1
|
Gong Y, Wang S, Fang Z, Hu X, Li Y, Che Y, Tan Z, Su B, Ge M, Pan Z. POLR1F promotes proliferation and stemness of anaplastic thyroid cancer by activating F2R/p38 MAPK signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119963. [PMID: 40250711 DOI: 10.1016/j.bbamcr.2025.119963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most aggressive cancers characterized by a rapid growth rate. Dysregulation of RNA polymerase (Pol) is critical for cancer development. However, little is known about its role and mechanism in ATC. In the present study, the expression of Pol family members is screened in a large-cohort proteome containing 113 ATCs and 20 normal thyroid samples. Combined with the mRNA levels and gene dependency scores, we find that RNA Polymerase I Subunit F (POLR1F) is significantly upregulated in ATC tissues with the strongest gene effect among the Pol family members. The results are confirmed in ATC tissues and cell lines, revealing that POLR1F mainly locates in the nucleus and expresses stronger than that in normal thyrocytes. Silencing POLR1F in ATC cell lines significantly inhibit cell proliferation, colony formation, and sphere sizes. POLR1F knockdown dramatically reduces ATC tumor growth in both zebrafish and nude mouse xenograft models. RNA sequencing reveals that the coagulation factor thrombin receptor (F2R) is a downstream target of POLR1F, which participates in the p38 MAPK pathway. POLR1F promotes the H3K4 methylation at the F2R promoter by reducing the binding of demethylase KDM5C to H3K4me3, thereby enhancing F2R transcription. These results demonstrate that POLR1F maintains ATC stemness and growth by activating F2R/p38 MAPK signaling, shedding light on the essential role of POLR1F in ATC progression.
Collapse
Affiliation(s)
- Yingying Gong
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Shanshan Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ziwen Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China
| | - Baochun Su
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, China.
| |
Collapse
|
2
|
Hou C, Tian GG, Hu S, Chen B, Li X, Xu B, Cao Y, Le W, Hu R, Chen H, Zhang Y, Fang Q, Zhang M, Wang Z, Zhang Z, Zhang J, Wei Z, Yao G, Wang Y, Yin P, Guo Y, Tong G, Teng X, Sun Y, Cao Y, Wu J. RNA polymerase I is essential for driving the formation of 3D genome in early embryonic development in mouse, but not in human. Genome Med 2025; 17:57. [PMID: 40390095 PMCID: PMC12087037 DOI: 10.1186/s13073-025-01476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/21/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Three-dimensional (3D) chromatin architecture undergoes dynamic reorganization during mammalian gametogenesis and early embryogenesis. While mouse studies have shown species-specific patterns as well as mechanisms underlying de novo organization, these remain poorly characterized in humans. Although RNA polymerases II and III have been shown to regulate chromatin structure, the potential role of RNA polymerase I (Pol I), which drives ribosomal RNA production, in shaping 3D genome organization during these developmental transitions has not been investigated. METHODS We employed a modified low-input in situ Hi-C approach to systematically compare 3D genome architecture dynamics from gametogenesis through early embryogenesis in human and mouse. Complementary Smart-seq2 for low-input transcriptomics, CUT&Tag for Pol I profiling, and Pol I functional inhibition assays were performed to elucidate the mechanisms governing chromatin organization. RESULTS Our study revealed an extensive reorganization of the 3D genome from human oogenesis to early embryogenesis, displaying significant differences with the mouse, including dramatically attenuated topologically associating domains (TADs) at germinal vesicle (GV) stage oocytes. The 3D genome reconstruction timing is a fundamental difference between species. In human, reconstruction initiates at the 4-cell stage embryo in human, while in mouse, it commences at the 2-cell stage embryo. We discovered that Pol I is crucial for establishing the chromatin structures during mouse embryogenesis, but not in human embryos. Intriguingly, the absence of Pol I transcription weakens TAD structure in mouse female germline stem cells, whereas it fortifies it in human counterparts. CONCLUSIONS These observed interspecies distinctions in chromatin organization dynamics provide novel insights into the evolutionary divergence of chromatin architecture regulation during early mammalian development. Our findings provide mechanistic insights into species-specific chromatin organization during germ cell and embryonic development and have potential implications for fertility preservation and birth defect prevention.
Collapse
Affiliation(s)
- Changliang Hou
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shuanggang Hu
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Beili Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoyong Li
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Xu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuedi Cao
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Le
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Rong Hu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Yan Zhang
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qian Fang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Man Zhang
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxia Wang
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinfu Zhang
- Department of Reproductive Medicine, Guanghua HospitalAffiliated to, Shanghai University of Traditional Chinese Medicine , 540 Xinhua Road, Shanghai, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guangxin Yao
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yefan Wang
- Sheng Yushou Center of Cell Biology and Immunology , School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Yin
- Shuguang Hospital affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya Guo
- Sheng Yushou Center of Cell Biology and Immunology , School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
| | - Xiaoming Teng
- Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
3
|
Yan G, Li X, Yu X, Zhai C, Li W, Ma L. Argonaute-driven programmable multi-enzyme complex assembly on ribosomal RNA scaffolds. Int J Biol Macromol 2025; 311:143974. [PMID: 40334882 DOI: 10.1016/j.ijbiomac.2025.143974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Scaffold-based multi-enzyme assembly strategies have significantly advanced biocatalysis by enhancing reaction efficiency through precise spatial organization of enzymes. While DNA- and protein-based scaffolds have been extensively studied, RNA scaffolds present unique advantages, including structural flexibility, dynamic regulation, and functional diversity. However, their application in vitro has been limited due to challenges related to stability and cost. Here, we developed a programmable RNA scaffold system that leverages catalytically inactive MbpAgo to spatially organize natural protein macromolecules into multi-enzyme complexes for in vitro cascade reactions. This strategy significantly enhances the catalytic efficiency of multi-enzyme systems in vitro. We utilized Förster resonance energy transfer experiments demonstrated tunable protein localization along the scaffold. By designing short guide DNAs (gDNAs) to direct MbpAgo-enzyme assembly onto yeast ribosomal RNA scaffolds, we achieved precise positioning of three enzymes in the ATP biosynthesis pathway, resulting in a 5.5-fold increase in catalytic yield after 3 h compared to scaffold-free multi-enzyme complexes. Additionally, the modular design of the Ago-gDNA-RNA scaffold system allows for dynamic reconfiguration of enzyme arrangements through simple modifications of gDNAs, enabling adaptability to diverse multi-enzyme reactions. This study underscores the potential of Argonaute-mediated RNA scaffolds as a versatile and efficient platform for in vitro multi-enzyme assembly.
Collapse
Affiliation(s)
- Guangbo Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xia Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wenqiang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
4
|
Minami A, Nishi K, Yamada R, Jinnai G, Shima H, Oishi S, Akagawa H, Aono T, Hidaka M, Masaki H, Kuzuyama T, Noda Y, Ogawa T. The ribonuclease RNase T2 mediates selective autophagy of ribosomes induced by starvation in Saccharomyces cerevisiae. J Biol Chem 2025:108554. [PMID: 40294649 DOI: 10.1016/j.jbc.2025.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
RNase T2 is a conserved ribonuclease, playing essential and diverse roles despite its simple enzymatic activity. Saccharomyces cerevisiae RNase T2, known as Rny1p, is stress-responsive and localizes in the vacuole. Upon starvation, ribosomes are degraded by autophagy, in which Rny1p mediates rRNA degradation. However, whether the ribosomal degradation is selective or non-selective is still being determined in S. cerevisiae. Here, we elucidated novel aspects of ribosome degradation mechanisms and the function of Rny1p in stress response. We discovered that most ribosomes are selectively degraded, whose mechanism differs from the previously reported selective degradation process called "ribophagy." Rsa1p, a factor involved in assembling 60S ribosomal subunits, is revealed to interact with Atg8p and act as a receptor for selective ribosome degradation in the cytosol. The accumulation of rRNA in vacuoles, due to lack of Rny1p, leads to a decrease in non-selective autophagic activity. This is one of the reasons for the inability of Rny1p-deficient strains to adapt to starvation conditions. Rny1p is also reported to be secreted and associated with the cell wall. We revealed that a C-terminal extension of Rny1p, characteristic in some fungal RNase T2, is required to anchor the cell wall. Some non-fungal RNase T2 proteins also have C-terminal extensions. However, their sequences and structures differ from those of fungal RNase T2, suggesting that their biological functions may also be distinct. The diversity of C-terminal extensions across different organisms is thought to be one reason why RNase T2 plays various roles.
Collapse
Affiliation(s)
- Atsushi Minami
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kohei Nishi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Rikusui Yamada
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Gai Jinnai
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hikari Shima
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Sakiko Oishi
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hirofumi Akagawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toshihiro Aono
- Agro-Biotechnology Research Center (AgTECH), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Makoto Hidaka
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Haruhiko Masaki
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomohisa Kuzuyama
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoichi Noda
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tetsuhiro Ogawa
- Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Dai Y, Wu D, Li N, Ma C, Zhang Y, Gao N. Cryo-EM structure of the AAA+ SPATA5 complex and its role in human cytoplasmic pre-60S maturation. Nat Commun 2025; 16:3806. [PMID: 40268917 PMCID: PMC12019325 DOI: 10.1038/s41467-025-58894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Eukaryotic ribosome biogenesis is an energy-consuming process involving many ATPase-driven steps. In yeast, AAA+ protein Drg1 releases an assembly factor Rlp24, a placeholder for Rpl24, from pre-60S particles just exported to cytosol. The equivalent process in human cells involves SPATA5 (Drg1 homolog) and additional factors. However, the mechanistic details remain unclear. Here we reveal that SPATA5 forms a 4:2:2:2 complex with SPATA5L1, C1orf109, and CINP. This complex features an N-terminal ring made of C1orf109, CINP and NTDs of SPATA5/SPATA5L1, and two hexameric AAA+ ATPase rings. Intriguingly, a conserved cysteine C672 in the P-loop of SPATA5 is sulfinylated, generating an inactive conformation incompatible with ATP binding. We also obtained a cryo-EM structure of pre-60S-bound SPATA5 complex. Different from yeast, the recognition of the pre-60S particle is mediated by human-specific factor CINP, through two distinct sets of interactions: one with GTPBP4 and the other with ES27A. Taken together, these data provide structural basis for understanding the cytoplasmic maturation of the pre-60S, and reveal human-specific features that might be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
- Yuhao Dai
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Damu Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
6
|
Zencir S, Dilg D, Bruzzone M, Stutz F, Soudet J, Shore D, Albert B. A two-step regulatory mechanism dynamically controls histone H3 acetylation by SAGA complex at growth-related promoters. Nucleic Acids Res 2025; 53:gkaf276. [PMID: 40207626 PMCID: PMC11983098 DOI: 10.1093/nar/gkaf276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Acetylation of histone H3 at residue K9 (H3K9ac) is a dynamically regulated mark associated with transcriptionally active promoters in eukaryotes. However, our understanding of the relationship between H3K9ac and gene expression remains mostly correlative. In this study, we identify a large suite of growth-related (GR) genes in yeast that undergo a particularly strong down-regulation of both transcription and promoter-associated H3K9ac upon stress, and delineate the roles of transcriptional activators (TAs), repressors, SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase, and RNA-polymerase II in this response. We demonstrate that H3K9 acetylation states are orchestrated by a two-step mechanism driven by the dynamic binding of transcriptional repressors (TRs) and activators, that is independent of transcription. In response to stress, promoter release of TAs at GR genes is a prerequisite for rapid reduction of H3K9ac, whereas binding of TRs is required to establish a hypo-acetylated, strongly repressed state.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - David Shore
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| |
Collapse
|
7
|
Lee M, Kang B, Shin MK, Kim Y, Kim H, Lee S, Roh TY, Kim T. Nutrient starvation-induced Hda1C rewiring: coordinated regulation of transcription and translation. Nucleic Acids Res 2025; 53:gkaf256. [PMID: 40248913 PMCID: PMC12006795 DOI: 10.1093/nar/gkaf256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
In yeast, Hda1 histone deacetylase complex (Hda1C) plays an important role in transcriptional regulation by modulating histone acetylation. We here explored the changes in Hda1C binding in nutrient-rich and -starved conditions. Chromatin immunoprecipitation sequencing revealed that starvation alters RNA Pol II and Hda1C binding to coding genes in a highly correlated manner. Interestingly, we discovered RNA Pol II transcription-independent recruitment of Hda1C to intergenic regions, particularly the upstream regulatory sequences (URS) of ribosomal protein (RP) genes, which are enriched with Rap1 binding sites. Under nutrient starvation, Rap1 contributes to the recruitment of Hda1C to these URS regions, where Hda1C deacetylates histones, thereby fine-tuning basal gene expression and delaying RP gene reactivation. Furthermore, Hda1C is also required for RNA Pol I transcription of ribosomal RNAs (rRNAs) and RNA Pol III transcription of transfer RNA (tRNA) genes, especially in nutrient-limited conditions. Significantly, Hda1C mutants are sensitive to translation inhibitors and display altered ribosome profiles. Thus, Hda1C may coordinate transcriptional regulation within the nucleus with translation control in the cytoplasm and could be a key regulator of gene expression responses to nutrient stress.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byunghee Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Min-Kyung Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- Sysgenlab Inc., Pohang 37673, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Munoff NJ, Zeberl BJ, Palmer MA, Decatur WA, Walker BM, Adala JD, Szemere ZK, Fakhouri AM, Knutson BA. Specific DNA features of the RNA polymerase I core promoter element targeted by core factor. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195088. [PMID: 40216226 DOI: 10.1016/j.bbagrm.2025.195088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/08/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
RNA polymerase I (Pol I) is essential for ribosomal RNA (rRNA) synthesis, driving ribosome biogenesis in eukaryotes. Transcription initiation by Pol I requires core factor (CF) binding to the core element (CE) of the ribosomal DNA (rDNA) promoter. Despite structural conservation across species, significant sequence variability suggests CF recognizes DNA through structural features rather than specific sequences. We investigated CF's DNA binding preferences to elucidate the role of DNA structural properties in CE recognition. Analysis of CE sequences from 35 fungal species revealed conserved structural features, notably a rigid AT-rich patch at positions -22 to -20 and a conserved G base pair at position -24. Competition-based electrophoretic mobility shift assays (EMSA) with single base-pair substitutions showed CF tolerates mutations at many positions but is sensitive to changes in the AT-rich patch. Loss of CF binding correlated with alterations in DNA structural properties such as increased bendability, decreased curvature, widened minor groove width, and altered helix twist. In vitro SELEX experiments identified novel CE sequences preferentially bound by CF, exhibiting increased GC content, higher bendability, and decreased curvature despite lacking sequence conservation. Classification based on bendability profiles revealed CF preferentially binds bendable sequences. In vivo selection assays confirmed these findings, demonstrating consistent CF binding preferences within a cellular context. Our results indicate that CF recognizes and binds to the CE primarily through specific DNA structural features rather than nucleotide sequences. Structural properties like bendability, curvature, and minor groove width are critical determinants of CF binding, facilitating effective Pol I transcription initiation.
Collapse
Affiliation(s)
- Nathan J Munoff
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Brian J Zeberl
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Matthew A Palmer
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Wayne A Decatur
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Bridget M Walker
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Jyoti D Adala
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Zsuzsa K Szemere
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Aula M Fakhouri
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America
| | - Bruce A Knutson
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, United States of America.
| |
Collapse
|
9
|
Qin L, Pan Y, Xue S, Yan Z, Xiao C, Liu X, Yuan D, Hou J, Huang M. Multi-Omics Analysis Reveals Impacts of LincRNA Deletion on Yeast Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406873. [PMID: 39951012 PMCID: PMC11967807 DOI: 10.1002/advs.202406873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/05/2025] [Indexed: 04/05/2025]
Abstract
Non-coding RNAs (ncRNAs) are widespread across various genomic regions and play a crucial role in modulating gene expression and cellular functions, thereby increasing biological complexity. However, the relationship between ncRNAs and the production of heterologous recombinant proteins (HRPs) remains elusive. Here, a yeast library is constructed by deleting long intergenic ncRNAs (lincRNAs), and 21 lincRNAs that affect α-amylase secretion are identified. Targeted deletions of SUT067, SUT433, and CUT782 are found to be particularly effective. Transcriptomic and metabolomic analyses of the top three strains indicate improvements in energy metabolism and cytoplasmic translation, which enhances ATP supply and protein synthesis. Moreover, a yeast strain, derived from the SUT433 deletion, that can secrete ≈4.1 g L⁻1 of α-amylase in fed-batch cultivation through the modification of multiple targets, is engineered. This study highlights the significant potential of lincRNAs in modulating cellular metabolism, providing deep insights and strategies for the development of more efficient protein-producing cell factories.
Collapse
Affiliation(s)
- Ling Qin
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Yuyang Pan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Songlyu Xue
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhibo Yan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Chufan Xiao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Xiufang Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Dan Yuan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Jin Hou
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Mingtao Huang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
10
|
Hall AN, Morton EA, Walters R, Cuperus JT, Queitsch C. Phenotypic tolerance for rDNA copy number variation within the natural range of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644675. [PMID: 40196474 PMCID: PMC11974728 DOI: 10.1101/2025.03.21.644675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The genes for ribosomal RNA (rRNA) are encoded by ribosomal DNA (rDNA), whose structure is notable for being present in arrays of tens to thousands of tandemly repeated copies in eukaryotic genomes. The exact number of rDNA copies per genome is highly variable within a species, with differences between individuals measuring in potentially hundreds of copies and megabases of DNA. The extent to which natural variation in rDNA copy number impacts whole-organism phenotypes such as fitness and lifespan is poorly understood, in part due to difficulties in manipulating such large and repetitive tracts of DNA even in model organisms. Here, we used the natural resource of copy number variation in C. elegans wild isolates to generate new tools and investigated the phenotypic consequences of this variation. Specifically, we generated a panel of recombinant inbred lines (RILs) using a laboratory strain derivative with ∼130 haploid rDNA copies and a wild isolate with ∼417 haploid rDNA copies, one of the highest validated C. elegans rDNA copy number arrays. We find that rDNA copy number is stable in the RILs, rejecting prior hypotheses that predicted copy number instability and copy number reversion. To isolate effects of rDNA copy number on phenotype, we produced a series of near isogenic lines (NILs) with rDNA copy numbers representing the high and low end of the rDNA copy number spectrum in C. elegans wild isolates. We find no correlation between rDNA copy number and phenotypes of rRNA abundance, competitive fitness, early life fertility, lifespan, or global transcriptome under standard laboratory conditions. These findings demonstrate a remarkable ability of C. elegans to tolerate substantial variation in a locus critical to fundamental cell function. Our study provides strain resources for future investigations into the boundaries of this tolerance.
Collapse
|
11
|
Petfalski E, Winz ML, Grelewska-Nowotko K, Turowski TW, Tollervey D. Multiple mechanisms of termination modulate the dynamics of RNAPI transcription. Cell Rep 2025; 44:115325. [PMID: 39999833 DOI: 10.1016/j.celrep.2025.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.
Collapse
Affiliation(s)
- Elisabeth Petfalski
- Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK
| | - Marie-Luise Winz
- Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK
| | | | - Tomasz W Turowski
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warszawa, Poland.
| | - David Tollervey
- Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK.
| |
Collapse
|
12
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
13
|
Tan ZY, Cai 蔡舒君 S, Paithankar SA, Liu T, Nie X, Shi J, Gan 甘露 L. Macromolecular and cytological changes in fission yeast G0 nuclei. J Cell Sci 2025; 138:jcs263654. [PMID: 40013339 DOI: 10.1242/jcs.263654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
When starved of nitrogen, cells of the fission yeast Schizosaccharomyces pombe enter a quiescent 'G0' state with smaller nuclei and transcriptional repression. The genomics of S. pombe G0 cells has been well studied, but much of its nuclear cell biology remains unknown. Here, we use confocal microscopy, immunoblots and electron cryotomography to investigate the cytological, biochemical and ultrastructural differences between S. pombe proliferating, G1-arrested and G0 cell nuclei, with an emphasis on the histone acetylation, RNA polymerase II fates and macromolecular complex packing. Compared to proliferating cells, G0 cells have lower levels of histone acetylation, nuclear RNA polymerase II and active transcription. The G0 nucleus has similar macromolecular crowding yet fewer chromatin-associated multi-megadalton globular complexes. Induced histone hyperacetylation during nitrogen starvation results in cells that have larger nuclei and therefore chromatin that is less compact. However, these histone-hyperacetylated cells remain transcriptionally repressed with similar nuclear crowding. Canonical nucleosomes - those that resemble the crystal structure - are rare in proliferating, G1-arrested and G0 cells. Our study therefore shows that extreme changes in nucleus physiology are possible without extreme reorganization at the macromolecular level.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Shujun Cai 蔡舒君
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Saayli A Paithankar
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Xin Nie
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| | - Lu Gan 甘露
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, 117543Singapore
| |
Collapse
|
14
|
Tutak K, Karbstein K. Ribophagy relies on Rpl12. Nat Cell Biol 2025; 27:377-378. [PMID: 39934333 DOI: 10.1038/s41556-024-01594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Affiliation(s)
- Katarzyna Tutak
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Katrin Karbstein
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Pathak J, Selvamani SB, Srivastava S, Gopal A, T C S, Ramasamy GG, Thiruvengadam V, Mohan M, Sharma A, Kumar S, Srivastava S, Jha GK, Sushil SN. miR-92a-3p regulates egg fertilization through ribogenesis in the invasive fall armyworm Spodoptera frugiperda. Int J Biol Macromol 2025; 295:139637. [PMID: 39788231 DOI: 10.1016/j.ijbiomac.2025.139637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Understanding the epigenetic molecular mechanisms (EMMs) of reproduction is crucial for developing advanced and targeted control strategies for Spodoptera frugiperda. Differential expression analysis revealed 11 known miRNAs with varying expression levels, including nine upregulated and two downregulated miRNAs, in virgin females compared with males. The predictive analysis identified 426 target genes for these miRNAs, with ribogenesis highlighted as a key process in oogenesis and egg fertilization. This study also investigated the expression of miRNAs in both virgin and mated male and female S. frugiperda, with a focus on their roles in reproduction. A strong negative correlation was observed between miRNA expression levels and their target hub genes, confirming the transcriptional regulation by miRNAs. Additionally, protein-protein interaction (PPI) network identified the gene CG5033 (BOP1), as a central hub, was also predicted to be the target of miR-92a-3p in S. frugiperda, is involved in the maturation of large ribosomal RNA subunits. This study further provided experimental evidence that either the depletion of miR-92a-3p in virgin females or the knockdown of BOP1 in virgin males led to the production of infertile eggs post-mating. These findings validate the regulatory role of the miR-92a-3p - BOP1 interaction and underscore its importance in oogenesis and fertilization.
Collapse
Affiliation(s)
- Jyoti Pathak
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Selva Babu Selvamani
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Subhi Srivastava
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Ashwitha Gopal
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Suman T C
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India.
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India.
| | - M Mohan
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| | - Anu Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Sanjeev Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Sudhir Srivastava
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Girish Kumar Jha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistical Research Institute, Pusa, New Delhi 110012, India
| | - Satya N Sushil
- ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H. A. Farm Post, Bellary Road, Hebbal, Bengaluru - 560024, India
| |
Collapse
|
16
|
Hartnett D, Dotto M, Aguirre A, Brandao S, Chauca M, Chiang S, Cronin M, Deokar N, Martin A, McCune Z, Onwusogh J, Paulino-Cruz A, Gonzalez Soto AD, Swaray A, Verdiner M, Rayah M, Arnone JT. Systematic Characterization and Analysis of the Freeze-Thaw Tolerance Gene Set in the Budding Yeast, Saccharomyces cerevisiae. Int J Mol Sci 2025; 26:2149. [PMID: 40076774 PMCID: PMC11900043 DOI: 10.3390/ijms26052149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a widely utilized model system with myriad applications in terms of industrial, biotechnology, and synthetic biology purposes. One such application is the biosynthesis of commercially and medically important bioactive compounds and their precursors, which oftentimes require culturing conditions at low temperatures to optimize production yield rather than cellular fitness. To lend insight into genetic modifications that may assist this goal, this work focuses on a systematic analysis of the genes that result in an increase in survival following freezing. At present, these genes have been identified in a wide variety of S. cerevisiae wild-type backgrounds-that vary significantly in their properties and behaviors-and in the conditions that led to the annotation of the freeze-thaw survival phenotype. In this work, we report a complete characterization of the thermal tolerance and viability for the freeze-thaw gene family following a standardized protocol within a unified genetic background, the extensively used BY4741 laboratory strain. Our results reveal that five out of these six genes are linked to increased viability in response to both freeze-thaw stress as well as enhanced survival during a heat shock stressor. Follow-up analysis characterized the local spatial effects that gene modification at each locus causes when utilizing the common kanamycin resistance cassette (KanMX6) for the creation of mutant strains and engineering purposes.
Collapse
Affiliation(s)
- Donovan Hartnett
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Michael Dotto
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Ashley Aguirre
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Sophia Brandao
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Melanie Chauca
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Sandra Chiang
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Madison Cronin
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Niti Deokar
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Autum Martin
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Zuri McCune
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Joseph Onwusogh
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | | | | | - Aisha Swaray
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Maxwell Verdiner
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| | - Majda Rayah
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - James T. Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
- W.E.B. du Bois Scholars Institute, Inc., Princeton, NJ 08542, USA
| |
Collapse
|
17
|
Lichauco C, Foss EJ, Gatbonton-Schwager T, Athow NF, Lofts B, Acob R, Taylor E, Marquez JJ, Lao U, Miles S, Bedalov A. Sir2 and Fun30 regulate ribosomal DNA replication timing via MCM helicase positioning and nucleosome occupancy. eLife 2025; 13:RP97438. [PMID: 39831552 PMCID: PMC11745493 DOI: 10.7554/elife.97438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.
Collapse
Affiliation(s)
- Carmina Lichauco
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Eric J Foss
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Tonibelle Gatbonton-Schwager
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Nelson F Athow
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Robin Acob
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Erin Taylor
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - James J Marquez
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Uyen Lao
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Shawna Miles
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Biochemistry and Department of Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
18
|
Kozubowski L, Berman J. The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance. FEMS Microbiol Rev 2025; 49:fuaf001. [PMID: 39809571 PMCID: PMC11756289 DOI: 10.1093/femsre/fuaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/26/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025] Open
Abstract
Phenotypic heterogeneity in genetically clonal populations facilitates cellular adaptation to adverse environmental conditions while enabling a return to the basal physiological state. It also plays a crucial role in pathogenicity and the acquisition of drug resistance in unicellular organisms and cancer cells, yet the exact contributing factors remain elusive. In this review, we outline the current state of understanding concerning the contribution of phenotypic heterogeneity to fungal pathogenesis and antifungal drug resistance.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Eukaryotic Pathogens Innovation Center, Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
19
|
Sidi T, Bahiri-Elitzur S, Tuller T, Kolodny R. Predicting gene sequences with AI to study codon usage patterns. Proc Natl Acad Sci U S A 2025; 122:e2410003121. [PMID: 39739812 PMCID: PMC11725940 DOI: 10.1073/pnas.2410003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe and the bacteria Escherichia coli and Bacillus subtilis to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels. Our models significantly outperformed naïve frequency-based approaches, demonstrating that there are learnable dependencies in evolutionary-selected codon usage. The prediction accuracy advantage of our models is greater for highly expressed genes and is greater in bacteria than eukaryotes, supporting the hypothesis that there is a monotonic relationship between selective pressure for complex codon patterns and effective population size. In S. cerevisiae and bacteria, our models were more accurate for longer proteins, suggesting that the learned patterns may be related to cotranslational folding. Gene functionality and conservation were also important determinants that affect the performance of our models. Finally, we showed that using information encoded in homologous proteins has only a minor effect on prediction accuracy, perhaps due to complex codon-usage codes in genes undergoing rapid evolution. Our study employing contemporary AI methods offers a unique perspective and a deep-learning-based prediction tool for evolutionary-selected codons. We hope that these can be useful to optimize codon usage in endogenous and heterologous proteins.
Collapse
Affiliation(s)
- Tomer Sidi
- Department of Computer Science, University of Haifa, Haifa3303221, Israel
| | - Shir Bahiri-Elitzur
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv6139001, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv6139001, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv6139001, Israel
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Haifa3303221, Israel
| |
Collapse
|
20
|
Friedson B, Willis SD, Shcherbik N, Campbell AN, Cooper KF. The CDK8 kinase module: A novel player in the transcription of translation initiation and ribosomal genes. Mol Biol Cell 2025; 36:ar2. [PMID: 39565680 PMCID: PMC11742111 DOI: 10.1091/mbc.e24-04-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
Survival following stress is dependent upon reprogramming transcription and translation. Communication between these programs following stress is critical for adaptation but is not clearly understood. The Cdk8 kinase module (CKM) of the Mediator complex modulates the transcriptional response to various stresses. Its involvement in regulating translational machinery has yet to be elucidated, highlighting an existing gap in knowledge. Here, we report that the CKM positively regulates a subset of ribosomal protein (RP) and translation initiation factor (TIF)-encoding genes under physiological conditions in Saccharomyces cerevisiae. In mouse embryonic fibroblasts and HCT116 cells, the CKM regulates unique sets of RP and TIF genes, demonstrating some conservation of function across species. In yeast, this is mediated by Cdk8 phosphorylation of one or more transcription factors which control RP and TIF expression. Conversely, the CKM is disassembled following nutrition stress, permitting repression of RP and TIF genes. The CKM also plays a transcriptional role important for promoting cell survival, particularly during translational machinery stress triggered by ribosome-targeting antibiotics. Furthermore, in mammalian cells, the activity of CDK8 and its paralogue, CDK19, promotes cell survival following ribosome inhibition. These results provide mechanistic insights into the CKM's role in regulating expression of a subset of genes associated with translation.
Collapse
Affiliation(s)
- Brittany Friedson
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Natalia Shcherbik
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Alicia N. Campbell
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtual Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084
| |
Collapse
|
21
|
Liu Z, Gao H, Li G, Yu Y, Cui M, Peng H, Guan X, Zhang X, Zhang Z, Shen X, Chen S, Li D, Chen L, Xiao Y, Chen W, Liu L, Wang Q. Genome-wide CRISPR-based screen identifies E2F transcription factor 1 as a regulator and therapeutic target of aristolochic acid-induced nephrotoxicity. ENVIRONMENT INTERNATIONAL 2025; 195:109234. [PMID: 39724681 DOI: 10.1016/j.envint.2024.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Aristolochic Acid I (AAI) is widely present in traditional Chinese medicines derived from the Aristolochia genus and is known to cause significant damage to renal tubular epithelial cells. Genome-wide screening has proven to be a powerful tool in identifying critical genes associated with the toxicity of exogenous substances. To identify undiscovered key genes involved in AAI-induced renal toxicity, a genome-wide CRISPR library screen was conducted in the human kidney-2 (HK-2) cell line. Among the altered sgRNAs, a significant enrichment of those targeting the E2F transcription factor 1 (E2F1) gene was observed in surviving HK-2 cells in the AAI-treated group. Interestingly, the role of E2F1 had not been previously explored in studies of AAI nephrotoxicity. Further investigations revealed that E2F1 promotes apoptosis by activating the p53 signaling pathway and upregulating pro-apoptotic genes, such as BAK and BAX. Additionally, using the high-throughput experiment- and reference-guided database of traditional Chinese medicine (HERB), cannabidiol (CBD) was identified as an inhibitor of E2F1 by suppressing the activity of NF-κB pathway. In vitro and in vivo models confirmed that CBD inhibits AAI-induced upregulation of E2F1, thereby suppressing p53-mediated apoptosis. In conclusion, this study highlights the crucial role of E2F1 in AAI-induced renal cell apoptosis and identifies CBD as a novel therapeutic candidate for mitigating AAI nephrotoxicity.
Collapse
Affiliation(s)
- Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guoliang Li
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510300, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Honghao Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchao Guan
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xue Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhihan Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Shen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lili Liu
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510300, China.
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
22
|
Oberemok VV, Puzanova YV, Gal’chinsky NV. The 'genetic zipper' method offers a cost-effective solution for aphid control. FRONTIERS IN INSECT SCIENCE 2024; 4:1467221. [PMID: 39726916 PMCID: PMC11670321 DOI: 10.3389/finsc.2024.1467221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024]
Abstract
Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and in vitro nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid Schizolachnus pineti, causing mortality rate of 76.06 ± 7.68 on the 12th day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing Golinscide: UrRNA is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.
Collapse
Affiliation(s)
- Vol V. Oberemok
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens—National Scientific Centre of the Russian Academy of Sciences, Yalta, Republic of Crimea
| | - Yelizaveta V. Puzanova
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
| | - Nikita V. Gal’chinsky
- Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea
| |
Collapse
|
23
|
Kocik RA, Gasch AP. Regulated resource reallocation is transcriptionally hard wired into the yeast stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626567. [PMID: 39677602 PMCID: PMC11642900 DOI: 10.1101/2024.12.03.626567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many organisms maintain generalized stress responses activated by adverse conditions. Although details vary, a common theme is the redirection of transcriptional and translational capacity away from growth-promoting genes and toward defense genes. Yet the precise roles of these coupled programs are difficult to dissect. Here we investigated Saccharomyces cerevisiae responding to salt as a model stressor. We used molecular, genomic, and single-cell microfluidic methods to examine the interplay between transcription factors Msn2 and Msn4 that induce stress-defense genes and Dot6 and Tod6 that transiently repress growth-promoting genes during stress. Surprisingly, loss of Dot6/Tod6 led to slower acclimation to salt, whereas loss of Msn2/4 produced faster growth during stress. This supports a model where transient repression of growth-promoting genes accelerates the Msn2/4 response, which is essential for acquisition of subsequent peroxide tolerance. Remarkably, we find that Msn2/4 regulate DOT6 mRNA production, influence Dot6 activation dynamics, and are required for full repression of growth-promoting genes. Thus, Msn2/4 directly regulate resource reallocation needed to mount their own response. We discuss broader implications for common stress responses across organisms.
Collapse
Affiliation(s)
- Rachel A. Kocik
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
24
|
Kubitscheck U, Siebrasse JP. Pre-ribosomal particles from nucleoli to cytoplasm. Nucleus 2024; 15:2373052. [PMID: 38940456 PMCID: PMC11216097 DOI: 10.1080/19491034.2024.2373052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
The analysis of nucleocytoplasmic transport of proteins and messenger RNA has been the focus of advanced microscopic approaches. Recently, it has been possible to identify and visualize individual pre-ribosomal particles on their way through the nuclear pore complex using both electron and light microscopy. In this review, we focused on the transport of pre-ribosomal particles in the nucleus on their way to and through the pores.
Collapse
Affiliation(s)
- Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Jan Peter Siebrasse
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
26
|
Dai B, Wang H, Li W, Zhang P, Liu T, Li X. Ozone Priming Enhanced Low Temperature Tolerance of Wheat (Triticum Aestivum L.) based on Physiological, Biochemical and Transcriptional Analyses. PLANT & CELL PHYSIOLOGY 2024; 65:1689-1704. [PMID: 39096526 DOI: 10.1093/pcp/pcae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/05/2024]
Abstract
Low temperature significantly inhibits plant growth in wheat (Triticum aestivum L.), prompting the exploration of effective strategies to mitigate low temperature stress. Several priming methods enhance low temperature stress tolerance; however, the role of ozone priming remains unclear in wheat. Here we found ozone priming alleviated low temperature stress in wheat. Transcriptome analysis showed that ozone priming positively modulated the 'photosynthesis-antenna proteins' pathway in wheat under low temperature. This was confirmed by the results of ozone-primed plants, which had higher trapped energy flux and electron transport flux per reaction, and less damage to chloroplasts than non-primed plants under low temperature. Ozone priming also mitigated the overstimulation of glutathione metabolism and induced the accumulation of total ascorbic acid and glutathione, as well as maintaining redox homeostasis in wheat under low temperature. Moreover, gene expressions and enzyme activities in glycolysis pathways were upregulated in ozone priming compared with non-priming after the low temperature stress. Furthermore, exogenous antibiotics significantly increased low temperature tolerance, which further proved that the inhibition of ribosome biogenesis by ozone priming was involved in low temperature tolerance in wheat. In conclusion, ozone priming enhanced wheat's low temperature tolerance through promoting light-harvesting capacity, redox homeostasis and carbohydrate metabolism, as well as inhibiting ribosome biogenesis.
Collapse
Affiliation(s)
- Bing Dai
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang 110036, China
| | - Weiqiang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- Jilin Da'an Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Peng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Tianhao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Xiangnan Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
27
|
Babl V, Girke P, Kruse S, Pinz S, Hannig K, Schächner C, Hergert K, Wittner M, Seufert W, Milkereit P, Tschochner H, Griesenbeck J. Establishment of closed 35S ribosomal RNA gene chromatin in stationary Saccharomyces cerevisiae cells. Nucleic Acids Res 2024; 52:12208-12226. [PMID: 39373531 PMCID: PMC11551728 DOI: 10.1093/nar/gkae838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024] Open
Abstract
As a first step in eukaryotic ribosome biogenesis RNA polymerase (Pol) I synthesizes a large ribosomal RNA (rRNA) precursor from multicopy rRNA gene loci. This process is essential for cellular growth and regulated in response to the cell's physiological state. rRNA gene transcription is downregulated upon growth to stationary phase in the yeast Saccharomyces cerevisiae. This reduction correlates with characteristic changes in rRNA gene chromatin structure from a transcriptionally active 'open' state to a non-transcribed 'closed' state. The conserved lysine deacetylase Rpd3 was shown to be required for this chromatin transition. We found that Rpd3 is needed for tight repression of Pol I transcription upon growth to stationary phase as a prerequisite for the establishment of the closed chromatin state. We provide evidence that Rpd3 regulates Pol I transcription by adjusting cellular levels of the Pol I preinitiation complex component core factor (CF). Importantly, our study identifies CF as the complex limiting the number of open rRNA genes in exponentially growing and stationary cells.
Collapse
Affiliation(s)
- Virginia Babl
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Girke
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sebastian Kruse
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sophia Pinz
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Katharina Hannig
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Christopher Schächner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Kristin Hergert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manuel Wittner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Wolfgang Seufert
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Regensburg Center of Biochemistry (RCB), Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, Lehrstühle Biochemie III und Genetik, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
28
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
29
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
30
|
Mendes Felgueira CA, Schneider DA. Growth-phase-dependent control of rRNA synthesis in Saccharomyces cerevisiae. mSphere 2024; 9:e0049324. [PMID: 39360849 PMCID: PMC11520348 DOI: 10.1128/msphere.00493-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
Saccharomyces cerevisiae is one of the most well-studied model organisms used in the scientific community. Its ease of manipulation, accessible growth conditions, short life cycle, and conserved eukaryotic metabolic pathways make it a useful model organism. Consequently, yeast has been used to investigate a myriad of phenomena, from microbial to human studies. Most of the research performed using this model organism utilizes yeast cell populations when they are growing exponentially, a growth phase aptly termed exponential or log phase. However, log phase encompasses several yeast generations and ranges several hours of yeast growth, meaning that there is a potential for variability during this "homogenous" growth phase. Cells in log phase require robust ribosome biogenesis to support their rapid growth and cell division. Interestingly, during log phase, ribosomal RNA (rRNA) synthesis (which is the first and rate limiting step in ribosome biosynthesis) has been shown to decrease prior to growth rate decline in stationary phase. In this study, we utilized several genomic and biochemical methods to elucidate the relationship between subphases of log phase and rRNA synthesis. Our results indicate that as yeast cells progress through subphases of log growth, both polymerase I transcription and rRNA processing are repressed. Overall, this study establishes a growth-phase-dependent control of rRNA synthesis that unexpectedly begins prior to the switch to stationary phase (i.e., pre-diauxic shift) as a putative mechanism of anticipating nutrient starvation.IMPORTANCESaccharomyces cerevisiae is a ubiquitously used model organism in a wide range of scientific research fields. The conventional practice when performing yeast studies is to investigate its properties during logarithmic growth phase. This growth phase is defined as the period during which the cell population doubles at regular intervals, and nutrients are not limiting. However, this growth phase lasts hours and encompasses several yeast cell generations which consequently introduce heterogeneity to log growth phase depending on their time of harvest. This study reveals significant changes in the transcriptomic landscape even in early stages of exponential growth. The overall significance of this work is the revelation that even the seemingly homogenous log growth phase is far more diverse than was previously believed.
Collapse
Affiliation(s)
- Catarina A. Mendes Felgueira
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Lichauco C, Foss EJ, Gatbonton-Schwager T, Athow NF, Lofts B, Acob R, Taylor E, Marquez JJ, Lao U, Miles S, Bedalov A. Sir2 and Fun30 regulate ribosomal DNA replication timing via MCM helicase positioning and nucleosome occupancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586113. [PMID: 38585982 PMCID: PMC10996493 DOI: 10.1101/2024.03.21.586113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well-known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). We have previously reported that in the absence of SIR2, a derepressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both, activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.
Collapse
Affiliation(s)
- Carmina Lichauco
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Eric J. Foss
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tonibelle Gatbonton-Schwager
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nelson F. Athow
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Brandon Lofts
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Robin Acob
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erin Taylor
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - James J. Marquez
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Uyen Lao
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Shawna Miles
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antonio Bedalov
- Translational Science and Therapeutics Division, Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Biochemistry and Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
32
|
Erath J, Kemper D, Mugo E, Jacoby A, Valenzuela E, Jungers CF, Beatty WL, Hashem Y, Jovanovic M, Djuranovic S, Djuranovic SP. A rapid, facile, and economical method for the isolation of ribosomes and translational machinery for structural and functional studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619433. [PMID: 39484553 PMCID: PMC11526893 DOI: 10.1101/2024.10.21.619433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Ribosomes are macromolecular RNA-protein complexes that constitute the central machinery responsible for protein synthesis and quality control in the cell. Ribosomes also serve as a hub for multiple non-ribosomal proteins and RNAs that control protein synthesis. However, the purification of ribosomes and associated factors for functional and structural studies requires a large amount of starting biological material and a tedious workflow. Current methods are challenging as they combine ultracentrifugation, the use of sucrose cushions or gradients, expensive equipment, and multiple hours to days of work. Here, we present a rapid, facile, and cost-effective method to isolate ribosomes from in vivo or in vitro samples for functional and structural studies using single-step enrichment on magnetic beads - RAPPL (RNA Affinity Purification using Poly-Lysine). Using mass spectrometry and western blot analyses, we show that poly-lysine coated beads incubated with E. coli and HEK-293 cell lysates enrich specifically for ribosomes and ribosome-associated factors. We demonstrate the ability of RAPPL to isolate ribosomes and translation-associated factors from limited material quantities, as well as a wide variety of biological samples: cell lysates, cells, organs, and whole organisms. Using RAPPL, we characterized and visualized the different effects of various drugs and translation inhibitors on protein synthesis. Our method is compatible with traditional ribosome isolation. It can be used to purify specific complexes from fractions of sucrose gradients or in tandem affinity purifications for ribosome-associated factors. Ribosomes isolated using RAPPL are functionally active and can be used for rapid screening and in vitro characterization of ribosome antibiotic resistance. Lastly, we demonstrate the structural applications of RAPPL by purifying and solving the 2.7Å cryo-EM structure of ribosomes from the Cryptococcus neoformans, an encapsulated yeast causing cryptococcosis. Ribosomes and translational machinery purified with this method are suitable for subsequent functional or structural analyses and provide a solid foundation for researchers to carry out further applications - academic, clinical, or industrial - on ribosomes.
Collapse
Affiliation(s)
- Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Danielle Kemper
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elisha Mugo
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Courtney F. Jungers
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
33
|
Tutaj H, Tomala K, Pirog A, Marszałek M, Korona R. Extreme positive epistasis for fitness in monosomic yeast strains. eLife 2024; 12:RP87455. [PMID: 39417696 PMCID: PMC11486488 DOI: 10.7554/elife.87455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The loss of a single chromosome in a diploid organism halves the dosage of many genes and is usually accompanied by a substantial decrease in fitness. We asked whether this decrease simply reflects the joint damage caused by individual gene dosage deficiencies. We measured the fitness effects of single heterozygous gene deletions in yeast and combined them for each chromosome. This predicted a negative growth rate, that is, lethality, for multiple monosomies. However, monosomic strains remained alive and grew as if much (often most) of the damage caused by single mutations had disappeared, revealing an exceptionally large and positive epistatic component of fitness. We looked for functional explanations by analyzing the transcriptomes. There was no evidence of increased (compensatory) gene expression on the monosomic chromosomes. Nor were there signs of the cellular stress response that would be expected if monosomy led to protein destabilization and thus cytotoxicity. Instead, all monosomic strains showed extensive upregulation of genes encoding ribosomal proteins, but in an indiscriminate manner that did not correspond to their altered dosage. This response did not restore the stoichiometry required for efficient biosynthesis, which probably became growth limiting, making all other mutation-induced metabolic defects much less important. In general, the modular structure of the cell leads to an effective fragmentation of the total mutational load. Defects outside the module(s) currently defining fitness lose at least some of their relevance, producing the epiphenomenon of positive interactions between individually negative effects.
Collapse
Affiliation(s)
- Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| | - Katarzyna Tomala
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| | - Marzena Marszałek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
- Doctoral School of Exact and Natural Sciences, Jagiellonian UniversityCracowPoland
| | - Ryszard Korona
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian UniversityCracowPoland
| |
Collapse
|
34
|
Brettner L, Geiler-Samerotte K. Single-cell heterogeneity in ribosome content and the consequences for the growth laws. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590370. [PMID: 38895328 PMCID: PMC11185559 DOI: 10.1101/2024.04.19.590370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Across species and environments, the ribosome content of cell populations correlates with population growth rate. The robustness and universality of this correlation have led to its classification as a "growth law." This law has fueled theories about how evolution selects for microbial organisms that maximize their growth rate based on nutrient availability, and it has informed models about how individual cells regulate their growth rates and ribosomal content. However, due to methodological limitations, this growth law has rarely been studied at the level of individual cells. While populations of fast-growing cells tend to have more ribosomes than populations of slow-growing cells, it is unclear whether individual cells tightly regulate their ribosome content to match their environment. Here, we employ recent groundbreaking single-cell RNA sequencing techniques to study this growth law at the single-cell level in two different microbes, S. cerevisiae (a single-celled yeast and eukaryote) and B. subtilis (a bacterium and prokaryote). In both species, we observe significant variation in the ribosomal content of single cells that is not predictive of growth rate. Fast-growing populations include cells exhibiting transcriptional signatures of slow growth and stress, as do cells with the highest ribosome content we survey. Broadening our focus to non-ribosomal transcripts reveals subpopulations of cells in unique transcriptional states suggestive that they have evolved to do things other than maximize their rate of growth. Overall, these results indicate that single-cell ribosome levels are not finely tuned to match population growth rates or nutrient availability and cannot be predicted by a Gaussian process model that assumes measurements are sampled from a normal distribution centered on the population average. This work encourages the expansion of growth law and other models that predict how growth rates are regulated or how they evolve to consider single-cell heterogeneity. To this end, we provide extensive data and analysis of ribosomal and transcriptomic variation across thousands of single cells from multiple conditions, replicates, and species.
Collapse
Affiliation(s)
- Leandra Brettner
- Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Kerry Geiler-Samerotte
- Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
35
|
Ferdoush J, Kadir RA, Ogle M, Saha A. Regulation of eukaryotic transcription initiation in response to cellular stress. Gene 2024; 924:148616. [PMID: 38795856 DOI: 10.1016/j.gene.2024.148616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-β, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.
Collapse
Affiliation(s)
- Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| | - Rizwaan Abdul Kadir
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Matthew Ogle
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Ayan Saha
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| |
Collapse
|
36
|
Kelbert M, Jordán-Pla A, de Miguel-Jiménez L, García-Martínez J, Selitrennik M, Guterman A, Henig N, Granneman S, Pérez-Ortín JE, Chávez S, Choder M. The zinc-finger transcription factor Sfp1 imprints specific classes of mRNAs and links their synthesis to cytoplasmic decay. eLife 2024; 12:RP90766. [PMID: 39356734 PMCID: PMC11446548 DOI: 10.7554/elife.90766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
To function effectively as an integrated system, the transcriptional and post-transcriptional machineries must communicate through mechanisms that are still poorly understood. Here, we focus on the zinc-finger Sfp1, known to regulate transcription of proliferation-related genes. We show that Sfp1 can regulate transcription either by binding to promoters, like most known transcription activators, or by binding to the transcribed regions (gene bodies), probably via RNA polymerase II (Pol II). We further studied the first mode of Sfp1 activity and found that, following promoter binding, Sfp1 binds to gene bodies and affects Pol II configuration, manifested by dissociation or conformational change of its Rpb4 subunit and increased backtracking. Surprisingly, Sfp1 binds to a subset of mRNAs co-transcriptionally and stabilizes them. The interaction between Sfp1 and its client mRNAs is controlled by their respective promoters and coincides with Sfp1's dissociation from chromatin. Intriguingly, Sfp1 dissociation from the chromatin correlates with the extent of the backtracked Pol II. We propose that, following promoter recruitment, Sfp1 accompanies Pol II and regulates backtracking. The backtracked Pol II is more compatible with Sfp1's relocation to the nascent transcripts, whereupon Sfp1 accompanies these mRNAs to the cytoplasm and regulates their stability. Thus, Sfp1's co-transcriptional binding imprints the mRNA fate, serving as a paradigm for the cross-talk between the synthesis and decay of specific mRNAs, and a paradigm for the dual-role of some zinc-finger proteins. The interplay between Sfp1's two modes of transcription regulation remains to be examined.
Collapse
Affiliation(s)
- Moran Kelbert
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Antonio Jordán-Pla
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Lola de Miguel-Jiménez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - José García-Martínez
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Michael Selitrennik
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Adi Guterman
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Noa Henig
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| | - Sander Granneman
- Centre for Engineering Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - José E Pérez-Ortín
- Instituto Biotecmed, Facultad de Biológicas, Universitat de ValènciaBurjassotSpain
| | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío, and Departamento de Genética, Facultad de Biología, Universidad de SevillaSevilleSpain
| | - Mordechai Choder
- Department of Molecular Microbiology, Rappaport Faculty of Medicine, Technion-Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
37
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
38
|
An W, Yan Y, Ye K. High resolution landscape of ribosomal RNA processing and surveillance. Nucleic Acids Res 2024; 52:10630-10644. [PMID: 38994562 PMCID: PMC11417381 DOI: 10.1093/nar/gkae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Ribosomal RNAs are processed in a complex pathway. We profiled rRNA processing intermediates in yeast at single-molecule and single-nucleotide levels with circularization, targeted amplification and deep sequencing (CircTA-seq), gaining significant mechanistic insights into rRNA processing and surveillance. The long form of the 5' end of 5.8S rRNA is converted to the short form and represents an intermediate of a unified processing pathway. The initial 3' end processing of 5.8S rRNA involves trimming by Rex1 and Rex2 and Trf4-mediated polyadenylation. The 3' end of 25S rRNA is formed by sequential digestion by four Rex proteins. Intermediates with an extended A1 site are generated during 5' degradation of aberrant 18S rRNA precursors. We determined precise polyadenylation profiles for pre-rRNAs and show that the degradation efficiency of polyadenylated 20S pre-rRNA critically depends on poly(A) lengths and degradation intermediates released from the exosome are often extensively re-polyadenylated.
Collapse
MESH Headings
- RNA Processing, Post-Transcriptional
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- RNA Precursors/metabolism
- RNA Precursors/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Polyadenylation
- RNA, Fungal/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- Exosome Multienzyme Ribonuclease Complex/metabolism
- Exosome Multienzyme Ribonuclease Complex/genetics
- High-Throughput Nucleotide Sequencing
- RNA Stability
Collapse
Affiliation(s)
- Weidong An
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxiao Yan
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 2024; 15:7511. [PMID: 39209816 PMCID: PMC11362459 DOI: 10.1038/s41467-024-51754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Collapse
Affiliation(s)
- Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | | | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Juliane Merl-Pham
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | | | - Martin Vareka
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Stefanie M Hauck
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
40
|
Chen H, Wang J, Niu C, Zheng F, Liu C, Li Q. Genetic Strategies and Mechanisms for Improving Ribonucleic Acid Levels of Saccharomyces pastorianus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18552-18560. [PMID: 39129495 DOI: 10.1021/acs.jafc.4c05096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Developing microorganisms with a high ribonucleic acid (RNA) content is crucial for the RNA industry. Numerous studies have been conducted to enhance RNA production in yeast cells through genetic engineering, yet precise mechanisms remain elusive. Previously, upregulation of TAL1 or PGM2 and deleting PRS5 or DBP8 individually could increase the RNA content in Saccharomyces pastorianus. In this study, within these genetically modified strains, the intracellular nucleotide levels notably increased following cell fragmentation. Deletion of PRS5 and DBP8 within the strain prompted the upregulation of genes sharing similar functions, consequently augmenting the flow of the gene pathway. Furthermore, the upregulation of genes encoding cell-cycle-dependent protein kinases (CDK) was observed in the G03-△PRS5 strain. The influence of TAL1 and PGM2 on RNA content was attributed to the pentose phosphate pathway (PPP). The RNA content of polygenic recombinant strains, G03-△PRS5+△DBP8 and G03-△PRS5+△DBP8+PGM2, displayed the most significant improvement, increasing by 71.8 and 80.1% when compared to the parental strain. Additionally, the maximum specific growth rate of cells increased in these strains. This study contributes valuable insights into the genetic mechanisms underlying high nucleic acid synthesis in S. pastorianus.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi 214122, Jiangsu, China
| |
Collapse
|
41
|
Zhang J, Zhao G, Bai W, Chen Y, Zhang Y, Li F, Wang M, Shen Y, Wang Y, Wang X, Li C. A Genomewide Evolution-Based CRISPR/Cas9 with Donor-Free (GEbCD) for Developing Robust and Productive Industrial Yeast. ACS Synth Biol 2024; 13:2335-2346. [PMID: 39012160 DOI: 10.1021/acssynbio.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Developing more robust and productive industrial yeast is crucial for high-efficiency biomanufacturing. However, the challenges posed by the long time required and the low abundance of mutations generated through genomewide evolutionary engineering hinder the development and optimization of desired hosts for industrial applications. To address these issues, we present a novel solution called the Genomewide Evolution-based CRISPR/Cas with Donor-free (GEbCD) system, in which nonhomologous-end-joining (NHEJ) repair can accelerate the acquisition of highly abundant yeast mutants. Together with modified rad52 of the DNA double-strand break repair in Saccharomyces cerevisiae, a hypermutation host was obtained with a 400-fold enhanced mutation ability. Under multiple environmental stresses the system could rapidly generate millions of mutants in a few rounds of iterative evolution. Using high-throughput screening, an industrial S. cerevisiae SISc-Δrad52-G4-72 (G4-72) was obtained that is strongly robust and has higher productivity. G4-72 grew stably and produced ethanol efficiently in multiple-stress environments, e.g. high temperature and high osmosis. In a pilot-scale fermentation with G4-72, the fermentation temperature was elevated by 8 °C and ethanol production was increased by 6.9% under the multiple stresses posed by the industrial fermentation substrate. Overall, the GEbCD system presents a powerful tool to rapidly generate abundant mutants and desired hosts, and offers a novel strategy for optimizing microbial chassis with regard to demands posed in industrial applications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Life Science, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Guomiao Zhao
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Wenxin Bai
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zhang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Fan Li
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Manyi Wang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Yue Shen
- BGI Research, Changzhou 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Yun Wang
- BGI Research, Changzhou 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Xiaoyan Wang
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- School of Life Science, Yan'an University, Yan'an, Shaanxi 716000, China
| |
Collapse
|
42
|
Yang YM, Karbstein K. The ubiquitin-proteasome system regulates the formation of specialized ribosomes during high salt stress in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608112. [PMID: 39185221 PMCID: PMC11343215 DOI: 10.1101/2024.08.15.608112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Rps26-deficient ribosomes are a physiologically relevant ribosome population which arises during osmotic stress to support the translation of mRNAs involved in the response to high salt in yeast. They are formed by binding of the chaperone Tsr2 to fully assembled ribosomes to release Rps26 when intracellular Na+ concentrations rise. Tsr2-mediated Rps26 release is reversible, enabling a rapid response that conserves ribosomes. However, because the concentration of Tsr2 relative to ribosomes is low, how the released Rps26•Tsr2 complex is managed to allow for accumulation of Rps26-deficient ribosomes to nearly 50% of all ribosomes remains unclear. Here we show that released Rps26 is degraded via the Pro/N-degron pathway, enabling the accumulation of Rps26-deficient ribosomes. Substitution of the N-terminal proline of Rps26 to serine increases the stability of free Rps26, limits the accumulation of Rps26-deficient ribosomes and renders yeast sensitive to high salt. The GID-complex, an E3 ubiquitin ligase, and its adaptor Gid4, mediate polyubiquitination of Rps26 at Lys66 and Lys70. Moreover, this ubiquitination event is required for Rps26 degradation, the accumulation of Rps26-deficient ribosomes and the high salt stress resistance. Together, the data show that targeted degradation of released Rps26 from the Rps26•Tsr2 complex allows Tsr2 to be recycled, thus facilitating multiple rounds of Rps26 release.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Katrin Karbstein
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| |
Collapse
|
43
|
Ayers TN, Woolford JL. Putting It All Together: The Roles of Ribosomal Proteins in Nucleolar Stages of 60S Ribosomal Assembly in the Yeast Saccharomyces cerevisiae. Biomolecules 2024; 14:975. [PMID: 39199362 PMCID: PMC11353139 DOI: 10.3390/biom14080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Here we review the functions of ribosomal proteins (RPs) in the nucleolar stages of large ribosomal subunit assembly in the yeast Saccharomyces cerevisiae. We summarize the effects of depleting RPs on pre-rRNA processing and turnover, on the assembly of other RPs, and on the entry and exit of assembly factors (AFs). These results are interpreted in light of recent near-atomic-resolution cryo-EM structures of multiple assembly intermediates. Results are discussed with respect to each neighborhood of RPs and rRNA. We identify several key mechanisms related to RP behavior. Neighborhoods of RPs can assemble in one or more than one step. Entry of RPs can be triggered by molecular switches, in which an AF is replaced by an RP binding to the same site. To drive assembly forward, rRNA structure can be stabilized by RPs, including clamping rRNA structures or forming bridges between rRNA domains.
Collapse
Affiliation(s)
| | - John L. Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Brown GW. The cytidine deaminase APOBEC3C has unique sequence and genome feature preferences. Genetics 2024; 227:iyae092. [PMID: 38946641 DOI: 10.1093/genetics/iyae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.
Collapse
Affiliation(s)
- Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
45
|
Kumar A, Saha MK, Kumar V, Bhattacharya A, Barge S, Mukherjee AK, Kalita MC, Khan MR. Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immun Ageing 2024; 21:52. [PMID: 39095841 PMCID: PMC11295351 DOI: 10.1186/s12979-024-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Proteostasis is a critical aging hallmark responsible for removing damaged or misfolded proteins and their aggregates by improving proteasomal degradation through the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS). Research on the impact of heat-killed probiotic bacteria and their structural components on aging hallmarks and innate immune responses is scarce, yet enhancing these effects could potentially delay age-related diseases. RESULTS This study introduces a novel heat-killed Levilactobacillus brevis strain MKAK9 (HK MKAK9), along with its exopolysaccharide (EPS), demonstrating their ability to extend longevity by improving proteostasis and immune responses in wild-type Caenorhabditis elegans. We elucidate the underlying mechanisms through a comprehensive approach involving mRNA- and small RNA sequencing, proteomic analysis, lifespan assays on loss-of-function mutants, and quantitative RT-PCR. Mechanistically, HK MKAK9 and its EPS resulted in downregulation of the insulin-like signaling pathway in a DAF-16-dependent manner, enhancing protein ubiquitination and subsequent proteasomal degradation through activation of the ALP pathway, which is partially mediated by microRNA mir-243. Importantly, autophagosomes engulf ubiquitinylated proteins, as evidenced by increased expression of the autophagy receptor sqst-3, and subsequently fuse with lysosomes, facilitated by increased levels of the lysosome-associated membrane protein (LAMP) lmp-1, suggesting the formation of autolysosomes for degradation of the selected cargo. Moreover, HK MKAK9 and its EPS activated the p38 MAPK pathway and its downstream SKN-1 transcription factor, which are known to regulate genes involved in innate immune response (thn-1, ilys-1, cnc-2, spp-9, spp-21, clec-47, and clec-266) and antioxidation (sod-3 and gst-44), thereby reducing the accumulation of reactive oxygen species (ROS) at both cellular and mitochondrial levels. Notably, SOD-3 emerged as a transcriptional target of both DAF-16 and SKN-1 transcription factors. CONCLUSION Our research sets a benchmark for future investigations by demonstrating that heat-killed probiotic and its specific cellular component, EPS, can downregulate the insulin-signaling pathway, potentially improving the autophagy-lysosome pathway (ALP) for degrading ubiquitinylated proteins and promoting organismal longevity. Additionally, we discovered that increased expression of microRNA mir-243 regulates insulin-like signaling and its downstream ALP pathway. Our findings also indicate that postbiotic treatment may bolster antioxidative and innate immune responses, offering a promising avenue for interventions in aging-related diseases.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | | | - Vipin Kumar
- Application Specialist, Research Business Cytiva, Gurugram, Haryana, India
| | - Anupam Bhattacharya
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Sagar Barge
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
| | - Ashis K Mukherjee
- Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam, 784028, India
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur R Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Assam, Guwahati-781035, India.
| |
Collapse
|
46
|
Yang H, Thompson B. Widespread changes to the translational landscape in a maize microRNA biogenesis mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1986-2000. [PMID: 38963711 DOI: 10.1111/tpj.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
MicroRNAs are short, non-coding RNAs that repress gene expression in both plants and animals and have diverse functions related to growth, development, and stress responses. The ribonuclease, DICER-LIKE1 (DCL1) is required for two steps in plant miRNA biogenesis: cleavage of the primary miRNAs (pri-miRNAs) to release a hairpin structure, called the precursor miRNA (pre-miRNA) and cleavage of the pre-miRNA to generate the miRNA/miRNA* duplex. The mature miRNA guides the RNA-induced silencing complex to target RNAs with complementary sequences, resulting in translational repression and/or RNA cleavage of target mRNAs. However, the relative contribution of translational repression versus mRNA degradation by miRNAs remains unknown at the genome-level in crops, especially in maize. The maize fuzzy tassel (fzt) mutant contains a hypomorphic mutation in DCL1 resulting in broad developmental defects. While most miRNAs are reduced in fzt, the levels of miRNA-targeted mRNAs are not dramatically increased, suggesting that translational regulation by miRNAs may be common. To gain insight into the repression mechanism of plant miRNAs, we combined ribosome profiling and RNA-sequencing to globally survey miRNA activities in maize. Our data indicate that translational repression contributes significantly to regulation of most miRNA targets and that approximately one-third of miRNA targets are regulated primarily at the translational level. Surprisingly, ribosomes appear altered in fzt mutants suggesting that DCL1 may also have a role in ribosome biogenesis. Thus, DICER-LIKE1 shapes the translational landscape in plants through both miRNA-dependent and miRNA-independent mechanisms.
Collapse
Affiliation(s)
- Hailong Yang
- Biology Department, East Carolina University, Greenville, North Carolina, USA
| | - Beth Thompson
- Biology Department, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
47
|
Dorant Y, Quillien V, Le Luyer J, Ky CL. Comparative transcriptomics identifies genes underlying growth performance of the Pacific black-lipped pearl oyster Pinctada margaritifera. BMC Genomics 2024; 25:717. [PMID: 39049022 PMCID: PMC11270918 DOI: 10.1186/s12864-024-10636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In bivalves, the rate at which organisms grow is a major functional trait underlying many aspects of their commercial production. Growth is a highly polygenic trait, which is typically regulated by many genes with small to moderate effects. Due to its complexity, growth variability in such shellfish remains poorly understood. In this study, we aimed to investigate differential gene expression among spat of the pearl oyster Pinctada margaritifera with distinct growth phenotypes. RESULTS We selected two groups of P. margaritifera spat belonging to the same F2 cohort based on their growth performance at 5.5 months old. Transcriptome profile analysis identified a total of 394 differentially expressed genes between these Fast-growing (F) and Slow-growing (S) phenotypes. According to functional enrichment analysis, S oysters overexpressed genes associated with stress-pathways and regulation of innate immune responses. In contrast, F oysters up-regulated genes associated with cytoskeleton activity, cell proliferation, and apoptosis. Analysis of genome polymorphism identified 16 single nucleotide polymorphisms (SNPs) significantly associated with the growth phenotypes. SNP effect categorization revealed one SNP identified for high effect and annotated for a stop codon gained mutation. Interestingly, this SNP is located within a gene annotated for scavenger receptor class F member 1 (SRF1), which is known to modulate apoptosis. Our analyses also revealed that all F oysters showed up-regulation for this gene and were homozygous for the stop-codon mutation. Conversely, S oysters had a heterozygous genotype and a reduced expression of this gene. CONCLUSIONS Altogether, our findings suggest that differences in growth among the same oyster cohort may be explained by contrasted metabolic allocation between regulatory pathways for growth and the immune system. This study provides a valuable contribution towards our understanding of the molecular components associated with growth performance in the pearl oyster P. margaritifera and bivalves in general.
Collapse
Affiliation(s)
- Y Dorant
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France.
- IHPE, UMR 5244, Université de Montpellier, CNRS, Université de Perpignan Via Domitia, Ifremer, Montpellier, France.
| | - V Quillien
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, F-29280, France
| | - J Le Luyer
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, F-29280, France
| | - C L Ky
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Polynésie française, Taravao, Tahiti, France
- IHPE, UMR 5244, Université de Montpellier, CNRS, Université de Perpignan Via Domitia, Ifremer, Montpellier, France
| |
Collapse
|
48
|
Lee SH, Dubey N, Jeon J. The Unknown within the Known: Nucleolus, Understudied Compartment in the Filamentous Fungi. MYCOBIOLOGY 2024; 52:214-221. [PMID: 39445133 PMCID: PMC11494718 DOI: 10.1080/12298093.2024.2379623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Nucleolus is the most conspicuous sub-nuclear compartment that is well known as the site of RNA polymerase I-mediated rDNA transcription and assembly of ribosome subunits in eukaryotes. Recent studies on mammalian cells suggest that functions of nucleolus are not limited to ribosome biogenesis, and that nucleolus is involved in a diverse array of nuclear and cellular processes such as DNA repair, stress responses, and protein sequestration. In fungi, knowledge of nucleolus and its functions was primarily gleaned from the budding yeast. However, little is known about nucleolus of the filamentous fungi. Considering that the filamentous fungi are multi-cellular eukaryotes and thus distinct from the yeast in many aspects, researches on nucleoli of filamentous fungi would have the potential to uncover the evolution of nucleolus and its roles in the diverse cellular processes. Here we provide a brief up-to-date overview of nucleolus in general, and evidence suggesting their roles in fungal physiology and development.
Collapse
Affiliation(s)
- Song Hee Lee
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Namo Dubey
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| | - Junhyun Jeon
- Plant Immunity Research Center, Seoul National University, Seoul, Korea
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Korea
| |
Collapse
|
49
|
Wang S, Yang R, Song M, Li J, Zhou Y, Dai C, Song T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci 2024; 349:122716. [PMID: 38762067 DOI: 10.1016/j.lfs.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.
Collapse
Affiliation(s)
- Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhen Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; City of Hope Medical Center, Duarte, CA 91010, USA; Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - Yanrong Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
50
|
Dea A, Pincus D. The Heat Shock Response as a Condensate Cascade. J Mol Biol 2024; 436:168642. [PMID: 38848866 PMCID: PMC11214683 DOI: 10.1016/j.jmb.2024.168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Collapse
Affiliation(s)
- Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States.
| |
Collapse
|