1
|
Bandyopadhyay S, Zhang X, Ascura A, Edelblum KL, Bonder EM, Gao N. Salmonella engages CDC42 effector protein 1 for intracellular invasion. J Cell Physiol 2024; 239:36-50. [PMID: 37877586 PMCID: PMC11730249 DOI: 10.1002/jcp.31142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/25/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.
Collapse
Affiliation(s)
| | - Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Andrea Ascura
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Karen L. Edelblum
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Edward M. Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
2
|
Saleh DO, Horstmann JA, Giralt-Zúñiga M, Weber W, Kaganovitch E, Durairaj AC, Klotzsch E, Strowig T, Erhardt M. SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner. PLoS Pathog 2023; 19:e1011451. [PMID: 37315106 DOI: 10.1371/journal.ppat.1011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.
Collapse
Affiliation(s)
- Doaa Osama Saleh
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Abilash Chakravarthy Durairaj
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
3
|
Gautier T, Olivieiro N, Ferron S, Le Pogam P, David-Le Gall S, Sauvager A, Leroyer P, Cannie I, Dion S, Sweidan A, Loréal O, Tomasi S, Bousarghin L. Bacteroides fragilis derived metabolites, identified by molecular networking, decrease Salmonella virulence in mice model. Front Microbiol 2022; 13:1023315. [DOI: 10.3389/fmicb.2022.1023315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
In the gut microbiota, resident bacteria prevent pathogens infection by producing specific metabolites. Among bacteria belonging to phylum Bacteroidota, we have previously shown that Bacteroides fragilis or its cell-free supernatant inhibited in vitro Salmonella Heidelberg translocation. In the present study, we have analyzed this supernatant to identify bioactive molecules after extraction and subsequent fractionation using a semi-preparative reversed-phase Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS). The results indicated that only two fractions (F3 and F4) strongly inhibited S. Heidelberg translocation in a model mimicking the intestinal epithelium. The efficiency of the bioactive fractions was evaluated in BALB/c mice, and the results showed a decrease of S. Heidelberg in Peyer’s patches and spleen, associated with a decrease in inflammatory cytokines and neutrophils infiltration. The reduction of the genus Alistipes in mice receiving the fractions could be related to the anti-inflammatory effects of bioactive fractions. Furthermore, these bioactive fractions did not alter the gut microbiota diversity in mice. To further characterize the compounds present in these bioactive fractions, Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) data were analyzed through molecular networking, highlighting cholic acid (CA) and deoxycholic acid. In vitro, CA had inhibitory activity against the translocation of S. Heidelberg by significantly decreasing the expression of Salmonella virulence genes such as sipA. The bioactive fractions also significantly downregulated the flagellar gene fliC, suggesting the involvement of other active molecules. This study showed the interest to characterize better the metabolites produced by B. fragilis to make them means of fighting pathogenic bacteria by targeting their virulence factor without modifying the gut microbiota.
Collapse
|
4
|
Zakaria Z, Hassan L, Sharif Z, Ahmad N, Mohd Ali R, Amir Husin S, Mohamed Sohaimi N, Abu Bakar S, Garba B. Virulence Gene Profile, Antimicrobial Resistance and Multilocus Sequence Typing of Salmonella enterica Subsp. enterica Serovar Enteritidis from Chickens and Chicken Products. Animals (Basel) 2022; 12:ani12010097. [PMID: 35011203 PMCID: PMC8749576 DOI: 10.3390/ani12010097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
This study was undertaken to determine the virulence, antimicrobial resistance and molecular subtypes of Salmonella in the Central Region of Peninsular Malaysia. A total of 45 Salmonella Enteritidis were detected from live chicken (cloacal swab), and chicken products (fresh and ready-to-eat meat) samples upon cultural isolation and serotyping. Similarly, an antimicrobial susceptibility test based on the Kirby Bauer disk diffusion method as well as antimicrobial resistance AMR genes, virulence determinants and multilocus sequence typing (MLST) typing were conducted after the Whole Genome Sequencing and analysis of the isolates. The results indicate that sequence types ST1925 (63.7%), and ST11 (26.5%) were the predominant out of the seven sequence types identified (ST292, ST329, ST365, ST423 and ST2132). The phenotypic antimicrobial profile corresponds to the genotypic characterization in that the majority of the isolates that exhibited tetracycline, gentamycin and aminoglycoside resistance; they also possessed the tetC and blaTEM β-Lactam resistance genes. However, isolates from cloacal swabs showed the highest number of resistance genes compared to the chicken products (fresh and ready-to-eat meat) samples. Furthermore, most of the virulence genes were found to cluster in the Salmonella pathogenicity island (SPI). In this study, all the isolates were found to possess SPI-1, which codes for the type III secretion system, which functions as actin-binding proteins (SptP and SopE). The virulence plasmid (VP) genes (spvB, spvC) were present in all genotypes except ST365. The findings of this study, particularly with regard to the molecular subtypes and AMR profiles of the Salmonella Enteritidis serotype shows multidrug-resistance features as well as genetic characteristics indicative of high pathogenicity.
Collapse
Affiliation(s)
- Zunita Zakaria
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence:
| | - Latiffah Hassan
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (L.H.); (N.M.S.)
| | - Zawiyah Sharif
- Food Safety and Quality Division, Ministry of Health, Putrajaya 62675, Malaysia; (Z.S.); (S.A.B.)
| | - Norazah Ahmad
- Veterinary Public Health Division, Department of Veterinary Services Malaysia, Putrajaya 62630, Malaysia; (N.A.); (R.M.A.)
| | - Rohaya Mohd Ali
- Veterinary Public Health Division, Department of Veterinary Services Malaysia, Putrajaya 62630, Malaysia; (N.A.); (R.M.A.)
| | - Suraya Amir Husin
- Medical Development Division, Ministry of Health, Putrajaya 62590, Malaysia;
| | - Norfitriah Mohamed Sohaimi
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia; (L.H.); (N.M.S.)
| | - Shafini Abu Bakar
- Food Safety and Quality Division, Ministry of Health, Putrajaya 62675, Malaysia; (Z.S.); (S.A.B.)
| | - Bashiru Garba
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sultan Abubakar Road, City Campus Complex, Sokoto 840212, Nigeria
| |
Collapse
|
5
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
6
|
Positive regulation of Type III secretion effectors and virulence by RyhB paralogs in Salmonella enterica serovar Enteritidis. Vet Res 2021; 52:44. [PMID: 33691799 PMCID: PMC7944605 DOI: 10.1186/s13567-021-00915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
Small non-coding RNA RyhB is a key regulator of iron homeostasis in bacteria by sensing iron availability in the environment. Although RyhB is known to influence bacterial virulence by interacting with iron metabolism related regulators, its interaction with virulence genes, especially the Type III secretion system (T3SS), has not been reported. Here, we demonstrate that two RyhB paralogs of Salmonella enterica serovar Enteritidis upregulate Type III secretion system (T3SS) effectors, and consequently affect Salmonella invasion into intestinal epithelial cells. Specifically, we found that RyhB-1 modulate Salmonella response to stress condition of iron deficiency and hypoxia, and stress in simulated intestinal environment (SIE). Under SIE culture conditions, both RyhB-1 and RyhB-2 are drastically induced and directly upregulate the expression of T3SS effector gene sipA by interacting with its 5′ untranslated region (5′ UTR) via an incomplete base-pairing mechanism. In addition, the RyhB paralogs upregulate the expression of T3SS effector gene sopE. By regulating the invasion-related genes, RyhBs in turn affect the ability of S. Enteritidis to adhere to and invade into intestinal epithelial cells. Our findings provide evidence that RyhBs function as critical virulence factors by directly regulating virulence-related gene expression. Thus, inhibition of RyhBs may be a potential strategy to attenuate Salmonella.
Collapse
|
7
|
Using proteomics to identify host cell interaction partners for VgrG and IglJ. Sci Rep 2020; 10:14612. [PMID: 32884055 PMCID: PMC7471685 DOI: 10.1038/s41598-020-71641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis is a highly virulent intracellular bacterium and the causative agent of tularemia. The disease is characterized by the suboptimal innate immune response and consequently by the impaired adaptive immunity. The virulence of this pathogen depends on proteins encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). However, the precise biological roles of most of the FPI-encoded proteins remain to be clarified. In this study, we employed stable isotope labeling by amino acids in cell culture (SILAC) in combination with affinity protein purification coupled with liquid chromatography–mass spectrometry to identify potential protein-effector binding pairs for two FPI virulence effectors IglJ and VgrG. Our results may indicate that while the IglJ protein interactions primarily affect mitochondria, the VgrG interactions affect phagosome and/or autophagosome biogenesis via targeting components of the host’s exocyst complex.
Collapse
|
8
|
Shen H, Wang Y, Wang J, Li Z, Yuan Q. Emerging Biomimetic Applications of DNA Nanotechnology. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13859-13873. [PMID: 29939004 DOI: 10.1021/acsami.8b06175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.
Collapse
Affiliation(s)
- Haijing Shen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| |
Collapse
|
9
|
Lau YT, Gambino L, Santos B, Pales Espinosa E, Allam B. Regulation of oyster (Crassostrea virginica) hemocyte motility by the intracellular parasite Perkinsus marinus: A possible mechanism for host infection. FISH & SHELLFISH IMMUNOLOGY 2018; 78:18-25. [PMID: 29635064 DOI: 10.1016/j.fsi.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Hemocytes associated with the mucus lining of pallial (mantle, gill) surfaces of the oyster Crassostrea virginica have been recently suggested to facilitate infection by the Alveolate parasite Perkinsus marinus by mediating the uptake and dispersion of parasite cells. These "pallial hemocytes", which are directly exposed to microbes present in surrounding seawater, are able to migrate bi-directionally between mucosal surfaces and the circulatory system, potentially playing a sentinel role. Interestingly, P. marinus was shown to increase trans-epithelial migration of hemocytes suggesting it may regulate cell motility to favor infection establishment. The purpose of this study was to investigate the effect of P. marinus on hemocyte motility and identify specific molecular mechanisms potentially used by the parasite to regulate hemocyte migration. In a first series of experiments, various components of P. marinus (live P. marinus cells, extracellular products, fragments of P. marinus cell membrane, membrane-modified live P. marinus cells, heat-killed P. marinus) along with components of the opportunistic bacterial pathogen Vibrio alginolyticus (bacterial cells and extracellular products) were investigated for their effects on hemocyte motility. In a second series of experiments, inhibitors of specific molecular pathways involved in motility regulation (Y-27632: inhibitor of Rho-associated protein kinase, RGDS: integrin inhibitor, CK-666: Arp2/3 inhibitor) were used in conjunction with qPCR gene expression experiments to identify pathways regulated by P. marinus exposure. Results showed a specific increase in hemocyte motility following exposure to live P. marinus cells. The increase in motility induced by P. marinus was suppressed by RGDS and CK-666 implicating the involvement of integrins and Arp2/3 in cell activation. Gene expression data suggest that Arp2/3 is possibly regulated directly by an effector produced by P. marinus. The implications of increased hemocyte motility prompted by P. marinus during the early stage of the infection process are discussed.
Collapse
Affiliation(s)
- Yuk-Ting Lau
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Laura Gambino
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bianca Santos
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, United States.
| |
Collapse
|
10
|
Kappala D, Sarkhel R, Dixit SK, Lalsangpuii, Mahawar M, Singh M, Ramakrishnan S, Goswami TK. Role of different receptors and actin filaments on Salmonella Typhimurium invasion in chicken macrophages. Immunobiology 2018; 223:501-507. [PMID: 29395289 DOI: 10.1016/j.imbio.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Bacterial attachment to host cell is the first event for pathogen entry. The attachment is mediated through membrane expressed adhesins present on the organism and receptors on the cell surface of host. The objective of this study was to investigate the significance of Fc receptors (FcRs), actin filament polymerization, mannose receptors (MRs), carbohydrate moieties like N-linked glycans and sialic acid on chicken macrophages for invasion of S. Typhimurium. Opsonisation of S. Typhimurium resulted in three folds more invasion in chicken monocyte derived macrophages. Cytochalasin D, an inhibitor of actin filament polymerization prevented uptake of S. Typhimurium. Pre-incubation of macrophages with cytochalasin D, showed severe decrease (28 folds) in S. Typhimurium invasion. Next we attempted to analyse the role of carbohydrate receptors of macrophages in S. Typhimurium invasion. Treatment of macrophages with methyl α-d-mannopyranoside, PNGase F and neuraminidase, showed 2.5, 5 and 2.5 folds decrease in invasion respectively. Our data suggest that deglycosylation of N-linked glycans including sialic acid by PNGase F is more effective in inhibition of S. Typhimurium invasion than neuraminidase which removes only sialic acid. These findings suggested FcRs, actin filament polymerization, MRs, N-linked glycans and sialic acid may act as gateway for entry of S. Typhimurium.
Collapse
Affiliation(s)
- Deepthi Kappala
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Ratanti Sarkhel
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Sunil Kumar Dixit
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Lalsangpuii
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Manish Mahawar
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India
| | - Tapas Kumar Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122, India.
| |
Collapse
|
11
|
Hume PJ, Singh V, Davidson AC, Koronakis V. Swiss Army Pathogen: The Salmonella Entry Toolkit. Front Cell Infect Microbiol 2017; 7:348. [PMID: 28848711 PMCID: PMC5552672 DOI: 10.3389/fcimb.2017.00348] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023] Open
Abstract
Salmonella causes disease in humans and animals ranging from mild self-limiting gastroenteritis to potentially life-threatening typhoid fever. Salmonellosis remains a considerable cause of morbidity and mortality globally, and hence imposes a huge socio-economic burden worldwide. A key property of all pathogenic Salmonella strains is the ability to invade non-phagocytic host cells. The major determinant of this invasiveness is a Type 3 Secretion System (T3SS), a molecular syringe that injects virulence effector proteins directly into target host cells. These effectors cooperatively manipulate multiple host cell signaling pathways to drive pathogen internalization. Salmonella does not only rely on these injected effectors, but also uses several other T3SS-independent mechanisms to gain entry into host cells. This review summarizes our current understanding of the methods used by Salmonella for cell invasion, with a focus on the host signaling networks that must be coordinately exploited for the pathogen to achieve its goal.
Collapse
Affiliation(s)
- Peter J Hume
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vikash Singh
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Anthony C Davidson
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
12
|
Andritschke D, Dilling S, Emmenlauer M, Welz T, Schmich F, Misselwitz B, Rämö P, Rottner K, Kerkhoff E, Wada T, Penninger JM, Beerenwinkel N, Horvath P, Dehio C, Hardt WD. A Genome-Wide siRNA Screen Implicates Spire1/2 in SipA-Driven Salmonella Typhimurium Host Cell Invasion. PLoS One 2016; 11:e0161965. [PMID: 27627128 PMCID: PMC5023170 DOI: 10.1371/journal.pone.0161965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.
Collapse
Affiliation(s)
- Daniel Andritschke
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Sabrina Dilling
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | | | - Tobias Welz
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Fabian Schmich
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Benjamin Misselwitz
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, CH-8091, Zurich, Switzerland
| | - Pauli Rämö
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, D-38106, Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Eugen Kerkhoff
- Department of Neurology, University of Regensburg, DE- 93040, Regensburg, Germany
| | - Teiji Wada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030, Vienna, Austria
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, CH-4058, Basel, Switzerland
- SIB Swiss Institute for Bioinformatics, 4058, Basel, Switzerland
| | - Peter Horvath
- Light Microscopy Center, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| | - Christoph Dehio
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, CH-8093, Zurich, Switzerland
| |
Collapse
|
13
|
Nwabor OF, Dickson ID, Ajibo QC. Epidemiology of <i>Salmonella</i> and <i>Salmonellosis</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2015. [DOI: 10.56431/p-w7t10s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of enteritis and its accompanying diarrheal and other health challenges linked to infections with Salmonella has continuously plagued sub Saharan Africa. In Nigeria, typhoid fever is among the major widespread diseases affecting both young and old as a result of many interrelated factors such as inadequate sanitaion, indiscriminate use of antibiotics and fecal contamination of water sources. Morbidity associated with illness due to Salmonella continues to increase with untold fatal consequences, often resulting in death. An accurate figure of cases is difficult to arrive at because only large outbreaks are mostly investigated whereas sporadic cases are under-reported. A vast majority of rural dwellers in Africa often resort to self-medication or seek no treatment at all, hence serving as carries of this disease. Non typhoidal cases of salmonellosis account for about 1.3 billion cases with 3 million deaths annually. Given the magnitude of the economic losses incurred by African nations in the battle against salmonella and salmonellosis, this article takes a critical look at the genus Salmonella, its morphology, isolation, physiological and biochemical characteristics, typing methods, methods of detection, virulence factor, epidemiology and methods of spread within the environment.
Collapse
|
14
|
Hänisch J, Stradal TE, Rottner K. A novel contractility pathway operating in Salmonella invasion. Virulence 2014; 3:81-6. [DOI: 10.4161/viru.3.1.18454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN, Heffron F. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 2013; 8:e70753. [PMID: 23950998 PMCID: PMC3741292 DOI: 10.1371/journal.pone.0070753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.
Collapse
Affiliation(s)
- Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ivy Mushamiri
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - George S. Niemann
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Roslyn N. Brown
- Center for Bioproducts and Bioenergy, Washington State University, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
16
|
Vonaesch P, Cardini S, Sellin ME, Goud B, Hardt WD, Schauer K. Quantitative insights into actin rearrangements and bacterial target site selection from Salmonella Typhimurium infection of micropatterned cells. Cell Microbiol 2013; 15:1851-65. [PMID: 23648178 DOI: 10.1111/cmi.12154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 12/31/2022]
Abstract
Reorganization of the host cell actin cytoskeleton is crucial during pathogen invasion. We established micropatterned cells as a standardized infection model for cell invasion to quantitatively study actin rearrangements triggered by Salmonella Typhimurium (S. Tm). Micropatterns of extracellular matrix proteins force cells to adopt a reproducible shape avoiding strong cell-to-cell variations, a major limitation in classical cell culture conditions. S. Tm induced F-actin-rich ruffles and invaded micropatterned cells similar to unconstrained cells. Yet, standardized conditions allowed fast and unbiased comparison of cellular changes triggered by the SipA and SopE bacterial effector proteins. Intensity measurements in defined regions revealed that the content of pre-existing F-actin remained unchanged during infection, suggesting that newly polymerized F-actin in bacteria-triggered ruffles originates from the G-actin pool. Analysing bacterial target sites, we found that bacteria did not show any preferences for the local actin cytoskeleton specificities. Rather, invasion was constrained to a specific 'cell height', due to flagella-mediated near-surface swimming. We found that invasion sites were similar to bacterial binding sites, indicating that S. Tm can induce a permissive invasion site wherever it binds. As micropatterned cells can be infected by many different pathogens they represent a valuable new tool for quantitative analysis of host-pathogen interactions.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Str. 12, 8093, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
van der Heijden J, Finlay BB. Type III effector-mediated processes in Salmonella infection. Future Microbiol 2012; 7:685-703. [DOI: 10.2217/fmb.12.49] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Salmonella is one of the most successful bacterial pathogens that infect humans in both developed and developing countries. In order to cause infection, Salmonella uses type III secretion systems to inject bacterial effector proteins into host cells. In the age of antibiotic resistance, researchers have been looking for new strategies to reduce Salmonella infection. To understand infection and to analyze type III secretion as a potential therapeutic target, research has focused on identification of effectors, characterization of effector functions and how they contribute to disease. Many effector-mediated processes have been identified that contribute to infection but thus far no specific treatment has been found. In this perspective we discuss our current understanding of effector-mediated processes and discuss new techniques and approaches that may help us to find a solution to this worldwide problem.
Collapse
Affiliation(s)
- Joris van der Heijden
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
López FE, de las Mercedes Pescaretti M, Morero R, Delgado MA. Salmonella Typhimurium general virulence factors: A battle of David against Goliath? Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Schleker S, Sun J, Raghavan B, Srnec M, Müller N, Koepfinger M, Murthy L, Zhao Z, Klein-Seetharaman J. The current Salmonella-host interactome. Proteomics Clin Appl 2011; 6:117-33. [PMID: 22213674 DOI: 10.1002/prca.201100083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/11/2022]
Abstract
Salmonella bacteria cause millions of infections and thousands of deaths every year. This pathogen has an unusually broad host range including humans, animals, and even plants. During infection, Salmonella expresses a variety of virulence factors and effectors that are delivered into the host cell triggering cellular responses through protein-protein interactions (PPI) with host cell proteins which make the pathogen's invasion and replication possible. To speed up proteomic efforts in elucidating Salmonella-host interactomes, we carried out a survey of the currently published Salmonella-host PPI. Such a list can serve as the gold standard for computational models aimed at predicting Salmonella-host interactomes through integration of large-scale biological data sources. Manual literature and database search of >2200 journal articles and >100 databases resulted in a gold standard list of currently 62 PPI, including primarily interactions of Salmonella proteins with human and mouse proteins. Only six of these interactions were directly retrievable from PPI databases and 16 were highlighted in databases featuring literature extracts. Thus, the literature survey resulted in the most complete interactome available to date for Salmonella. Pathway analysis using Ingenuity and Broad Gene Set Enrichment Analysis (GSEA) software revealed among general pathways such as MAPK signaling in particular those related to cell death as well as cell morphology, turnover, and interactions, in addition to response to not only Salmonella but also other pathogenic - viral and bacterial - infections. The list of interactions is available at http://www.shiprec.org/indicationslist.htm.
Collapse
Affiliation(s)
- Sylvia Schleker
- Forschungszentrum Jülich, Institute of Complex Systems, Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agbor TA, McCormick BA. Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 2011; 13:1858-69. [PMID: 21902796 DOI: 10.1111/j.1462-5822.2011.01701.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.
Collapse
Affiliation(s)
- Terence A Agbor
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | |
Collapse
|
21
|
The major antigenic membrane protein of "Candidatus Phytoplasma asteris" selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 2011; 6:e22571. [PMID: 21799902 PMCID: PMC3143171 DOI: 10.1371/journal.pone.0022571] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022] Open
Abstract
Phytoplasmas, uncultivable phloem-limited phytopathogenic wall-less bacteria, represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. Phytoplasma membrane proteins are in direct contact with hosts and are presumably involved in determining vector specificity. Such a role has been proposed for phytoplasma transmembrane proteins encoded by circular extrachromosomal elements, at least one of which is a plasmid. Little is known about the interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins. The aims of our work were to identify vector proteins interacting with Amp and to investigate their role in transmission specificity. In controlled transmission experiments, four Hemipteran species were identified as vectors of “Candidatus Phytoplasma asteris”, the chrysanthemum yellows phytoplasmas (CYP) strain, and three others as non-vectors. Interactions between a labelled (recombinant) CYP Amp and insect proteins were analysed by far Western blots and affinity chromatography. Amp interacted specifically with a few proteins from vector species only. Among Amp-binding vector proteins, actin and both the α and β subunits of ATP synthase were identified by mass spectrometry and Western blots. Immunofluorescence confocal microscopy and Western blots of plasma membrane and mitochondrial fractions confirmed the localisation of ATP synthase, generally known as a mitochondrial protein, in plasma membranes of midgut and salivary gland cells in the vector Euscelidius variegatus. The vector-specific interaction between phytoplasma Amp and insect ATP synthase is demonstrated for the first time, and this work also supports the hypothesis that host actin is involved in the internalization and intracellular motility of phytoplasmas within their vectors. Phytoplasma Amp is hypothesized to play a crucial role in insect transmission specificity.
Collapse
|
22
|
Malik-Kale P, Jolly CE, Lathrop S, Winfree S, Luterbach C, Steele-Mortimer O. Salmonella - at home in the host cell. Front Microbiol 2011; 2:125. [PMID: 21687432 PMCID: PMC3109617 DOI: 10.3389/fmicb.2011.00125] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/19/2011] [Indexed: 11/16/2022] Open
Abstract
The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.
Collapse
Affiliation(s)
- Preeti Malik-Kale
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Disease, National Institute of Health Hamilton, MT, USA
| | | | | | | | | | | |
Collapse
|
23
|
Unifying themes in microbial associations with animal and plant hosts described using the gene ontology. Microbiol Mol Biol Rev 2011; 74:479-503. [PMID: 21119014 DOI: 10.1128/mmbr.00017-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbes form intimate relationships with hosts (symbioses) that range from mutualism to parasitism. Common microbial mechanisms involved in a successful host association include adhesion, entry of the microbe or its effector proteins into the host cell, mitigation of host defenses, and nutrient acquisition. Genes associated with these microbial mechanisms are known for a broad range of symbioses, revealing both divergent and convergent strategies. Effective comparisons among these symbioses, however, are hampered by inconsistent descriptive terms in the literature for functionally similar genes. Bioinformatic approaches that use homology-based tools are limited to identifying functionally similar genes based on similarities in their sequences. An effective solution to these limitations is provided by the Gene Ontology (GO), which provides a standardized language to describe gene products from all organisms. The GO comprises three ontologies that enable one to describe the molecular function(s) of gene products, the biological processes to which they contribute, and their cellular locations. Beginning in 2004, the Plant-Associated Microbe Gene Ontology (PAMGO) interest group collaborated with the GO consortium to extend the GO to accommodate terms for describing gene products associated with microbe-host interactions. Currently, over 900 terms that describe biological processes common to diverse plant- and animal-associated microbes are incorporated into the GO database. Here we review some unifying themes common to diverse host-microbe associations and illustrate how the new GO terms facilitate a standardized description of the gene products involved. We also highlight areas where new terms need to be developed, an ongoing process that should involve the whole community.
Collapse
|
24
|
Kim H, White CD, Sacks DB. IQGAP1 in microbial pathogenesis: Targeting the actin cytoskeleton. FEBS Lett 2011; 585:723-9. [PMID: 21295032 DOI: 10.1016/j.febslet.2011.01.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/18/2022]
Abstract
Microbial pathogens cause widespread morbidity and mortality. Central to the pathogens' virulence is manipulation of the host cell's cytoskeleton, which facilitates microbial invasion, multiplication, and avoidance of the innate immune response. IQGAP1 is a ubiquitously expressed scaffold protein that integrates diverse signaling cascades. Research has shown that IQGAP1 binds to and modulates the activity of multiple proteins that participate in bacterial invasion. Here, we review data that support a role for IQGAP1 in infectious disease via its ability to regulate the actin cytoskeleton. In addition, we explore other mechanisms by which IQGAP1 may be exploited by microbial pathogens.
Collapse
Affiliation(s)
- Hugh Kim
- Department of Translational Medicine, Brigham and Women's Hospital and Harvard Medical School, 1 Blackfan Circle, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Carnell MJ, Insall RH. Actin on disease--studying the pathobiology of cell motility using Dictyostelium discoideum. Semin Cell Dev Biol 2011; 22:82-88. [PMID: 21145982 DOI: 10.1016/j.semcdb.2010.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/29/2022]
Abstract
The actin cytoskeleton in eukaryotic cells provides cell structure and organisation, and allows cells to generate forces against membranes. As such it is a central component of a variety of cellular structures involved in cell motility, cytokinesis and vesicle trafficking. In multicellular organisms these processes contribute towards embryonic development and effective functioning of cells of all types, most obviously rapidly moving cells like lymphocytes. Actin also defines and maintains the architecture of complex structures such as neuronal synapses and stereocillia, and is required for basic housekeeping tasks within the cell. It is therefore not surprising that misregulation of the actin cytoskeleton can cause a variety of disease pathologies, including compromised immunity, neurodegeneration, and cancer spread. Dictyostelium discoideum has long been used as a tool for dissecting the mechanisms by which eukaryotic cells migrate and chemotax, and recently it has gained precedence as a model organism for studying the roles of conserved pathways in disease processes. Dictyostelium's unusual lifestyle, positioned between unicellular and multicellular organisms, combined with ease of handling and strong conservation of actin regulatory machinery with higher animals, make it ideally suited for studying actin-related diseases. Here we address how research in Dictyostelium has contributed to our understanding of immune deficiencies and neurological defects in humans, and briefly discuss its future prospects for furthering our understanding of neurodegenerative disorders.
Collapse
|
26
|
Day B, Henty JL, Porter KJ, Staiger CJ. The pathogen-actin connection: a platform for defense signaling in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:483-506. [PMID: 21495845 DOI: 10.1146/annurev-phyto-072910-095426] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.
Collapse
Affiliation(s)
- Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1311, USA.
| | | | | | | |
Collapse
|
27
|
Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 2010; 192:5767-77. [PMID: 20833811 DOI: 10.1128/jb.00624-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica, a common food-borne pathogen, differentially regulates the expression of multiple genes during the infection cycle. These genes encode systems related to motility, adhesion, invasion, and intestinal persistence. Key among them is a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). In addition to the SPI1 T3SS, other systems, including flagella and type 1 fimbriae, have been implicated in Salmonella pathogenesis. In this study, we investigated the dynamic expression of the flagellar, SPI1, and type 1 fimbrial genes. We demonstrate that these genes are expressed in a temporal hierarchy, beginning with the flagellar genes, followed by the SPI1 genes, and ending with the type 1 fimbrial genes. This hierarchy could mirror the roles of these three systems during the infection cycle. As multiple studies have shown that extensive regulatory cross talk exists between these three systems, we also tested how removing different regulatory links between them affects gene expression dynamics. These results indicate that cross talk is critical for regulating gene expression during transitional phases in the gene expression hierarchy. In addition, we identified a novel regulatory link between flagellar and type 1 fimbrial gene expression dynamics, where we found that the flagellar regulator, FliZ, represses type 1 fimbrial gene expression through the posttranscriptional regulation of FimZ. The significance of these results is that they provide the first systematic study of the effect of regulatory cross talk on the expression dynamics of flagellar, SPI1, and type 1 fimbrial genes.
Collapse
|
28
|
Saini S, Ellermeier JR, Slauch JM, Rao CV. The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella. PLoS Pathog 2010; 6:e1001025. [PMID: 20686667 PMCID: PMC2912647 DOI: 10.1371/journal.ppat.1001025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 06/30/2010] [Indexed: 12/17/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.
Collapse
Affiliation(s)
- Supreet Saini
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeremy R. Ellermeier
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
29
|
Valdez Y, Ferreira RBR, Finlay BB. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 2010; 337:93-127. [PMID: 19812981 DOI: 10.1007/978-3-642-01846-6_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Salmonella species can cause typhoid fever and gastroenteritis in humans and pose a global threat to human health. In order to establish a successful infection, Salmonella utilize a large number of genes encoding a variety of virulence factors. Different animal models of infection have been used to better understand the mechanisms underlying each disease including cattle, rodents, and nematodes. To date, a number of different bacterial virulence factors have been identified using such animal models, most of which are secreted by two type three secretion systems (T3SS) encoded within Salmonella pathogenicity islands (SPI) 1 and 2. These proteins alter various host cell pathways, facilitating the invasion of epithelial cells during infection, as well as the survival and replication of Salmonella inside phagocytic cells. On the other hand, host genetics and resistance also play a role in the susceptibility to Salmonella infection. The natural resistance-associated macrophage protein 1 (Nramp1), for example, is critical for host defense, since mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S. Typhimurium. In this chapter, we analyze the different pathogen and host factors that play a role in the dynamic interaction between Salmonella and its host and their impact on disease.
Collapse
Affiliation(s)
- Yanet Valdez
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
30
|
Entry of Spiroplasma citri into Circulifer haematoceps cells involves interaction between spiroplasma phosphoglycerate kinase and leafhopper actin. Appl Environ Microbiol 2010; 76:1879-86. [PMID: 20118377 DOI: 10.1128/aem.02384-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of the phytopathogenic mollicutes, spiroplasmas, and phytoplasmas by their insect vectors mainly depends on their ability to pass through gut cells, to multiply in various tissues, and to traverse the salivary gland cells. The passage of these different barriers suggests molecular interactions between the plant mollicute and the insect vector that regulate transmission. In the present study, we focused on the interaction between Spiroplasma citri and its leafhopper vector, Circulifer haematoceps. An in vitro protein overlay assay identified five significant binding activities between S. citri proteins and insect host proteins from salivary glands. One insect protein involved in one binding activity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as actin. Confocal microscopy observations of infected salivary glands revealed that spiroplasmas colocated with the host actin filaments. An S. citri actin-binding protein of 44 kDa was isolated by affinity chromatography and identified by LC-MS/MS as phosphoglycerate kinase (PGK). To investigate the role of the PGK-actin interaction, we performed competitive binding and internalization assays on leafhopper cultured cell lines (Ciha-1) in which His(6)-tagged PGK from S. citri or purified PGK from Saccharomyces cerevisiae was added prior to the addition of S. citri inoculum. The results suggested that exogenous PGK has no effect on spiroplasmal attachment to leafhopper cell surfaces but inhibits S. citri internalization, demonstrating that the process leading to internalization of S. citri in eukaryotic cells requires the presence of PGK. PGK, regardless of origin, reduced the entry of spiroplasmas into Ciha-1 cells in a dose-dependent manner.
Collapse
|
31
|
Tripathi R, Singh Naorem S, Dureja C, Haldar S, Mondal AK, Raychaudhuri S. VopF, a type III effector protein from a non-O1, non-O139 Vibrio cholerae strain, demonstrates toxicity in a Saccharomyces cerevisiae model. J Med Microbiol 2010; 59:17-24. [PMID: 19779031 DOI: 10.1099/jmm.0.012336-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
VopF, a type III effector protein, has been identified as a contributory factor to the intestinal colonization of type III secretion system-positive, non-O1, non-O139 Vibrio cholerae strains. To gain more insight into the function of VopF, a yeast model was developed. Using this model, it was found that ectopic expression of VopF conferred toxicity in yeast.
Collapse
Affiliation(s)
- Ranjana Tripathi
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Santa Singh Naorem
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Chetna Dureja
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Swati Haldar
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Alok K Mondal
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| | - Saumya Raychaudhuri
- Institute of Microbial Technology, Molecular Biology Division, Chandigarh, Council of Scientific and Industrial Research (CSIR), New Delhi 160036, India
| |
Collapse
|
32
|
Abstract
Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.
Collapse
Affiliation(s)
- Gary J Doherty
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|
33
|
Perrett CA, Jepson MA. Regulation ofSalmonella-induced membrane ruffling by SipA differs in strains lacking other effectors. Cell Microbiol 2009; 11:475-87. [DOI: 10.1111/j.1462-5822.2008.01268.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 2009; 12:117-24. [PMID: 19157959 PMCID: PMC2647982 DOI: 10.1016/j.mib.2008.12.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/27/2008] [Accepted: 12/01/2008] [Indexed: 01/20/2023]
Abstract
Salmonella pathogenesis relies upon the delivery of over thirty specialised effector proteins into the host cell via two distinct type III secretion systems. These effectors act in concert to subvert the host cell cytoskeleton, signal transduction pathways, membrane trafficking and pro-inflammatory responses. This allows Salmonella to invade non-phagocytic epithelial cells, establish and maintain an intracellular replicative niche and, in some cases, disseminate to cause systemic disease. This review focuses on the actions of the effectors on their host cell targets during each stage of Salmonella infection.
Collapse
|
35
|
Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. MOLECULAR PLANT PATHOLOGY 2008; 9:403-23. [PMID: 18705857 PMCID: PMC6640453 DOI: 10.1111/j.1364-3703.2008.00472.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
TAXONOMY Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. HOST RANGE Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. DISEASE SYMPTOMS In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. DISEASE CONTROL The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Brawn LC, Hayward RD, Koronakis V. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 2008; 1:63-75. [PMID: 18005682 PMCID: PMC1885946 DOI: 10.1016/j.chom.2007.02.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 01/05/2007] [Accepted: 02/02/2007] [Indexed: 01/17/2023]
Abstract
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.
Collapse
Affiliation(s)
- Lyndsey C Brawn
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | |
Collapse
|
37
|
Cain RJ, Hayward RD, Koronakis V. Deciphering interplay between Salmonella invasion effectors. PLoS Pathog 2008; 4:e1000037. [PMID: 18389058 PMCID: PMC2268969 DOI: 10.1371/journal.ppat.1000037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/03/2008] [Indexed: 01/26/2023] Open
Abstract
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cisbinary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. Critical to the onset of Salmonella infection is the ability of bacteria to force their own entry (‘invade’) into intestinal cells of their mammalian host from where they replicate, spread and cause damage. To achieve this invasion, Salmonella deliver a cocktail of proteins directly into host target cells. These proteins override host cell communications and remodel cell structure, tricking the normally dormant cells into engulfing the invaders. Although we are beginning to understand the functions of each delivered protein, little is known about how their activities are coordinated. Here we describe new techniques that systematically examine the interplay between the delivered bacterial proteins within the host cell. The results illuminate an unexpectedly complex network of interrelated relationships that must be precisely coordinated to promote bacterial invasion. The data provide new insights into how this important pathogen triggers invasion of host cells during infection.
Collapse
Affiliation(s)
- Robert J. Cain
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Richard D. Hayward
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Vassilis Koronakis
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Prost LR, Sanowar S, Miller SI. Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol Rev 2007; 219:55-65. [PMID: 17850481 DOI: 10.1111/j.1600-065x.2007.00557.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Salmonella enterica is a facultative intracellular pathogen that replicates within macrophages. The interaction of this pathogen with mammalian cells is a complex process involving hundreds of bacterial products that are sensed by and alter mammalian hosts. Numerous bacterial genes and their protein products have been identified that are required for Salmonella to resist killing by host innate immunity and to modify host processes. Many of these genes are regulated by a specific bacterial sensor, the PhoQ protein, which responds to the acidified phagosome environment. PhoQ is a sensor histidine kinase, which when activated in vivo within acidified macrophage phagosomes, regulates cell surface modifications that promote resistance to antimicrobial peptides and oxidative stress, alter the phagosome to promote intracellular survival, and reduce innate immune recognition. In this review, we discuss mechanisms by which Salmonella interacts with macrophages and focus in detail on recent reports describing the role of antimicrobial peptides and pH in PhoQ activation.
Collapse
Affiliation(s)
- Lynne R Prost
- Department of Microbiology, University of Washington, Seattle, WA 98195-7710, USA
| | | | | |
Collapse
|
39
|
Mattoo S, Lee YM, Dixon JE. Interactions of bacterial effector proteins with host proteins. Curr Opin Immunol 2007; 19:392-401. [PMID: 17662586 DOI: 10.1016/j.coi.2007.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/08/2007] [Accepted: 06/08/2007] [Indexed: 12/23/2022]
Abstract
Pathogenic bacteria have evolved several clever survival strategies for manipulating host cell signaling pathways to establish beneficial replicative niches within the host. Recent literature has revealed novel mechanisms adopted by bacteria to manipulate host responses. For instance, host signaling pathways that were traditionally thought to be regulated by phosphorylation events have now been shown to be irreversibly blocked by bacterially-mediated acetylation, beta-elimination, and lytic modifications. This review highlights some of the common host proteins and signaling cascades targeted by such pathogens.
Collapse
Affiliation(s)
- Seema Mattoo
- The Howard Hughes Medical Institute, Leichtag Biomedical Research Building, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0721, USA
| | | | | |
Collapse
|
40
|
A Type III Secretion System in Vibrio cholerae Translocates a Formin/Spire Hybrid-like Actin Nucleator to Promote Intestinal Colonization. Cell Host Microbe 2007; 1:95-107. [DOI: 10.1016/j.chom.2007.03.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/01/2007] [Accepted: 03/22/2007] [Indexed: 12/17/2022]
|
41
|
Sandovsky-Losica H, Chauhan N, Calderone R, Segal E. Gene transcription studies of Candida albicans following infection of HEp2 epithelial cells. Med Mycol 2006; 44:329-34. [PMID: 16772226 DOI: 10.1080/13693780500434701] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previously we observed that infection of HEp2 epithelial cells with Candida albicans results in HEp2 cell actin rearrangement as well as reduced membrane ruffling and motility and that supernatants of a C. albicans culture (Candida metabolite) caused the same changes. In this study, we used microarray analysis to determine changes in gene transcription of C. albicans following infection of HEp2 cells compared to control cultures grown in the absence of HEp2 cells. We observed 201 genes whose regulation was increased at least 2-fold following a 3 h incubation with HEp2 cells as well as 87 genes that are down-regulated. Among the up-regulated genes were ALS2 and ALS5 both of which encode proteins that provide an adherence function for C. albicans. To confirm the changes in ALS transcription, we measured by RT-PCR ALS1-9 at 1 h intervals for a total of 4 h. After 1 h of infection, several of the ALS genes were up-regulated compared to C. albicans grown alone. At 2-4 h, an increase in most of the ALS genes was observed in both infected and control cultures. ALS7 transcription was observed only at 3-4 h, but transcription was similar in both infected and control cultures. By RT-PCR, ALS2 and 5, similar to the microarray data, were significantly increased in infected cells at 3 h. Our results show that gene transcription following the adherence of C. albicans to HEp2 cells includes the up-regulation of genes encoding members of a family of known host recognition adhesins that may be critical to successful colonization and invasion of the organism.
Collapse
Affiliation(s)
- Hana Sandovsky-Losica
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
42
|
Abstract
Over the millennia, pathogens have coevolved with their hosts and acquired the ability to intercept, disrupt, mimic, and usurp numerous signaling pathways of those hosts. The study of host/pathogen interactions thus not only teaches us about the intricate biology of these parasitic invaders but also provides interesting insights into basic cellular processes both at the level of the individual cell and more globally throughout the organism. Host/pathogen relationships also provide insights into the evolutionary forces that shape biological diversity. Here we review a few recent examples of how viruses, bacteria, and parasites manipulate tyrosine kinase-mediated and Rho guanosine triphosphatase-mediated signaling pathways of their hosts to achieve efficient entry, replication, and exit during their infectious cycles.
Collapse
Affiliation(s)
- Sylvia Münter
- Department of Parasitology, Hygiene Institute, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
43
|
Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung HY, Yamaji Y, Nishigawa H, Ugaki M, Namba S. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A 2006; 103:4252-7. [PMID: 16537517 PMCID: PMC1449679 DOI: 10.1073/pnas.0508668103] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many insect-transmissible pathogens are transmitted by specific insect species and not by others, even if they are closely related. The molecular mechanisms underlying such strict pathogen-insect specificity are poorly understood. Candidatus Phytoplasma asteris, OY strain, line W (OY), is a phytopathogenic bacterium transmitted from plant to plant by sap-feeding insect vectors (leafhoppers). Our study focused on an abundant cell-surface membrane protein of the phytoplasma named antigenic membrane protein (Amp), which is not homologous with any reported functional protein. Immunofluorescence microscopy of the phytoplasma-infected insect showed that OY phytoplasma was localized to the microfilaments of the visceral smooth muscle surrounding the insect's intestinal tract. The affinity column assay showed that Amp forms a complex with three insect proteins: actin, myosin heavy chain, and myosin light chain. Amp-microfilament complexes were detected in all OY-transmitting leafhopper species, but not in the non-OY-transmitting leafhoppers, suggesting that the formation of the Amp-microfilament complex is correlated with the phytoplasma-transmitting capability of leafhoppers. Although several studies have reported interactions between pathogens and mammalian microfilaments, this is an example of host-specific interactions between a bacterial surface protein and a host microfilament in insect cells. Our data also suggest that the utilization of a host microfilament may be a universal system for pathogenic bacteria infecting mammals or insects.
Collapse
Affiliation(s)
- Shiho Suzuki
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
| | - Kenro Oshima
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
| | - Shigeyuki Kakizawa
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
| | - Ryo Arashida
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
| | - Hee-Young Jung
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
| | - Yasuyuki Yamaji
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
| | - Hisashi Nishigawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masashi Ugaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shigetou Namba
- *Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; and
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
van Asten AJAM, van Dijk JE. Distribution of "classic" virulence factors among Salmonella spp. ACTA ACUST UNITED AC 2006; 44:251-9. [PMID: 15907446 DOI: 10.1016/j.femsim.2005.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/27/2005] [Accepted: 02/02/2005] [Indexed: 11/16/2022]
Abstract
Whether an infection with Salmonella spp. leads to a disease largely depends on the virulence of the strain and the constitution of the host. The virulence of the strain is determined by so-called virulence factors. Whereas a number of virulence factors of Salmonella have been identified only recently, others have been studied for decades. These latter virulence factors i.e., virulence-plasmids, toxins, fimbriae and flagella are therefore referred to as "classic" virulence factors. Here we present an overview on the distribution of (genes coding for) these virulence factors among Salmonella spp. The pathogenicity islands of Salmonella are also reviewed, all be it briefly, since they contain a major part of the virulence genes.
Collapse
Affiliation(s)
- Alphons J A M van Asten
- Department of Pathobiology, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, P.O. Box 80.158, 3508TD, Utrecht, The Netherlands.
| | | |
Collapse
|
45
|
Abstract
The type III secretion (T3S) pathway allows bacteria to inject effector proteins into the cytosol of target animal or plant cells. T3S systems evolved into seven families that were distributed among Gram-negative bacteria by horizontal gene transfer. There are probably a few hundred effectors interfering with control and signaling in eukaryotic cells and offering a wealth of new tools to cell biologists.
Collapse
|
46
|
Patel JC, Rossanese OW, Galán JE. The functional interface between Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol Sci 2005; 26:564-70. [PMID: 16182381 DOI: 10.1016/j.tips.2005.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 08/05/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
Salmonella is a facultative intracellular pathogen that causes diseases ranging from self-limiting enteritis to typhoid fever. This bacterium uses two type III secretion systems to deliver effector proteins directly into the host cell to promote infection and disease. Recent characterization of these virulence proteins and their host-cell targets is uncovering the molecular mechanisms of Salmonella pathogenesis and is revealing a picture of the atomic interface between this pathogen and its host. This level of analysis provides the possibility of designing novel therapeutics to disrupt infection and disease processes at the molecular level.
Collapse
Affiliation(s)
- Jayesh C Patel
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | | | |
Collapse
|
47
|
Sikora S, Strongin A, Godzik A. Convergent evolution as a mechanism for pathogenic adaptation. Trends Microbiol 2005; 13:522-7. [PMID: 16153847 DOI: 10.1016/j.tim.2005.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 08/11/2005] [Accepted: 08/30/2005] [Indexed: 11/26/2022]
Abstract
The survival of human pathogens depends on their ability to modulate defence pathways in human host cells. This was thought to be attained mainly by pathogen specific "virulence factors". However, pathogens are increasingly being discovered that use distant homologs of the human regulatory proteins as virulence factors. We analyzed several cases of this approach, with a particular focus on virulence proteases. The analysis reveals clear cases of bacterial proteases mimicking the specificity of their human counterparts, such as strong similarities in their active and/or binding sites. With more sensitive tools for distant homology recognition, we could expect to discover many more such cases.
Collapse
Affiliation(s)
- Sergey Sikora
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
48
|
Rottner K, Stradal TEB, Wehland J. Bacteria-host-cell interactions at the plasma membrane: stories on actin cytoskeleton subversion. Dev Cell 2005; 9:3-17. [PMID: 15992537 DOI: 10.1016/j.devcel.2005.06.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exploitation of the host-cell actin cytoskeleton is pivotal for many microbial pathogens to enter cells, to disseminate within and between infected tissues, to prevent their uptake by phagocytic cells, or to promote intimate attachment to the cell surface. To accomplish this, these pathogens have evolved common as well as unique strategies to modulate actin dynamics at the plasma membrane, which will be discussed here, exemplified by a number of well-studied bacterial pathogens.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
49
|
Cain RJ, Hayward RD, Koronakis V. The target cell plasma membrane is a critical interface for Salmonella cell entry effector-host interplay. Mol Microbiol 2005; 54:887-904. [PMID: 15522075 DOI: 10.1111/j.1365-2958.2004.04336.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Salmonella species trigger host membrane ruffling to force their internalization into non-phagocytic intestinal epithelial cells. This requires bacterial effector protein delivery into the target cell via a type III secretion system. Six translocated effectors manipulate cellular actin dynamics, but how their direct and indirect activities are spatially and temporally co-ordinated to promote productive cytoskeletal rearrangements remains essentially unexplored. To gain further insight into this process, we applied mechanical cell fractionation and immunofluorescence microscopy to systematically investigate the subcellular localization of epitope-tagged effectors in transiently transfected and Salmonella-infected cultured cells. Although five effectors contain no apparent membrane-targeting domains, all six localized exclusively in the target cell plasma membrane fraction and correspondingly were visualized at the cell periphery, from where they induced distinct effects on the actin cytoskeleton. Unexpectedly, no translocated effector pool was detectable in the cell cytosol. Using parallel in vitro assays, we demonstrate that the prenylated cellular GTPase Cdc42 is necessary and sufficient for membrane association of the Salmonella GTP exchange factor and GTPase-activating protein mimics SopE and SptP, which have no intrinsic lipid affinity. The data show that the host plasma membrane is a critical interface for effector-target interaction, and establish versatile systems to further dissect effector interplay.
Collapse
Affiliation(s)
- Robert J Cain
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
50
|
Matarrese P, Malorni W. Human immunodeficiency virus (HIV)-1 proteins and cytoskeleton: partners in viral life and host cell death. Cell Death Differ 2005; 12 Suppl 1:932-41. [PMID: 15818415 DOI: 10.1038/sj.cdd.4401582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytoskeletal components play a major role in the human immunodeficiency virus-1 (HIV-1) infection. A wide variety of molecules belonging to the microfilament system, including actin filaments and actin binding proteins, as well as microtubules have a key role in regulating both cell life and death. Cell shape maintenance, cell polarity and cell movements as well as cytoplasmic trafficking of molecules determining cell fate, including apoptosis, are in fact instructed by the cytoskeleton components. HIV infection and viral particle production seem to be controlled by cytoskeleton as well. Furthermore, HIV-associated apoptosis failure can also be regulated by the actin network function. In fact, HIV protein gp120 is able to induce cytoskeleton-driven polarization, thus sensitizing T cells to CD95/Fas-mediated apoptosis. The microfilament system seems thus to be a sort of cytoplasmic supervisor of the viral particle, the host cell and the bystander cell's very fate.
Collapse
Affiliation(s)
- P Matarrese
- Section of Cell Aging and Degeneration, Department of Drug Research and Evaluation, Istituto Superiore di Sanitá, Viale Regina Elena 299, Rome, Italy
| | | |
Collapse
|