1
|
Song M, Tian J, Middleton B, Nguyen CQ, Kaufman DL. GABA Administration Ameliorates Sjogren’s Syndrome in Two Different Mouse Models. Biomedicines 2022; 10:biomedicines10010129. [PMID: 35052808 PMCID: PMC8773584 DOI: 10.3390/biomedicines10010129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltrates in the salivary and lachrymal glands resulting in oral and ocular dryness. There are no clinically approved therapies to slow the progression of SS. Immune cells possess receptors for the neurotransmitter GABA (GABA-Rs) and their activation has immunoregulatory actions. We tested whether GABA administration has potential for amelioration of SS in NOD.B10-H2b and C57BL/6.NOD-Aec1Aec2 mice, two spontaneous SS models. Oral GABA treatment was initiated (1) after the development of sialadenitis but before the onset of overt symptoms, or (2) after the appearance of overt symptoms. When assessed weeks later, GABA-treated mice had greater saliva and tear production, as well as quicker times to salvia flow, in both SS mouse models. This was especially evident when GABA treatment was initiated after the onset of overt disease. This preservation of exocrine function was not accompanied by significant changes in the number or area of lymphocytic foci in the salivary or lachrymal glands of GABA-treated mice and we discuss the possible reasons for these observations. Given that GABA-treatment preserved saliva and tear production which are the most salient symptoms of SS and is safe for consumption, it may provide a new approach to help ameliorate SS.
Collapse
Affiliation(s)
- Min Song
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
| | - Jide Tian
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
| | - Blake Middleton
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
| | - Cuong Q. Nguyen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Daniel L. Kaufman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (M.S.); (J.T.); (B.M.)
- Correspondence: ; Tel.: +1-310-794-9664
| |
Collapse
|
2
|
GABA B-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice. Biomedicines 2021; 9:biomedicines9010043. [PMID: 33418884 PMCID: PMC7825043 DOI: 10.3390/biomedicines9010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Some immune system cells express type A and/or type B γ-aminobutyric acid receptors (GABAA-Rs and/or GABAB-Rs). Treatment with GABA, which activates both GABAA-Rs and GABAB-Rs), and/or a GABAA-R-specific agonist inhibits disease progression in mouse models of type 1 diabetes (T1D), multiple sclerosis, rheumatoid arthritis, and COVID-19. Little is known about the clinical potential of specifically modulating GABAB-Rs. Here, we tested lesogaberan, a peripherally restricted GABAB-R agonist, as an interventive therapy in diabetic NOD mice. Lesogaberan treatment temporarily restored normoglycemia in most newly diabetic NOD mice. Combined treatment with a suboptimal dose of lesogaberan and proinsulin/alum immunization in newly diabetic NOD mice or a low-dose anti-CD3 in severely hyperglycemic NOD mice greatly increased T1D remission rates relative to each monotherapy. Mice receiving combined lesogaberan and anti-CD3 displayed improved glucose tolerance and, unlike mice that received anti-CD3 alone, had some islets with many insulin+ cells, suggesting that lesogaberan helped to rapidly inhibit β-cell destruction. Hence, GABAB-R-specific agonists may provide adjunct therapies for T1D. Finally, the analysis of microarray and RNA-Seq databases suggested that the expression of GABAB-Rs and GABAA-Rs, as well as GABA production/secretion-related genes, may be a more common feature of immune cells than currently recognized.
Collapse
|
3
|
Askenasy N. Less Is More: The Detrimental Consequences of Immunosuppressive Therapy in the Treatment of Type-1 Diabetes. Int Rev Immunol 2015; 34:523-37. [DOI: 10.3109/08830185.2015.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Li L, Nishio J, van Maurik A, Mathis D, Benoist C. Differential response of regulatory and conventional CD4⁺ lymphocytes to CD3 engagement: clues to a possible mechanism of anti-CD3 action? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:3694-704. [PMID: 23986534 PMCID: PMC3932531 DOI: 10.4049/jimmunol.1300408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Several clinical trials have shown anti-CD3 treatment to be a promising therapy for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3(+) regulatory T cells (Tregs) are likely to be involved, but through unknown mechanistic pathways. We profiled the transcriptional consequences in CD4(+) Tregs and conventional T cells (Tconvs) in the first hours and days after anti-CD3 treatment of NOD mice. Anti-CD3 treatment led to a transient transcriptional response, terminating faster than most Ag-induced responses. Most transcripts were similarly induced in Tregs and Tconvs, but several were differential, in particular, those encoding the IL-7R and transcription factors Id2/3 and Gfi1, upregulated in Tregs but repressed in Tconvs. Because IL-7R was a plausible candidate for driving the homeostatic response of Tregs to anti-CD3, we tested its relevance by supplementation of anti-CD3 treatment with IL-7/anti-IL-7 complexes. Although ineffective alone, IL-7 significantly improved the rate of remission induced by anti-CD3. Four anti-human CD3 mAbs exhibited the same differential effect on IL-7R expression in human as in mouse cells, suggesting that the mechanism also underlies therapeutic effect in human cells, and perhaps a rationale for testing a combination of anti-CD3 and IL-7 for the treatment of recent-onset human type 1 diabetes. Thus, systems-level analysis of the response to anti-CD3 in the early phase of the treatment demonstrates different responses in Tregs and Tconvs, and provides new leads to a mechanistic understanding of its mechanism of action in reverting recent-onset diabetes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Drug Synergism
- Gene Expression Regulation/drug effects
- Humans
- Interleukin-7/pharmacology
- Mice
- Mice, Transgenic
- Protein Binding
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Li Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Junko Nishio
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - André van Maurik
- Immuno Inflammation, GlaxoSmithKline, Stevenage, SG1 2NY, United Kingdom
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Vargova L, Zacharovova K, Dovolilova E, Vojtova L, Saudek F. Immunoregulatory Effect of Anti-thymocyte Globulin Monotherapy on Peripheral Lymphoid Tissues of Non-obese Diabetic Mice. Transplant Proc 2011; 43:3277-80. [DOI: 10.1016/j.transproceed.2011.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- L Vargova
- Diabetes Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
6
|
Bevier WC, Trujillo AL, Primbs GB, Bradley MK, Jovanovič L. Oral anti-CD3 monoclonal antibody delays diabetes in non-obese diabetic (NOD) mice: effects on pregnancy and offspring--a preliminary report. Diabetes Metab Res Rev 2011; 27:480-7. [PMID: 21484981 DOI: 10.1002/dmrr.1204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The objective was to observe the effect of oral anti-CD3 monoclonal antibody (mAb) on non-obese diabetic mice, pregnancy, and offspring. METHODS Three protocols are classified as: (1) Twenty non-obese diabetic/ShiLtJ female mice were monitored for type 1 diabetes mellitus. If the blood glucose level was ≥ 250 mg/dL, the mice were treated for 8 days with either 50 or 100 µg oral anti-CD3 monoclonal antibody. If the diabetes resolved, the mice were bred. (2) F1 offspring were monitored for diabetes; 15 female mice became diabetic. Non-diabetic F1 female mice were divided into two groups [ten antibody (Ab) and ten control (C)] and bred. Ab female mice were given 100 µg monoclonal antibody before diabetes development and during pregnancy for 6 weeks. (3) Twenty-five F2 Ab and 23 F2 C mice were monitored. At 15-17 weeks, Ab mice, both female and male, were given 100 µg monoclonal antibody for 8 weeks. RESULTS (1) The diabetes in four female mice treated with 50 µg did not resolve; in three of the six diabetic female mice treated with 100 µg, the diabetes resolved and the mice were bred. The remaining ten non-diabetic female mice were given 100 µg oral monoclonal antibody and then bred. No diabetes developed during pregnancy; 13 litters were born. (2) Three diabetic Ab female mice sustained their pregnancies versus one diabetic C female mouse (p ≤ 0.05). (3) At 30 weeks, six Ab female and three Ab male mice and seven C female and three C male mice developed diabetes. The number of diabetic Ab and C mice was not different; diagnosis age was significantly different-Ab 23.3 ± 5.1 and C 18.8 ± 3.7 weeks (p ≤ 0.05). CONCLUSIONS In female non-obese diabetic mice, oral anti-CD3 monoclonal antibody was effective in reversing diabetes and allowing pregnancy and extending longevity, but it did not prevent diabetes in the offspring.
Collapse
Affiliation(s)
- Wendy C Bevier
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA.
| | | | | | | | | |
Collapse
|
7
|
Ke Y, Jiang G, Sun D, Kaplan HJ, Shao H. Anti-CD3 antibody ameliorates experimental autoimmune uveitis by inducing both IL-10 and TGF-β dependent regulatory T cells. Clin Immunol 2011; 138:311-20. [PMID: 21256812 PMCID: PMC3046397 DOI: 10.1016/j.clim.2010.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/30/2010] [Accepted: 12/21/2010] [Indexed: 01/12/2023]
Abstract
Chronic/recurrent autoimmune (idiopathic) uveitis is difficult to treat and they account for approximately 10% of legal blindness in the Western world. As it has been reported that anti-CD3 antibody can enhance T cell regulatory function, we investigated its effects in vivo on experimental autoimmune uveitis (EAU), a model for autoimmune uveitis in humans. B10RIII mice immunized with an uveitogenic peptide were treated with the F(ab')(2) fragment of anti-CD3 mAb either before or at clinical disease onset. Evaluation of EAU and cellular responses showed that disease was inhibited and the activation and expansion of pathogenic T cells selectively reduced, whereas functions of Treg in vivo were enhanced. Moreover, mice treated with anti-CD3 mAb were resistant to a second challenge with antigen and thus protected from recurrence of disease. Our results demonstrate that anti-CD3 mAb is a potent inhibitor of autoimmune uveitis.
Collapse
Affiliation(s)
- Yan Ke
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Guomin Jiang
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Deming Sun
- Doheny Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA90033, USA
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
8
|
Zhang JL, Sun DJ, Hou CM, Wei YL, Li XY, Yu ZY, Feng JN, Shen BF, Li Y, Xiao H. CD3 mAb treatment ameliorated the severity of the cGVHD-induced lupus nephritis in mice by up-regulation of Foxp3+ regulatory T cells in the target tissue: kidney. Transpl Immunol 2010; 24:17-25. [PMID: 20850528 DOI: 10.1016/j.trim.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 11/30/2022]
Abstract
Teff/Treg imbalance orchestrated the onset and the progression of the lupus nephritis in a DBA/2→B6D2F1 murine model with cGVHD. In this paper, we first used 145-2C11 Ab to treat these human SLE-like diseased animals. The results showed that short-term low-dose anti-CD3 antibody treatment induced a significant remission of established proteinuria, production of autoantibodies, immune complex deposition and renal parenchyma lesions in lupus nephritic mice. Of note, we found a robust up-regulation of Foxp3 mRNA expression in the target tissue: kidney from mice with anti-CD3 antibody treatment compared to those with control IgG treatment. Likewise, an increased renal mRNA abundance for IL-10 was also observed in anti-CD3 antibody treated mice. In contrast, genes associated with inflammation and fibrosis as well as cytokines related to effector T cell responses were down-regulated by anti-CD3 mAb treatment. These findings suggested that short-term low-dose anti-CD3 antibody treatment might induced an IL-10-secreting Foxp3(+) regulatory T cells in this cGVHD target tissue: kidney, that suppressed the activation of effector T cells (Th1, Th2 and Th17), thus ameliorating the severity of the lupus nephritis in mice.
Collapse
Affiliation(s)
- Ji-Lu Zhang
- Department of Biomedicine, Institute of Frontier Medical Sciences, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thayer TC, Wilson SB, Mathews CE. Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39:541-61. [PMID: 20723819 PMCID: PMC2925291 DOI: 10.1016/j.ecl.2010.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 1922, Leonard Thompson received the first injections of insulin prepared from the pancreas of canine test subjects. From pancreatectomized dogs to the more recent development of animal models that spontaneously develop autoimmune syndromes, animal models have played a meaningful role in furthering diabetes research. Of these animals, the nonobese diabetic (NOD) mouse is the most widely used for research in type 1 diabetes (T1D) because the NOD shares several genetic and immunologic traits with the human form of the disease. In this article, the authors discuss the similarities and differences in NOD and human T1D and the potential role of NOD mice in future preclinical studies, aiming to provide a better understanding of the genetic and immune defects that lead to T1D.
Collapse
Affiliation(s)
- Terri C Thayer
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
10
|
Nishio J, Feuerer M, Wong J, Mathis D, Benoist C. Anti-CD3 therapy permits regulatory T cells to surmount T cell receptor-specified peripheral niche constraints. ACTA ACUST UNITED AC 2010; 207:1879-89. [PMID: 20679403 PMCID: PMC2931163 DOI: 10.1084/jem.20100205] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Treatment with anti-CD3 is a promising therapeutic approach for autoimmune diabetes, but its mechanism of action remains unclear. Foxp3+ regulatory T (T reg) cells may be involved, but the evidence has been conflicting. We investigated this issue in mice derived from the NOD model, which were engineered so that T reg populations were perturbed, or could be manipulated by acute ablation or transfer. The data highlighted the involvement of Foxp3+ cells in anti-CD3 action. Rather than a generic influence on all T reg cells, the therapeutic effect seemed to involve an ∼50–60-fold expansion of previously constrained T reg cell populations; this expansion occurred not through conversion from Foxp3− conventional T (T conv) cells, but from a proliferative expansion. We found that T reg cells are normally constrained by TCR-specific niches in secondary lymphoid organs, and that intraclonal competition restrains their possibility for conversion and expansion in the spleen and lymph nodes, much as niche competition limits their selection in the thymus. The strong perturbations induced by anti-CD3 overcame these niche limitations, in a process dependent on receptors for interleukin-2 (IL-2) and IL-7.
Collapse
Affiliation(s)
- Junko Nishio
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
11
|
Shoda L, Kreuwel H, Gadkar K, Zheng Y, Whiting C, Atkinson M, Bluestone J, Mathis D, Young D, Ramanujan S. The Type 1 Diabetes PhysioLab Platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse. Clin Exp Immunol 2010; 161:250-67. [PMID: 20491795 DOI: 10.1111/j.1365-2249.2010.04166.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease whose clinical onset signifies a lifelong requirement for insulin therapy and increased risk of medical complications. To increase the efficiency and confidence with which drug candidates advance to human type 1 diabetes clinical trials, we have generated and validated a mathematical model of type 1 diabetes pathophysiology in a well-characterized animal model of spontaneous type 1 diabetes, the non-obese diabetic (NOD) mouse. The model is based on an extensive survey of the public literature and input from an independent scientific advisory board. It reproduces key disease features including activation and expansion of autoreactive lymphocytes in the pancreatic lymph nodes (PLNs), islet infiltration and beta cell loss leading to hyperglycaemia. The model uses ordinary differential and algebraic equations to represent the pancreas and PLN as well as dynamic interactions of multiple cell types (e.g. dendritic cells, macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, regulatory T cells, beta cells). The simulated features of untreated pathogenesis and disease outcomes for multiple interventions compare favourably with published experimental data. Thus, a mathematical model reproducing type 1 diabetes pathophysiology in the NOD mouse, validated based on accurate reproduction of results from multiple published interventions, is available for in silico hypothesis testing. Predictive biosimulation research evaluating therapeutic strategies and underlying biological mechanisms is intended to deprioritize hypotheses that impact disease outcome weakly and focus experimental research on hypotheses likely to provide insight into the disease and its treatment.
Collapse
Affiliation(s)
- L Shoda
- Entelos Inc., Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu HY, Center EM, Tsokos GC, Weiner HL. Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. Lupus 2009; 18:586-96. [PMID: 19433458 PMCID: PMC2753460 DOI: 10.1177/0961203308100511] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lupus is an antibody-mediated autoimmune disease. The production of pathogenic, class switched and affinity maturated autoantibodies in lupus is dependent on T cell help. A potential mechanism of disease pathogenesis is a lack of control of pathogenic T helper cells by regulatory T cells in lupus. It has been repeatedly shown that the naturally occurring CD4+CD25+ regulatory T cells in lupus prone mice and patients with SLE are defective both in frequency and function. Thus, the generation of inducible regulatory T cells that can control T cell help for autoantibody production is a potential avenue for the treatment of SLE. We have found that oral administration of anti-CD3 monoclonal antibody attenuated lupus development and arrested on-going disease in lupus prone SNF1 mice. Oral anti-CD3 induces a CD4+CD25-LAP+ regulatory T cell that secrets high levels of TGF-beta and suppresses in vitro in TFG-beta-dependent fashion. Animals treated with oral anti-CD3 had less glomerulonephritis and diminished levels of anti-dsDNA autoantibodies. Oral anti-CD3 led to a downregulation of IL-17+CD4+ICOS-CXCR5+ follicular helper T cells, CD138+ plasma cells and CD73+ mature memory B cells. Our results show that oral anti-CD3 induces CD4+CD25-LAP+ regulatory T cells that suppress lupus in mice and is associated with downregulation of T cell help for autoantibody production.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies/administration & dosage
- Antibodies/pharmacology
- Antibodies/therapeutic use
- Autoantibodies/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- CD3 Complex/immunology
- Cell Proliferation
- DNA/immunology
- Disease Models, Animal
- Female
- Glomerulonephritis/prevention & control
- Interleukin-17/metabolism
- Interleukin-2 Receptor alpha Subunit/metabolism
- Kidney/pathology
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Male
- Mice
- Mice, Inbred NZB
- Spleen/pathology
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- H Y Wu
- Brigham and Women's Hospital and Harvard Medical School Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
13
|
Inhibition of destructive autoimmune arthritis in FcgammaRIIa transgenic mice by small chemical entities. Immunol Cell Biol 2008; 87:3-12. [PMID: 19030019 DOI: 10.1038/icb.2008.82] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interaction of immune complexes with the human Fc receptor, FcgammaRIIa, initiates the release of inflammatory mediators and is implicated in the pathogenesis of human autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, so this FcR is a potential target for therapy. We have used the three-dimensional structure of an FcgammaRIIa dimer to design small molecule inhibitors, modeled on a distinct groove and pocket created by receptor dimerization, adjacent to the ligand-binding sites. These small chemical entities (SCEs) blocked immune complex-induced platelet activation and aggregation and tumor necrosis factor secretion from macrophages in a human cell line and transgenic mouse macrophages. The SCE appeared specific for FcgammaRIIa, as they inhibited only immune complex-induced responses and had no effect on responses to stimuli unrelated to FcR, for example platelet stimulation with arachidonic acid. In vivo testing of the SCE in FcgammaRIIa transgenic mice showed that they inhibited the development and stopped the progression of collagen-induced arthritis (CIA). The SCEs were more potent than methotrexate and anti-CD3 in sustained suppression of CIA. Thus, in vitro and in vivo activity of these SCE FcgammaRIIa receptor antagonists demonstrated their potential as anti-inflammatory agents for autoimmune diseases involving immune complexes.
Collapse
|
14
|
Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso A, Wu H, Chen ML, Gandhi R, Miller A, Maron R, Weiner HL. New immunosuppressive approaches: oral administration of CD3-specific antibody to treat autoimmunity. J Neurol Sci 2008; 274:9-12. [PMID: 18804221 PMCID: PMC3167084 DOI: 10.1016/j.jns.2008.07.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/10/2008] [Accepted: 07/24/2008] [Indexed: 01/12/2023]
Abstract
One of the major goals for the immunotherapy of autoimmune diseases is the induction of regulatory T cells that mediate immunologic tolerance. Parenteral administration of anti-CD3 monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We have found that oral administration of anti-CD3 monoclonal antibody is biologically active in the gut and suppresses experimental autoimmune encephalomyelitis both prior to disease induction and at the height of disease. Oral anti-CD3 antibody acts by inducing a unique type of regulatory T cell characterized by latency-associated peptide (LAP) on its cell surface that functions in vivo and in vitro via TGF-beta dependent mechanism. Orally delivered antibody would not have side effects including cytokine release syndromes, thus oral anti-CD3 antibody is clinically applicable for chronic therapy. These findings identify a novel and powerful immunologic approach that is widely applicable for the treatment of human autoimmune conditions.
Collapse
Affiliation(s)
- Hirofumi Ochi
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michal Abraham
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hiroki Ishikawa
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dan Frenkel
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kaiyong Yang
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Alexandre Basso
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Henry Wu
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mei-Ling Chen
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Roopali Gandhi
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ariel Miller
- Carmel Medical Center, Neuroimmunology Unit, Department of Neurology, 7 Michal Street, Haifa 34362, Israel
| | - Ruth Maron
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Howard L. Weiner
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
15
|
Wu HY, Quintana FJ, Weiner HL. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6038-50. [PMID: 18941193 PMCID: PMC2753458 DOI: 10.4049/jimmunol.181.9.6038] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD3 Complex/immunology
- CD4 Antigens/biosynthesis
- Cells, Cultured
- Down-Regulation/immunology
- Female
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/therapeutic use
- Inducible T-Cell Co-Stimulator Protein
- Interleukin-10/metabolism
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/biosynthesis
- Interleukin-2 Receptor alpha Subunit/metabolism
- Latent TGF-beta Binding Proteins/biosynthesis
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/prevention & control
- Male
- Mice
- Mice, Inbred NZB
- Nasal Mucosa/immunology
- Receptors, CXCR5/antagonists & inhibitors
- Receptors, CXCR5/biosynthesis
- T-Lymphocytes, Helper-Inducer/cytology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Henry Yim Wu
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
16
|
Abraham M, Karni A, Dembinsky A, Miller A, Gandhi R, Anderson D, Weiner HL. In vitro induction of regulatory T cells by anti-CD3 antibody in humans. J Autoimmun 2008; 30:21-8. [PMID: 18191540 PMCID: PMC2239265 DOI: 10.1016/j.jaut.2007.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Therapy with anti-CD3 antibody is effective in controlling models of autoimmune diseases and can reverse or prevent rejection of grafts. We studied the in vitro immunomodulatory effect of anti-CD3 treated human T cells. CD4(+) T cells were stimulated with plate-bound anti-CD3 and cultured for 12 days after which they were cultured with autologous peripheral blood mononuclear cells (PBMCs) and stimulated with soluble anti-CD3. We found that CD4(+) T cells that were stimulated with anti-CD3 (T(alphaCD3)) markedly suppressed the proliferation and cytokine production of autologous PBMCs. These regulatory T cells were not induced by incubation with isotype control (T(control)) antibody or when anti-CD3 was combined with high doses of anti-CD28 (T(alphaCD3/CD28)). T(alphaCD3) regulatory cells were anergic and produced lower levels of IFN-gamma, TNF-alpha and IL-2, and higher levels of TGF-beta than T(control) or T(alphaCD3/CD28). There were no differences in the expression of CD25 or CTLA4 on T(alphaCD3) as compared to T(control) or T(alphaCD3/CD28), and CD4(+) CD25(-) T(alphaCD3) cells were identical to CD4(+) CD25(+) T(alphaCD3) cells in their in vitro suppressive properties. Recombinant IL-2 in vitro abrogated the suppressive effect of T(alphaCD3). The suppressive effect was not related to apoptosis, was independent of HLA since T(alphaCD3) also suppressed allogeneic PBMCs, and was not related to soluble factors. Finally, no suppression was observed when non-T cells were removed from culture or when cultures were stimulated with plate-bound anti-CD3, consistent with the ability of T(alphaCD3) to downregulate CD80 on dendritic cells in co-culture experiments. Thus, we have identified human T cells with strong in vitro regulatory properties induced in vitro by anti-CD3 which appear to act in a non-HLA restricted fashion by affecting antigen presenting cells.
Collapse
Affiliation(s)
- Michal Abraham
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Inoue Y, Kaifu T, Sugahara-Tobinai A, Nakamura A, Miyazaki JI, Takai T. Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:764-74. [PMID: 17617565 DOI: 10.4049/jimmunol.179.2.764] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes mellitus (T1D) in humans is an organ-specific autoimmune disease in which pancreatic islet beta cells are ruptured by autoreactive T cells. NOD mice, the most commonly used animal model of T1D, show early infiltration of leukocytes in the islets (insulitis), resulting in islet destruction and diabetes later. NOD mice produce various islet beta cell-specific autoantibodies, although it remains a subject of debate regarding whether these autoantibodies contribute to the development of T1D. Fc gammaRs are multipotent molecules that play important roles in Ab-mediated regulatory as well as effector functions in autoimmune diseases. To investigate the possible role of Fc gammaRs in NOD mice, we generated several Fc gammaR-less NOD lines, namely FcR common gamma-chain (Fc Rgamma)-deficient (NOD.gamma(-/-)), Fc gammaRIII-deficient (NOD.III(-/-)), Fc gammaRIIB-deficient (NOD.IIB(-/-)), and both Fc Rgamma and Fc gammaRIIB-deficient NOD (NOD.null) mice. In this study, we show significant protection from diabetes in NOD.gamma(-/-), NOD.III(-/-), and NOD.null, but not in NOD.IIB(-/-) mice even with grossly comparable production of autoantibodies among them. Insulitis in NOD.gamma(-/-) mice was also alleviated. Adoptive transfer of bone marrow-derived dendritic cells or NK cells from NOD mice rendered NOD.gamma(-/-) animals more susceptible to diabetes, suggesting a possible scenario in which activating Fc gammaRs on dendritic cells enhance autoantigen presentation leading to the activation of autoreactive T cells, and Fc gammaRIII on NK cells trigger Ab-dependent effector functions and inflammation. These findings highlight the critical roles of activating Fc gammaRs in the development of T1D, and indicate that Fc gammaRs are novel targets for therapies for T1D.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Department of Experimental Immunology, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Ishikawa H, Ochi H, Chen ML, Frenkel D, Maron R, Weiner HL. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes 2007; 56:2103-9. [PMID: 17456848 DOI: 10.2337/db06-1632] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-CD3 monoclonal antibody (mAb) has been shown to induce tolerance and to be an effective treatment for diabetes both in animal models and in human trials. We have shown that anti-CD3 mAb given orally is biologically active in the gut and suppresses experimental autoimmune encephalitis by the induction of a regulatory T-cell that expresses latency-associated peptide (LAP) on its surface. In the present study, we investigated the effect of oral anti-CD3 mAb on the prevention of autoimmune diabetes in AKR mice in which the low-dose streptozocin (STZ) model induces autoimmunity to the beta-cells of the islets. We found that oral anti-CD3 mAb given at doses of 50 and 250 microg/feeding suppressed the incidence of diabetes in this model with the best effects seen at the 50 microg/dose. Associated with suppression, we observed decreased cell proliferation in the spleen and conversion of T-helper (Th)1 responses into Th2/Th3 responses in the periphery, including the pancreatic lymph nodes. Oral anti-CD3 mAb increased the expression of LAP on CD4(+) T-cells, and these cells could adoptively transfer protection. Protection by oral anti-CD3 was transforming growth factor-beta dependent. Our results demonstrate that oral anti-CD3 is effective in the model of STZ-induced diabetes and may be a useful form of therapy for type 1 diabetes in humans.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- CD3 Complex/immunology
- CD4 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/biosynthesis
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Immunotherapy
- Insulin/metabolism
- Intestinal Absorption
- Intestines/drug effects
- Intestines/immunology
- Male
- Mice
- Mice, Inbred AKR
- Pancreas/metabolism
- Spleen/drug effects
- Spleen/metabolism
- Streptozocin/pharmacology
- Transforming Growth Factor beta/immunology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso AS, Wu H, Chen ML, Gandhi R, Miller A, Maron R, Weiner HL. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+ CD25- LAP+ T cells. Nat Med 2006; 12:627-35. [PMID: 16715091 DOI: 10.1038/nm1408] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 04/24/2006] [Indexed: 12/13/2022]
Abstract
A major goal of immunotherapy for autoimmune diseases and transplantation is induction of regulatory T cells that mediate immunologic tolerance. The mucosal immune system is unique, as tolerance is preferentially induced after exposure to antigen, and induction of regulatory T cells is a primary mechanism of oral tolerance. Parenteral administration of CD3-specific monoclonal antibody is an approved therapy for transplantation in humans and is effective in autoimmune diabetes. We found that orally administered CD3-specific antibody is biologically active in the gut and suppresses autoimmune encephalomyelitis both before induction of disease and at the height of disease. Orally administered CD3-specific antibody induces CD4+ CD25- LAP+ regulatory T cells that contain latency-associated peptide (LAP) on their surface and that function in vitro and in vivo through a TGF-beta-dependent mechanism. These findings identify a new immunologic approach that is widely applicable for the treatment of human autoimmune conditions.
Collapse
MESH Headings
- Administration, Oral
- Adoptive Transfer
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Cricetinae
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Peptides/genetics
- Peptides/immunology
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Hirofumi Ochi
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shoda LKM, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HTC. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 2005; 23:115-26. [PMID: 16111631 DOI: 10.1016/j.immuni.2005.08.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes (T1D) animal models such as the nonobese diabetic (NOD) mouse have improved our understanding of disease pathophysiology, but many candidate therapeutics identified therein have failed to prevent/cure human disease. We have performed a comprehensive evaluation of disease-modifying agents tested in the NOD mouse based on treatment timing, duration, study length, and efficacy. Interestingly, some popular tenets regarding NOD interventions were not confirmed: all treatments do not prevent disease, treatment dose and timing strongly influence efficacy, and several therapies have successfully treated overtly diabetic mice. The analysis provides a unique perspective on NOD interventions and suggests that the response of this model to therapeutic interventions can be a useful predictor of the human response as long as careful consideration is given to treatment dose, timing, and protocols; more thorough investigation of these parameters should improve clinical translation.
Collapse
|
21
|
Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal Versus Polyclonal Antibodies: Distinguishing Characteristics, Applications, and Information Resources. ILAR J 2005; 46:258-68. [PMID: 15953833 DOI: 10.1093/ilar.46.3.258] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibodies are host proteins that comprise one of the principal effectors of the adaptive immune system. Their utility has been harnessed as they have been and continue to be used extensively as a diagnostic and research reagent. They are also becoming an important therapeutic tool in the clinician's armamentarium to treat disease. Antibodies are utilized for analysis, purification, and enrichment, and to mediate or modulate physiological responses. This overview of the structure and function of polyclonal and monoclonal antibodies describes features that distinguish one from the other. A limited review of their use as specific research, diagnostic, and therapeutic reagents and a list of printed and electronic resources that can be utilized to garner additional information on these topics are also included.
Collapse
Affiliation(s)
- Neil S Lipman
- Research Animal Resource Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
22
|
Bottino R, Lemarchand P, Trucco M, Giannoukakis N. Gene- and cell-based therapeutics for type I diabetes mellitus. Gene Ther 2003; 10:875-89. [PMID: 12732873 DOI: 10.1038/sj.gt.3302015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes mellitus, an autoimmune disorder is an attractive candidate for gene and cell-based therapy. From the use of gene-engineered immune cells to induce hyporesponsiveness to autoantigens to islet and beta cell surrogate transplants expressing immunoregulatory genes to provide a local pocket of immune privilege, these strategies have demonstrated proof of concept to the point where translational studies can be initiated. Nonetheless, along with the proof of concept, a number of important issues have been raised by the choice of vector and expression system as well as the point of intervention; prophylactic or therapeutic. An assessment of the current state of the science and potential leads to the conclusion that some strategies are ready for safety trials while others require varying degrees of technical and conceptual refinement.
Collapse
Affiliation(s)
- R Bottino
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|