plant Cell Biology , IZMB, University of Bonn , Bonn , Germany
| |
Collapse
|
30
|
Wang BJ, Hsu YF, Chen YC, Wang CS. Characterization of a lily anther-specific gene encoding cytoskeleton-binding glycoproteins and overexpression of the gene causes severe inhibition of pollen tube growth. PLANTA 2014; 240:525-537. [PMID: 24944111 DOI: 10.1007/s00425-014-2099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
This work characterizes an anther/pollen-specific gene that encodes potential intermediate filament (IF)-binding glycoproteins in lily (Lilium longiflorum Thunb. cv. Snow Queen) anthers during the development and pollen germination. LLP13 is a single gene that encodes a polypeptide of 807 amino acids, and a calculated molecular mass of 91 kDa. The protein contains a predicted transmembrane domain at the N-terminus and a conserved domain of unknown function (DUF)593 at the C-terminal half of the polypeptide. Sequence analysis revealed that LLP13 shares significant identity (37-41 %) with two intermediate filament antigen-binding proteins, representing a unique subgroup of DUF593 domain proteins from known rice and Arabidopsis species. The expression of LLP13 gene is anther-specific, and the transcript accumulates only at the stage of pollen maturation. Both premature drying and abscisic acid (ABA) treatment of developing pollen indicated that LLP13 was not induced by desiccation and ABA, but by other developmental cues. Antiserum was raised against the overexpressed LLP13C fragment of the protein in Escherichia coli and affinity-purified antibodies were prepared. Immunoblot analyses revealed that the LLP13 protein was a heterogeneous, anther-specific glycoprotein that accumulated only at the stage of pollen maturation. The protein is not heat-soluble. The level of LLP13 protein remained for 24 h during germination in vitro. Overexpression of LLP13-GFP or GFP-LLP13 in lily pollen tubes caused severe inhibition of tube elongation. The LLP13 protein codistributed with mTalin in growing tubes, suggesting that it apparently decorates actin cytoskeleton and is likely a cytoskeleton-binding protein that binds with IFs that potentially exist in pollen tubes.
Collapse
Affiliation(s)
- Bing-Jyun Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | |
Collapse
|
31
|
Becker JD, Takeda S, Borges F, Dolan L, Feijó JA. Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC PLANT BIOLOGY 2014; 14:197. [PMID: 25080170 PMCID: PMC4236730 DOI: 10.1186/s12870-014-0197-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/14/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Current views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants. RESULTS We developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis. CONCLUSIONS Our results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells.
Collapse
Affiliation(s)
- Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Seiji Takeda
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Present address: Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Filipe Borges
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor 11724, NY, USA
| | - Liam Dolan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park 20742-5815, MD, USA
| |
Collapse
|
32
|
Abstract
A major limitation in the study of pollen tube growth has been the difficulty in providing an in vitro testing microenvironment that physically resembles the in vivo conditions. Here we describe the development of a lab-on-a-chip (LOC) for the manipulation and experimental testing of individual pollen tubes. The design was specifically tailored to pollen tubes from Camellia japonica, but it can be easily adapted for any other species. The platform is fabricated from polydimethylsiloxane (PDMS) using a silicon/SU-8 mold and makes use of microfluidics to distribute pollen grains to serially arranged microchannels. The tubes are guided into these channels where they can be tested individually. The microfluidic platform allows for specific testing of a variety of growth behavioral features as demonstrated with a simple mechanical obstacle test, and it permits the straightforward integration of further single-cell test assays.
Collapse
Affiliation(s)
- Carlos G Agudelo
- Optical Bio-Microsystem Lab, Mechanical Engineering Department, Concordia University, Montreal, QC, Canada
| | | | | |
Collapse
|
33
|
Sanati Nezhad A, Geitmann A. The cellular mechanics of an invasive lifestyle. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4709-28. [PMID: 24014865 DOI: 10.1093/jxb/ert254] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Invasive behaviour is the hallmark of a variety of cell types of animal, plant, and fungal origin. Here we review the purpose and mechanism of invasive growth and migration. The focus is on the physical principles governing the process, the source of invasive force, and the cellular mechanism by which the cell penetrates the substrate. The current experimental methods for measuring invasive force and the modelling approaches for studying invasive behaviour are explained, and future experimental strategies are proposed.
Collapse
Affiliation(s)
- Amir Sanati Nezhad
- McGill University and Génome Québec Innovation Centre, Biomedical Engineering Department, McGill University, Montreal, Canada
| | | |
Collapse
|
34
|
Hao H, Chen T, Fan L, Li R, Wang X. 2, 6-Dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc. PLoS One 2013; 8:e76660. [PMID: 24146903 PMCID: PMC3795706 DOI: 10.1371/journal.pone.0076660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/26/2013] [Indexed: 01/14/2023] Open
Abstract
Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity.
Collapse
Affiliation(s)
- Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tong Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lusheng Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Liu J, Zhong S, Guo X, Hao L, Wei X, Huang Q, Hou Y, Shi J, Wang C, Gu H, Qu LJ. Membrane-bound RLCKs LIP1 and LIP2 are essential male factors controlling male-female attraction in Arabidopsis. Curr Biol 2013; 23:993-8. [PMID: 23684977 DOI: 10.1016/j.cub.2013.04.043] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/15/2013] [Accepted: 04/16/2013] [Indexed: 02/01/2023]
Abstract
Successful sexual reproduction in animals and plants requires communication between male and female gametes. In flowering plants, unlike in animals, eggs and sperm cells are enclosed in multicellular embryo sacs and pollen grains, respectively; guided growth of the pollen tube into the ovule is necessary for fertilization. Pollen tube guidance requires accurate perception of ovule-emitted guidance cues by the receptors in pollen tubes. Although several ovule-secreted peptides controlling pollen tube guidance have recently been identified, i.e., maize EGG APPARATUS1 (EA1), Torenia LURE1/LURE2, and Arabidopsis CRP810_1/AtLURE1, little is known about the receptors. Here, we identified two receptor-like kinase (RLK) genes preferentially expressed in Arabidopsis pollen tubes, Lost In Pollen tube guidance 1 (LIP1) and 2 (LIP2), which are involved in guidance control of pollen tubes. LIP1 and LIP2 were anchored to the membrane in the pollen tube tip region via palmitoylation, which was essential for their guidance control. Simultaneous inactivation of LIP1 and LIP2 led to impaired pollen tube guidance into micropyle and significantly reduced attraction of pollen tubes toward AtLURE1. Our results suggest that LIP1 and LIP2 represent essential components of the pollen tube receptor complex to perceive the female signal AtLURE1 for micropylar pollen tube guidance.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mollet JC, Leroux C, Dardelle F, Lehner A. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth. PLANTS 2013; 2:107-47. [PMID: 27137369 PMCID: PMC4844286 DOI: 10.3390/plants2010107] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/01/2023]
Abstract
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.
Collapse
Affiliation(s)
- Jean-Claude Mollet
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Christelle Leroux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Flavien Dardelle
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| | - Arnaud Lehner
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IRIB, Normandy University, University of Rouen, 76821 Mont Saint-Aignan, France.
| |
Collapse
|
37
|
Cai G, Serafini-Fracassini D, Del Duca S. Regulation of Pollen Tube Growth by Transglutaminase. PLANTS 2013; 2:87-106. [PMID: 27137368 PMCID: PMC4844290 DOI: 10.3390/plants2010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 11/23/2022]
Abstract
In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin). Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via Mattioli 4, Siena 53100, Italy.
| | - Donatella Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, via Irnerio, Bologna 40126, Italy.
| | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna, via Irnerio, Bologna 40126, Italy.
| |
Collapse
|
38
|
Agudelo CG, Sanati Nezhad A, Ghanbari M, Naghavi M, Packirisamy M, Geitmann A. TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:1057-68. [PMID: 23217059 DOI: 10.1111/tpj.12093] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/23/2012] [Accepted: 12/05/2012] [Indexed: 05/20/2023]
Abstract
Large-scale phenotyping of tip-growing cells such as pollen tubes has hitherto been limited to very crude parameters such as germination percentage and velocity of growth. To enable efficient and high-throughput execution of more sophisticated assays, an experimental platform, the TipChip, was developed based on microfluidic and microelectromechanical systems (MEMS) technology. The device allows positioning of pollen grains or fungal spores at the entrances of serially arranged microchannels equipped with microscopic experimental set-ups. The tip-growing cells (pollen tubes, filamentous yeast or fungal hyphae) may be exposed to chemical gradients, microstructural features, integrated biosensors or directional triggers within the modular microchannels. The device is compatible with Nomarski optics and fluorescence microscopy. Using this platform, we were able to answer several outstanding questions on pollen tube growth. We established that, unlike root hairs and fungal hyphae, pollen tubes do not have a directional memory. Furthermore, pollen tubes were found to be able to elongate in air, raising the question of how and where water is taken up by the cell. The platform opens new avenues for more efficient experimentation and large-scale phenotyping of tip-growing cells under precisely controlled, reproducible conditions.
Collapse
Affiliation(s)
- Carlos G Agudelo
- Optical Bio-Microsystem Laboratory, Mechanical Engineering Department, Concordia University, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
39
|
DeFlorio R, Brett ME, Waszczak N, Apollinari E, Metodiev MV, Dubrovskyi O, Eddington D, Arkowitz RA, Stone DE. Gβ phosphorylation is critical for efficient chemotropism in yeast. J Cell Sci 2013; 126:2997-3009. [DOI: 10.1242/jcs.112797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating yeast cells interpret complex pheromone gradients and polarize their growth in the direction of the closest partner. Chemotropic growth depends on both the pheromone receptor and its associated G-protein. Upon activation by the receptor, Gα dissociates from Gβγ and Gβ is subsequently phosphorylated. Free Gβγ signals to the nucleus via a MAPK cascade and recruits Far1-Cdc24 to the incipient growth site. It is not clear how the cell establishes and stabilizes the axis of polarity, but this process is thought to require local signal amplification via the Gβγ-Far1-Cdc24 chemotropic complex, as well as communication between this complex and the activated receptor. Here we show that a mutant form of Gβ that cannot be phosphorylated confers defects in directional sensing and chemotropic growth. Our data suggest that phosphorylation of Gβ plays a role in localized signal amplification and in the dynamic communication between the receptor and the chemotropic complex, which underlie growth site selection and maintenance.
Collapse
|
40
|
The essential phosphoinositide kinase MSS-4 is required for polar hyphal morphogenesis, localizing to sites of growth and cell fusion in Neurospora crassa. PLoS One 2012; 7:e51454. [PMID: 23272106 PMCID: PMC3521734 DOI: 10.1371/journal.pone.0051454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/01/2012] [Indexed: 11/22/2022] Open
Abstract
Fungal hyphae and plant pollen tubes are among the most highly polarized cells known and pose extraordinary requirements on their cell polarity machinery. Cellular morphogenesis is driven through the phospholipid-dependent organization at the apical plasma membrane. We characterized the contribution of phosphoinositides (PIs) in hyphal growth of the filamentous ascomycete Neurospora crassa. MSS-4 is an essential gene and its deletion resulted in spherically growing cells that ultimately lyse. Two conditional mss-4-mutants exhibited altered hyphal morphology and aberrant branching at restrictive conditions that were complemented by expression of wild type MSS-4. Recombinant MSS-4 was characterized as a phosphatidylinositolmonophosphate-kinase phosphorylating phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). PtdIns3P was also used as a substrate. Sequencing of two conditional mss-4 alleles identified a single substitution of a highly conserved Y750 to N. The biochemical characterization of recombinant protein variants revealed Y750 as critical for PI4P 5-kinase activity of MSS-4 and of plant PI4P 5-kinases. The conditional growth defects of mss-4 mutants were caused by severely reduced activity of MSS-4(Y750N), enabling the formation of only trace amounts of PtdIns(4,5)P2. In N. crassa hyphae, PtdIns(4,5)P2 localized predominantly in the plasma membrane of hyphae and along septa. Fluorescence-tagged MSS-4 formed a subapical collar at hyphal tips, localized to constricting septa and accumulated at contact points of fusing N. crassa germlings, indicating MSS-4 is responsible for the formation of relevant pools of PtdIns(4,5)P2 that control polar and directional growth and septation. N. crassa MSS-4 differs from yeast, plant and mammalian PI4P 5-kinases by containing additional protein domains. The N-terminal domain of N. crassa MSS-4 was required for correct membrane association. The data presented for N. crassa MSS-4 and its roles in hyphal growth are discussed with a comparative perspective on PI-control of polar tip growth in different organismic kingdoms.
Collapse
|
41
|
Breygina M, Matveyeva N, Polevova S, Meychik N, Nikolaeva Y, Mamaeva A, Yermakov I. Ni(2+) effects on Nicotiana tabacum L. pollen germination and pollen tube growth. Biometals 2012; 25:1221-33. [PMID: 22983762 DOI: 10.1007/s10534-012-9584-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/03/2012] [Indexed: 11/27/2022]
Abstract
To investigate the mechanisms of Ni(2+) effects on initiation and maintenance of polar cell growth, we used a well-studied model system-germination of angiosperm pollen grains. In liquid medium tobacco pollen grain forms a long tube, where the growth is restricted to the very tip. Ni(2+) did not prevent the formation of pollen tube initials, but inhibited their subsequent growth with IC(50) = 550 μM. 1 mM Ni(2+) completely blocked the polar growth, but all pollen grains remained viable, their respiration was slightly affected and ROS production did not increase. Addition of Ni(2+) after the onset of germination had a bidirectional effect on the tubes development: there was a considerable amount of extra-long tubes, which appeared to be rapidly growing, but the growth of many tubes was impaired. Studying the localization of possible targets of Ni(2+) influence, we found that they may occur both in the wall and in the cytoplasm, as confirmed by specific staining. Ni(2+) disturbed the segregation of transport vesicles in the tips of these tubes and significantly reduced the relative content of calcium in the aperture area of pollen grains, as measured by X-ray microanalysis. These factors are considered being critical for normal polar cell growth. Ni(2+) also causes the deposition of callose in the tips of the tube initials and the pollen tubes that had stopped their growth. We can assume that Ni(2+)-induced disruption of calcium homeostasis can lead to vesicle traffic impairment and abnormal callose deposition and, consequently, block the polar growth.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, School of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J Biol Chem 2012; 287:19008-17. [PMID: 22371505 DOI: 10.1074/jbc.m111.281873] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) is a membrane-bound multisubunit enzyme complex composed of at least 14 different subunits. The complex regulates the physiological processes of a cell by controlling the acidic environment, which is necessary for certain activities and the interaction with the actin cytoskeleton through its B and C subunits in both humans and yeast. Arabidopsis V-ATPase has three B subunits (AtVAB1, AtVAB2, and AtVAB3), which share 97.27% sequence identity and have two potential actin-binding sites, indicating that these AtVABs may have crucial functions in actin cytoskeleton remodeling and plant cell development. However, their biochemical functions are poorly understood. In this study, we demonstrated that AtVABs bind to and co-localize with F-actin, bundle F-actin to form higher order structures, and stabilize actin filaments in vitro. In addition, the AtVABs also show different degrees of activities in capping the barbed ends but no nucleating activities, and these activities were not regulated by calcium. The functional similarity and differences of the AtVABs implied that they may play cooperative and distinct roles in Arabidopsis cells.
Collapse
Affiliation(s)
- Binyun Ma
- School of life Sciences, Lanzhou University, Lanzhou 730070, China
| | | | | | | | | | | |
Collapse
|
43
|
Fujiwara MT, Yoshioka Y, Hirano T, Kazama Y, Abe T, Hayashi K, Itoh RD. Visualization of plastid movement in the pollen tube of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:34-7. [PMID: 22301964 PMCID: PMC3357363 DOI: 10.4161/psb.7.1.18484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Organelle dynamics in the plant male gametophyte has received attention for its importance in pollen tube growth and cytoplasmic inheritance. We recently revealed the dynamic behaviors of plastids in living Arabidopsis pollen grains and tubes, using an inherent promoter-driven FtsZ1-green fluorescent protein (GFP) fusion. Here, we further monitored the movement of pollen tube plastids with an actin1 promoter-driven, stroma-targeted yellow fluorescent protein (YFP). In elongating pollen tubes, most plastids localized to the tube shank, where they displayed either retarded and unsteady motion, or fast, directional, and long-distance movement along the tube polarity. Efficient plastid tracking further revealed a population of tip-forwarding plastids that undergo a fluctuating motion(s) before traveling backwards. The behavior of YFP-labeled plastids in pollen basically resembled that of FtsZ1-GFP-labeled plastids, thus validating the use of FtsZ1-GFP for simultaneous visualization of the stroma and the plastid-dividing FtsZ ring.
Collapse
Affiliation(s)
- Makoto T Fujiwara
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A. Rho proteins of plants – Functional cycle and regulation of cytoskeletal dynamics. Eur J Cell Biol 2011; 90:934-43. [PMID: 21277045 DOI: 10.1016/j.ejcb.2010.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 10/24/2022] Open
|
45
|
Qin Y, Yang Z. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 2011; 22:816-24. [PMID: 21729760 PMCID: PMC3210868 DOI: 10.1016/j.semcdb.2011.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022]
Abstract
Pollen tubes extend rapidly in an oscillatory manner by the extreme form of polarized growth, tip growth, and provide an exciting system for studying the spatiotemporal control of polarized cell growth. The Rho-family ROP GTPase is a key signaling molecule in this growth control and is periodically activated at the apical plasma membrane to spatially define the apical growth region and temporally precede the burst of growth. The spatiotemporal dynamics of ROP GTPase is interconnected with actin dynamics and polar exocytosis that is required for tip-targeted membrane and wall expansion. Recent advances in the study of the mechanistic interlinks between ROP-centered signaling and spatiotemporal dynamics of cell membrane and wall remodeling will be discussed.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521
| |
Collapse
|
46
|
Li HJ, Xue Y, Jia DJ, Wang T, hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. THE PLANT CELL 2011; 23:3288-302. [PMID: 21954464 PMCID: PMC3203432 DOI: 10.1105/tpc.111.088914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Jie Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao hi
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
47
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
48
|
Wu J, Wang S, Gu Y, Zhang S, Publicover SJ, Franklin-Tong VE. Self-incompatibility in Papaver rhoeas activates nonspecific cation conductance permeable to Ca2+ and K+. PLANT PHYSIOLOGY 2011; 155:963-73. [PMID: 21177472 PMCID: PMC3032480 DOI: 10.1104/pp.110.161927] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 12/15/2010] [Indexed: 05/21/2023]
Abstract
Cellular responses rely on signaling. In plant cells, cytosolic free calcium is a major second messenger, and ion channels play a key role in mediating physiological responses. Self-incompatibility (SI) is an important genetically controlled mechanism to prevent self-fertilization. It uses interaction of matching S-determinants from the pistil and pollen to allow "self" recognition, which triggers rejection of incompatible pollen. In Papaver rhoeas, the S-determinants are PrsS and PrpS. PrsS is a small novel cysteine-rich protein; PrpS is a small novel transmembrane protein. Interaction of PrsS with incompatible pollen stimulates S-specific increases in cytosolic free calcium and alterations in the actin cytoskeleton, resulting in programmed cell death in incompatible but not compatible pollen. Here, we have used whole-cell patch clamping of pollen protoplasts to show that PrsS stimulates SI-specific activation of pollen grain plasma membrane conductance in incompatible but not compatible pollen grain protoplasts. The SI-activated conductance does not require voltage activation, but it is voltage sensitive. It is permeable to divalent cations (Ba(2+) ≥ Ca(2+) > Mg(2+)) and the monovalent ions K(+) and NH(4)(+) and is enhanced at voltages negative to -100 mV. The Ca(2+) conductance is blocked by La(3+) but not by verapamil; the K(+) currents are tetraethylammonium chloride insensitive and do not require Ca(2+). We propose that the SI-stimulated conductance may represent a nonspecific cation channel or possibly two conductances, permeable to monovalent and divalent cations. Our data provide insights into signal-response coupling involving a biologically important response. PrsS provides a rare example of a protein triggering alterations in ion channel activity.
Collapse
|
49
|
Dardelle F, Lehner A, Ramdani Y, Bardor M, Lerouge P, Driouich A, Mollet JC. Biochemical and immunocytological characterizations of Arabidopsis pollen tube cell wall. PLANT PHYSIOLOGY 2010; 153:1563-76. [PMID: 20547702 PMCID: PMC2923879 DOI: 10.1104/pp.110.158881] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.
Collapse
|
50
|
Suchkov DV, DeFlorio R, Draper E, Ismael A, Sukumar M, Arkowitz R, Stone DE. Polarization of the yeast pheromone receptor requires its internalization but not actin-dependent secretion. Mol Biol Cell 2010; 21:1737-52. [PMID: 20335504 PMCID: PMC2869379 DOI: 10.1091/mbc.e09-08-0706] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The data presented in this paper suggest that pheromone-induced receptor phosphorylation and internalization, but not actin-dependent directed secretion, are required to establish receptor polarity. In the best understood models of eukaryotic directional sensing, chemotactic cells maintain a uniform distribution of surface receptors even when responding to chemical gradients. The yeast pheromone receptor is also uniformly distributed on the plasma membrane of vegetative cells, but pheromone induces its polarization into “crescents” that cap the future mating projection. Here, we find that in pheromone-treated cells, receptor crescents are visible before detectable polarization of actin cables and that the receptor can polarize in the absence of actin-dependent directed secretion. Receptor internalization, in contrast, seems to be essential for the generation of receptor polarity, and mutations that deregulate this process confer dramatic defects in directional sensing. We also show that pheromone induces the internalization and subsequent polarization of the mating-specific Gα and Gβ proteins and that the changes in G protein localization depend on receptor internalization and receptor–Gα coupling. Our data suggest that the polarization of the receptor and its G protein precedes actin polarization and is important for gradient sensing. We propose that the establishment of receptor/G protein polarity depends on a novel mechanism involving differential internalization and that this serves to amplify the shallow gradient of activated receptor across the cell.
Collapse
Affiliation(s)
- Dmitry V Suchkov
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|