1
|
Lu JQ, Wong KB, Shaw PC. A Sixty-Year Research and Development of Trichosanthin, a Ribosome-Inactivating Protein. Toxins (Basel) 2022; 14:178. [PMID: 35324675 PMCID: PMC8950148 DOI: 10.3390/toxins14030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Tian Hua Fen, a herbal powder extract that contains trichosanthin (TCS), was used as an abortifacient in traditional Chinese medicine. In 1972, TCS was purified to alleviate the side effects. Because of its clinical applications, TCS became one of the most active research areas in the 1960s to the 1980s in China. These include obtaining the sequence information in the 1980s and the crystal structure in 1995. The replication block of TCS on human immunodeficiency virus in lymphocytes and macrophages was found in 1989 and started a new chapter of its development. Clinical studies were subsequently conducted. TCS was also found to have the potential for gastric and colorectal cancer treatment. Studies on its mechanism showed TCS acts as an rRNA N-glycosylase (EC 3.2.2.22) by hydrolyzing and depurinating A-4324 in α-sarcin/ricin loop on 28S rRNA of rat ribosome. Its interaction with acidic ribosomal stalk proteins was revealed in 2007, and its trafficking in mammalian cells was elucidated in the 2000s. The adverse drug reactions, such as inducing immune responses, short plasma half-life, and non-specificity, somehow became the obstacles to its usage. Immunotoxins, sequence modification, or coupling with polyethylene glycerol and dextran were developed to improve the pharmacological properties. TCS has nicely shown the scientific basis of traditional Chinese medicine and how its research and development have expanded the knowledge and applications of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; (J.-Q.L.); (K.-B.W.)
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
2
|
Aguilar-Pineda GE, Olivares-Quiroz L. Catalytic and binding sites prediction in globular proteins through discrete Markov chains and network centrality measures. Phys Biol 2021; 18. [PMID: 34433159 DOI: 10.1088/1478-3975/ac211b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/25/2021] [Indexed: 11/11/2022]
Abstract
In this work we use a discrete Markov chain approach combined with network centrality measures to identify and predict the location of active sites in globular proteins. To accomplish this, we use a three-dimensional network of proteinCαatoms as nodes connected through weighted edges which represent the varying interaction degree between protein's atoms. We compute the mean first passage time matrixH= {Hji} for this Markov chain and evaluate the averaged number of steps ⟨Hj⟩ to reach single nodenjin order to identify such residues that, on the average, are at the least distant from every other node. We also carry out a graph theory analysis to evaluate closeness centralityCc, betweenness centralityCband eigenvector centralityCemeasures which provide relevant information about the connectivity structure and topology of theCαprotein networks. Finally we also performed an analysis of equivalent random and regular networks of the same sizeNin terms of the average path lengthLand the average clustering coefficient⟨C⟩comparing these with the corresponding values forCαprotein networks. Our results show that the mean-first passage time matrixHand its related quantity ⟨Hj⟩ together withCc,CbandCecan not only predict with relative high accuracy the location of active sites in globular proteins but also exhibit a high feasibility to use them to predict the existence of new regions in protein's structure to identify new potential binding or catalytic activity or, in some cases, the presence of new allosteric pathways.
Collapse
Affiliation(s)
- Gabriel E Aguilar-Pineda
- Departamento de Fisica, Universidad Autónoma de la Ciudad de México (UACM), Campus Centro Histórico, CP 06080, Mexico City, Mexico
| | - L Olivares-Quiroz
- Departamento de Física and Posgrado en Ciencias de la Complejidad, Universidad Autónoma de la Ciudad de México (UACM), CP 09760, Mexico City, Mexico.,Centro de Ciencias de la Complejidad C3 (UNAM), Circuito Centro Cultural S/N Cd. Universitaria, CP 04510, Mexico City, Mexico
| |
Collapse
|
3
|
Fan X, Wang Y, Guo F, Zhang Y, Jin T. Atomic-resolution structures of type I ribosome inactivating protein alpha-momorcharin with different substrate analogs. Int J Biol Macromol 2020; 164:265-276. [PMID: 32653369 DOI: 10.1016/j.ijbiomac.2020.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Alpha-momorcharin (Alpha-MMC) from the seed of bitter melon is a type I ribosome inactivating protein (RIP) that removes a specific adenine from 28S rRNA and inhibits protein biosynthesis. Here, we report seven crystal complex structures of alpha-MMC with different substrate analogs (adenine, AMP, cAMP, dAMP, ADP, GMP, and xanthosine) at 1.08 Å to 1.52 Å resolution. These structures reveal that not only adenine, but also guanine and their analogs can effectively bind to alpha-MMC. The side chain of Tyr93 adopts two conformations, serving as a switch to open and close the substrate binding pocket of alpha-MMC. Although adenine, AMP, GMP, and guanine are located in a similar active site in different RIPs, residues involved in the interaction between RIPs and substrate analogs are slightly different. Complex structures of alpha-MMC with different substrate analogs solved in this study provide useful information on its enzymatic mechanisms and may enable the development of new inhibitors to treat the poisoning of alpha-MMC.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Feng Guo
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Yuzhu Zhang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA; Processed Foods Research Unit, USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China; Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
4
|
Liu B, Zhang Z, Lu S, He Q, Deng N, Meng H, Pan C, Li H, Liu M, Huang A, Shen F. In-silico analysis of ligand-receptor binding patterns of α-MMC, TCS and MAP30 protein to LRP1 receptor. J Mol Graph Model 2020; 98:107619. [PMID: 32311663 DOI: 10.1016/j.jmgm.2020.107619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/13/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
Alpha-momorcharin (α-MMC), trichosanthin (TCS), and momordica anti-HIV protein of 30 kD (MAP30) are potential anti-tumor drug candidates but have cytotoxicity to normal cells. The binding of these proteins to LRP1 receptor and the subsequent endocytosis are essential to their cytotoxicity, but this binding process remains largely unknown. This study, in-silico analysis of the binding patterns, was conducted via the protein-protein docking software, ZDOCK 3.0.2 package, to better understand the binding process. Specifically, α-MMC, TCS and MAP30 were selected and bound to binding subunits CR56 and CR17 of LRP1. After docking, the 10 best docking solutions are retained based on the default ZDOCK scores and used for structural assessment. Our results showed that, α-MMC bound to LRP1 stably at the amino acid residues 1-20, at which 8 residues formed 21 hydrogen bonds with 15 residues of CR56 and 10 residues formed 15 hydrogen bonds with 12 residues of CR17. In contrast, TCS and MAP30 bound mainly to LRP1 at the residues 1-57/79-150 and residues 58-102, respectively, which were functional domains of TCS and MAP30. Since residues 1-20 are outside the functional domain of α-MMC, α-MMC is considered more suitable to attenuate by mutating the receptor binding site. Thus, our analysis lays the foundation for future genetic engineering work on α-MMC, and makes important contributions to its potential clinical use in cancer treatment.
Collapse
Affiliation(s)
- Bin Liu
- Department of Clinical Pathology, WestChina-Frontier Pharma Tech Co., Ltd., Chengdu, 610043, PR China
| | - Zhonglin Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shiyong Lu
- Maternal and Child Health Hospital of Qingbaijiang, Chengdu, 610500, PR China
| | - Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nianhua Deng
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Hao Meng
- Beijing Computing Center, Beijing Academy of Science and Technology, Beijing, 100094, China; Beijing Beike Deyuan Bio-Pharm Technology Co., Ltd., Beijing, 100094, China
| | - Chenling Pan
- Beijing Computing Center, Beijing Academy of Science and Technology, Beijing, 100094, China; Beijing Beike Deyuan Bio-Pharm Technology Co., Ltd., Beijing, 100094, China
| | - Huanhuan Li
- Beijing Computing Center, Beijing Academy of Science and Technology, Beijing, 100094, China; Beijing Beike Deyuan Bio-Pharm Technology Co., Ltd., Beijing, 100094, China
| | - Mengling Liu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Axiu Huang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Fubing Shen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
5
|
Chen YJ, Zhu JQ, Fu XQ, Su T, Li T, Guo H, Zhu PL, Lee SKW, Yu H, Tse AKW, Yu ZL. Ribosome-Inactivating Protein α-Momorcharin Derived from Edible Plant Momordica charantia Induces Inflammatory Responses by Activating the NF-kappaB and JNK Pathways. Toxins (Basel) 2019; 11:toxins11120694. [PMID: 31779275 PMCID: PMC6949964 DOI: 10.3390/toxins11120694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
Alpha-momorcharin (α-MMC), a member of the ribosome-inactivating protein (RIP) family, has been found in the seeds of Momordica charantia (bitter melon). α-MMC contributes a number of pharmacological activities; however, its inflammatory properties have not been well studied. Here, we aim to determine the inflammatory responses induced by recombinant α-MMC and identify the underlying mechanisms using cell culture and animal models. Recombinant α-MMC was generated in Rosetta™(DE3)pLysS and purified by the way of nitrilotriacetic acid (NTA) chromatography. Treatment of recombinant α-MMC at 40 μg/mL exerted sub-lethal cytotoxic effect on THP-1 monocytic cells. Transcriptional profiling revealed that various genes coding for cytokines and other proinflammatory proteins were upregulated upon recombinant α-MMC treatment in THP-1 cells, including MCP-1, IL-8, IL-1β, and TNF-α. Recombinant α-MMC was shown to activate IKK/NF-κB and JNK pathways and the α-MMC-induced inflammatory gene expression could be blocked by IKKβ and JNK inhibitors. Furthermore, murine inflammatory models further demonstrated that α-MMC induced inflammatory responses in vivo. We conclude that α-MMC stimulates inflammatory responses in human monocytes by activating of IKK/NF-κB and JNK pathways, raising the possibility that consumption of α-MMC-containing food may lead to inflammatory-related diseases.
Collapse
Affiliation(s)
- Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jia-Qian Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tao Su
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ting Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hui Guo
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Pei-Li Zhu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Sally Kin-Wah Lee
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anfernee Kai-Wing Tse
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (A.K.-W.T.); (Z.-L.Y.); Tel.: +86-0756-3620147 (A.K.-W.T.); +852-3411-2465 (Z.-L.Y.)
| |
Collapse
|
6
|
Bansia H, Bagaria S, Karande AA, Ramakumar S. Structural basis for neutralization of cytotoxic abrin by monoclonal antibody D6F10. FEBS J 2019; 286:1003-1029. [DOI: 10.1111/febs.14716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Harsh Bansia
- Department of Physics Indian Institute of Science Bengaluru India
| | - Shradha Bagaria
- Department of Biochemistry Indian Institute of Science Bengaluru India
| | | | | |
Collapse
|
7
|
Matsunaga C, Okada Y, Nishimoto E. Ligand-Induced Conformational Changes near the Active Site Regulating Enzyme Activity of Momorcharins from Seeds of Bitter Gourd. J Fluoresc 2018; 29:231-240. [PMID: 30569384 DOI: 10.1007/s10895-018-2332-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 11/27/2022]
Abstract
It is reasonable to consider that Type I-ribosomal inactivation proteins (RIP) retain some specific affinity to harmful pathogens to complete the role as a bio-defense relating protein. In the present studies, it was shown that two Type I-RIPs, α- and β-momorcharins, maintained the abilities to bind with N-acetylglucosamine (NAG) to change the conformation around the active sites and to regulate their N-glycosidase activities. By the binding of NAG, the freedom of internal motion of Trp192 in α-momorcharin was increased 1.5 times near the active site and, on the other hand, the corresponding motion of Trp190 was limited 50% in β-momorcharin. The results in the fluorescence resonance excitation energy transfer experiments demonstrated that Trp-190 of β-momorcharin was kept away from Tyr-70 but Trp192 contrarily approached closer to the nearest neighboring Tyr residue consisting of the active center of α-momorcharin by the binding with NAG. These conformational changes near the active site close correlated with promotion and/or suppression of the N-glucosidase activities of β- and α-momorcharins.
Collapse
Affiliation(s)
- Chie Matsunaga
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuuki Okada
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Etsuko Nishimoto
- Laboratory of Biophysical Chemistry, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
8
|
Sun W, Sun J, Zhang H, Meng Y, Li L, Li G, Zhang X, Meng Y. Chemosynthesis and characterization of site-specific N-terminally PEGylated Alpha-momorcharin as apotential agent. Sci Rep 2018; 8:17729. [PMID: 30531997 PMCID: PMC6286350 DOI: 10.1038/s41598-018-35969-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Alpha-momorcharin (α-MC), a type I ribosome-inactivating protein (RIP) isolated from Momordica charantia seeds, has been extensively studied for its antitumor, antiviral and antifungal activities. However, as an exogenous protein, problems associated with short half-life and strong immunogenicity have limited its clinical application. Poly (ethylene glycol) (PEG), as a polyether compound, is a well established and efficient modifier to develop it as a potential agent. Nevertheless, conventional PEGylation is not site-controlled and the conjugates are often not homogenous due to the generation of multi-PEGylated derivatives. To obtain a homogenous mono-PEGylated α-MC, the PEGylation was carried out by coupling a 20 kDa mPEG-butyraldehyde (mPEG-ALD) with α-MC. The product was separated and purified by MacroCap SP chromatography. Results from SDS-PAGE and MALDI-TOF MS revealed that the PEGylated α-MC consisted of one molecule mPEG and α-MC. Edman degradation confirmed that the N-terminal residue of α-MC was successfully coupled with mPEG-ALD. The mono-PEGylated α-MC possessed an extremely similar secondary structure to native α-MC through spectral analyses. In addition, it also showed low immunogenicity by double immunodiffusion and preserved moderate antitumor activity to three kinds of tumor cell lines in vitro. Finally, trypsin resistance was also considerably improved.
Collapse
Affiliation(s)
- Wenkui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jinghui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Haowen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York, 14260, United States
| | - Yanfa Meng
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Linli Li
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Gangrui Li
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xu Zhang
- Department of Pharmaceutics, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yao Meng
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York, 14260, United States.
| |
Collapse
|
9
|
Pandey SN, Iqbal N, Singh PK, Rastogi N, Kaur P, Sharma S, Singh TP. Binding and structural studies of the complexes of type 1 ribosome inactivating protein from Momordica balsamina
with uracil and uridine. Proteins 2018; 87:99-109. [DOI: 10.1002/prot.25584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/07/2018] [Accepted: 07/04/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Sada Nand Pandey
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Naseer Iqbal
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Prashant K. Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Nilisha Rastogi
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Punit Kaur
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Sujata Sharma
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| | - Tej P. Singh
- Department of Biophysics; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
10
|
Wlodawer A, Dauter Z, Porebski PJ, Minor W, Stanfield R, Jaskolski M, Pozharski E, Weichenberger CX, Rupp B. Detect, correct, retract: How to manage incorrect structural models. FEBS J 2018; 285:444-466. [PMID: 29113027 PMCID: PMC5799025 DOI: 10.1111/febs.14320] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The massive technical and computational progress of biomolecular crystallography has generated some adverse side effects. Most crystal structure models, produced by crystallographers or well-trained structural biologists, constitute useful sources of information, but occasional extreme outliers remind us that the process of structure determination is not fail-safe. The occurrence of severe errors or gross misinterpretations raises fundamental questions: Why do such aberrations emerge in the first place? How did they evade the sophisticated validation procedures which often produce clear and dire warnings, and why were severe errors not noticed by the depositors themselves, their supervisors, referees and editors? Once detected, what can be done to either correct, improve or eliminate such models? How do incorrect models affect the underlying claims or biomedical hypotheses they were intended, but failed, to support? What is the long-range effect of the propagation of such errors? And finally, what mechanisms can be envisioned to restore the validity of the scientific record and, if necessary, retract publications that are clearly invalidated by the lack of experimental evidence? We suggest that cognitive bias and flawed epistemology are likely at the root of the problem. By using examples from the published literature and from public repositories such as the Protein Data Bank, we provide case summaries to guide correction or improvement of structural models. When strong claims are unsustainable because of a deficient crystallographic model, removal of such a model and even retraction of the affected publication are necessary to restore the integrity of the scientific record.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Przemyslaw J. Porebski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Robyn Stanfield
- Department of Structural and Computational Biology, BCC206, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, Poznan, 61-614, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Bernhard Rupp
- CVMO, k.-k.Hofkristallamt, 991 Audrey Place, Vista, CA, 92084, USA
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, 6020, Austria
| |
Collapse
|
11
|
Wytynck P, Rougé P, Van Damme EJM. Genome-wide screening of Oryza sativa ssp. japonica and indica reveals a complex family of proteins with ribosome-inactivating protein domains. PHYTOCHEMISTRY 2017; 143:87-97. [PMID: 28797946 DOI: 10.1016/j.phytochem.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/08/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are cytotoxic enzymes capable of halting protein synthesis by irreversible modification of ribosomes. Although RIPs are widespread they are not ubiquitous in the plant kingdom. The physiological importance of RIPs is not fully elucidated, but evidence suggests a role in the protection of the plant against biotic and abiotic stresses. Searches in the rice genome revealed a large and highly complex family of proteins with a RIP domain. A comparative analysis retrieved 38 RIP sequences from the genome sequence of Oryza sativa subspecies japonica and 34 sequences from the subspecies indica. The RIP sequences are scattered over different chromosomes but are mostly found on the third chromosome. The phylogenetic tree revealed the pairwise clustering of RIPs from japonica and indica. Molecular modeling and sequence analysis yielded information on the catalytic site of the enzyme, and suggested that a large part of RIP domains probably possess N-glycosidase activity. Several RIPs are differentially expressed in plant tissues and in response to specific abiotic stresses. This study provides an overview of RIP motifs in rice and will help to understand their biological role(s) and evolutionary relationships.
Collapse
Affiliation(s)
- Pieter Wytynck
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Pierre Rougé
- UMR152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Chemin des Maraîchers 35, 31400, Toulouse, France
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
12
|
Raschka S, Bemister-Buffington J, Kuhn LA. Detecting the native ligand orientation by interfacial rigidity: SiteInterlock. Proteins 2016; 84:1888-1901. [DOI: 10.1002/prot.25172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Sebastian Raschka
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan 48824 USA
| | - Joseph Bemister-Buffington
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan 48824 USA
| | - Leslie A. Kuhn
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing Michigan 48824 USA
- Department of Computer Science and Engineering; Michigan State University; East Lansing Michigan 48824 USA
| |
Collapse
|
13
|
Yang GL, Li SM, Wang SZ. Research progress in enzyme activity and pharmacological effects of ribosome-inactivity protein in bitter melon. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1185734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Akkouh O, Ng TB, Cheung RCF, Wong JH, Pan W, Ng CCW, Sha O, Shaw PC, Chan WY. Biological activities of ribosome-inactivating proteins and their possible applications as antimicrobial, anticancer, and anti-pest agents and in neuroscience research. Appl Microbiol Biotechnol 2015; 99:9847-63. [PMID: 26394859 DOI: 10.1007/s00253-015-6941-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes which depurinate ribosomal RNA (rRNA), thus impeding the process of translation resulting in inhibition of protein synthesis. They are produced by various organisms including plants, fungi and bacteria. RIPs from plants are linked to plant defense due to their antiviral, antifungal, antibacterial, and insecticidal activities in which they can be applied in agriculture to combat microbial pathogens and pests. Their anticancer, antiviral, embryotoxic, and abortifacient properties may find medicinal applications. Besides, conjugation of RIPs with antibodies or other carriers to form immunotoxins has been found useful to research in neuroscience and anticancer therapy.
Collapse
Affiliation(s)
- Ouafae Akkouh
- Department of Biology and Medical Laboratory Research, Faculty of Technology, University of Applied Sciences Leiden, Zernikdreef 11, 2333 CK, Leiden, The Netherlands.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Ou Sha
- School of Medicine, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China.
| | - Pang Chui Shaw
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
15
|
Binding and structural studies of the complexes of type 1 ribosome inactivating protein from Momordica balsamina with cytosine, cytidine, and cytidine diphosphate. Biochem Biophys Rep 2015; 4:134-140. [PMID: 29124196 PMCID: PMC5668913 DOI: 10.1016/j.bbrep.2015.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10−4 M–10−7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors. The binding and structural studies of MbRIP1 with cytosine and cytosine containing nucleoside and nucleotide. The optimum element for specificity in cytosine containing sequences of RNA structures is a nucleoside moiety. CDP interact the most with the residues of the binding site of MbRIP1 which indicates that it has the maximum binding affinity. Cytosine containing site may provide protection to RNAs from RIP1 type toxins.
Collapse
|
16
|
Vinkovic M, Dunn G, Wood GE, Husain J, Wood SP, Gill R. Cleavage of nicotinamide adenine dinucleotide by the ribosome-inactivating protein from Momordica charantia. Acta Crystallogr F Struct Biol Commun 2015; 71:1152-5. [PMID: 26323301 PMCID: PMC4555922 DOI: 10.1107/s2053230x15013540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.
Collapse
Affiliation(s)
- M. Vinkovic
- Astex Therapeutics, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, England
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - G. Dunn
- School of Biological Science, University of Southampton, Highfield, Southampton SO16 7PX, England
| | - G. E. Wood
- Poole Hospital NHS Foundation Trust, Longfleet Road, Poole BH15 2JB, England
| | - J. Husain
- Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, England
| | - S. P. Wood
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - R. Gill
- Laboratory of Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| |
Collapse
|
17
|
Kushwaha GS, Yamini S, Kumar M, Sinha M, Kaur P, Sharma S, Singh TP. First structural evidence of sequestration of mRNA cap structures by type 1 ribosome inactivating protein from Momordica balsamina. Proteins 2013; 81:896-905. [PMID: 23280611 DOI: 10.1002/prot.24248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/06/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
This is the first structural evidence of recognition of mRNA cap structures by a ribosome inactivating protein. It is well known that a unique cap structure is formed at the 5' end of mRNA for carrying out various processes including mRNA maturation, translation initiation, and RNA turnover. The binding studies and crystal structure determinations of type 1 ribosome inactivating protein (RIP-1) from Momordica balsamina (MbRIP-1) were carried out with mRNA cap structures including (i) N7-methyl guanine (m7G), (ii) N7-methyl guanosine diphosphate (m7GDP), and (iii) N7-methyl guanosine triphosphate (m7GTP). These compounds showed affinities to MbRIP-1 at nanomolar concentrations. The structure determinations of the complexes of MbRIP-1 with m7G, m7GDP, and m7GTP at 2.65, 1.77, and 1.75 Å resolutions revealed that all the three compounds bound to MbRIP-1 in the substrate binding site at the positions which are slightly shifted towards Glu85 as compared to those of rRNA substrates. In this position, Glu85 forms several hydrogen bonds with guanine moiety while N-7 methyl group forms van der Waals contacts. However, the guanine rings are poorly stacked in these complexes. Thus, the mode of binding by MbRIP-1 to mRNA cap structures is different which results in the inhibition of depurination. Since some viruses are known to exploit the capping property of the host, this action of MbRIP-1 may have implications for the antiviral activity of this protein in vivo. The understanding of the mode of binding of MbRIP-1 to cap structures may also assist in the design of anti-viral agents.
Collapse
|
18
|
Zhu F, Zhang P, Meng YF, Xu F, Zhang DW, Cheng J, Lin HH, Xi DH. Alpha-momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. PLANTA 2013; 237:77-88. [PMID: 22983699 DOI: 10.1007/s00425-012-1746-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/21/2012] [Indexed: 05/09/2023]
Abstract
Alpha-momorcharin (α-MMC) is type-1 ribosome inactivating proteins (RIPs) with molecular weight of 29 kDa and has lots of biological activity. Our recent study indicated that the α-MMC purified from seeds of Momordica charantia exhibited distinct antiviral and antifungal activity. Tobacco plants pre-treated with 0.5 mg/mL α-MMC 3 days before inoculation with various viruses showed less-severe symptom and less reactive oxygen species (ROS) accumulation compared to that inoculated with viruses only. Quantitative real-time PCR analysis revealed that the replication levels of viruses were lower in the plants treated with the α-MMC than control plants at 15 days post inoculation. Moreover, the coat protein expression of viruses was almost completely inhibited in plants which were treated with the α-MMC compared with control plants. Furthermore, the SA-responsive defense-related genes including non-expressor of pathogenesis-related genes 1 (NPR1), PR1, PR2 were up-regulated and activities of some antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) were increased after the α-MMC treatment. In addition, the α-MMC (500 μg/mL) revealed remarkable antifungal effect against phytopathogenic fungi, in the growth inhibition range 50.35-67.21 %, along with their MIC values ranging from 100 to 500 μg/mL. The α-MMC had also a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of Sclerotinia sclerotiorum. The α-MMC showed a remarkable antiviral and antifungal effect and hence could possibly be exploited in crop protection for controlling certain important plant diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:679-91. [PMID: 22361570 DOI: 10.1016/j.bbapap.2012.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/21/2022]
Abstract
The ribosome inactivating proteins (RIPs) of type 1 are plant toxins that eliminate adenine base selectively from the single stranded loop of rRNA. We report six crystal structures, type 1 RIP from Momordica balsamina (A), three in complexed states with ribose (B), guanine (C) and adenine (D) and two structures of MbRIP-1 when crystallized with adenosine triphosphate (ATP) (E) and 2'-deoxyadenosine triphosphate (2'-dATP) (F). These were determined at 1.67Å, 1.60Å, 2.20Å, 1.70Å, 2.07Å and 1.90Å resolutions respectively. The structures contained, (A) unbound protein molecule, (B) one protein molecule and one ribose sugar, (C) one protein molecule and one guanine base, (D) one protein molecule and one adenine base, (E) one protein molecule and one ATP-product adenine molecule and (F) one protein molecule and one 2'-dATP-product adenine molecule. Three distinct conformations of the side chain of Tyr70 were observed with (i) χ(1)=-66°and χ(2)=165° in structures (A) and (B); (ii) χ(1)=-95° and χ(2)=70° in structures (C), (D) and (E); and (iii) χ(1)=-163° and χ(2)=87° in structure (F). The conformation of Tyr70 in (F) corresponds to the structure of a conformational intermediate. This is the first structure which demonstrates that the slow conversion of DNA substrates by RIPs can be trapped during crystallization.
Collapse
|
20
|
Yao X, Li J, Deng N, Wang S, Meng Y, Shen F. Immunoaffinity purification of α-momorcharin from bitter melon seeds (Momordica charantia). J Sep Sci 2011; 34:3092-8. [PMID: 21994203 DOI: 10.1002/jssc.201100235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/09/2022]
Abstract
α-Momorcharin (α-MMC), a type I ribosome-inactivating protein (RIP), has shown therapeutic potential such as anti-tumor and anti-viral agent. Traditional process of α-MMC purification from bitter melon seeds was time consuming and low efficient. To take this challenge, we made an affinity matrix by coupling the monoclonal antibody (McAb) with Sepharose 4B. Using this attractive strategy, 196 mg of α-MMC was obtained from 100 g of bitter melon seeds as the starting material. The yield of the protein was 2.7%. The homogeneity and properties of the protein were assessed by SDS-PAGE, acidic PAGE, RP-HPLC and N-terminal sequence as well as Western blot. Purified α-MMC showed remarkable inhibition to the melanoma cell line JAR and EMT-62058. In addition, it also displayed obvious inhibition on hepatitis B virus (HBV). This work provided a simple, rapid and efficient approach for α-MMC purification from Momordica charantia.
Collapse
Affiliation(s)
- Xingchuan Yao
- Key Laboratory of Bio-Resources and Eco-Environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, P R China.
| | | | | | | | | | | |
Collapse
|
21
|
Katiyar SP, Bakkiyaraj D, Karutha Pandian S. Role of aromatic stack pairing at the catalytic site of gelonin protein. Biochem Biophys Res Commun 2011; 410:75-80. [PMID: 21640706 DOI: 10.1016/j.bbrc.2011.05.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/09/2023]
Abstract
Aromatic-aromatic interactions play an important role in the enzyme-substrate recognition mechanism and in stabilization of proteins. Gelonin--a ribosome inactivating protein (RIP) from the plant Gelonium multiflorum--belongs to type-I RIPs and shows N-glycosylation activity which has been used as a model to explain the role of aromatic-aromatic stack pairing in RIPs. RIPs have a different substrate binding site and catalytic site. Role of tyrosine residues at the binding site has already been known but the role of tyrosine residues at catalytic site is still unclear. In this study, the role of tyrosine-adenine-tyrosine aromatic stack pairing at the catalytic site was studied by in silico mutation studies using molecular dynamic simulations. Through this study we report that, despite the fact that aromatic stack pairing aids in recognition of adenine at binding site, both the tyrosine residues of stack pairing play a crucial role in the stabilization of adenine at catalytic site. In the absence of both the tyrosine residues, adenine was unstable at catalytic site that results in the inhibition of N-glycosylation activity of gelonin protein. Hence, this study highlights the importance of π-π stack pairing in the N-glycosidic activity of gelonin by determining its role in stabilizing adenine at catalytic site.
Collapse
|
22
|
|
23
|
Bian X, Shen F, Chen Y, Wang B, Deng M, Meng Y. PEGylation of alpha-momorcharin: synthesis and characterization of novel anti-tumor conjugates with therapeutic potential. Biotechnol Lett 2010; 32:883-90. [DOI: 10.1007/s10529-010-0242-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|
24
|
Parente A, Berisio R, Chambery A, Di Maro A. Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.). TOXIC PLANT PROTEINS 2010. [DOI: 10.1007/978-3-642-12176-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
25
|
Li HG, Huang PL, Zhang D, Sun Y, Chen HC, Zhang J, Huang PL, Kong XP, Lee-Huang S. A new activity of anti-HIV and anti-tumor protein GAP31: DNA adenosine glycosidase--structural and modeling insight into its functions. Biochem Biophys Res Commun 2009; 391:340-5. [PMID: 19913503 DOI: 10.1016/j.bbrc.2009.11.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 11/24/2022]
Abstract
We report here the high-resolution atomic structures of GAP31 crystallized in the presence of HIV-LTR DNA oligonucleotides systematically designed to examine the adenosine glycosidase activity of this anti-HIV and anti-tumor plant protein. Structural analysis and molecular modeling lead to several novel findings. First, adenine is bound at the active site in the crystal structures of GAP31 to HIV-LTR duplex DNA with 5' overhanging adenosine ends, such as the 3'-processed HIV-LTR DNA but not to DNA duplex with blunt ends. Second, the active site pocket of GAP31 is ideally suited to accommodate the 5' overhanging adenosine of the 3'-processed HIV-LTR DNA and the active site residues are positioned to perform the adenosine glycosidase activity. Third, GAP31 also removes the 5'-end adenine from single-stranded HIV-LTR DNA oligonucleotide as well as any exposed adenosine, including that of single nucleotide dAMP but not from AMP. Fourth, GAP31 does not de-purinate guanosine from di-nucleotide GT. These results suggest that GAP31 has DNA adenosine glycosidase activity against accessible adenosine. This activity is distinct from the generally known RNA N-glycosidase activity toward the 28S rRNA. It may be an alternative function that contributes to the antiviral and anti-tumor activities of GAP31. These results provide molecular insights consistent with the anti-HIV mechanisms of GAP31 in its inhibition on the integration of viral DNA into the host genome by HIV-integrase as well as irreversible topological relaxation of the supercoiled viral DNA.
Collapse
Affiliation(s)
- Hui-Guang Li
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J Struct Biol 2009; 168:278-87. [PMID: 19616098 DOI: 10.1016/j.jsb.2009.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/24/2009] [Accepted: 07/12/2009] [Indexed: 11/20/2022]
Abstract
The three-dimensional structures of two type 1 RIPs, bouganin and lychnin, has been solved. Their adenine polynucleotide glycosylase activity was also determined together with other known RIPs: dianthin 30, PAP-R, momordin I, ricin A chain and saporin-S6. Saporin-S6 releases the highest number of adenine molecules from rat ribosomes, and poly(A), while its efficiency is similar to dianthin 30, bouganin and PAP-R on herring sperm DNA. Measures of the protein synthesis inhibitory activity confirmed that saporin-S6 is the most active. The overall structure of bouganin and lychnin is similar to the other considered RIPs and the typical RIP fold is conserved. The superimpositioning of their C(alpha) atoms highlights some differences in the N-terminal and C-terminal domains. A detailed structural analysis indicates that the efficiency of saporin-S6 on various polynucleotides can be ascribed to a negative electrostatic surface potential at the active site and several exposed positively charged residues in the region around that site. These two conditions, not present at the same time in other examined RIPs, could guarantee an efficient interaction with the substrate and an efficient catalysis.
Collapse
|
27
|
Endo Y, Morishita R, Imashevich KM, Yoshinari S. Mechanisms of Action of Ribotoxins. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809040402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Hou X, Meehan EJ, Xie J, Huang M, Chen M, Chen L. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. J Struct Biol 2008; 164:81-7. [DOI: 10.1016/j.jsb.2008.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 05/13/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|
29
|
Fukunaga Y, Nishimoto E, Otosu T, Murakami Y, Yamashita S. The Unfolding of -Momorcharin Proceeds Through the Compact Folded Intermediate. J Biochem 2008; 144:457-66. [DOI: 10.1093/jb/mvn088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Ruggiero A, Chambery A, Maro AD, Parente A, Berisio R. Atomic resolution (1.1 Å) structure of the ribosome-inactivating protein PD-L4 fromPhytolacca dioicaL. leaves. Proteins 2008; 71:8-15. [DOI: 10.1002/prot.21712] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Fraser ME, Cherney MM, Marcato P, Mulvey GL, Armstrong GD, James MNG. Binding of adenine to Stx2, the protein toxin from Escherichia coli O157:H7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:627-30. [PMID: 16820678 PMCID: PMC2242964 DOI: 10.1107/s1744309106021968] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/09/2006] [Indexed: 11/10/2022]
Abstract
Stx2 is a protein toxin whose catalytic subunit acts as an N-glycosidase to depurinate a specific adenine base from 28S rRNA. In the holotoxin, the catalytic portion, A1, is linked to the rest of the A subunit, A2, and A2 interacts with the pentameric ring formed by the five B subunits. In order to test whether the holotoxin is active as an N-glycosidase, Stx2 was crystallized in the presence of adenosine and adenine. The crystals diffracted to approximately 1.8 angstroms and showed clear electron density for adenine in the active site. Adenosine had been cleaved, proving that Stx2 is an active N-glycosidase. While the holotoxin is active against small substrates, it would be expected that the B subunits would interfere with the binding of the 28S rRNA.
Collapse
Affiliation(s)
- Marie E Fraser
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB T2N 1N4, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Hossann M, Li Z, Shi Y, Kreilinger U, Büttner J, Vogel PD, Yuan J, Wise JG, Trommer WE. Novel immunotoxin: a fusion protein consisting of gelonin and an acetylcholine receptor fragment as a potential immunotherapeutic agent for the treatment of Myasthenia gravis. Protein Expr Purif 2005; 46:73-84. [PMID: 16230023 DOI: 10.1016/j.pep.2005.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/15/2005] [Accepted: 08/17/2005] [Indexed: 11/22/2022]
Abstract
In continuation of our attempts for antigen-specific suppression of the immune system [I.L. Urbatsch, R.K.M. Sterz, K. Peper, W.E. Trommer, Eur. J. Immunol. 23(1993) 776-779] a novel fusion protein composed of amino acids 4-181 of the extracellular domain of the alpha-subunit of the human muscle acetylcholine receptor and the plant toxin gelonin was expressed in Escherichia coli. The fusion protein formed inclusion bodies but could be solubilized in the presence of guanidinium hydrochloride. After a simple two step purification and refolding procedure, it exhibited a native structure at least in the main immunogenic region as shown by antibodies recognizing a conformational epitope. Half maximal inhibition of translation was achieved at 46 ng/ml as compared to 4.6 ng/ml for native and 2.4 for recombinant gelonin. Its use as therapeutic agent for the treatment of Myasthenia gravis was investigated in an animal model. Female Lewis rats were immunized with complete acetylcholine receptor from the electric ray Torpedo californica and developed thereafter experimental autoimmune M. gravis. Quantitative assessment of the disease was achieved by repetitive stimulation of the Nervus tibialis. Rats showed no symptoms of M. gravis, neither visually nor electrophysiologically after treatment with the fusion protein as determined one and seven weeks after the second application. This approach may also be useful for the therapy of further autoimmune diseases by substituting other autoantigens for the AchR fragment in the fusion protein.
Collapse
Affiliation(s)
- Martin Hossann
- Department of Chemistry, TU Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fermani S, Falini G, Ripamonti A, Polito L, Stirpe F, Bolognesi A. The 1.4 anstroms structure of dianthin 30 indicates a role of surface potential at the active site of type 1 ribosome inactivating proteins. J Struct Biol 2005; 149:204-12. [PMID: 15681236 DOI: 10.1016/j.jsb.2004.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/03/2004] [Indexed: 11/16/2022]
Abstract
Ribosome inactivating proteins (RIPs) are plant proteins with enzymatic activity identified as rRNA N-glycosidase (EC 3.2.2.22), which cleaves the N-glycosidic bond of a specific adenine on the ricin/sarcin region of rRNA, thus causing inhibition of protein synthesis. They also depurinate extensively DNA and other polynucleotides. The three-dimensional structure of dianthin 30, a type 1 (single-chain) RIP of Dianthus caryophyllus (leaves), is now described at 1.4 angstroms, a resolution never achieved before for any RIP. The fold typical of RIPs is conserved, despite some differences in the loop regions. The general structure comparison by superimposed alpha-carbon (249 atoms) and the sequence alignment by structure for dianthin 30 and saporin-S6 give a root mean square deviation of 0.625 angstroms. Despite the differences reported for the biological activities of the two RIPs, their structures fit quite well and both show a protein segment containing strands beta7, beta8, and beta9 shorter than other RIPs. However, the surface electrostatic potential in the active site region neatly distinguishes dianthin 30 from saporin-S6. The possible relationship between the charge distribution and the behavior of the proteins toward different substrates is discussed.
Collapse
Affiliation(s)
- Simona Fermani
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum Universita' di Bologna, via Selmi 2, I-40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Shaw PC, Lee KM, Wong KB. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon 2005; 45:683-9. [PMID: 15804517 DOI: 10.1016/j.toxicon.2004.12.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 12/24/2004] [Indexed: 11/22/2022]
Abstract
Trichosanthin (TCS), a ribosome-inactivating protein extracted from the root tuber of Chinese medicinal herb Trichosanthes kirilowii Maximowicz, has multiple pharmacological properties including abortifacient, anti-tumor and anti-HIV. It is traditionally used to induce abortion but its antigenicity and short plasma half-life have limited the repeated clinical administration. In this review, work to locating antigenic sites and prolonging plasma half-life are discussed. Studies on structure-function relationship and mechanism of cell entry are also covered. Recently, TCS has been found to induce apoptosis, enhance the action of chemokines and inhibit HIV-1 integrase. These findings give new insights on the pharmacological properties of TCS and other members of ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Pang-Chui Shaw
- Department of Biochemistry, Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | | | | |
Collapse
|
35
|
Mishra V, Bilgrami S, Sharma RS, Kaur P, Yadav S, Krauspenhaar R, Betzel C, Voelter W, Babu CR, Singh TP. Crystal Structure of Himalayan Mistletoe Ribosome-inactivating Protein Reveals the Presence of a Natural Inhibitor and a New Functionally Active Sugar-binding Site. J Biol Chem 2005; 280:20712-21. [PMID: 15774467 DOI: 10.1074/jbc.m500735200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxins involved in plant defense. How the plant prevents autotoxicity is not yet fully understood. The present study is the first structural evidence of a naturally inhibited form of RIP from a plant. Himalayan mistletoe RIP (HmRIP) was purified from Viscum album leaves and crystallized with lactose. The structure was determined by the molecular replacement method and refined at 2.8-A resolution. The crystal structure revealed the presence of high quality non-protein electron density at the active site, into which a pteridine derivative (2-amino 4-isopropyl 6-carboxyl pteridine) was modeled. The carboxyl group of the ligand binds strongly with the key active site residue Arg(162), nullifies the positive charge required for catalysis, and thereby acts as a natural inhibitor. Lectin subunits of RIPs have two active sugar-binding sites present in 1alpha- and 2gamma-subdomains. A third functionally active site has been identified in the 1beta-subdomain of HmRIP. The 1beta-site is active despite the absence of conserved polar sugar-binding residues. Loss of these residues is compensated by the following: (i) the presence of an extended site where the penultimate sugar also interacts with the protein; (ii) the interactions of galactose with the protein main chain carbonyl and amide nitrogen atoms; (iii) the presence of a well defined pocket encircled by four walls; and (iv) a favorable stacking of the galactose ring with Tyr(66) besides the conserved Phe(75). The mode of sugar binding is also distinct at the 1alpha and 2gamma sugar-binding sites.
Collapse
Affiliation(s)
- Vandana Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Ricin, abrin and related plant toxins have played interesting and important roles in the history of clinical medicine and biomedical research. The use of these proteins in medical treatment since ancient times is reviewed. Later the proteins played important roles in the early days of immunological research and some of the fundamental principles of immunology were discovered with toxic proteins of this group. During the last three decades the mechanism of action of the toxins was elucidated. This led to a major effort to target the toxins to malignant cells. Ricin has been used in bioterrorism. Recently, the toxins have played important roles as experimental models to elucidate the intracellular trafficking of endocytosed proteins.
Collapse
Affiliation(s)
- Sjur Olsnes
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo 0310, Norway.
| |
Collapse
|
37
|
Li F, Yang XX, Xia HC, Zeng R, Hu WG, Li Z, Zhang ZC. Purification and characterization of Luffin P1, a ribosome-inactivating peptide from the seeds of Luffa cylindrica. Peptides 2003; 24:799-805. [PMID: 12948831 DOI: 10.1016/s0196-9781(03)00173-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A peptide designated Luffin P1 was purified from the seeds of Luffa cylindrica. Its molecular mass was determined to be 5226.1 Da by MALDI-TOF MS analysis. The purified Luffin P1 shows a strong inhibitory activity on protein synthesis in the cell-free rabbit reticulocyte lysate with IC(50) of 0.88 nM. Its reaction mechanism is the same as that of the ribosome-inactivating protein trichosanthin, which is an rRNA N-glycosidase. Besides, the results of gel filtration chromatography suggested the existence of polymers of Luffin P1 and polymerization of Luffin P1 enhanced its rRNA N-glycosidase activity. Luffin P1 was the smallest peptide yet reported that has translational inhibitory activity. The cDNA and deduced amino acid sequence of Luffin P1 has also been determined.
Collapse
Affiliation(s)
- Feng Li
- Key laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The plant toxin ricin consists of two disulfide-linked polypeptides with different functions. The A-chain enters the cytosol and inactivates the ribosomes enzymatically, whereas the B-chain has lectin properties and binds to carbohydrates at the cell surface. This binding is a requirement for translocation of the A-chain to the cytosol. The bound toxin is endocytosed and transported retrograde through the Golgi apparatus to the endoplasmic reticulum where it appears to be translocated to the cytosol by the sec61p complex.
Collapse
Affiliation(s)
- S Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway.
| | | |
Collapse
|
39
|
Zhu G, Huang Q, Qian M, Tang Y. Crystal structure of alpha-momorcharin in 80% acetonitrile--water mixture. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1548:152-8. [PMID: 11451448 DOI: 10.1016/s0167-4838(01)00235-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Crystals of alpha-momorcharin (MMC) were cross-linked and soaked in an 80% acetonitrile--water mixture and X-ray data were collected to 2.2 A resolution. MMC is a ribosome-inactivating protein with a sugar chain on Asn-227. In previous studies, the whole conformation of the sugar chain could not be obtained in the aqueous system. Here the structure of MMC in a low water system is shown to be similar to the native one, but the sugar chain on Asn-227 is defined by the electron density map. Several oxygen atoms of the oligosaccharide formed intramolecular hydrogen bonds to the protein moiety. The conformation of the residues in the active center is similar to that in the aqueous system. Our results show conformational alteration of the tetrasaccharide of MMC in organic media. They indicate that the oligosaccharides are more rigid in organic solvents. X-ray determination in organic media may be used to solve some structures of oligosaccharides linked to glycoproteins.
Collapse
Affiliation(s)
- G Zhu
- Department of Chemistry, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
40
|
Gu Y, Chen W, Xia Z. Molecular modeling of the interactions of trichosanthin with four substrate analogs. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:291-7. [PMID: 11043934 DOI: 10.1023/a:1007047413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Trichosanthin (TCS) is a ribosome-inactivating protein (RIP) that possesses N-glycosidase activity. It inactivates ribosomes and arrests protein synthesis by removing a specific adenine from 28S rRNA. A molecular dynamics simulated annealing method was applied to study the binding modes of TCS with substrate analogs, three oligonucleotides GAG, GAGA, and CGAGAG, based on the crystal structures of the stable complexes of TCS with NADPH and with the reaction product adenine. A water molecule proposed to be responsible for hydrolyzing the N-glycosidic bond was included in the model. All the oligoribonucleotides can dock into the active cleft of TCS without unfavorable contacts. The interaction energies between TCS and the three oligonucleotides were calculated. The interactions of TCS with NADH were also studied by a molecular dynamics simulated annealing method. The interaction energy between NADH and TCS was compared with that between NADPH and TCS, showing that the lack of 2'-phosphate group leads to an energy rise of 20 kcal/mol.
Collapse
Affiliation(s)
- Y Gu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
| | | | | |
Collapse
|
41
|
Gu YJ, Xia ZX. Crystal structures of the complexes of trichosanthin with four substrate analogs and catalytic mechanism of RNA N-glycosidase. Proteins 2000. [DOI: 10.1002/(sici)1097-0134(20000401)39:1<37::aid-prot4>3.0.co;2-g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Savino C, Federici L, Ippoliti R, Lendaro E, Tsernoglou D. The crystal structure of saporin SO6 from Saponaria officinalis and its interaction with the ribosome. FEBS Lett 2000; 470:239-43. [PMID: 10745075 DOI: 10.1016/s0014-5793(00)01325-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The 2.0 A resolution crystal structure of the ribosome inactivating protein saporin (isoform 6) from seeds of Saponaria officinalis is presented. The fold typical of other plant toxins is conserved, despite some differences in the loop regions. The loop between strands beta7 and beta8 in the C-terminal region which spans over the active site cleft appears shorter in saporin, suggesting an easier access to the substrate. Furthermore we investigated the molecular interaction between saporin and the yeast ribosome by differential chemical modifications. A contact surface inside the C-terminal region of saporin has been identified. Structural comparison between saporin and other ribosome inactivating proteins reveals that this region is conserved and represents a peculiar motif involved in ribosome recognition.
Collapse
Affiliation(s)
- C Savino
- Department of Biochemical Sciences and CNR Centre for Molecular Biology, University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185, Rome, Italy
| | | | | | | | | |
Collapse
|
43
|
Li HG, Xu SZ, Wu S, Yan L, Li JH, Wong RN, Shi QL, Dong YC. Role of Arg163 in the N-glycosidase activity of neo-trichosanthin. PROTEIN ENGINEERING 1999; 12:999-1004. [PMID: 10585506 DOI: 10.1093/protein/12.11.999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three mutant crystals of neo-trichosanthin (n-TCS), R163K, R163H and R163Q, were obtained by the hanging drop vapor diffusion method. Structure determination indicated that there are no significant differences between the mutants and n-TCS except in the active pocket. All of them were also soaked in sodium citrate buffer (pH 4. 5) containing 20% KCl and 10 mg/ml AMP. Structure determination suggests that in the active pocket of the crystals of R163K and R163H, parallel to the aromatic ring of Tyr70, each mutant possesses an adenine. The relationship between structure and function is discussed. Biochemical analysis reveals that the mutants R163K and R163H have N-glycosidase activity, while R163Q does not. This suggests that R163 is a crucial residue for the enzyme activity of n-TCS, and its role is providing proton.
Collapse
Affiliation(s)
- H G Li
- Department of Protein Engineering, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101 and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yan L, Wu S, Li HG, Li JH, Wong RN, Shi QL, Dong YC. Role of TYR70 in the N-glycosidase activity of neo-trichosanthin. Toxicon 1999; 37:961-72. [PMID: 10484744 DOI: 10.1016/s0041-0101(98)00225-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) which possesses rRNA N-glycosidase activity. TCS has long been used as an abortifacient in China. In recent years, its immunomodulatory, anti-tumor and anti-HIV properties have attracted more and more attention. An isoform of trichosanthin, neo-trichosanthin (n-TCS), has been cloned and expressed as recombinant protein. The biochemical studies revealed that n-TCS has virtually the same rRNA N-glycosidase activity as TCS. The crystal structure of n-TCS is similar to TCS. The crystal of Y70A n-TCS, the mutant of recombinant n-TCS, was soaked in sodium citrate buffer (pH 5.5) containing 25% KCl and AMP (10 mg/ml) prior to data collection. After structure determination and refinement, no electron density corresponding to adenine can be detected around the active pocket. Furthermore, the reaction products of Y70A n-TCS and AMP incubated at various reaction times were analyzed using HPLC. No adenine can be detected. These results suggest that Tyr70 is crucial to n-TCS for its substrate recognition, binding and perhaps N-glycosidase activity.
Collapse
Affiliation(s)
- L Yan
- Department of Protein Engineering, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Olson MA, Cuff L. Free energy determinants of binding the rRNA substrate and small ligands to ricin A-chain. Biophys J 1999; 76:28-39. [PMID: 9876120 PMCID: PMC1302497 DOI: 10.1016/s0006-3495(99)77175-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A continuum model is provided of the free energy terms that contribute to the molecular association of ricin A-chain (RTA) with the rRNA substrate and several small ligands. The model for RTA interactions with the RNA was taken from a previously proposed complex containing a 29-mer oligonucleotide hairpin (. Proteins 27:80-95), and models for the ligands were constructed from x-ray crystallographic structures. The calculated absolute free energies of complex formation for the RTA-RNA assembly and several single-residue substitutions are in good agreement with experimental data, given the approximations of evaluating the strain energy and conformational entropy. The free energy terms were found to resemble those of protein-protein complexes, with the net unfavorable electrostatic contribution offset by the favorable nonspecific hydrophobic effect. Decomposition of the RTA-RNA binding free energy into individual contributions revealed the electrostatic "hot" spots arising from charge-charge complementarity of the interfacial arginines with the RNA phosphate backbone. Base interactions of the GAGA loop structure dominate the hydrophobic complementarity. A linear-scaling model was parametrized for evaluating the binding of small ligands against the rRNA substrate and illustrates the free energy determinant required for designing specific RTA inhibitors.
Collapse
Affiliation(s)
- M A Olson
- Molecular Modeling Laboratory and Department of Cell Biology and Biochemistry, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702 USA.
| | | |
Collapse
|
46
|
Poyet JL, Hoeveler A, Jongeneel CV. Analysis of active site residues of the antiviral protein from summer leaves from Phytolacca americana by site-directed mutagenesis. Biochem Biophys Res Commun 1998; 253:582-7. [PMID: 9918771 DOI: 10.1006/bbrc.1998.9815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The summer leaf isoform of the pokeweed (Phytolacca americana) antiviral protein, PAP II, was produced in high yields from inclusion bodies in recombinant E. coli. On the basis of its sequence similarity with the spring leaf isoform (PAP I) and with the A chain of ricin, a three-dimensional model of the protein was constructed as an aid in the design of active site mutants. PAP II variants mutated in residues Asp 88 (D88N), Tyr 117 (Y117S), Glu 172 (E172Q), Arg 175 (R175H) and a combination of Asp 88 and Arg 175 (D88N/R175H) were produced in E. coli and assayed for their ability to inhibit protein synthesis in a rabbit reticulocyte lysate. All of these mutations had effects deleterious to the enzymatic activity of PAP II. The results were interpreted in the light of three reaction mechanisms proposed for ribosome-inactivating proteins (RIPs). We conclude that none of the proposed mechanisms is entirely consistent with the data presented here.
Collapse
Affiliation(s)
- J L Poyet
- Laboratoire de Biochimie et de Biologie Moléculaire, UFR des Sciences et des Techniques, Besançon, France
| | | | | |
Collapse
|
47
|
Leung KC, Meng ZQ, Ho WK. Antigenic determination fragments of alpha-momorcharin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:419-24. [PMID: 9367169 DOI: 10.1016/s0304-4165(97)00053-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alpha momorcharin is a protein isolated from the bitter gourd. It has a number of biological activities including induction of abortion, inhibition of tumor growth and anti-HIV. All these activities may be related to the ribosome-inhibiting activity of the protein. Repeated use of alphaMMC can elicit an antigenic response which may neutralize its biological activity. To overcome this problem, we need to know which part of the molecule is the antigenic determinant. In this study, we constructed a random fragment expression library from the alphaMMC cDNA and screened it with three anti-alphaMMC sera. A total of 9 positive clones were picked and sequenced. Based on the sequence information obtained, we were able to deduce three regions at which antibodies raised against native alphaMMC seem to interact. These regions are residues 1-14, residues 71-136 and residues 195-222. Mapping of these regions against a 3D model of alphaMMC indicates that they all are located on the surface of the molecule. As residues 71-136 are found to be in close proximity to the active site involved in ribosome inactivation, treatment with a monoclonal antibody directed to this area was shown to be effective in inactivating the inhibitory effect of alphaMMC on in vitro protein synthesis.
Collapse
Affiliation(s)
- K C Leung
- Department of Biochemistry, Chinese University of Hong Kong, Shatin, N.T
| | | | | |
Collapse
|
48
|
Crystal structure of Y14F trichosanthin. CHINESE SCIENCE BULLETIN-CHINESE 1997. [DOI: 10.1007/bf02882867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Yan X, Hollis T, Svinth M, Day P, Monzingo AF, Milne GW, Robertus JD. Structure-based identification of a ricin inhibitor. J Mol Biol 1997; 266:1043-9. [PMID: 9086280 DOI: 10.1006/jmbi.1996.0865] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ricin is a potent cytotoxin which has been used widely in the construction of therapeutic agents such as immunotoxins. Recently it has been used by governments and underground groups as a poison. There is interest in identifying and designing effective inhibitors of the ricin A chain (RTA). In this study computer-assisted searches indicated that pterins might bind in the RTA active site which normally recognizes a specific adenine base on rRNA. Kinetic assays showed that pteroic acid could inhibit RTA activity with an apparent Ki of 0.6 mM. A 2.3 A crystal structure of the complex revealed the mode of binding. The pterin ring displaces Tyr80 and binds in the adenine pocket making specific hydrogen bonds to active site residues. The benzoate moiety of pteroic acid binds on the opposite side of Tyr80 making van der Waals contact with the Tyr ring and forming a hydrogen bond with Asn78. Neopterin, a propane triol derivative of pterin, also binds to RTA as revealed by the X-ray structure of its complex with RTA. Neither pterin-6-carboxylic acid nor folic acid bind to the crystal or act as inhibitors. The models observed suggest alterations to the pterin moiety which may produce more potent and specific RTA inhibitors.
Collapse
Affiliation(s)
- X Yan
- Department of Chemistry and Biochemistry, University of Texas, Austin 78712, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Ricin A-chain is a cytotoxic protein that attacks ribosomes by hydrolyzing a specific adenine base from a highly conserved, single-stranded rRNA hairpin containing the tetraloop sequence GAGA. Molecular-dynamics simulation methods are used to analyze the structural determinant for three substrate analogues bound to the ricin A-chain molecule. Simulations were applied to the binding of the dinucleotide adenyl-3',5'-guanosine employing the x-ray crystal structure of the ricin complex and a modeled CGAGAG hexanucleotide loop taken from the NMR solution structure of a 29-mer oligonucleotide hairpin. A third simulation model is also presented describing a conformational search of the docked 29-mer structure by using a simulated-annealing method. Analysis of the structural interaction energies for each model shows the overall binding dominated by nonspecific interactions, which are mediated by specific arginine contracts from the highly basic region on the protein surface. The tetraloop conformation of the 29-mer was found to make specific interactions with conserved protein residues, in a manner that favored the GAGA sequence. A comparison of the two docked loop conformations with the NMR structure revealed significant positional deviations, suggesting that ricin may use an induced fit mechanism to recognize and bind the rRNA substrate. The conserved Tyr-80 may play an important conformational entropic role in the binding and release of the target adenine in the active site.
Collapse
Affiliation(s)
- M A Olson
- Department of Cell Biology and Biochemistry, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702-5011, USA
| |
Collapse
|