1
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
2
|
Gurung MK, Altermark B, Helland R, Smalås AO, Ræder ILU. Features and structure of a cold active N-acetylneuraminate lyase. PLoS One 2019; 14:e0217713. [PMID: 31185017 PMCID: PMC6559660 DOI: 10.1371/journal.pone.0217713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
N-acetylneuraminate lyases (NALs) are enzymes that catalyze the reversible cleavage and synthesis of sialic acids. They are therefore commonly used for the production of these high-value sugars. This study presents the recombinant production, together with biochemical and structural data, of the NAL from the psychrophilic bacterium Aliivibrio salmonicida LFI1238 (AsNAL). Our characterization shows that AsNAL possesses high activity and stability at alkaline pH. We confirm that these properties allow for the use in a one-pot reaction at alkaline pH for the synthesis of N-acetylneuraminic acid (Neu5Ac, the most common sialic acid) from the inexpensive precursor N-acetylglucosamine. We also show that the enzyme has a cold active nature with an optimum temperature for Neu5Ac synthesis at 20°C. The equilibrium constant for the reaction was calculated at different temperatures, and the formation of Neu5Ac acid is favored at low temperatures, making the cold active enzyme a well-suited candidate for use in such exothermic reactions. The specific activity is high compared to the homologue from Escherichia coli at three tested temperatures, and the enzyme shows a higher catalytic efficiency and turnover number for cleavage at 37°C. Mutational studies reveal that amino acid residue Asn 168 is important for the high kcat. The crystal structure of AsNAL was solved to 1.65 Å resolution and reveals a compact, tetrameric protein similar to other NAL structures. The data presented provides a framework to guide further optimization of its application in sialic acid production and opens the possibility for further design of the enzyme.
Collapse
Affiliation(s)
- Man Kumari Gurung
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Bjørn Altermark
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Ronny Helland
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Arne O. Smalås
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Inger Lin U. Ræder
- The Norwegian Structural Biology Center (NorStruct), Department of Chemistry, UiT- The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
3
|
Wen XY, Tarailo-Graovac M, Brand-Arzamendi K, Willems A, Rakic B, Huijben K, Da Silva A, Pan X, El-Rass S, Ng R, Selby K, Philip AM, Yun J, Ye XC, Ross CJ, Lehman AM, Zijlstra F, Abu Bakar N, Drögemöller B, Moreland J, Wasserman WW, Vallance H, van Scherpenzeel M, Karbassi F, Hoskings M, Engelke U, de Brouwer A, Wevers RA, Pshezhetsky AV, van Karnebeek CD, Lefeber DJ. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential for muscle function. JCI Insight 2018; 3:122373. [PMID: 30568043 DOI: 10.1172/jci.insight.122373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022] Open
Abstract
Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.
Collapse
Affiliation(s)
- Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia.,Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bojana Rakic
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Afitz Da Silva
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Xuefang Pan
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Robin Ng
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Katheryn Selby
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anju Mary Philip
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Junghwa Yun
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - X Cynthia Ye
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Colin J Ross
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anna M Lehman
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Fokje Zijlstra
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - N Abu Bakar
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver Canada
| | - Jacqueline Moreland
- Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Monique van Scherpenzeel
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Farhad Karbassi
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Martin Hoskings
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver Canada
| | - Udo Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arjan de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexey V Pshezhetsky
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Clara Dm van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver Canada.,Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Kumar JP, Rao H, Nayak V, Ramaswamy S. Crystal structures and kinetics of N-acetylneuraminate lyase from Fusobacterium nucleatum. Acta Crystallogr F Struct Biol Commun 2018; 74:725-732. [PMID: 30387778 PMCID: PMC6213981 DOI: 10.1107/s2053230x18012992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022] Open
Abstract
N-Acetyl-D-neuraminic acid lyase (NanA) catalyzes the breakdown of sialic acid (Neu5Ac) to N-acetyl-D-mannosamine (ManNAc) and pyruvate. NanA plays a key role in Neu5Ac catabolism in many pathogenic and bacterial commensals where sialic acid is available as a carbon and nitrogen source. Several pathogens or commensals decorate their surfaces with sialic acids as a strategy to escape host innate immunity. Catabolism of sialic acid is key to a range of host-pathogen interactions. In this study, atomic resolution structures of NanA from Fusobacterium nucleatum (FnNanA) in ligand-free and ligand-bound forms are reported at 2.32 and 1.76 Å resolution, respectively. F. nucleatum is a Gram-negative pathogen that causes gingival and periodontal diseases in human hosts. Like other bacterial N-acetylneuraminate lyases, FnNanA also shares the triosephosphate isomerase (TIM)-barrel fold. As observed in other homologous enzymes, FnNanA forms a tetramer. In order to characterize the structure-function relationship, the steady-state kinetic parameters of the enzyme are also reported.
Collapse
Affiliation(s)
- Jay Prakash Kumar
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
- School of Life Science, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, Karnataka 560 065, India
| | - Harshvardhan Rao
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - Vinod Nayak
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - S. Ramaswamy
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bangalore, Karnataka 560 065, India
| |
Collapse
|
5
|
Campeotto I, Lebedev A, Schreurs AMM, Kroon-Batenburg LMJ, Lowe E, Phillips SEV, Murshudov GN, Pearson AR. Pathological macromolecular crystallographic data affected by twinning, partial-disorder and exhibiting multiple lattices for testing of data processing and refinement tools. Sci Rep 2018; 8:14876. [PMID: 30291262 PMCID: PMC6173773 DOI: 10.1038/s41598-018-32962-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Twinning is a crystal growth anomaly, which has posed a challenge in macromolecular crystallography (MX) since the earliest days. Many approaches have been used to treat twinned data in order to extract structural information. However, in most cases it is usually simpler to rescreen for new crystallization conditions that yield an untwinned crystal form or, if possible, collect data from non-twinned parts of the crystal. Here, we report 11 structures of engineered variants of the E. coli enzyme N-acetyl-neuraminic lyase which, despite twinning and incommensurate modulation, have been successfully indexed, solved and deposited. These structures span a resolution range of 1.45-2.30 Å, which is unusually high for datasets presenting such lattice disorders in MX and therefore these data provide an excellent test set for improving and challenging MX data processing programs.
Collapse
Affiliation(s)
- Ivan Campeotto
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK. .,Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 1HY, UK. .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Lancaster Road, Leicester, LE1 7RH, UK.
| | - Andrey Lebedev
- Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxford, OX11 OFA, UK
| | - Antoine M M Schreurs
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Loes M J Kroon-Batenburg
- Department of Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Edward Lowe
- Biochemistry Department, Oxford University, South Parks Road, Oxford, OX1 1HY, UK
| | - Simon E V Phillips
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxford, OX11 OFA, UK
| | - Garib N Murshudov
- Structural Studies Division, MRC-LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Arwen R Pearson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK. .,Hamburg Centre for Ultrafast Imaging, Institute of Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
6
|
Chen X, Zhou J, Zhang L, Pu Z, Liu L, Shen W, Fan Y. Development of an Escherichia coli-based biocatalytic system for the efficient synthesis of N-acetyl-D-neuraminic acid. Metab Eng 2018; 47:374-382. [DOI: 10.1016/j.ymben.2018.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 11/29/2022]
|
7
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
8
|
Wang Y, Brown CA, Chen R. Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF). AIMS Microbiol 2018; 4:261-273. [PMID: 31294214 PMCID: PMC6604932 DOI: 10.3934/microbiol.2018.2.261] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Biorefinery is increasingly embraced as an environmentally friendly approach that has the potential to shift current petroleum-based chemical and material manufacture to renewable sources. Furanic compounds, particularly hydroxymethylfurfurals (HMFs) are platform chemicals, from which a variety of value-added chemicals can be derived. Their biomanufacture and biodegradation therefore will have a large impact. Here, we first review the potential industrial production of 4-HMF and 5-HMF, then we summarize the known microbial biosynthesis and biodegradation pathways of furanic compounds with emphasis on the enzymes in each pathway. We especially focus on the structure, function and catalytic mechanism of MfnB (4-(hydroxymethyl)-2-furancarboxyaldehyde-phosphate synthase) and hmfH (HMF oxidase), which catalyze the formation of phosphorylated 4-HMF and the oxidation of 5-HMF to furandicarboxylic acid (2,5-FDCA), respectively. Understanding the structure-function relationship of these enzymes will provide important insights in enzyme engineering, which eventually will find industry applications in mass-production of biobased polymers and other bulk chemicals in future.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry and Biochemistry, University of North Georgia-Dahlonega, Dahlonega, GA, 30597, USA
| | - Caroline A Brown
- Department of Chemistry and Biochemistry, University of North Georgia-Dahlonega, Dahlonega, GA, 30597, USA
| | - Rachel Chen
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma. Mar Drugs 2018; 16:md16030080. [PMID: 29510563 PMCID: PMC5867624 DOI: 10.3390/md16030080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/01/2022] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal) from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L−1 culture) with a stable activity in a wide pH (5.0–9.0) and temperature (40–60 °C) range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL), located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.
Collapse
|
10
|
Soares da Costa TP, Patel M, Desbois S, Gupta R, Faou P, Perugini MA. Identification of a dimeric KDG aldolase from
Agrobacterium tumefaciens. Proteins 2017; 85:2058-2065. [DOI: 10.1002/prot.25359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana P. Soares da Costa
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Madhvi Patel
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Sebastien Desbois
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Ruchi Gupta
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Pierre Faou
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Matthew A. Perugini
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| |
Collapse
|
11
|
North RA, Watson AJA, Pearce FG, Muscroft-Taylor AC, Friemann R, Fairbanks AJ, Dobson RCJ. Structure and inhibition of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. FEBS Lett 2016; 590:4414-4428. [PMID: 27943302 DOI: 10.1002/1873-3468.12462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Accepted: 10/09/2016] [Indexed: 01/07/2023]
Abstract
N-Acetylneuraminate lyase is the first committed enzyme in the degradation of sialic acid by bacterial pathogens. In this study, we analyzed the kinetic parameters of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus (MRSA). We determined that the enzyme has a relatively high KM of 3.2 mm, suggesting that flux through the catabolic pathway is likely to be controlled by this enzyme. Our data indicate that sialic acid alditol, a known inhibitor of N-acetylneuraminate lyase enzymes, is a stronger inhibitor of MRSA N-acetylneuraminate lyase than of Clostridium perfringens N-acetylneuraminate lyase. Our analysis of the crystal structure of ligand-free and 2R-sialic acid alditol-bound MRSA N-acetylneuraminate lyase suggests that subtle dynamic differences in solution and/or altered binding interactions within the active site may account for species-specific inhibition.
Collapse
Affiliation(s)
- Rachel A North
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew J A Watson
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew C Muscroft-Taylor
- Protein Science and Engineering, Callaghan Innovation, University of Canterbury, Christchurch, New Zealand
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Sweden.,Department of Structural Biology, School of Medicine, Stanford University, CA, USA
| | - Antony J Fairbanks
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Chemistry, University of Canterbury, Christchurch, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia
| |
Collapse
|
12
|
A sialic acid aldolase from Peptoclostridium difficile NAP08 with 4-hydroxy-2-oxo-pentanoate aldolase activity. Enzyme Microb Technol 2016; 92:99-106. [DOI: 10.1016/j.enzmictec.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
|
13
|
L-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti. J Bacteriol 2016; 198:1171-81. [PMID: 26833407 DOI: 10.1128/jb.00961-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ(1)-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/β)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ(1)-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut. While the main biochemical features of bacterial hydroxyproline catabolism were elucidated in the 1960s, the genetic and molecular details have only recently been determined. Elucidating the genetics of hydroxyproline catabolism will aid in the annotation of these genes in other genomes and metagenomic libraries. This will facilitate an improved understanding of the importance of this pathway and may assist in determining the prevalence of hydroxyproline in a particular environment.
Collapse
|
14
|
Wang Y, Jones MK, Xu H, Ray WK, White RH. Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase. Biochemistry 2015; 54:2997-3008. [DOI: 10.1021/acs.biochem.5b00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Michael K. Jones
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Ji W, Sun W, Feng J, Song T, Zhang D, Ouyang P, Gu Z, Xie J. Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis. Sci Rep 2015; 5:9341. [PMID: 25799411 PMCID: PMC5380162 DOI: 10.1038/srep09341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/26/2015] [Indexed: 01/22/2023] Open
Abstract
N-Acetylneuraminic acid lyase (NAL, E.C. number 4.1.3.3) is a Class I aldolase that catalyzes the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) from pyruvate and N-acetyl-D-mannosamine (ManNAc). Due to the equilibrium favoring Neu5Ac cleavage, the enzyme catalyzes the rate-limiting step of two biocatalytic reactions producing Neu5Ac in industry. We report the biochemical characterization of a novel NAL from a “GRAS” (General recognized as safe) strain C. glutamicum ATCC 13032 (CgNal). Compared to all previously reported NALs, CgNal exhibited the lowest kcat/Km value for Neu5Ac and highest kcat/Km values for ManNAc and pyruvate, which makes CgNal favor Neu5Ac synthesis the most. The recombinant CgNal reached the highest expression level (480 mg/L culture), and the highest reported yield of Neu5Ac was achieved (194 g/L, 0.63 M). All these unique properties make CgNal a promising biocatalyst for industrial Neu5Ac biosynthesis. Additionally, although showing the best Neu5Ac synthesis activity among the NAL family, CgNal is more related to dihydrodipicolinate synthase (DHDPS) by phylogenetic analysis. The activities of CgNal towards both NAL's and DHDPS' substrates are fairly high, which indicates CgNal a bi-functional enzyme. The sequence analysis suggests that CgNal might have adopted a unique set of residues for substrates recognition.
Collapse
Affiliation(s)
- Wenyan Ji
- 1] State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, PR China [2] College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China [3] National Engineering Technique Research Center for Biotechnology, Nanjing, PR China
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, United States
| | - Jinmei Feng
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan, China
| | - Tianshun Song
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Dalu Zhang
- International Cooperation Division, China National Center for Biotechnology Development, Beijing, PR China
| | - Pingkai Ouyang
- 1] State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, PR China [2] College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China [3] National Engineering Technique Research Center for Biotechnology, Nanjing, PR China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, United States
| | - Jingjing Xie
- 1] State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, PR China [2] College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China [3] National Engineering Technique Research Center for Biotechnology, Nanjing, PR China
| |
Collapse
|
16
|
Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. Molecules 2014; 19:8629-43. [PMID: 24962396 PMCID: PMC6271518 DOI: 10.3390/molecules19068629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/19/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC). Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications.
Collapse
|
17
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
18
|
North RA, Seizova S, Stampfli A, Kessans SA, Suzuki H, Griffin MDW, Kvansakul M, Dobson RCJ. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine kinase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 2014; 70:643-9. [PMID: 24817729 PMCID: PMC4014338 DOI: 10.1107/s2053230x14007250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/01/2014] [Indexed: 11/10/2022] Open
Abstract
N-Acetylmannosamine kinase (EC 2.7.1.60) is involved in the catabolism of sialic acid for many bacterial pathogens implicated in human disease such as Escherichia coli, Staphylococcus aureus, Vibrio cholerae and V. vulnificus. Interestingly, some human commensals and bacterial pathogens can scavenge sialic acids from their surrounding environment and degrade them as a source of carbon, nitrogen and energy. This process requires a cluster of genes known as the `Nan-Nag cluster', which have proven to be essential for S. aureus growth on sialic acids, suggesting that the pathway is a viable antimicrobial drug target. The enzyme N-acetylmannosamine kinase is involved in the catabolism of sialic acid, transferring a phosphate group from adenosine-5'-triphosphate to the C6 position of N-acetylmannosamine to generate N-acetylmannosamine-6-phosphate. The gene was cloned into an appropriate expression vector; recombinant protein was expressed in E. coli BL21 (DE3) cells and purified via anion-exchange chromatography, hydrophobic interaction chromatography and size-exclusion chromatography. Purified N-acetylmannosamine kinase was screened for crystallization. The best crystal diffracted to a resolution of beyond 2.6 Å in space group P2. Understanding the structural nature of this enzyme from methicillin-resistant S. aureus will provide insights necessary for the development of future antimicrobials.
Collapse
Affiliation(s)
- Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Simona Seizova
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Anja Stampfli
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry, La Trobe University, Melbourne, Victoria, Australia
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
North RA, Kessans SA, Griffin MDW, Watson AJA, Fairbanks AJ, Dobson RCJ. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine-6-phosphate 2-epimerase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr F Struct Biol Commun 2014; 70:650-5. [PMID: 24817730 PMCID: PMC4014339 DOI: 10.1107/s2053230x14007171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Sialic acids are one of the most important carbohydrate classes in biology. Some bacterial pathogens can scavenge sialic acids from their surrounding environment and degrade them as a source of carbon, nitrogen and energy. This sequestration and subsequent catabolism of sialic acid require a cluster of genes known as the `Nan-Nag' cluster. The enzymes coded by these genes are important for pathogen colonization and persistence. Importantly, the Nan-Nag genes have proven to be essential for Staphylococcus aureus growth on sialic acids, suggesting that the pathway is a viable antibiotic drug target. The enzyme N-acetylmannosamine-6-phosphate 2-epimerase is involved in the catabolism of sialic acid; specifically, the enzyme converts N-acetylmannosamine-6-phosphate into N-acetylglucosamine-6-phosphate. The gene was cloned into an appropriate expression vector, and recombinant protein was expressed in Escherichia coli BL21 (DE3) cells and purified via a three-step procedure. Purified N-acetylmannosamine-6-phosphate 2-epimerase was screened for crystallization. The best crystal diffracted to a resolution of beyond 1.84 Å in space group P21212. Understanding the structural nature of this enzyme from methicillin-resistant S. aureus will provide us with the insights necessary for the development of future antibiotics.
Collapse
Affiliation(s)
- Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Andrew J. A. Watson
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Antony J. Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
20
|
Daniels AD, Campeotto I, van der Kamp MW, Bolt AH, Trinh CH, Phillips SEV, Pearson A, Nelson A, Mulholland AJ, Berry A. Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM simulation, and mutagenesis. ACS Chem Biol 2014; 9:1025-32. [PMID: 24521460 PMCID: PMC4004234 DOI: 10.1021/cb500067z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Acetylneuraminic acid lyase (NAL) is a Class I aldolase that catalyzes the reversible condensation of pyruvate with N-acetyl-d-mannosamine (ManNAc) to yield the sialic acid N-acetylneuraminic acid (Neu5Ac). Aldolases are finding increasing use as biocatalysts for the stereospecific synthesis of complex molecules. Incomplete understanding of the mechanism of catalysis in aldolases, however, can hamper development of new enzyme activities and specificities, including control over newly generated stereocenters. In the case of NAL, it is clear that the enzyme catalyzes a Bi-Uni ordered condensation reaction in which pyruvate binds first to the enzyme to form a catalytically important Schiff base. The identity of the residues required for catalysis of the condensation step and the nature of the transition state for this reaction, however, have been a matter of conjecture. In order to address, this we crystallized a Y137A variant of the E. coli NAL in the presence of Neu5Ac. The three-dimensional structure shows a full length sialic acid bound in the active site of subunits A, B, and D, while in subunit C, discontinuous electron density reveals the positions of enzyme-bound pyruvate and ManNAc. These 'snapshot' structures, representative of intermediates in the enzyme catalytic cycle, provided an ideal starting point for QM/MM modeling of the enzymic reaction of carbon-carbon bond formation. This revealed that Tyr137 acts as the proton donor to the aldehyde oxygen of ManNAc during the reaction, the activation barrier is dominated by carbon-carbon bond formation, and proton transfer from Tyr137 is required to obtain a stable Neu5Ac-Lys165 Schiff base complex. The results also suggested that a triad of residues, Tyr137, Ser47, and Tyr110 from a neighboring subunit, are required to correctly position Tyr137 for its function, and this was confirmed by site-directed mutagenesis. This understanding of the mechanism and geometry of the transition states along the C-C bond-forming pathway will allow further development of these enzymes for stereospecific synthesis of new enzyme products.
Collapse
Affiliation(s)
- Adam D. Daniels
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Ivan Campeotto
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Amanda H. Bolt
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Chi H. Trinh
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Simon E. V. Phillips
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Arwen
R. Pearson
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Adam Nelson
- Astbury Centre for Structural Molecular
Biology and School of Chemistry, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.,E-mail:
| | - Alan Berry
- Astbury Centre for
Structural Molecular Biology and School of Molecular and Cellular
Biology, University of Leeds, Leeds LS2 9JT, U.K.,E-mail:
| |
Collapse
|
21
|
In vivo self-assembly of stable green fluorescent protein fusion particles and their uses in enzyme immobilization. Appl Environ Microbiol 2014; 80:3062-71. [PMID: 24610847 DOI: 10.1128/aem.00323-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial inclusion bodies are aggregations of mostly inactive and misfolded proteins. However, previously the in vivo self-assembly of green fluorescent protein (GFP) fusions into fluorescent particles which displayed specific binding sites suitable for applications in bioseparation and diagnostics was demonstrated. Here, the suitability of GFP particles for enzyme immobilization was assessed. The enzymes tested were a thermostable α-amylase from Bacillus licheniformis, N-acetyl-d-neuraminic acid aldolase (NanA) from Escherichia coli, and organophosphohydrolase (OpdA) from Agrobacterium radiobacter. Respective GFP particles were isolated and could be stably maintained outside the cell. These enzyme-bearing GFP particles exhibited considerable stability across a range of temperature, pH, and storage conditions and could be recycled. The α-amylase-bearing particles retained activity after treatments at 4 to 85°C and at pHs 4 to 10, were stable for 3 months at 4°C, and could be recycled up to three times. OpdA-bearing particles retained degradation activity after treatments at 4 to 45°C and at pHs 5 to 10 and were able to be recycled up to four times. In contrast, the performance of NanA-bearing particles rapidly declined (>50% loss) after each recycling step and 3 months storage at 4°C. However, they were still able to convert N-acetylmannosamine and pyruvate to N-acetylneuraminic acid after treatment at 4 to 85°C and at pHs 4 to 11. Fluorescent GFP fusion particles represent a novel method for the immobilization and display of enzymes. Potential applications include diagnostic assays, biomass conversion, pharmaceutical production, and bioremediation.
Collapse
|
22
|
Huynh N, Aye A, Li Y, Yu H, Cao H, Tiwari VK, Shin DW, Chen X, Fisher AJ. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida. Biochemistry 2013; 52:8570-9. [PMID: 24152047 DOI: 10.1021/bi4011754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac, the most common form of sialic acid) to form pyruvate and N-acetyl-d-mannosamine. Although equilibrium favors sialic acid cleavage, these enzymes can be used for high-yield chemoenzymatic synthesis of structurally diverse sialic acids in the presence of excess pyruvate. Engineering these enzymes to synthesize structurally modified natural sialic acids and their non-natural derivatives holds promise in creating novel therapeutic agents. Atomic-resolution structures of these enzymes will greatly assist in guiding mutagenic and modeling studies to engineer enzymes with altered substrate specificity. We report here the crystal structures of wild-type Pasteurella multocida N-acetylneuraminate lyase and its K164A mutant. Like other bacterial lyases, it assembles into a homotetramer with each monomer folding into a classic (β/α)₈ TIM barrel. Two wild-type structures were determined, in the absence of substrates, and trapped in a Schiff base intermediate between Lys164 and pyruvate, respectively. Three structures of the K164A variant were determined: one in the absence of substrates and two binary complexes with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Both sialic acids bind to the active site in the open-chain ketone form of the monosaccharide. The structures reveal that every hydroxyl group of the linear sugars makes hydrogen bond interactions with the enzyme, and the residues that determine specificity were identified. Additionally, the structures provide some clues for explaining the natural discrimination of sialic acid substrates between the P. multocida and Escherichia coli NALs.
Collapse
Affiliation(s)
- Nhung Huynh
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Cell Biology Graduate Program, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Control of the Escherichia coli sialoregulon by transcriptional repressor NanR. J Bacteriol 2013; 195:4689-701. [PMID: 23935044 DOI: 10.1128/jb.00692-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NanR, one of >8,500 GntR superfamily helix-turn-helix transcriptional regulators, controls expression of the genes required for catabolism of sialic acids in Escherichia coli. It is predicted to do the same in related bacteria harboring orthologs of nanR. The sialic acids are a family of over 40 naturally occurring nine-carbon keto-sugar acids found mainly in the animal lineage, which includes starfish to humans in the deuterostome lineage. Sialic acids function in development, immunity, protein localization and stability, and homeostasis. They also serve as microbial carbon and nitrogen sources and ligands for cell recognition during host colonization. The importance of microbial sialic acid metabolism for host-microbe interactions has made it a target for therapeutic development. Exploiting this target depends on understanding sialometabolic pathways in a wide range of evolutionarily distinct bacteria. Here, we show by transcriptome, genetic, and biochemical analyses that the most common sialic acid, N-acetylneuraminate, induces the nanATEK-yhcH, yjhATS (nanCMS), and yjhBC operons by directly inactivating NanR, converting the predominantly dimeric form of the repressor to an inactive monomer of approximately 30-kDa. Additionally, other results identify critical amino acid residues and nucleotides in the regulator and operator, respectively. The combined results better define how sialic acids, acting through NanR, affect the metabolic flux of an important group of host-derived metabolites. Thus, E. coli serves as a valuable model for understanding sialocatabolic pathways in bacteria.
Collapse
|
24
|
Timms N, Windle CL, Polyakova A, Ault JR, Trinh CH, Pearson AR, Nelson A, Berry A. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy. Chembiochem 2013; 14:474-81. [PMID: 23418011 PMCID: PMC3792637 DOI: 10.1002/cbic.201200714] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 11/29/2022]
Abstract
Chemical modification has been used to introduce the unnatural amino acid γ-thialysine in place of the catalytically important Lys165 in the enzyme N-acetylneuraminic acid lyase (NAL). The Staphylococcus aureus nanA gene, encoding NAL, was cloned and expressed in E. coli. The protein, purified in high yield, has all the properties expected of a class I NAL. The S. aureus NAL which contains no natural cysteine residues was subjected to site-directed mutagenesis to introduce a cysteine in place of Lys165 in the enzyme active site. Subsequently chemical mutagenesis completely converted the cysteine into γ-thialysine through dehydroalanine (Dha) as demonstrated by ESI-MS. Initial kinetic characterisation showed that the protein containing γ-thialysine regained 17 % of the wild-type activity. To understand the reason for this lower activity, we solved X-ray crystal structures of the wild-type S. aureus NAL, both in the absence of, and in complex with, pyruvate. We also report the structures of the K165C variant, and the K165-γ-thialysine enzyme in the presence, or absence, of pyruvate. These structures reveal that γ-thialysine in NAL is an excellent structural mimic of lysine. Measurement of the pH-activity profile of the thialysine modified enzyme revealed that its pH optimum is shifted from 7.4 to 6.8. At its optimum pH, the thialysine-containing enzyme showed almost 30 % of the activity of the wild-type enzyme at its pH optimum. The lowered activity and altered pH profile of the unnatural amino acid-containing enzyme can be rationalised by imbalances of the ionisation states of residues within the active site when the pK(a) of the residue at position 165 is perturbed by replacement with γ-thialysine. The results reveal the utility of chemical mutagenesis for the modification of enzyme active sites and the exquisite sensitivity of catalysis to the local structural and electrostatic environment in NAL.
Collapse
Affiliation(s)
- Nicole Timms
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| | - Claire L Windle
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| | - Anna Polyakova
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| | - Arwen R Pearson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| | - Adam Nelson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Chemistry, University of LeedsLeeds, LS2 9JT (UK)
| | - Alan Berry
- Astbury Centre for Structural Molecular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
- School of Molecular and Cellular Biology, University of Leeds, Garstang BuildingLeeds, LS2 9JT (UK)
| |
Collapse
|
25
|
North RA, Kessans SA, Atkinson SC, Suzuki H, Watson AJA, Burgess BR, Angley LM, Hudson AO, Varsani A, Griffin MDW, Fairbanks AJ, Dobson RCJ. Cloning, expression, purification, crystallization and preliminary X-ray diffraction studies of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:306-12. [PMID: 23519810 PMCID: PMC3606580 DOI: 10.1107/s1744309113003060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/30/2013] [Indexed: 01/13/2023]
Abstract
The enzyme N-acetylneuraminate lyase (EC 4.1.3.3) is involved in the metabolism of sialic acids. Specifically, the enzyme catalyzes the retro-aldol cleavage of N-acetylneuraminic acid to form N-acetyl-D-mannosamine and pyruvate. Sialic acids comprise a large family of nine-carbon amino sugars, all of which are derived from the parent compound N-acetylneuraminic acid. In recent years, N-acetylneuraminate lyase has received considerable attention from both mechanistic and structural viewpoints and has been recognized as a potential antimicrobial drug target. The N-acetylneuraminate lyase gene was cloned from methicillin-resistant Staphylococcus aureus genomic DNA, and recombinant protein was expressed and purified from Escherichia coli BL21 (DE3). The enzyme crystallized in a number of crystal forms, predominantly from PEG precipitants, with the best crystal diffracting to beyond 1.70 Å resolution in space group P2₁. Molecular replacement indicates the presence of eight monomers per asymmetric unit. Understanding the structural biology of N-acetylneuraminate lyase in pathogenic bacteria, such as methicillin-resistant S. aureus, will provide insights for the development of future antimicrobials.
Collapse
Affiliation(s)
- Rachel A. North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Sarah A. Kessans
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria, Australia
| | - Hironori Suzuki
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Andrew J. A. Watson
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Benjamin R. Burgess
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Lauren M. Angley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Arvind Varsani
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Electron Microscope Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Antony J. Fairbanks
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Verma R, Schwaneberg U, Roccatano D. MAP(2.0)3D: a sequence/structure based server for protein engineering. ACS Synth Biol 2012; 1:139-50. [PMID: 23651115 DOI: 10.1021/sb200019x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Mutagenesis Assistant Program (MAP) is a web-based tool to provide statistical analyses of the mutational biases of directed evolution experiments on amino acid substitution patterns. MAP analysis assists protein engineers in the benchmarking of random mutagenesis methods that generate single nucleotide mutations in a codon. Herein, we describe a completely renewed and improved version of the MAP server, the MAP(2.0)3D server, which correlates the generated amino acid substitution patterns to the structural information of the target protein. This correlation aids in the selection of a more suitable random mutagenesis method with specific biases on amino acid substitution patterns. In particular, the new server represents MAP indicators on secondary and tertiary structure and correlates them to specific structural components such as hydrogen bonds, hydrophobic contacts, salt bridges, solvent accessibility, and crystallographic B-factors. Three model proteins (D-amino oxidase, phytase, and N-acetylneuraminic acid aldolase) are used to illustrate the novel capability of the server. MAP(2.0)3D server is available publicly at http://map.jacobs-university.de/map3d.html.
Collapse
Affiliation(s)
- Rajni Verma
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany
- Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen,
Germany
| | - Ulrich Schwaneberg
- Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen,
Germany
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany
| |
Collapse
|
27
|
Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1. Appl Environ Microbiol 2011; 77:2471-8. [PMID: 21317263 DOI: 10.1128/aem.02927-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-d-mannosamine (ManNAc). In nature, N-acetylneuraminate lyase occurs mainly in pathogens. However, this paper describes how an N-acetylneuraminate lyase was cloned from the human gut commensal Lactobacillus plantarum WCFS1 (LpNAL), overexpressed, purified, and characterized for the first time. This novel enzyme, which reaches a high expression level (215 mg liter(-1) culture), shows similar catalytic efficiency to the best NALs previously described. This homotetrameric enzyme (132 kDa) also shows high stability and activity at alkaline pH (pH > 9) and good temperature stability (60 to 70°C), this last feature being further improved by the presence of stabilizing additives. These characteristics make LpNAL a promising biocatalyst. When its sequence was compared with that of other, related (real and putative) NALs described in the databases, it was seen that NAL enzymes could be divided into four structural groups and three subgroups. The relation of these subgroups with human and other mammalian NALs is also discussed.
Collapse
|
28
|
Chou CY, Ko TP, Wu KJ, Huang KF, Lin CH, Wong CH, Wang AHJ. Modulation of substrate specificities of D-sialic acid aldolase through single mutations of Val-251. J Biol Chem 2011; 286:14057-64. [PMID: 21270125 DOI: 10.1074/jbc.m110.179465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent directed-evolution study, Escherichia coli D-sialic acid aldolase was converted by introducing eight point mutations into a new enzyme with relaxed specificity, denoted RS-aldolase (also known formerly as L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase), which showed a preferred selectivity toward L-KDO. To investigate the underlying molecular basis, we determined the crystal structures of D-sialic acid aldolase and RS-aldolase. All mutations are away from the catalytic center, except for V251I, which is near the opening of the (α/β)(8)-barrel and proximal to the Schiff base-forming Lys-165. The change of specificity from D-sialic acid to RS-aldolase can be attributed mainly to the V251I substitution, which creates a narrower sugar-binding pocket, but without altering the chirality in the reaction center. The crystal structures of D-sialic acid aldolase·l-arabinose and RS-aldolase·hydroxypyruvate complexes and five mutants (V251I, V251L, V251R, V251W, and V251I/V265I) of the D-sialic acid aldolase were also determined, revealing the location of substrate molecules and how the contour of the active site pocket was shaped. Interestingly, by mutating Val251 alone, the enzyme can accept substrates of varying size in the aldolase reactions and still retain stereoselectivity. The engineered D-sialic acid aldolase may find applications in synthesizing unnatural sugars of C(6) to C(10) for the design of antagonists and inhibitors of glycoenzymes.
Collapse
Affiliation(s)
- Chien-Yu Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Campeotto I, Bolt AH, Harman TA, Dennis C, Trinh CH, Phillips SEV, Nelson A, Pearson AR, Berry A. Structural insights into substrate specificity in variants of N-acetylneuraminic Acid lyase produced by directed evolution. J Mol Biol 2010; 404:56-69. [PMID: 20826162 PMCID: PMC3014015 DOI: 10.1016/j.jmb.2010.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/18/2022]
Abstract
The substrate specificity of Escherichia coli N-acetylneuraminic acid lyase was previously switched from the natural condensation of pyruvate with N-acetylmannosamine, yielding N-acetylneuraminic acid, to the aldol condensation generating N-alkylcarboxamide analogues of N-acetylneuraminic acid. This was achieved by a single mutation of Glu192 to Asn. In order to analyze the structural changes involved and to more fully understand the basis of this switch in specificity, we have isolated all 20 variants of the enzyme at position 192 and determined the activities with a range of substrates. We have also determined five high-resolution crystal structures: the structures of wild-type E. coli N-acetylneuraminic acid lyase in the presence and in the absence of pyruvate, the structures of the E192N variant in the presence and in the absence of pyruvate, and the structure of the E192N variant in the presence of pyruvate and a competitive inhibitor (2R,3R)-2,3,4-trihydroxy-N,N-dipropylbutanamide. All structures were solved in space group P21 at resolutions ranging from 1.65 Å to 2.2 Å. A comparison of these structures, in combination with the specificity profiles of the variants, reveals subtle differences that explain the details of the specificity changes. This work demonstrates the subtleties of enzyme–substrate interactions and the importance of determining the structures of enzymes produced by directed evolution, where the specificity determinants may change from one substrate to another.
Collapse
Affiliation(s)
- Ivan Campeotto
- Astbury Center for Structural Molecular Biology, Garstang Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Soares da Costa TP, Muscroft-Taylor AC, Dobson RCJ, Devenish SRA, Jameson GB, Gerrard JA. How essential is the ‘essential’ active-site lysine in dihydrodipicolinate synthase? Biochimie 2010; 92:837-45. [PMID: 20353808 DOI: 10.1016/j.biochi.2010.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/08/2010] [Indexed: 11/15/2022]
Affiliation(s)
- Tatiana P Soares da Costa
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Devenish SR, Gerrard JA. The quaternary structure of Escherichia coli N-acetylneuraminate lyase is essential for functional expression. Biochem Biophys Res Commun 2009; 388:107-11. [DOI: 10.1016/j.bbrc.2009.07.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/24/2009] [Indexed: 12/19/2022]
|
32
|
Chu HY, Zheng QC, Zhao YS, Zhang HX. Homology modeling and molecular dynamics study on N-acetylneuraminate lyase. J Mol Model 2008; 15:323-8. [PMID: 19057931 DOI: 10.1007/s00894-008-0398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
With homology modeling techniques, molecular mechanics and molecular dynamics methods, a 3D structure model of N-acetylneuraminate lyase from human (hNAL, EC 4.1.3.3) was created and refined. This model was further assessed by Profile-3D and PROCHECK, which confirms that the refined model is reliable. Furthermore, the docking results of the substrates (sialic acid and KDO) into the active site of hNAL indicate that hNAL can cleave the sialic acid and KDO. Thr51 and Tyr143 may be the key amino acids residues as they have strong hydrogen bonding interactions with the substrates, which is in good agreement with the experimental results by Izard et al. (Structure 2:361-369. doi:10.1016/S0969-2126(00)00038-1 (1994)). From the docking studies, we also suggest that Asp176 and Ser218 only form hydrogen bonds with sialic acid, therefore, they may help sialic acid interact with hNAL steadly.
Collapse
Affiliation(s)
- Hui-Ying Chu
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Buschiazzo A, Alzari PM. Structural insights into sialic acid enzymology. Curr Opin Chem Biol 2008; 12:565-72. [DOI: 10.1016/j.cbpa.2008.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/17/2008] [Indexed: 01/27/2023]
|
34
|
Nahálka J, Vikartovská A, Hrabárová E. A crosslinked inclusion body process for sialic acid synthesis. J Biotechnol 2008; 134:146-53. [PMID: 18313163 DOI: 10.1016/j.jbiotec.2008.01.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 01/09/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
The propensity of a recombinant protein produced in bacteria to aggregate has been assumed to be unpredictable, and inclusion bodies have been thought of as wasted cell material. However, a target protein can be purposely driven to inclusion bodies, which demonstrate full cell tolerable activity. Sialic acid aldolase, N-terminally fused with the cellulose-binding module of Clostridium cellulovorans, was almost quantitatively physiologically aggregated into active inclusion bodies. These inclusion bodies were entrapped in alginate beads and crosslinked by glutaraldehyde. The immobilized biocatalyst generated by this crosslinked inclusion bodies (CLIB) technology was used in a repetitive batch protocol for sialic acid production that was monitored on-line by flow calorimetry. The required substrate, N-acetyl-D-mannosamine, was obtained by partially improved alkaline epimerization.
Collapse
Affiliation(s)
- Jozef Nahálka
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
35
|
Li Y, Yu H, Cao H, Lau K, Muthana S, Tiwari VK, Son B, Chen X. Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 2008; 79:963-70. [PMID: 18521592 PMCID: PMC2588431 DOI: 10.1007/s00253-008-1506-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/06/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Sialic acid aldolases or N-acetylneuraminate lyases (NanAs) catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-D: -mannosamine (ManNAc). A capillary electrophoresis assay was developed to directly characterize the activities of NanAs in both Neu5Ac cleavage and Neu5Ac synthesis directions. The assay was used to obtain the pH profile and the kinetic data of a NanA cloned from Pasteurella multocida P-1059 (PmNanA) and a previously reported recombinant Escherichia coli K12 NanA (EcNanA). Both enzymes are active in a broad pH range of 6.0-9.0 in both reaction directions and have similar kinetic parameters. Substrates specificity studies showed that 5-O-methyl-ManNAc, a ManNAc derivative, can be used efficiently as a substrate by PmNanA, but not efficiently by EcNanA, for the synthesis of 8-O-methyl Neu5Ac. In addition, PmNanA (250 mg l(-1) culture) has a higher expression level (2.5-fold) than EcNanA (94 mg l(-1) culture). The higher expression level and a broader substrate tolerance make PmNanA a better catalyst than EcNanA for the chemoenzymatic synthesis of sialic acids and their derivatives.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hongzhi Cao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kam Lau
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Saddam Muthana
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Vinod Kumar Tiwari
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bryan Son
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
36
|
Manicka S, Peleg Y, Unger T, Albeck S, Dym O, Greenblatt HM, Bourenkov G, Lamzin V, Krishnaswamy S, Sussman JL. Crystal structure of YagE, a putative DHDPS-like protein from Escherichia coli K12. Proteins 2008; 71:2102-8. [DOI: 10.1002/prot.22023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Wolterink-van Loo S, van Eerde A, Siemerink MAJ, Akerboom J, Dijkstra BW, van der Oost J. Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 2007; 403:421-30. [PMID: 17176250 PMCID: PMC1876368 DOI: 10.1042/bj20061419] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aldolases are enzymes with potential applications in biosynthesis, depending on their activity, specificity and stability. In the present study, the genomes of Sulfolobus species were screened for aldolases. Two new KDGA [2-keto-3-deoxygluconate (2-oxo-3-deoxygluconate) aldolases] from Sulfolobus acidocaldarius and Sulfolobus tokodaii were identified, overexpressed in Escherichia coli and characterized. Both enzymes were found to have biochemical properties similar to the previously characterized S. solfataricus KDGA, including the condensation of pyruvate and either D,L-glyceraldehyde or D,L-glyceraldehyde 3-phosphate. The crystal structure of S. acidocaldarius KDGA revealed the presence of a novel phosphate-binding motif that allows the formation of multiple hydrogen-bonding interactions with the acceptor substrate, and enables high activity with glyceraldehyde 3-phosphate. Activity analyses with unnatural substrates revealed that these three KDGAs readily accept aldehydes with two to four carbon atoms, and that even aldoses with five carbon atoms are accepted to some extent. Water-mediated interactions permit binding of substrates in multiple conformations in the spacious hydrophilic binding site, and correlate with the observed broad substrate specificity.
Collapse
|
38
|
Shimada N, Mikami B, Watanabe S, Makino K. Preliminary crystallographic analysis of L-2-keto-3-deoxyarabonate dehydratase, an enzyme involved in an alternative bacterial pathway of L-arabinose metabolism. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:393-5. [PMID: 17565178 PMCID: PMC2334997 DOI: 10.1107/s1744309107015102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
l-2-Keto-3-deoxyarabonate dehydratase was overexpressed, purified and crystallized at 291 K using the hanging-drop vapour-diffusion method. l-2-Keto-3-deoxyarabonate (l-KDA) dehydratase is a novel member of the dihydrodipicolinate synthase (DHDPS)/N-acetylneuraminate lyase (NAL) protein family and catalyzes the hydration of l-KDA to α-ketoglutaric semialdehyde. l-KDA dehydratase was overexpressed, purified and crystallized at 291 K using the hanging-drop vapour-diffusion method. The crystal diffracts to 2.0 Å resolution using synchrotron radiation and belongs to the trigonal space group P3121 or its enantiomorph P3221, with unit-cell parameters a = b = 78.91, c = 207.71 Å.
Collapse
Affiliation(s)
- Naoko Shimada
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
| | - Seiya Watanabe
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
- CREST, JST (Japan Science and Technology Agency), Gokasyo, Uji, Kyoto 611-0011, Japan
- Faculty of Engineering, Kyoto University, Kyotodaigaku-katsura, Saikyo-ku, Kyoto 615-8530, Japan
| | - Keisuke Makino
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan
- CREST, JST (Japan Science and Technology Agency), Gokasyo, Uji, Kyoto 611-0011, Japan
- International Innovation Center, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Correspondence e-mail:
| |
Collapse
|
39
|
Williams GJ, Woodhall T, Farnsworth LM, Nelson A, Berry A. Creation of a pair of stereochemically complementary biocatalysts. J Am Chem Soc 2006; 128:16238-47. [PMID: 17165777 DOI: 10.1021/ja065233q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acetylneuraminic acid lyase (NAL) exhibits poor facial selectivity during carbon-carbon formation, and as such, its utility as a catalyst for use in synthetic chemistry is limited. For example, the NAL-catalyzed condensation between pyruvate and (2R,3S)-2,3-dihydroxy-4-oxo-N,N-dipropylbutyramide yields ca. 3:1 mixtures of diastereomeric products under either kinetic or thermodynamic control. Engineering the stereochemical course of NAL-catalyzed reactions could remove this limitation. We used directed evolution to create a pair of stereochemically complementary variant NALs for the synthesis of sialic acid mimetics. The E192N variant, a highly efficient catalyst for aldol reactions of (2R,3S)-2,3-dihydroxy-4-oxo-N,N-dialkylbutyramides, was chosen as a starting point. Initially, error-prone PCR identified residues in the active site of NAL that contributed to the stereochemical control of an aldolase-catalyzed reaction. Subsequently, an intense structure-guided program of saturation and site-directed mutagenesis was used to identify a complementary pair of variants, E192N/T167G and E192N/T167V/S208V, which were approximately 50-fold selective toward the cleavage of the alternative 4S- and 4R-configured condensation products, respectively. It was shown that wild-type NAL could not be used for the highly stereoselective synthesis of a 6-dipropylamide sialic acid mimetic because the 4S-configured product was only approximately 3-fold kinetically favored and only approximately 3-fold thermodynamically favored over the alternative 4R-configured product. However, the complementary 4R- and 4S-selective variants allowed the highly (>98:<2) diastereoselective synthesis of both 4S- and 4R-configured products under kinetic control from the same starting materials. Conversion of an essentially nonselective aldolase into a pair of complementary biocatalysts will be of enormous interest to synthetic chemists. Furthermore, since residues identified as critical for stereoselectivity are conserved among members of the NAL superfamily, the approach might be extended to the evolution of other useful biocatalysts for the stereoselective synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Gavin J Williams
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Blagova E, Levdikov V, Milioti N, Fogg MJ, Kalliomaa AK, Brannigan JA, Wilson KS, Wilkinson AJ. Crystal structure of dihydrodipicolinate synthase (BA3935) from Bacillus anthracis at 1.94 A resolution. Proteins 2006; 62:297-301. [PMID: 16287120 DOI: 10.1002/prot.20684] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena Blagova
- Department of Chemistry, University of York, York, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jeyakanthan J, Taka J, Kikuchi A, Kuroishi C, Yutani K, Shiro Y. Purification, crystallization and preliminary X-ray crystallographic study of the L-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:1075-7. [PMID: 16511238 PMCID: PMC1978142 DOI: 10.1107/s1744309105036766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/09/2005] [Indexed: 11/10/2022]
Abstract
Fuculose phosphate aldolase catalyzes the reversible cleavage of L-fuculose-1-phosphate to dihydroxyacetone phosphate and L-lactaldehyde. The protein from Thermus thermophilus HB8 is a biological tetramer with a subunit molecular weight of 21 591 Da. Purified FucA has been crystallized using sitting-drop vapour-diffusion and microbatch techniques at 293 K. The crystals belong to space group P4, with unit-cell parameters a = b = 100.94, c = 45.87 A. The presence of a dimer of the enzyme in the asymmetric unit was estimated to give a Matthews coefficient (VM) of 2.7 A3 Da(-1) and a solvent content of 54.2%(v/v). Three-wavelength diffraction MAD data were collected to 2.3 A from zinc-containing crystals. Native diffraction data to 1.9 A resolution have been collected using synchrotron radiation at SPring-8.
Collapse
Affiliation(s)
- Jeyaraman Jeyakanthan
- Biometal Science Laboratory, RIKEN Harima Institute, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5148, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
43
|
Hsu CC, Hong Z, Wada M, Franke D, Wong CH. Directed evolution of D-sialic acid aldolase to L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase. Proc Natl Acad Sci U S A 2005; 102:9122-6. [PMID: 15967977 PMCID: PMC1166642 DOI: 10.1073/pnas.0504033102] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An efficient L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase was created by directed evolution from the Escherichia coli D-Neu5Ac (N-acetylneuraminic acid, D-sialic acid) aldolase. Five rounds of error-prone PCR and iterative screening were performed with sampling of 10(3) colonies per round. The specificity constant (kcat/Km) of the unnatural sugar L-KDO is improved to a level equivalent to the wild-type D-sialic acid aldolase for its natural substrate, D-Neu5Ac. The final evolved enzyme exhibits a >1,000-fold improved ratio of the specificity constant [kcat/Km (L-KDO)]/[kcat/Km (D-sialic acid)]. The protein sequence of the evolved aldolase showed eight amino acid changes from the native enzyme, with all of the observed changes occurring outside of the active site. Our effort demonstrates that an enzyme can be rapidly altered to accept enantiomeric substrates with screening of a small population of colonies iteratively toward the target substrate with improved catalytic efficiency. This work provides a method for the synthesis of enantiomeric sugars and for the study of enantiomeric catalysis affected by remote mutations.
Collapse
Affiliation(s)
- Che-Chang Hsu
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
44
|
Williams GJ, Woodhall T, Nelson A, Berry A. Structure-guided saturation mutagenesis of N-acetylneuraminic acid lyase for the synthesis of sialic acid mimetics. Protein Eng Des Sel 2005; 18:239-46. [PMID: 15897188 DOI: 10.1093/protein/gzi027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analogues of N-acetylneuraminic acid (sialic acid, NANA, Neu5Ac), including 6-dipropylcarboxamides, have been found to be selective and potent inhibitors of influenza sialidases. Sialic acid analogues are, however, difficult to synthesize by traditional chemical methods and the enzyme N-acetylneuraminic acid lyase (NAL) has previously been used for the synthesis of a number of analogues. The activity of this enzyme towards 6-dipropylcarboxamides is, however, low. Here, we used structure-guided saturation mutagenesis to produce variants of NAL with improved activity and specificity towards 6-dipropylcarboxamides. Three residues were targeted for mutagenesis, Asp191, Glu192 and Ser208. Only substitution at position 192 produced significant improvements in activity towards the dipropylamide. One variant, E192N, showed a 49-fold improvement in catalytic efficiency towards the target analogue and a 690-fold shift in specificity from sialic acid towards the analogue. These engineering efforts provide a scaffold for the further tailoring of NAL for the synthesis of sialic acid mimetics.
Collapse
Affiliation(s)
- G J Williams
- Astbury Centre for Structural Biology, School of Biochemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
45
|
Huang HH, Liao HK, Chen YJ, Hwang TS, Lin YH, Lin CH. Structural characterization of sialic acid synthase by electrospray mass spectrometry--a tetrameric enzyme composed of dimeric dimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:324-332. [PMID: 15734325 DOI: 10.1016/j.jasms.2004.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/25/2004] [Accepted: 11/29/2004] [Indexed: 05/24/2023]
Abstract
Sialic acid synthase (NeuB) encoded by the neuB gene catalyzes the condensation of N-acetylmannosamine and phospho(enol)pyruvate to form N-acetylneuraminic acid. The enzyme is essential for the biosynthesis of polysialic acid, a capsular sugar polymer functioning as a virulent factor and antiphagocytic barrier. This report demonstrates the first characterization on the quaternary structure of NeuB from Escherichia coli (EcNeuB) and Streptococcus agalactiae (SaNeuB) by nanoflow electrospray ionization mass spectrometry (ESI-MS). Under non-denaturing conditions, Tris buffer was observed to induce a higher ratio of tetramer/dimer of NeuB in the ESI mass spectra, providing supportive evidence for the existence of a "structurally-specific" tetramer. The instrument parameters were found to significantly affect the ratio of detected tetramer/dimer in ESI mass spectra. The harshest conditions, including high desolvation voltages and pressure in the collision cell, led to enhanced detection of the 160 kDa tetramer. The prevalence of dimeric form is likely the cause in loss of tetramer stability in gas-phase arising from insufficient collisional cooling, which implies an asymmetric assembly, possibly composed of dimeric dimers. Most interestingly, the hypothesis was further supported by chemical cross-linking of SaNeuB, in which the reaction of shorter linker yielded mainly the dimer whereas that of longer linker produced both dimer and tetramer. Furthermore, the ESI-MS analysis can reflect dramatic change of pH-dependent quaternary structure in association with enzyme activity, suggesting the tetrameric form may be the primary species responsible for the enzyme catalysis.
Collapse
Affiliation(s)
- Hsin-Hung Huang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan.
| | | | | | | | | | | |
Collapse
|
46
|
Lavecchia A, Cosconati S, Novellino E. Architecture of the Human Urotensin II Receptor: Comparison of the Binding Domains of Peptide and Non-Peptide Urotensin II Agonists. J Med Chem 2005; 48:2480-92. [PMID: 15801838 DOI: 10.1021/jm049110x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human urotensin II receptor (h-UTR) is a member of the family of rhodopsin-like G-protein-coupled receptors (GPCRs) involved in the modulation of the functionality of many tissues and organs. Recently the urotensin-II (UII) neuropeptide, which is a potent vasoconstrictor in mammals and it is postulated to play a central role in cardiovascular homeostasis, has been identified as an agonist of the UII receptor. To elucidate the receptor's molecular recognition, a h-UTR model was constructed by homology modeling using the 2.6 A crystal structure of bovine rhodopsin as a template and subsequently refined by molecular dynamics simulations. The molecular recognition of h-UTR was probed by automated docking of P5U, a potent UII peptide agonist, as well as of the non-peptide compounds 1-4. We believe that this new model of the h-UTR provides the means for understanding the ligand's potency and for facilitating the design of novel and more potent UII ligands.
Collapse
Affiliation(s)
- Antonio Lavecchia
- Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | | | | |
Collapse
|
47
|
Heine A, Luz JG, Wong CH, Wilson IA. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution. J Mol Biol 2004; 343:1019-34. [PMID: 15476818 DOI: 10.1016/j.jmb.2004.08.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/18/2004] [Accepted: 08/20/2004] [Indexed: 11/17/2022]
Abstract
The crystal structure of the bacterial (Escherichia coli) class I 2-deoxyribose-5-phosphate aldolase (DERA) has been determined by Se-Met multiple anomalous dispersion (MAD) methods at 0.99A resolution. This structure represents the highest-resolution X-ray structure of an aldolase determined to date and enables a true atomic view of the enzyme. The crystal structure shows the ubiquitous TIM alpha/beta barrel fold. The enzyme contains two lysine residues in the active site. Lys167 forms the Schiff base intermediate, whereas Lys201, which is in close vicinity to the reactive lysine residue, is responsible for the perturbed pK(a) of Lys167 and, hence, also a key residue in the reaction mechanism. DERA is the only known aldolase that is able to use aldehydes as both aldol donor and acceptor molecules in the aldol reaction and is, therefore, of particular interest as a biocatalyst in synthetic organic chemistry. The uncomplexed DERA structure enables a detailed comparison with the substrate complexes and highlights a conformational change in the phosphate-binding site. Knowledge of the enzyme active-site environment has been the basis for exploration of catalysis of non-natural substrates and of mutagenesis of the phosphate-binding site to expand substrate specificity. Detailed comparison with other class I aldolase enzymes and DERA enzymes from different organisms reveals a similar geometric arrangement of key residues and implies a potential role for water as a general base in the catalytic mechanism.
Collapse
Affiliation(s)
- Andreas Heine
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
48
|
Theodossis A, Walden H, Westwick EJ, Connaris H, Lamble HJ, Hough DW, Danson MJ, Taylor GL. The Structural Basis for Substrate Promiscuity in 2-Keto-3-deoxygluconate Aldolase from the Entner-Doudoroff Pathway in Sulfolobus solfataricus. J Biol Chem 2004; 279:43886-92. [PMID: 15265860 DOI: 10.1074/jbc.m407702200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.
Collapse
Affiliation(s)
- Alex Theodossis
- Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, Fife KY16 9ST, Scotland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bauer S, Schott AK, Illarionova V, Bacher A, Huber R, Fischer M. Biosynthesis of Tetrahydrofolate in Plants: Crystal Structure of 7,8-Dihydroneopterin Aldolase from Arabidopsis thaliana Reveals a Novel Adolase Class. J Mol Biol 2004; 339:967-79. [PMID: 15165863 DOI: 10.1016/j.jmb.2004.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/07/2004] [Accepted: 04/10/2004] [Indexed: 11/22/2022]
Abstract
Dihydroneopterin aldolase (DHNA) catalyses a retroaldol reaction yielding 6-hydroxymethyl-7,8-dihydropterin, a biosynthetic precursor of the vitamin, tetrahydrofolate. The enzyme is a potential target for antimicrobial and anti-parasite chemotherapy. A gene specifying a dihydroneopterin aldolase from Arabidopsis thaliana was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified to apparent homogeneity and crystallised using polyethylenglycol as the precipitating agent. The crystal structure was solved by X-ray diffraction analysis at 2.2A resolution. The enzyme forms a D(4)-symmetric homooctamer. Each polypeptide chain is folded into a single domain comprising an antiparallel four-stranded beta-sheet and two long alpha-helices. Four monomers are arranged in a tetrameric ring, and two of these rings form a hollow cylinder. Well defined purine derivatives are found at all eight topologically equivalent active sites. The subunit fold of the enzyme is related to substructures of dihydroneopterin triphosphate epimerase, GTP cyclohydrolase I, and pyruvoyltetrahydropterin synthase, which are all involved in the biosynthesis of pteridine type cofactors, and to urate oxidase, although some members of that superfamily have no detectable sequence similarity. Due to structural and mechanistical differences of DHNA in comparison with class I and class II aldolases, a new aldolase class is proposed.
Collapse
Affiliation(s)
- Stefanie Bauer
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Izard T, Sygusch J. Induced fit movements and metal cofactor selectivity of class II aldolases: structure of Thermus aquaticus fructose-1,6-bisphosphate aldolase. J Biol Chem 2003; 279:11825-33. [PMID: 14699122 DOI: 10.1074/jbc.m311375200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase is an essential glycolytic enzyme that reversibly cleaves its ketohexose substrate into triose phosphates. Here we report the crystal structure of a metallo-dependent or class II FBP aldolase from an extreme thermophile, Thermus aquaticus (Taq). The quaternary structure reveals a tetramer composed of two dimers related by a 2-fold axis. Taq FBP aldolase subunits exhibit two distinct conformational states corresponding to loop regions that are in either open or closed position with respect to the active site. Loop closure remodels the disposition of chelating active site histidine residues. In subunits corresponding to the open conformation, the metal cofactor, Co(2+), is sequestered in the active site, whereas for subunits in the closed conformation, the metal cation exchanges between two mutually exclusive binding loci, corresponding to a site at the active site surface and an interior site vicinal to the metal-binding site in the open conformation. Cofactor site exchange is mediated by rotations of the chelating histidine side chains that are coupled to the prior conformational change of loop closure. Sulfate anions are consistent with the location of the phosphate-binding sites of the FBP substrate and determine not only the previously unknown second phosphate-binding site but also provide a mechanism that regulates loop closure during catalysis. Modeling of FBP substrate into the active site is consistent with binding by the acyclic keto form, a minor solution species, and with the metal cofactor mediating keto bond polarization. The Taq FBP aldolase structure suggests a structural basis for different metal cofactor specificity than in Escherichia coli FBP aldolase structures, and we discuss its potential role during catalysis. Comparison with the E. coli structure also indicates a structural basis for thermostability by Taq FBP aldolase.
Collapse
Affiliation(s)
- Tina Izard
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38111, USA
| | | |
Collapse
|