1
|
Alagna N, Dúzs B, Dietrich V, Younesi AT, Lehmann L, Ulbricht R, Köppl H, Walther A, Gerber S. Deep Learning Reaction Framework (DLRN) for kinetic modeling of time-resolved data. Commun Chem 2025; 8:153. [PMID: 40374886 DOI: 10.1038/s42004-025-01541-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/28/2025] [Indexed: 05/18/2025] Open
Abstract
Model-based analysis is essential for extracting information about chemical reaction kinetics in full detail from time-resolved data sets. This approach combines experimental hypotheses with mathematical and physical models, enabling a concise description of complex system dynamics and the extraction of kinetic parameters like kinetic pathways, time constants, and species amplitudes. However, building the final kinetic model requires several intermediate steps, including testing various assumptions and models across multiple experiments. In complex cases, some intermediate states may be unknown and are often simplified. This approach requires expertise in modeling and data comprehension, as poor decisions at any stage during data analysis can lead to an incorrect kinetic model, resulting in inaccurate results. Here, we introduce DLRN, a new deep learning-based framework, designed to rapidly provide a kinetic reaction network, time constants, and amplitude for the system, with comparable performance and, in part, even better than a classical fitting analysis. We demonstrate DLRN's utility in analyzing multiple timescales datasets with complex kinetics, different 2D systems such as time-resolved spectra and agarose gel electrophoresis data, experimental datasets as nitrogen vacancy and strand displacement circuit (using photoluminescence and transient absorption techniques), even in scenarios where the initial state is a hidden, non-emitting dark state.
Collapse
Affiliation(s)
- Nicolò Alagna
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Brigitta Dúzs
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Vincent Dietrich
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | | | - Livia Lehmann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | | | - Heinz Köppl
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Andreas Walther
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany.
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Mainz, Germany.
| |
Collapse
|
2
|
Metz S, Marian CM. Computational Approach to Phosphor-Sensitized Fluorescence Based on Monomer Transition Densities. J Chem Theory Comput 2025; 21:2569-2581. [PMID: 39967025 DOI: 10.1021/acs.jctc.4c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
We present here an extension of the monomer transition density approach to spin multiplicity-altering excitation energy transfer (EET) processes. It builds upon complex-valued wave functions of the density functional theory-based multireference spin-orbit coupling configuration interaction method for generating the one-particle transition density matrices of the donor and acceptor molecules, which are then contracted with two-electron Coulomb and exchange integrals of the dimer. Due to the extensive use of symmetry relations between tensor components, the computation of triplet-singlet coupling remains technically feasible. As a proof-of-principle application, we have chosen an EET system, consisting of the phosphorescent platinum complex AG97 as the donor and the fluorescein derivative FITC as the acceptor. Taking experimental conditions into account, we estimate a Förster radius of about 35 Å. For intermolecular donor-acceptor separations close to the Förster radius and beyond, the error introduced by the ideal dipole approximation is rather small.
Collapse
Affiliation(s)
- Simon Metz
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| |
Collapse
|
3
|
Zhou C, Ye Y, Homer H. Using FRET to Define Cdk1-Dependent Ordering of Events During Exit from Second Meiotic M-Phase in Oocytes. Methods Mol Biol 2025; 2874:99-114. [PMID: 39614050 DOI: 10.1007/978-1-0716-4236-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Exit from M-phase requires a precise sequence of molecular events for successful completion, with errors in the process resulting in cell death or aneuploidy, a characteristic feature of cancer and the leading cause of pregnancy failure. Exit from the second meiotic division (MII) in oocytes is a unique event triggered by sperm, involving female anaphase II as well as both male and female pronuclear formation. Very little is known about how these events involving two distinct cell types are coordinated. M-phase exit is driven by inactivation of the master cell-cycle regulator, cyclin-dependent kinase 1 (Cdk1), but details of how Cdk1 orchestrates MII exit has remained sketchy due to technical challenges in studying these events. Here we detail a protocol for undertaking in-depth analysis of Cdk1 activity throughout fertilization in live mouse oocytes using a Cdk1 Fluorescence Resonance Energy Transfer (FRET) biosensor. This protocol illustrates the utility of time-lapse imaging and FRET for interrogating experimentally challenging cell-cycle events.
Collapse
Affiliation(s)
- Chenxi Zhou
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, Herston, QLD, Australia
| | - Yunan Ye
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, Herston, QLD, Australia
| | - Hayden Homer
- Christopher Chen Oocyte Biology Research Laboratory, UQ Centre for Clinical Research, Herston, QLD, Australia.
| |
Collapse
|
4
|
Xu F, Wu Z, Tan C, Liao Y, Wang Z, Chen K, Pan A. Fourier Ptychographic Microscopy 10 Years on: A Review. Cells 2024; 13:324. [PMID: 38391937 PMCID: PMC10887115 DOI: 10.3390/cells13040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Fourier ptychographic microscopy (FPM) emerged as a prominent imaging technique in 2013, attracting significant interest due to its remarkable features such as precise phase retrieval, expansive field of view (FOV), and superior resolution. Over the past decade, FPM has become an essential tool in microscopy, with applications in metrology, scientific research, biomedicine, and inspection. This achievement arises from its ability to effectively address the persistent challenge of achieving a trade-off between FOV and resolution in imaging systems. It has a wide range of applications, including label-free imaging, drug screening, and digital pathology. In this comprehensive review, we present a concise overview of the fundamental principles of FPM and compare it with similar imaging techniques. In addition, we present a study on achieving colorization of restored photographs and enhancing the speed of FPM. Subsequently, we showcase several FPM applications utilizing the previously described technologies, with a specific focus on digital pathology, drug screening, and three-dimensional imaging. We thoroughly examine the benefits and challenges associated with integrating deep learning and FPM. To summarize, we express our own viewpoints on the technological progress of FPM and explore prospective avenues for its future developments.
Collapse
Affiliation(s)
- Fannuo Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zipei Wu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Tan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Yizheng Liao
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiping Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keru Chen
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - An Pan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Colom-Cadena M, Toombs J, Simzer E, Holt K, McGeachan R, Tulloch J, Jackson RJ, Catterson JH, Spires-Jones MP, Rose J, Waybright L, Caggiano AO, King D, Gobbo F, Davies C, Hooley M, Dunnett S, Tempelaar R, Meftah S, Tzioras M, Hamby ME, Izzo NJ, Catalano SM, Durrant CS, Smith C, Dando O, Spires-Jones TL. Transmembrane protein 97 is a potential synaptic amyloid beta receptor in human Alzheimer's disease. Acta Neuropathol 2024; 147:32. [PMID: 38319380 PMCID: PMC10847197 DOI: 10.1007/s00401-023-02679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/07/2024]
Abstract
Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aβ) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aβ leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aβ and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aβ binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aβ generates a FRET signal with transmembrane protein 97. Further, Aβ generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aβ/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aβ. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aβ when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aβ including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aβ in human Alzheimer's disease brain where it may mediate synaptotoxicity.
Collapse
Affiliation(s)
- Martí Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Toombs
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Elizabeth Simzer
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Kristjan Holt
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert McGeachan
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Rosemary J Jackson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - James H Catterson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | | | | | - Declan King
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Sophie Dunnett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Robert Tempelaar
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
- Scottish Brain Sciences, Edinburgh, EH12 9DQ, UK
| | - Mary E Hamby
- Cognition Therapeutics Inc., Pittsburgh, PA, 15203, USA
| | | | | | - Claire S Durrant
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh, EH16 4HB, UK
| | - Owen Dando
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
6
|
Kobayashi A, Azuma K, Takeiwa T, Kitami T, Horie K, Ikeda K, Inoue S. A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice. Nat Commun 2023; 14:312. [PMID: 36697396 PMCID: PMC9877034 DOI: 10.1038/s41467-023-35865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Aerobic muscle activities predominantly depend on fuel energy supply by mitochondrial respiration, thus, mitochondrial activity enhancement may become a therapeutic intervention for muscle disturbances. The assembly of mitochondrial respiratory complexes into higher-order "supercomplex" structures has been proposed to be an efficient biological process for energy synthesis, although there is controversy in its physiological relevance. We here established Förster resonance energy transfer (FRET) phenomenon-based live imaging of mitochondrial respiratory complexes I and IV interactions using murine myoblastic cells, whose signals represent in vivo supercomplex assembly of complexes I, III, and IV, or respirasomes. The live FRET signals were well correlated with supercomplex assembly observed by blue native polyacrylamide gel electrophoresis (BN-PAGE) and oxygen consumption rates. FRET-based live cell screen defined that the inhibition of spleen tyrosine kinase (SYK), a non-receptor protein tyrosine kinase that belongs to the SYK/ zeta-chain-associated protein kinase 70 (ZAP-70) family, leads to an increase in supercomplex assembly in murine myoblastic cells. In parallel, SYK inhibition enhanced mitochondrial respiration in the cells. Notably, SYK inhibitor administration enhances exercise performance in mice. Overall, this study proves the feasibility of FRET-based respirasome assembly assay, which recapitulates in vivo mitochondrial respiration activities.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.,Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshimori Kitami
- Laboratory for Metabolic Networks, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kuniko Horie
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Division of Systems Medicine and Gene Therapy, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan.
| |
Collapse
|
7
|
Michalopoulou VA, Mermigka G, Kotsaridis K, Mentzelopoulou A, Celie PHN, Moschou PN, Jones JDG, Sarris PF. The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. THE PLANT CELL 2022; 34:3400-3424. [PMID: 35640532 PMCID: PMC9421483 DOI: 10.1093/plcell/koac162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
For most Gram-negative bacteria, pathogenicity largely depends on the type-III secretion system that delivers virulence effectors into eukaryotic host cells. The subcellular targets for the majority of these effectors remain unknown. Xanthomonas campestris, the causal agent of black rot disease of crucifers such as Brassica spp., radish, and turnip, delivers XopP, a highly conserved core-effector protein produced by X. campestris, which is essential for virulence. Here, we show that XopP inhibits the function of the host-plant exocyst complex by direct targeting of Exo70B, a subunit of the exocyst complex, which plays a significant role in plant immunity. XopP interferes with exocyst-dependent exocytosis and can do this without activating a plant NOD-like receptor that guards Exo70B in Arabidopsis. In this way, Xanthomonas efficiently inhibits the host's pathogen-associated molecular pattern (PAMP)-triggered immunity by blocking exocytosis of pathogenesis-related protein-1A, callose deposition, and localization of the FLAGELLIN SENSITIVE2 (FLS2) immune receptor to the plasma membrane, thus promoting successful infection. Inhibition of exocyst function without activating the related defenses represents an effective virulence strategy, indicating the ability of pathogens to adapt to host defenses by avoiding host immunity responses.
Collapse
Affiliation(s)
- Vassiliki A Michalopoulou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Glykeria Mermigka
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Konstantinos Kotsaridis
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | | | - Patrick H N Celie
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala S-75007, Sweden
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Kausar F, Rasheed T, Tuoqeer Anwar M, Ali J. Revisiting the Role of Sulfur based Compounds in monitoring of Various analytes through spectroscopical investigations. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
The oocyte spindle midzone pauses Cdk1 inactivation during fertilization to enable male pronuclear formation and embryo development. Cell Rep 2022; 39:110789. [PMID: 35508138 DOI: 10.1016/j.celrep.2022.110789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/21/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Inactivation of cyclin-dependent kinase 1 (Cdk1), controlled by cyclin B1 proteolysis, orders events during mitotic exit. Here, we used a FRET biosensor to study Cdk1 activity while simultaneously monitoring anaphase II and pronuclear (PN) formation in live mouse eggs throughout fertilization. We find that Cdk1 inactivation occurs over two phases separated by a 3-h pause, the first induces anaphase II and the second induces PN formation. Although both phases require the inhibitory Cdk1 kinase Wee1B, only the first involves cyclin B1 proteolysis. Enforcing the 3-h pause is critical for providing the delay required for male PN formation and is mediated by spindle midzone-dependent sequestration of Wee1B between the first and second phases. Thus, unlike continuous Cdk1 inactivation driven by cyclin B1 proteolysis during mitotic exit, MII oocytes engineer a physiologically important pause during fertilization involving two different pathways to inactivate Cdk1, only the first of which requires proteolysis.
Collapse
|
10
|
Duan Z, Li K, Duan W, Zhang J, Xing J. Probing membrane protein interactions and signaling molecule homeostasis in plants by Förster resonance energy transfer analysis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:68-77. [PMID: 34610124 DOI: 10.1093/jxb/erab445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Membrane proteins have key functions in signal transduction, transport, and metabolism. Therefore, deciphering the interactions between membrane proteins provides crucial information on signal transduction and the spatiotemporal organization of protein complexes. However, detecting the interactions and behaviors of membrane proteins in their native environments remains difficult. Förster resonance energy transfer (FRET) is a powerful tool for quantifying the dynamic interactions and assembly of membrane proteins without disrupting their local environment, supplying nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we briefly introduce the basic principles of FRET and assess the current state of progress in the development of new FRET techniques (such as FRET-FLIM, homo-FRET, and smFRET) for the analysis of plant membrane proteins. We also describe the various FRET-based biosensors used to quantify the homeostasis of signaling molecules and the active state of kinases. Furthermore, we summarize recent applications of these advanced FRET sensors in probing membrane protein interactions, stoichiometry, and protein clustering, which have shed light on the complex biological functions of membrane proteins in living plant cells.
Collapse
Affiliation(s)
- Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenwen Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
11
|
An S, Parajuli P, Kennedy EL, Kyoung M. Multi-dimensional Fluorescence Live-Cell Imaging for Glucosome Dynamics in Living Human Cells. Methods Mol Biol 2022; 2487:15-26. [PMID: 35687227 PMCID: PMC9191769 DOI: 10.1007/978-1-0716-2269-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescence live-cell imaging that has contributed to our understanding of cell biology is now at the frontline of studying quantitative biochemistry in a cell. Particularly, technological advancements of fluorescence live-cell imaging and associated strategies in recent years have allowed us to discover various subcellular macromolecular assemblies in living human cells. Here we describe how real-time dynamics of a multienzyme metabolic assembly, the "glucosome," that is responsible for regulating glucose flux at subcellular levels, has been investigated in both 2- and 3-dimensional space of single human cells. We envision that such multi-dimensional fluorescence live-cell imaging will continue to revolutionize our understanding of how intracellular metabolic pathways and their network are functionally orchestrated at single-cell levels.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201,Corresponding authors: &
| | - Prakash Parajuli
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250
| | - Erin L. Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201,Corresponding authors: &
| |
Collapse
|
12
|
Cellular context shapes cyclic nucleotide signaling in neurons through multiple levels of integration. J Neurosci Methods 2021; 362:109305. [PMID: 34343574 DOI: 10.1016/j.jneumeth.2021.109305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023]
Abstract
Intracellular signaling with cyclic nucleotides are ubiquitous signaling pathways, yet the dynamics of these signals profoundly differ in different cell types. Biosensor imaging experiments, by providing direct measurements in intact cellular environment, reveal which receptors are activated by neuromodulators and how the coincidence of different neuromodulators is integrated at various levels in the signaling cascade. Phosphodiesterases appear as one important determinant of cross-talk between different signaling pathways. Finally, analysis of signal dynamics reveal that striatal medium-sized spiny neuron obey a different logic than other brain regions such as cortex, probably in relation with the function of this brain region which efficiently detects transient dopamine.
Collapse
|
13
|
Development of Single-Molecule Electrical Identification Method for Cyclic Adenosine Monophosphate Signaling Pathway. NANOMATERIALS 2021; 11:nano11030784. [PMID: 33808592 PMCID: PMC8003578 DOI: 10.3390/nano11030784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important research target because it activates protein kinases, and its signaling pathway regulates the passage of ions and molecules inside a cell. To detect the chemical reactions related to the cAMP intracellular signaling pathway, cAMP, adenosine triphosphate (ATP), adenosine monophosphate (AMP), and adenosine diphosphate (ADP) should be selectively detected. This study utilized single-molecule quantum measurements of these adenosine family molecules to detect their individual electrical conductance using nanogap devices. As a result, cAMP was electrically detected at the single molecular level, and its signal was successfully discriminated from those of ATP, AMP, and ADP using the developed machine learning method. The discrimination accuracies of a single cAMP signal from AMP, ADP, and ATP were found to be 0.82, 0.70, and 0.72, respectively. These values indicated a 99.9% accuracy when detecting more than ten signals. Based on an analysis of the feature values used for the machine learning analysis, it is suggested that this discrimination was due to the structural difference between the ribose of the phosphate site of cAMP and those of ATP, ADP, and AMP. This method will be of assistance in detecting and understanding the intercellular signaling pathways for small molecular second messengers.
Collapse
|
14
|
Rivas S, Hanif K, Chakouri N, Ben-Johny M. Probing ion channel macromolecular interactions using fluorescence resonance energy transfer. Methods Enzymol 2021; 653:319-347. [PMID: 34099178 DOI: 10.1016/bs.mie.2021.01.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ion channels are macromolecular complexes whose functions are exquisitely tuned by interacting proteins. Fluorescence resonance energy transfer (FRET) is a powerful methodology that is adept at quantifying ion channel protein-protein interactions in living cells. For FRET experiments, the interacting partners are tagged with appropriate donor and acceptor fluorescent proteins. If the fluorescently-labeled molecules are in close proximity, then photoexcitation of the donor results in non-radiative energy transfer to the acceptor, and subsequent fluorescence emission of the acceptor. The stoichiometry of ion channel interactions and their relative binding affinities can be deduced by quantifying both the FRET efficiency and the total number of donors and acceptors in a given cell. In this chapter, we discuss general considerations for FRET analysis of biological interactions, various strategies for estimating FRET efficiencies, and detailed protocols for construction of binding curves and determination of stoichiometry. We focus on implementation of FRET assays using a flow cytometer given its amenability for high-throughput data acquisition, enhanced accessibility, and robust analysis. This versatile methodology permits mechanistic dissection of dynamic changes in ion channel interactions.
Collapse
Affiliation(s)
- Sharen Rivas
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | | | - Nourdine Chakouri
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States
| | - Manu Ben-Johny
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, United States.
| |
Collapse
|
15
|
Muniesh MS, Barmaver SN, Huang HY, Bayansan O, Wagner OI. PTP-3 phosphatase promotes intramolecular folding of SYD-2 to inactivate kinesin-3 UNC-104 in neurons. Mol Biol Cell 2020; 31:2932-2947. [PMID: 33147118 PMCID: PMC7927192 DOI: 10.1091/mbc.e19-10-0591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNC-104 is the Caenorhabditis elegans homolog of kinesin-3 KIF1A known for its fast shuffling of synaptic vesicle protein transport vesicles in axons. SYD-2 is the homolog of liprin-α in C. elegans known to activate UNC-104; however, signals that trigger SYD-2 binding to the motor remain unknown. Because SYD-2 is a substrate of PTP-3/LAR PTPR, we speculate a role of this phosphatase in SYD–2-mediated motor activation. Indeed, coimmunoprecipitation assays revealed increased interaction between UNC-104 and SYD-2 in ptp-3 knockout worms. Intramolecular FRET analysis in living nematodes demonstrates that SYD-2 largely exists in an open conformation state in ptp-3 mutants. These assays also revealed that nonphosphorylatable SYD-2 (Y741F) exists predominately in folded conformations, while phosphomimicking SYD-2 (Y741E) primarily exists in open conformations. Increased UNC-104 motor clustering was observed along axons likely as a result of elevated SYD-2 scaffolding function in ptp-3 mutants. Also, both motor velocities as well as cargo transport speeds were visibly increased in neurons of ptp-3 mutants. Lastly, epistatic analysis revealed that PTP-3 is upstream of SYD-2 to regulate its intramolecular folding.
Collapse
Affiliation(s)
| | - Syed Nooruzuha Barmaver
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Yi Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Odvogmed Bayansan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Oliver Ingvar Wagner
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
16
|
Guo J, Zhao R, Zhou M, Li J, Yao X, Du J, Chen J, Shen B. TRPP2 and STIM1 form a microdomain to regulate store-operated Ca 2+ entry and blood vessel tone. Cell Commun Signal 2020; 18:138. [PMID: 32867798 PMCID: PMC7457527 DOI: 10.1186/s12964-020-00560-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Polycystin-2 (TRPP2) is a Ca2+ permeable nonselective cationic channel essential for maintaining physiological function in live cells. Stromal interaction molecule 1 (STIM1) is an important Ca2+ sensor in store-operated Ca2+ entry (SOCE). Both TRPP2 and STIM1 are expressed in endoplasmic reticular membrane and participate in Ca2+ signaling, suggesting a physical interaction and functional synergism. Methods We performed co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer assay to identify the interactions of TRPP2 and STIM1 in transfected HEK293 cells and native vascular smooth muscle cells (VSMCs). The function of the TRPP2-STIM1 complex in thapsigargin (TG) or adenosine triphosphate (ATP)-induced SOCE was explored using specific small interfering RNA (siRNA). Further, we created TRPP2 conditional knockout (CKO) mouse to investigate the functional role of TRPP2 in agonist-induced vessel contraction. Results TRPP2 and STIM1 form a complex in transfected HEK293 cells and native VSMCs. Genetic manipulations with TRPP2 siRNA, dominant negative TRPP2 or STIM1 siRNA significantly suppressed ATP and TG-induced intracellular Ca2+ release and SOCE in HEK293 cells. Inositol triphosphate receptor inhibitor 2-aminoethyl diphenylborinate (2APB) abolished ATP-induced Ca2+ release and SOCE in HEK293 cells. In addition, TRPP2 and STIM1 knockdown significantly inhibited ATP- and TG-induced STIM1 puncta formation and SOCE in VSMCs. Importantly, knockdown of TRPP2 and STIM1 or conditional knockout TRPP2 markedly suppressed agonist-induced mouse aorta contraction. Conclusions Our data indicate that TRPP2 and STIM1 are physically associated and form a functional complex to regulate agonist-induced intracellular Ca2+ mobilization, SOCE and blood vessel tone. Video abstract
Collapse
Affiliation(s)
- Jizheng Guo
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Muyao Zhou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences the Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiexia Chen
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China. .,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
17
|
Serebrovskaya EO, Podvalnaya NM, Dudenkova VV, Efremova AS, Gurskaya NG, Gorbachev DA, Luzhin AV, Kantidze OL, Zagaynova EV, Shram SI, Lukyanov KA. Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose. Int J Mol Sci 2020; 21:ijms21145004. [PMID: 32679873 PMCID: PMC7404130 DOI: 10.3390/ijms21145004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 11/29/2022] Open
Abstract
Poly-(ADP-ribosyl)-ation (PARylation) is a reversible post-translational modification of proteins and DNA that plays an important role in various cellular processes such as DNA damage response, replication, transcription, and cell death. Here we designed a fully genetically encoded fluorescent sensor for poly-(ADP-ribose) (PAR) based on Förster resonance energy transfer (FRET). The WWE domain, which recognizes iso-ADP-ribose internal PAR-specific structural unit, was used as a PAR-targeting module. The sensor consisted of cyan Turquoise2 and yellow Venus fluorescent proteins, each in fusion with the WWE domain of RNF146 E3 ubiquitin ligase protein. This bipartite sensor named sPARroW (sensor for PARrelying on WWE) enabled monitoring of PAR accumulation and depletion in live mammalian cells in response to different stimuli, namely hydrogen peroxide treatment, UV irradiation and hyperthermia.
Collapse
Affiliation(s)
- Ekaterina O. Serebrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.O.S.); (N.M.P.); (N.G.G.); (D.A.G.)
| | - Nadezda M. Podvalnaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.O.S.); (N.M.P.); (N.G.G.); (D.A.G.)
- Institute of Molecular Genetics, Kurchatova Sq. 2, 123182 Moscow, Russia; (A.S.E.); (S.I.S.)
| | - Varvara V. Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia; (V.V.D.); (E.V.Z.)
| | - Anna S. Efremova
- Institute of Molecular Genetics, Kurchatova Sq. 2, 123182 Moscow, Russia; (A.S.E.); (S.I.S.)
| | - Nadya G. Gurskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.O.S.); (N.M.P.); (N.G.G.); (D.A.G.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia
| | - Dmitry A. Gorbachev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.O.S.); (N.M.P.); (N.G.G.); (D.A.G.)
| | - Artem V. Luzhin
- Institute of Gene Biology, Vavilova 34/5, 119334 Moscow, Russia; (A.V.L.); (O.L.K.)
| | - Omar L. Kantidze
- Institute of Gene Biology, Vavilova 34/5, 119334 Moscow, Russia; (A.V.L.); (O.L.K.)
| | - Elena V. Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia; (V.V.D.); (E.V.Z.)
- Lobachevsky State University of Nizhny Novgorod, Gagarin Ave. 23, 603950 Nizhny Novgorod, Russia
| | - Stanislav I. Shram
- Institute of Molecular Genetics, Kurchatova Sq. 2, 123182 Moscow, Russia; (A.S.E.); (S.I.S.)
| | - Konstantin A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.O.S.); (N.M.P.); (N.G.G.); (D.A.G.)
- Correspondence:
| |
Collapse
|
18
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Transient Receptor Potential Canonical 5-Scramblase Signaling Complex Mediates Neuronal Phosphatidylserine Externalization and Apoptosis. Cells 2020; 9:cells9030547. [PMID: 32110987 PMCID: PMC7140530 DOI: 10.3390/cells9030547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Phospholipid scramblase 1 (PLSCR1), a lipid-binding and Ca2+-sensitive protein located on plasma membranes, is critically involved in phosphatidylserine (PS) externalization, an important process in cell apoptosis. Transient receptor potential canonical 5 (TRPC5), is a nonselective Ca2+ channel in neurons that interacts with many downstream molecules, participating in diverse physiological functions including temperature or mechanical sensation. The interaction between TRPC5 and PLSCR1 has never been reported. Here, we showed that PLSCR1 interacts with TRPC5 through their C-termini in HEK293 cells and mouse cortical neurons. Formation of TRPC5-PLSCR1 complex stimulates PS externalization and promotes cell apoptosis in HEK293 cells and mouse cerebral neurons. Furthermore, in vivo studies showed that PS externalization in cortical neurons induced by artificial cerebral ischemia-reperfusion was reduced in TRPC5 knockout mice compared to wild-type mice, and that the percentage of apoptotic neurons was also lower in TRPC5 knockout mice than in wild-type mice. Collectively, the present study suggested that TRPC5-PLSCR1 is a signaling complex mediating PS externalization and apoptosis in neurons and that TRPC5 plays a pathological role in cerebral-ischemia reperfusion injury.
Collapse
|
20
|
Reimann TM. Flow Chamber Assay to Image the Response of FRET-Based Nanosensors in Pollen Tubes to Changes in Medium Composition. Methods Mol Biol 2020; 2160:257-273. [PMID: 32529443 DOI: 10.1007/978-1-0716-0672-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pollen tubes growing in the transmitting tract are presented with an extracellular matrix rich in a variety of substances. The expression of a multitude of genes for transport proteins in the pollen tube indicates that pollen tubes take up at least some of the components provided by the transmitting tract, for example nutrients, ions, or signaling molecules. FRET (Förster resonance energy transfer)-based nanosensors are perfectly suited to study the uptake of these molecules into pollen tubes. They are genetically encoded and can easily be expressed in Arabidopsis pollen tubes. Furthermore, the method is noninvasive and nanosensors for a wide range of substances are available. This chapter will describe the design of plasmids required to generate stable Arabidopsis lines with a pollen tube-specific expression of nanosensor constructs. We also present a method to germinate Arabidopsis pollen tubes in a flow chamber slide that allows the perfusion of the pollen tubes with liquid medium supplemented with the substrate of the nanosensor. Simultaneous evaluation of the FRET efficiency of the nanosensor by confocal microscopy reveals whether the substance is taken up by the pollen tubes. Together with the great number of available nanosensors this method can generate a detailed picture of the substances that are taken up during pollen tubes growth.
Collapse
Affiliation(s)
- Theresa Maria Reimann
- Department of Biology, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
| |
Collapse
|
21
|
Dong J, Ding X, Wang S. Purification of the recombinant green fluorescent protein from tobacco plants using alcohol/salt aqueous two-phase system and hydrophobic interaction chromatography. BMC Biotechnol 2019; 19:86. [PMID: 31818280 PMCID: PMC6902424 DOI: 10.1186/s12896-019-0590-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The green fluorescent protein (GFP) has been regarded as a valuable tool and widely applied as a biomarker in medical applications and diagnostics. A cost-efficient upstream expression system and an inexpensive downstream purification process will meet the demands of the GFP protein with high-purity. RESULTS The recombinant GFP was transiently expressed in an active form in agoinoculated Nicotiana benthamiana leaves by using Tobacco mosaic virus (TMV) RNA-based overexpression vector (TRBO). The yield of recombinant GFP was up to ~ 60% of total soluble proteins (TSP). Purification of recombinant GFP from the clarified lysate of N. benthaniana leaves was achieved by using an alcohol/salt aqueous two-phase system (ATPS) and following with a further hydrophobic interaction chromatography (HIC). The purification process takes only ~ 4 h and can recover 34.1% of the protein. The purity of purified GFP was more than 95% and there were no changes in its spectroscopic characteristics. CONCLUSIONS The strategy described here combines the advantages of both the economy and efficiency of plant virus-based expression platform and the simplicity and rapidity of environmentally friendly alcohol/salt ATPS. It has a considerable potential for the development of a cost-efficient alternative for production of recombinant GFP.
Collapse
Affiliation(s)
- Jie Dong
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, People's Republic of China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, People's Republic of China
- School of Life Science, Ningxia University, 539 W. Helanshan Road, Yinchuan, Ningxia, 750021, People's Republic of China
| | - Xiangzhen Ding
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, People's Republic of China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, People's Republic of China
- School of Life Science, Ningxia University, 539 W. Helanshan Road, Yinchuan, Ningxia, 750021, People's Republic of China
| | - Sheng Wang
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in the Western China, Yinchuan, 750021, People's Republic of China.
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, 750021, People's Republic of China.
- School of Life Science, Ningxia University, 539 W. Helanshan Road, Yinchuan, Ningxia, 750021, People's Republic of China.
| |
Collapse
|
22
|
Photobleaching and Sensitized Emission-Based Methods for the Detection of Förster Resonance Energy Transfer. Methods Mol Biol 2019. [PMID: 31432483 DOI: 10.1007/978-1-4939-9686-5_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Förster resonance energy transfer (FRET) is a non-radiative interaction between two molecules that happens at distances in the range of a few nanometers. Using FRET interactions between suitably selected fluorophores allows to study molecular interactions or conformational changes of single molecules on fluorescence microscopes even though the optical resolution of the microscope is limited to distances that are almost two orders of magnitude higher.In this chapter several variants of FRET detection methods are described that are based either on the targeted photobleaching of one of the participating molecule species or on the direct detection of the fluorescence signal that is created as a result of the FRET interactions.
Collapse
|
23
|
Haapasalo K, Wollman AJM, de Haas CJC, van Kessel KPM, van Strijp JAG, Leake MC. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB J 2019; 33:3807-3824. [PMID: 30509126 PMCID: PMC6404581 DOI: 10.1096/fj.201801910r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus Panton-Valentine leukocidin is a pore-forming toxin targeting the human C5a receptor (hC5aR), enabling this pathogen to battle the immune response by destroying phagocytes through targeted lysis. The mechanisms that contribute to rapid cell lysis are largely unexplored. Here, we show that cell lysis may be enabled by a process of toxins targeting receptor clusters and present indirect evidence for receptor "recycling" that allows multiple toxin pores to be formed close together. With the use of live cell single-molecule super-resolution imaging, Förster resonance energy transfer and nanoscale total internal reflection fluorescence colocalization microscopy, we visualized toxin pore formation in the presence of its natural docking ligand. We demonstrate disassociation of hC5aR from toxin complexes and simultaneous binding of new ligands. This effect may free mobile receptors to amplify hyperinflammatory reactions in early stages of microbial infections and have implications for several other similar bicomponent toxins and the design of new antibiotics.-Haapasalo, K., Wollman, A. J. M., de Haas, C. J. C., van Kessel, K. P. M., van Strijp, J. A. G., Leake, M. C. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Adam J. M. Wollman
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark C. Leake
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
- Department of Physics, Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
24
|
Sargenti A, Candeo A, Farruggia G, D'Andrea C, Cappadone C, Malucelli E, Valentini G, Taroni P, Iotti S. Fluorescence lifetime imaging of intracellular magnesium content in live cells. Analyst 2019; 144:1876-1880. [PMID: 30810548 DOI: 10.1039/c8an02379d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first detailed analysis of FLIM applications for Mg cell imaging is presented. We employed the Mg-sensitive fluorescent dye named DCHQ5, a derivative of diaza-18-crown-6 ethers appended with two 8-hydroxyquinoline groups, to perform fluorescence lifetime imaging in control and Mg deprived SaOS-2 live cells, which contain different concentrations of magnesium. We found that the lifetime maps are almost uniform all over the cells and, most relevantly, we showed that the ratio of the amplitude terms is related to the magnesium intracellular concentration.
Collapse
Affiliation(s)
- Azzurra Sargenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Alessia Candeo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20113, Milano, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy. and National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
| | - Cosimo D'Andrea
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20113, Milano, Italy
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Gianluca Valentini
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20113, Milano, Italy
| | - Paola Taroni
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20113, Milano, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy. and National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
| |
Collapse
|
25
|
Durgannavar T, Kwon SJ, Ghisaidoobe ABT, Rho K, Kim JH, Yoon S, Kang HJ, Chung SJ. Label‐Free Detection of Protein Tyrosine Phosphatase 1B (PTP1B) by Using a Rationally Designed Förster Resonance Energy Transfer (FRET) Probe. Chembiochem 2018; 19:2495-2501. [DOI: 10.1002/cbic.201800529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 01/10/2023]
Affiliation(s)
| | - Se Jeong Kwon
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Kyungmin Rho
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Ju Hwan Kim
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Sun‐Young Yoon
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyo Jin Kang
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Sang J. Chung
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
26
|
Gibbs DR, Kaur A, Megalathan A, Sapkota K, Dhakal S. Build Your Own Microscope: Step-By-Step Guide for Building a Prism-Based TIRF Microscope. Methods Protoc 2018; 1:mps1040040. [PMID: 31164580 PMCID: PMC6481079 DOI: 10.3390/mps1040040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Prism-based total internal reflection fluorescence (pTIRF) microscopy is one of the most widely used techniques for the single molecule analysis of a vast range of samples including biomolecules, nanostructures, and cells, to name a few. It allows for excitation of surface bound molecules/particles/quantum dots via evanescent field of a confined region of space, which is beneficial not only for single molecule detection but also for analysis of single molecule dynamics and for acquiring kinetics data. However, there is neither a commercial microscope available for purchase nor a detailed guide dedicated for building this microscope. Thus far, pTIRF microscopes are custom-built with the use of a commercially available inverted microscope, which requires high level of expertise in selecting and handling sophisticated instrument-parts. To directly address this technology gap, here we describe a step-by-step guide on how to build and characterize a pTIRF microscope for in vitro single-molecule imaging, nanostructure analysis and other life sciences research.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Anisa Kaur
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Kumar Sapkota
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
27
|
Song CP, Liew PE, Teh Z, Lim SP, Show PL, Ooi CW. Purification of the Recombinant Green Fluorescent Protein Using Aqueous Two-Phase System Composed of Recyclable CO 2-Based Alkyl Carbamate Ionic Liquid. Front Chem 2018; 6:529. [PMID: 30430106 PMCID: PMC6220422 DOI: 10.3389/fchem.2018.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 02/04/2023] Open
Abstract
The formation of aqueous two-phase system (ATPS) with the environmentally friendly and recyclable ionic liquid has been gaining popularity in the field of protein separation. In this study, the ATPSs comprising N,N-dimethylammonium N′,N′-dimethylcarbamate (DIMCARB) and thermo-responsive poly(propylene) glycol (PPG) were applied for the recovery of recombinant green fluorescent protein (GFP) derived from Escherichia coli. The partition behavior of GFP in the PPG + DIMCARB + water system was investigated systematically by varying the molecular weight of PPG and the total composition of ATPS. Overall, GFP was found to be preferentially partitioned to the hydrophilic DIMCARB-rich phase. An ATPS composed of 42% (w/w) PPG 1000 and 4.4% (w/w) DIMCARB gave the optimum performance in terms of GFP selectivity (1,237) and yield (98.8%). The optimal system was also successfully scaled up by 50 times without compromising the purification performance. The bottom phase containing GFP was subjected to rotary evaporation of DIMCARB. The stability of GFP was not affected by the distillation of DIMCARB, and the DIMCARB was successfully recycled in three successive rounds of GFP purification. The potential of PPG + DIMCARB + water system as a sustainable protein purification tool is promising.
Collapse
Affiliation(s)
- Cher Pin Song
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia.,Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Selangor, Malaysia
| | - Poh En Liew
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| | - Zora Teh
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| | - Schian Pei Lim
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Selangor, Malaysia
| |
Collapse
|
28
|
Lo SC, Ramanan RN, Tey BT, Tan WS, Show PL, Ling TC, Ooi CW. Purification of the recombinant enhanced green fluorescent protein from Escherichia coli using alcohol + salt aqueous two-phase systems. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Caldieri G, Barbieri E, Nappo G, Raimondi A, Bonora M, Conte A, Verhoef LGGC, Confalonieri S, Malabarba MG, Bianchi F, Cuomo A, Bonaldi T, Martini E, Mazza D, Pinton P, Tacchetti C, Polo S, Di Fiore PP, Sigismund S. Reticulon 3-dependent ER-PM contact sites control EGFR nonclathrin endocytosis. Science 2018; 356:617-624. [PMID: 28495747 DOI: 10.1126/science.aah6152] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/21/2017] [Accepted: 03/24/2017] [Indexed: 11/02/2022]
Abstract
The integration of endocytic routes is critical to regulate receptor signaling. A nonclathrin endocytic (NCE) pathway of the epidermal growth factor receptor (EGFR) is activated at high ligand concentrations and targets receptors to degradation, attenuating signaling. Here we performed an unbiased molecular characterization of EGFR-NCE. We identified NCE-specific regulators, including the endoplasmic reticulum (ER)-resident protein reticulon 3 (RTN3) and a specific cargo, CD147. RTN3 was critical for EGFR/CD147-NCE, promoting the creation of plasma membrane (PM)-ER contact sites that were required for the formation and/or maturation of NCE invaginations. Ca2+ release at these sites, triggered by inositol 1,4,5-trisphosphate (IP3)-dependent activation of ER Ca2+ channels, was needed for the completion of EGFR internalization. Thus, we identified a mechanism of EGFR endocytosis that relies on ER-PM contact sites and local Ca2+ signaling.
Collapse
Affiliation(s)
- Giusi Caldieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Elisa Barbieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Gilda Nappo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Andrea Raimondi
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy
| | - Massimo Bonora
- Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alexia Conte
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Lisette G G C Verhoef
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Stefano Confalonieri
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Fabrizio Bianchi
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Alessandro Cuomo
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Tiziana Bonaldi
- Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Emanuele Martini
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy
| | - Davide Mazza
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Tacchetti
- Centro Imaging Sperimentale, Istituto Scientifico San Raffaele, Via Olgettina 52, 20132 Milan, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy. .,Dipartimento di Oncologia ed Emato-Oncologia (DiPO)-Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy.,Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milan, Italy
| | - Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
30
|
Abstract
Most motile bacteria follow spatial gradients of chemical and physical stimuli in their environment. In Escherichia coli and other bacteria, the best characterized chemotaxis is in gradients of amino acids or sugars, but other physiological stimuli such as pH, osmolarity, redox potentials, and temperature are also known to elicit tactic responses. These multiple environmental stimuli are integrated and processed within a highly sophisticated chemotaxis network to generate coordinated chemotaxis behavior, which features high sensitivity, a wide dynamic range, and robustness against variations in background stimulation, protein levels, and temperature. Although early studies relied on behavioral analyses to characterize chemotactic responses in vivo, or on biochemical assays to study the pathway in vitro, we describe here a method to directly measure the intracellular pathway response using Förster resonance energy transfer (FRET). In E. coli, the most commonly used form of the FRET assay relies on the interaction between the phosphorylated response regulator CheY and its phosphatase CheZ to quantify activity of the histidine kinase CheA. We further describe a FRET assay for Bacillus subtilis, which employs CheY and the motor-associated phosphatase FliY as a FRET pair. In particular, we highlight the use of FRET to quantify pathway properties, including signal amplification, dynamic range, and kinetics of adaptation.
Collapse
Affiliation(s)
- Anja Paulick
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
31
|
Abstract
To orchestrate the function and development of multicellular organisms, cells integrate intra- and extracellular information. This information is processed via signal networks in space and time, steering dynamic changes in cellular structure and function. Defects in those signal networks can lead to developmental disorders or cancer. However, experimental analysis of signal networks is challenging as their state changes dynamically and differs between individual cells. Thus, causal relationships between network components are blurred if lysates from large cell populations are analyzed. To directly study causal relationships, perturbations that target specific components have to be combined with measurements of cellular responses within individual cells. However, using standard single-cell techniques, the number of signal activities that can be monitored simultaneously is limited. Furthermore, diffusion of signal network components limits the spatial precision of perturbations, which blurs the analysis of spatiotemporal processing in signal networks. Hybrid strategies based on optogenetics, surface patterning, chemical tools, and protein design can overcome those limitations and thereby sharpen our view into the dynamic spatiotemporal state of signal networks and enable unique insights into the mechanisms that control cellular function in space and time.
Collapse
Affiliation(s)
- Dominic Kamps
- Department for Systemic Cell Biology, Max
Planck Institute of Molecular Physiology and Fakultät für
Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| | - Leif Dehmelt
- Department for Systemic Cell Biology, Max
Planck Institute of Molecular Physiology and Fakultät für
Chemie und Chemische Biologie, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
32
|
Silberberg M, Grecco HE. pawFLIM: reducing bias and uncertainty to enable lower photon count in FLIM experiments. Methods Appl Fluoresc 2017. [DOI: 10.1088/2050-6120/aa72ab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Leonhardt J, Villela DC, Teichmann A, Münter LM, Mayer MC, Mardahl M, Kirsch S, Namsolleck P, Lucht K, Benz V, Alenina N, Daniell N, Horiuchi M, Iwai M, Multhaup G, Schülein R, Bader M, Santos RA, Unger T, Steckelings UM. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS. Hypertension 2017; 69:1128-1135. [PMID: 28461604 DOI: 10.1161/hypertensionaha.116.08814] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 04/06/2017] [Indexed: 11/16/2022]
Abstract
The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other.
Collapse
Affiliation(s)
- Julia Leonhardt
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Daniel C Villela
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Anke Teichmann
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Lisa-Marie Münter
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Magnus C Mayer
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Maibritt Mardahl
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Sebastian Kirsch
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Pawel Namsolleck
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Kristin Lucht
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Verena Benz
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Natalia Alenina
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Nicholas Daniell
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Masatsugu Horiuchi
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Masaru Iwai
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Gerhard Multhaup
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Ralf Schülein
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Michael Bader
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Robson A Santos
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Thomas Unger
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.)
| | - Ulrike Muscha Steckelings
- From the Center for Cardiovascular Research, Charité-Medical Faculty Berlin, Germany (J.L., D.C.V., M.M., S.K., P.N., K.L., V.B., N.D., T.U., U.M.S.); The Integrated Research and Treatment Center for Sepsis Control and Care (CSCC) and Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Germany (J.L.); Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil (D.C.V., R.A.S.); Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil (D.C.V.); Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany (A.T., R.S.); Institut für Chemie und Biochemie, Free University Berlin, Germany (L.-M.M., M.C.M., G.M.); Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada (L.-M.M., G.M.); CARIM, Maastricht University, The Netherlands (P.N., T.U.); Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany (N.A., M.B.); Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Japan (M.H., M.I.); and IMM-Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense (U.M.S.).
| |
Collapse
|
34
|
Castro L, Yapo C, Vincent P. [Physiopathology of cAMP/PKA signaling in neurons]. Biol Aujourdhui 2017; 210:191-203. [PMID: 28327278 DOI: 10.1051/jbio/2017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases.
Collapse
|
35
|
De Bessa T, Breuzard G, Allegro D, Devred F, Peyrot V, Barbier P. Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells. Methods Mol Biol 2017; 1523:61-85. [PMID: 27975244 DOI: 10.1007/978-1-4939-6598-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microtubules (MTs) play an important role in many cellular processes and are dynamic structures regulated by an important network of microtubules-associated proteins, MAPs, such as Tau. Tau has been discovered as an essential factor for MTs formation in vitro, and its region implicated in binding to MTs has been identified. By contrast, the affinity, the stoichiometry, and the topology of Tau-MTs interaction remain controversial. Indeed, depending on the experiment conditions a wide range of values have been obtained. In this chapter, we focus on three biophysical methods, turbidimetry, cosedimentation assay, and Förster Resonance Energy Transfer to study Tau-tubulin interaction both in vitro and in cell. We highlight precautions that must be taken in order to avoid pitfalls and we detail the nature of the conclusions that can be drawn from these methods about Tau-tubulin interaction.
Collapse
Affiliation(s)
- Tiphany De Bessa
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Gilles Breuzard
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Diane Allegro
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - François Devred
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Vincent Peyrot
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France
| | - Pascale Barbier
- Aix-Marseille Université, INSERM, CRO2, UMR_S 911, 13385, Marseille, France.
| |
Collapse
|
36
|
Ben-Johny M, Yue DN, Yue DT. Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nat Commun 2016; 7:13709. [PMID: 27922011 PMCID: PMC5150656 DOI: 10.1038/ncomms13709] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. Measuring the in vivo stoichiometry of protein-protein interactions is challenging. Here the authors take a FRET-based approach, quantifying stoichiometry based on ratiometric comparison of donor and acceptor fluorescence, and apply their method to report on a Ca2+-induced switch in calmodulin binding to Ca2+ ion channels.
Collapse
Affiliation(s)
- Manu Ben-Johny
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - Daniel N Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| | - David T Yue
- Calcium Signals Laboratory, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, Maryland 21205, USA
| |
Collapse
|
37
|
Bimodal antagonism of PKA signalling by ARHGAP36. Nat Commun 2016; 7:12963. [PMID: 27713425 PMCID: PMC5059767 DOI: 10.1038/ncomms12963] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.
Protein kinase A (PKA) is a key mediator of cyclic AMP signalling. Here, Eccles et al. show that ARHGAP36 antagonizes PKA by acting as a kinase inhibitor and targeting the catalytic subunit for endolysosomal degradation, thus reducing sensitivity of cells to cAMP and promoting Hedgehog signalling.
Collapse
|
38
|
Lim S, Tang BZ, Hong Y. AIE Luminogens for Visualizing Cell Structures and Functions. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1227.ch008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Sean Lim
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry, Hong Kong University of Science and Technnology, Clear Water Bay, Kowloon, Hong Kong
| | - Ben Zhong Tang
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry, Hong Kong University of Science and Technnology, Clear Water Bay, Kowloon, Hong Kong
| | - Yuning Hong
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Chemistry, Hong Kong University of Science and Technnology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
39
|
Kim J, Lee O, Ha S, Lee JW, Oh C. Method for In-Vivo Fluorescence Imaging Contrast Enhancement through Light Modulation. J Fluoresc 2016; 27:13-20. [PMID: 27633372 DOI: 10.1007/s10895-016-1931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 11/25/2022]
Abstract
Early diagnosis is one of the most important factors that increase the therapeutic potential of the disease. Diagnoses conducted by conventional equipment are expensive, time-consuming, burdensome to patients, and do not have high success rates. Diagnostic methods have also been investigated using nanoparticles. However, there have been no significant improvements in the early diagnosis of disease. The diagnosis technique proposed in this paper consumes less time, is more cost-effective, and more accurate. It uses a new concept-a low-intensity fluorescence molecular imaging system with a lock-in technique. This study applied the lock-in technique to basic research in contrast enhancement and optimization. This improved fluorescence distribution analysis, resulting in increased resolution of optical molecular imaging for early diagnosis of disease. An experimental lock-in fluorescence imaging system, which used a variety of fluorescent dyes, achieved signal amplification 100 times greater than that of a conventional fluorescence imaging system. The results of this study demonstrate that the lock-in technique could significantly improve optical molecular imaging technology, making it possible to achieve early diagnosis of disease.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Research Institute for Skin Image, College of Medicine, Korea University, Seoul, South Korea
| | - Onseok Lee
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Chungnam, South Korea
| | - Seunghan Ha
- Department of Nursing, School of Health, Chungbuk Health and Science University, Chungbuk, South Korea
| | - Jung Woo Lee
- Department of Dermatology, College of Medicine, Korea University, Seoul, South Korea
| | - Chilhwan Oh
- Research Institute for Skin Image, College of Medicine, Korea University, Seoul, South Korea.
- Department of Dermatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
40
|
Rowley MI, Coolen ACC, Vojnovic B, Barber PR. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging. PLoS One 2016; 11:e0158404. [PMID: 27355322 PMCID: PMC4927071 DOI: 10.1371/journal.pone.0158404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022] Open
Abstract
We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters.
Collapse
Affiliation(s)
- Mark I. Rowley
- Institute for Mathematical and Molecular Biomedicine, King’s College London, London, United Kingdom
| | - Anthonius C. C. Coolen
- Institute for Mathematical and Molecular Biomedicine, King’s College London, London, United Kingdom
| | - Borivoj Vojnovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul R. Barber
- Institute for Mathematical and Molecular Biomedicine, King’s College London, London, United Kingdom
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Nouar R, Breuzard G, Bastonero S, Gorokhova S, Barbier P, Devred F, Kovacic H, Peyrot V. Direct evidence for the interaction of stathmin along the length and the plus end of microtubules in cells. FASEB J 2016; 30:3202-15. [DOI: 10.1096/fj.201500125r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/31/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Roqiya Nouar
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| | - Gilles Breuzard
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| | - Sonia Bastonero
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| | - Svetlana Gorokhova
- Aix Marseille Université, INSERM UMR 910Génétique Médicale et Génomique Fonctionnelle (GMGF)Faculté de Médecine Marseille France
| | - Pascale Barbier
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| | - François Devred
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| | - Hervé Kovacic
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| | - Vincent Peyrot
- Aix Marseille Université Mixte de Recherche (UMR) 911Center for Research in Oncobiology and Oncopharmacology (CRO2)Faculté de Pharmacie Marseille France
| |
Collapse
|
42
|
G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2. Sci Rep 2016; 6:26658. [PMID: 27222287 PMCID: PMC4879523 DOI: 10.1038/srep26658] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 02/03/2023] Open
Abstract
Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation.
Collapse
|
43
|
Ray J, Shin I, Ilgu M, Bendickson L, Gupta V, Kraus GA, Nilsen-Hamilton M. IMAGEtags: Quantifying mRNA Transcription in Real Time with Multiaptamer Reporters. Methods Enzymol 2016; 572:193-213. [PMID: 27241755 DOI: 10.1016/bs.mie.2016.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell communications are essential to the organization, development, and maintenance of multicellular organisms. Much of this communication involves changes in RNA transcription and is dynamic. Most methods for studying transcription require interrupting the continuity of cellular function by sacrificing the communicating cells and capturing gene expression information by periodic sampling of individual cells or the population. The IMAGEtag technology to quantify RNA levels in living cells, demonstrated here in yeast, allows individual cells to be tracked over time as they respond to different environmental cues. IMAGEtags are short RNAs consisting of strings of a variable number of tandem aptamers that bind small-molecule ligands. The aptamer strings can vary in length and in configuration of aptamer constituents, such as to contain multiples of the same aptamer or two or more different aptamers that alternate in their occurrence. A minimum effective length is about five aptamers. The maximum length is undefined. The small-molecule ligands are enabled for imaging as fluorophore conjugates. For each IMAGEtag, two fluorophore conjugates are provided, which are FRET pairs. When a cell expresses an RNA containing an IMAGEtag sequence, the aptamers bind their ligands and bring the fluorophores into sufficiently close proximity to allow FRET. The background fluorescence of both fluorophores is minimal in the FRET channel. These features endow IMAGEtags with the sensitivity to report on mRNA expression levels in living cells.
Collapse
Affiliation(s)
- J Ray
- Cornell University, Ithaca, NY, United States.
| | - I Shin
- National Forensic Service, Seoul, South Korea
| | - M Ilgu
- Aptalogic Inc., Ames, IA, United States
| | - L Bendickson
- Ames Laboratory, US DOE, Ames, IA, United States; Iowa State University, Ames, IA, United States
| | - V Gupta
- The Scripps Research Institute, Jupiter, FL, United States
| | - G A Kraus
- Ames Laboratory, US DOE, Ames, IA, United States; Iowa State University, Ames, IA, United States
| | - M Nilsen-Hamilton
- Ames Laboratory, US DOE, Ames, IA, United States; Iowa State University, Ames, IA, United States; Aptalogic Inc., Ames, IA, United States.
| |
Collapse
|
44
|
Goda T, Yamada E, Katayama Y, Tabata M, Matsumoto A, Miyahara Y. Potentiometric responses of ion-selective microelectrode with bovine serum albumin adsorption. Biosens Bioelectron 2016; 77:208-14. [DOI: 10.1016/j.bios.2015.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 11/29/2022]
|
45
|
González-Vera JA, Morris MC. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases. Proteomes 2015; 3:369-410. [PMID: 28248276 PMCID: PMC5217393 DOI: 10.3390/proteomes3040369] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/30/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022] Open
Abstract
Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.
Collapse
Affiliation(s)
- Juan A González-Vera
- Cell Cycle Biosensors & Inhibitors, Department of Amino Acids, Peptides and Proteins, Institute of Biomolecules Max Mousseron (IBMM) CNRS-UMR 5247, 15 Avenue Charles Flahault, Montpellier 34093, France.
| | - May C Morris
- Cell Cycle Biosensors & Inhibitors, Department of Amino Acids, Peptides and Proteins, Institute of Biomolecules Max Mousseron (IBMM) CNRS-UMR 5247, 15 Avenue Charles Flahault, Montpellier 34093, France.
| |
Collapse
|
46
|
Rowland CE, Brown CW, Medintz IL, Delehanty JB. Intracellular FRET-based probes: a review. Methods Appl Fluoresc 2015; 3:042006. [PMID: 29148511 DOI: 10.1088/2050-6120/3/4/042006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.
Collapse
Affiliation(s)
- Clare E Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA. National Research Council, Washington, DC 20036, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers.
Collapse
Affiliation(s)
| | - May C. Morris
- Cell Cycle Biosensors and Inhibitors, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, Centre National de la Recherche Scientifique-UMR 5247Montpellier, France
| |
Collapse
|
48
|
Multiplexed 3D FRET imaging in deep tissue of live embryos. Sci Rep 2015; 5:13991. [PMID: 26387920 PMCID: PMC4585674 DOI: 10.1038/srep13991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023] Open
Abstract
Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca(2+) and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms.
Collapse
|
49
|
Lu Q, Kim Y, Bassim N, Collins GE. Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes. J Colloid Interface Sci 2015; 454:97-104. [PMID: 26004574 DOI: 10.1016/j.jcis.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022]
Abstract
Organic nanotubes form in aqueous solution near physiological pH by self-assembly of lithocholic acid (LCA) with inner diameters of 20-40nm. The encapsulation of enhanced green fluorescent protein (eGFP) and resultant confinement effect for eGFP within these nanotubes is studied via confocal microscopy. Timed release rate studies of eGFP encapsulated in LCA nanotubes and fluorescence recovery after photobleaching (FRAP) indicate that the diffusive transport of eGFP out of and/or within the nanotubes is very slow, in contrast to the rapid introduction of eGFP into the nanotubes. By encapsulating two fluorescent proteins in LCA nanotubes, eGFP and mCherry, as a fluorescence resonance energy transfer (FRET) pair, the FRET efficiencies are determined using FRET imaging microscopy at three different protein concentrations with a fixed donor-to-acceptor ratio of 1:1. Förster theory reveals that the proteins are spatially separated by 4.8-7.2nm in distance inside these nanotubes. The biomimetic nanochannels of LCA nanotubes not only afford a confining effect on eGFP that results in enhanced chemical and thermal stability under conditions of high denaturant concentration and temperature, but also function as protein concentrators for enriching protein in the nanochannels from a diluted protein solution by up to two orders of magnitude.
Collapse
Affiliation(s)
- Qin Lu
- Naval Research Laboratory, Chemistry Division, Code 6112, 4555 Overlook Ave., SW, Washington, D.C. 20375-5342, USA.
| | - Youngchan Kim
- Naval Research Laboratory, Center for Computational Materials Science, Code 6394, 4555 Overlook Ave., SW, Washington, D.C. 20375, USA.
| | - Nabil Bassim
- Naval Research Laboratory, Materials Science and Technology Division, Code 6366, 4555 Overlook Ave., SW, Washington, D.C. 20375, USA.
| | - Greg E Collins
- Naval Research Laboratory, Chemistry Division, Code 6112, 4555 Overlook Ave., SW, Washington, D.C. 20375-5342, USA.
| |
Collapse
|
50
|
Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nat Commun 2015; 6:8047. [PMID: 26292967 PMCID: PMC4560775 DOI: 10.1038/ncomms9047] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/11/2015] [Indexed: 01/15/2023] Open
Abstract
Autocatalytic phosphorylation of receptor tyrosine kinases (RTKs) enables diverse, context-dependent responses to extracellular signals but comes at the price of autonomous, ligand-independent activation. Using a conformational biosensor that reports on the kinase activity of the cell guidance ephrin receptor type-A (EphA2) in living cells, we observe that autonomous EphA2 activation is suppressed by vesicular recycling and dephosphorylation by protein tyrosine phosphatases 1B (PTP1B) near the pericentriolar recycling endosome. This spatial segregation of catalytically superior PTPs from RTKs at the plasma membrane is essential to preserve ligand responsiveness. Ligand-induced clustering, on the other hand, promotes phosphorylation of a c-Cbl docking site and ubiquitination of the receptor, thereby redirecting it to the late endosome/lysosome. We show that this switch from cyclic to unidirectional receptor trafficking converts a continuous suppressive safeguard mechanism into a transient ligand-responsive signalling mode.
Collapse
|