1
|
Yuan L, Yu X, Xiao H, Deng S, Xia H, Xu H, Yang Y, Deng H. Identification of novel compound heterozygous variants in the DNAH1 gene of a Chinese family with left-right asymmetry disorder. Front Mol Biosci 2023; 10:1190162. [PMID: 37457836 PMCID: PMC10345202 DOI: 10.3389/fmolb.2023.1190162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Most internal organs in humans and other vertebrates exhibit striking left-right asymmetry in position and structure. Variation of normal organ positioning results in left-right asymmetry disorders and presents as internal organ reversal or randomization. Up to date, at least 82 genes have been identified as the causative genetic factors of left-right asymmetry disorders. This study sought to discover potential pathogenic variants responsible for left-right asymmetry disorder present in a Han-Chinese family using whole exome sequencing combined with Sanger sequencing. Novel compound heterozygous variants, c.5690A>G (p.Asn1897Ser) and c.7759G>A (p.Val2587Met), in the dynein axonemal heavy chain 1 gene (DNAH1), were found in the proband and absent in unaffected family members. Conservation analysis has shown that the variants affect evolutionarily conserved residues, which may impact the tertiary structure of the DNAH1 protein. The novel compound heterozygous variants may potentially bear responsibility for left-right asymmetry disorder, which results from a perturbation of left-right axis coordination at the earliest embryonic development stages. This study broadens the variant spectrum of left-right asymmetry disorders and may be helpful for genetic counseling and healthcare management for the diagnosed individual, and promotes a greater understanding of the pathophysiology.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuehui Yu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xiao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Wei X, Sha Y, Wei Z, Zhu X, He F, Zhang X, Liu W, Wang Y, Lu Z. Bi-allelic mutations in DNAH7 cause asthenozoospermia by impairing the integrality of axoneme structure. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1300-1309. [PMID: 34476482 DOI: 10.1093/abbs/gmab113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Asthenozoospermia is the most common cause of male infertility. Dynein protein arms play a crucial role in the motility of both the cilia and flagella, and defects in these proteins generally impair the axoneme structure and cause primary ciliary dyskinesia. But relatively little is known about the influence of dynein protein arm defects on sperm flagella function. Here, we recruited 85 infertile patients with idiopathic asthenozoospermia and identified bi-allelic mutations in DNAH7 (NM_018897.3) from three patients using whole-exome sequencing. These variants are rare, highly pathogenic, and very conserved. The spermatozoa from the patients with DNAH7 bi-allelic mutations showed specific losses in the inner dynein arms. The expression of DNAH7 in the spermatozoa from the DNAH7-defective patients was significantly decreased, but these patients were able to have their children via intra-cytoplasmic sperm injection treatment. Our study is the first to demonstrate that bi-allelic mutations in DNAH7 may impair the integrality of axoneme structure, affect sperm motility, and cause asthenozoospermia in humans. These findings may extend the spectrum of etiological genes and provide new clues for the diagnosis and treatment of patients with asthenozoospermia.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital and School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zijie Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xiaoya Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Wensheng Liu
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Identification of DNAH6 mutations in infertile men with multiple morphological abnormalities of the sperm flagella. Sci Rep 2019; 9:15864. [PMID: 31676830 PMCID: PMC6825154 DOI: 10.1038/s41598-019-52436-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/15/2019] [Indexed: 11/24/2022] Open
Abstract
Male infertility due to spermatogenesis defects affects millions of men worldwide. However, the genetic etiology of the vast majority remains unclear. Here we describe three men with primary infertility due to multiple morphological abnormalities of the sperm flagella (MMAF) from two unrelated Han Chinese families. We performed whole-exome sequencing (WES) and Sanger sequencing on the proband of family 1, and found that he carried novel compound heterozygous missense mutations in dynein axonemal heavy chain 6 (DNAH6) that resulted in the substitution of a conserved amino acid residue and co-segregated with the MMAF phenotype in this family. Papanicolaou staining and transmission electron microscopy analysis revealed morphological and ultrastructural abnormalities in the sperm flagella in carriers of these genetic variants. Immunostaining experiments showed that DNAH6 was localized in the sperm tail. This is the first report identifying novel recessive mutations in DNAH6 as a cause of MMAF. These findings expand the spectrum of known MMAF mutations and phenotypes and provide information that can be useful for genetic and reproductive counseling of MMAF patients.
Collapse
|
5
|
Clinical and Genetic Analysis of Children with Kartagener Syndrome. Cells 2019; 8:cells8080900. [PMID: 31443223 PMCID: PMC6721662 DOI: 10.3390/cells8080900] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia causing ineffective mucus clearance and organ laterality defects. In this study, two unrelated Portuguese children with strong PCD suspicion underwent extensive clinical and genetic assessments by whole-exome sequencing (WES), as well as ultrastructural analysis of cilia by transmission electron microscopy (TEM) to identify their genetic etiology. These analyses confirmed the diagnostic of Kartagener syndrome (KS) (PCD with situs inversus). Patient-1 showed a predominance of the absence of the inner dynein arms with two disease-causing variants in the CCDC40 gene. Patient-2 showed the absence of both dynein arms and WES disclosed two novel high impact variants in the DNAH5 gene and two missense variants in the DNAH7 gene, all possibly deleterious. Moreover, in Patient-2, functional data revealed a reduction of gene expression and protein mislocalization in both genes' products. Our work calls the researcher's attention to the complexity of the PCD and to the possibility of gene interactions modelling the PCD phenotype. Further, it is demonstrated that even for well-known PCD genes, novel pathogenic variants could have importance for a PCD/KS diagnosis, reinforcing the difficulty of providing genetic counselling and prenatal diagnosis to families.
Collapse
|
6
|
Behrens VA, Walter WJ, Peters C, Wang T, Brenner B, Geeves MA, Scholz T, Steffen W. Mg 2+ -free ATP regulates the processivity of native cytoplasmic dynein. FEBS Lett 2019; 593:296-307. [PMID: 30575960 DOI: 10.1002/1873-3468.13319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 11/07/2022]
Abstract
Cytoplasmic dynein, a microtubule-based motor protein, is responsible for many cellular functions ranging from cargo transport to cell division. The various functions are carried out by a single isoform of cytoplasmic dynein, thus requiring different forms of motor regulation. A possible pathway to regulate motor function was revealed in optical trap experiments. Switching motor function from single steps to processive runs could be achieved by changing Mg2+ and ATP concentrations. Here, we confirm by single molecule total internal reflection fluorescence microscopy that a native cytoplasmic dynein dimer is able to switch to processive runs of more than 680 consecutive steps or 5.5 μm. We also identified the ratio of Mg2+ -free ATP to Mg.ATP as the regulating factor and propose a model for dynein processive stepping.
Collapse
Affiliation(s)
| | | | - Carsten Peters
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Tianbang Wang
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | | | | | - Tim Scholz
- Molecular and Cell Physiology, Hannover Medical School, Germany
| | - Walter Steffen
- Molecular and Cell Physiology, Hannover Medical School, Germany
| |
Collapse
|
7
|
Characterization of ciliobrevin A mediated dynein ATPase inhibition on flagellar motility of Leishmania donovani. Mol Biochem Parasitol 2017; 214:75-81. [DOI: 10.1016/j.molbiopara.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 11/16/2022]
|
8
|
Kollmar M. Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution. Mol Biol Evol 2016; 33:3249-3267. [PMID: 27880711 PMCID: PMC5100056 DOI: 10.1093/molbev/msw213] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data. To shed light on the evolution of the axoneme I performed an exhaustive analysis of dyneins using the available sequenced genome data. Evidence from motor domain phylogeny allowed expanding the current set of nine dynein subtypes by eight additional isoforms with, however, restricted taxonomic distributions. I confirmed the presence of the nine dyneins in all eukaryotic super-groups indicating their origin predating the last eukaryotic common ancestor. The comparison of the N-terminal tail domains revealed a most likely axonemal dynein origin of the new classes, a group of chimeric dyneins in plants/algae and Stramenopiles, and the unique domain architecture and origin of the outermost OADs present in green algae and ciliates but not animals. The correlation of sequence and structural data suggests the single-headed class-8 and class-9 dyneins to localize to the distal end of the axonemal repeat and the class-7 dyneins filling the region up to the proximal heterodimeric IAD. Tracing dynein gene duplications across the eukaryotes indicated ongoing diversification and fine-tuning of flagellar functions in extant taxa and species.
Collapse
Affiliation(s)
- Martin Kollmar
- Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
9
|
Imai H, Shima T, Sutoh K, Walker ML, Knight PJ, Kon T, Burgess SA. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules. Nat Commun 2015; 6:8179. [PMID: 26365535 PMCID: PMC4579568 DOI: 10.1038/ncomms9179] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/25/2015] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein is a dimeric AAA(+) motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA(+) rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.
Collapse
Affiliation(s)
- Hiroshi Imai
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Tomohiro Shima
- Quantitative Biology Center, Riken, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Kazuo Sutoh
- Faculty of Science and Engineering, Waseda University, Takada 1-17-22, Toshima-ku, Tokyo 171-0033, Japan
| | | | - Peter J. Knight
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043 Osaka, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, 332-0012 Saitama, Japan
| | - Stan A. Burgess
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Rajagopalan V, Wilkes DE. Evolution of the Dynein Heavy Chain Family in Ciliates. J Eukaryot Microbiol 2015; 63:138-41. [PMID: 26084401 DOI: 10.1111/jeu.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/11/2015] [Accepted: 06/11/2015] [Indexed: 11/29/2022]
Abstract
Dynein heavy chains are motor proteins that comprise a large gene family found across eukaryotes. We have investigated this gene family in four ciliate species: Ichthyophthirius, Oxytricha, Paramecium, and Tetrahymena. Ciliates appear to encode more dynein heavy chain genes than most eukaryotes. Phylogenetic comparisons demonstrated that the last common ancestor of the ciliates that were examined expressed at least 14 types of dynein heavy chains with most of the expansion coming from the single-headed inner arm dyneins. Each of the dyneins most likely performed different functions within the cell.
Collapse
Affiliation(s)
| | - David E Wilkes
- Department of Biological Sciences, Indiana University South Bend, South Bend, Indiana, 46634
| |
Collapse
|
11
|
Wada Y, Baba SA, Kamimura S. Effects of the dynein inhibitor ciliobrevin on the flagellar motility of sea urchin spermatozoa. Cytoskeleton (Hoboken) 2015; 72:182-92. [DOI: 10.1002/cm.21218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/06/2015] [Accepted: 03/18/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Yuuko Wada
- Department of Biological Sciences; Faculty of Science and Engineering, Chuo University; Tokyo Japan
| | - Shoji A. Baba
- Department of Biology; Ochanomizu University; Tokyo Japan
| | - Shinji Kamimura
- Department of Biological Sciences; Faculty of Science and Engineering, Chuo University; Tokyo Japan
| |
Collapse
|
12
|
The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat Struct Mol Biol 2014; 22:73-80. [PMID: 25486306 PMCID: PMC4286497 DOI: 10.1038/nsmb.2930] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/06/2014] [Indexed: 11/24/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor responsible for intracellular cargo transport and force generation along microtubules (MTs). Unlike kinesin and myosin, dynein contains multiple ATPase subunits, with AAA1 serving as the primary catalytic site. ATPase activity at AAA3 is also essential for robust motility, but its role in dynein’s mechanochemical cycle remains unclear. Here, we introduced transient pauses in Saccharomyces cerevisiae dynein motility by using a slowly hydrolyzing ATP analog. Analysis of pausing behavior revealed that AAA3 hydrolyzes nucleotide an order of magnitude slower than AAA1 and the two sites do not coordinate. ATPase mutations to AAA3 abolish the ability of dynein to modulate MT release. Nucleotide hydrolysis at AAA3 lifts this “MT gate” to fast motility. These results suggest that AAA3 acts as a switch that repurposes cytoplasmic dynein for fast cargo transport and MT anchoring tasks in cells.
Collapse
|
13
|
Zhang J, Guan L, Wen W, Lu Y, Zhu Q, Yuan H, Chen Y, Wang H, Zhang J, Li H. A novel mutation of DNAH5 in chronic rhinosinusitis and primary ciliary dyskinesia in a Chinese family. Eur Arch Otorhinolaryngol 2013; 271:1589-94. [PMID: 24150548 DOI: 10.1007/s00405-013-2788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/16/2013] [Indexed: 01/09/2023]
Abstract
The genetic factors underlying the pathogenesis of chronic rhinosinusitis (CRS) remains unclear. We herein identified four related subjects with CRS and primary ciliary dyskinesia (PCD) from geographically disperse Chinese Han communities and performed exome capture and sequencing of one affected individual and unaffected parents. We found a novel mutation in DNAH5 (c. 8030G>A) in CRS and PCD which was different from those attributed to cystic fibrosis and a defect of cilia motility in a Chinese family through exome capture and sequencing. Our findings showed that c. 8030G>A of DNAH5 may be implicated as the disease-causing gene of CRS and PCD in this Chinese family, which may expand the understanding of clinicians on the pathogenesis of CRS. Moreover, the identification of this novel mutation in DNAH5 indirectly indicates that exome capture and sequencing are beneficial in the genetic research of midget consanguinity families.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Otolaryngology, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yoshida M, Katsuyama S, Tateho K, Nakamura H, Miyoshi J, Ohba T, Matsuhara H, Miki F, Okazaki K, Haraguchi T, Niwa O, Hiraoka Y, Yamamoto A. Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. ACTA ACUST UNITED AC 2013; 200:385-95. [PMID: 23401002 PMCID: PMC3575533 DOI: 10.1083/jcb.201207168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Telomere-localized SUN and KASH proteins induce formation of a microtubule-based “telocentrosome” that fosters microtubule motor-dependent telomere clustering. During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering requires the interaction of telomeres with the nuclear membrane proteins SUN (Sad1/UNC-84) and KASH (Klarsicht/ANC-1/Syne homology). The mechanism by which telomeres gather remains elusive. In this paper, we show that telomere clustering in fission yeast depends on microtubules and the microtubule motors, cytoplasmic dynein, and kinesins. Furthermore, the γ-tubulin complex (γ-TuC) is recruited to SUN- and KASH-localized telomeres to form a novel microtubule-organizing center that we termed the “telocentrosome.” Telocentrosome formation depends on the γ-TuC regulator Mto1 and on the KASH protein Kms1, and depletion of either Mto1 or Kms1 caused severe telomere clustering defects. In addition, the dynein light chain (DLC) contributes to telocentrosome formation, and simultaneous depletion of DLC and dynein also caused severe clustering defects. Thus, the telocentrosome is essential for telomere clustering. We propose that telomere-localized SUN and KASH induce telocentrosome formation and that subsequent microtubule motor-dependent aggregation of telocentrosomes via the telocentrosome-nucleated microtubules causes telomere clustering.
Collapse
Affiliation(s)
- Masashi Yoshida
- Department of Chemistry, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Akchiche N, Bossenmeyer-Pourié C, Kerek R, Martin N, Pourié G, Koziel V, Helle D, Alberto JM, Ortiou S, Camadro JM, Léger T, Guéant JL, Daval JL. Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB J 2012; 26:3980-92. [PMID: 22713523 DOI: 10.1096/fj.12-205757] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency on proliferation, differentiation, and plasticity of the rat H19-7 hippocampal cell line. Folate deficit reduced proliferation (17%) and sensitized cells to differentiation-associated apoptosis (+16%). Decreased production (-58%) of S-adenosylmethionine (the universal substrate for transmethylation reactions) and increased expression of histone deacetylases (HDAC4,6,7) would lead to epigenomic changes that may impair the differentiation process. Cell polarity, vesicular transport, and synaptic plasticity were dramatically affected, with poor neurite outgrowth (-57%). Cell treatment by an HDAC inhibitor (SAHA) led to a noticeable improvement of cell polarity and morphology, with longer processes. Increased homocysteine levels (+55%) consecutive to folate shortage produced homocysteinylation, evidenced by coimmunoprecipitations and mass spectrometry, and aggregation of motor proteins dynein and kinesin, along with functional alterations, as reflected by reduced interactions with partner proteins. Prominent homocysteinylation of key neuronal proteins and subsequent aggregation certainly constitute major adverse effects of folate deficiency, affecting normal development with possible long-lasting consequences.
Collapse
Affiliation(s)
- Nassila Akchiche
- Inserm U954, Faculté de Médecine, 9 Avenue de la Forêt de Haye, F-54500 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Dynein, which is a minus-end-directed microtubule motor, is crucial to a range of cellular processes. The mass of its motor domain is about 10 times that of kinesin, the other microtubule motor. Its large size and the difficulty of expressing and purifying mutants have hampered progress in dynein research. Recently, however, electron microscopy, X-ray crystallography and single-molecule nanometry have shed light on several key unsolved questions concerning how the dynein molecule is organized, what conformational changes in the molecule accompany ATP hydrolysis, and whether two or three motor domains are coordinated in the movements of dynein. This minireview describes our current knowledge of the molecular organization and the force-generating mechanism of dynein, with emphasis on findings from electron microscopy and single-molecule nanometry.
Collapse
Affiliation(s)
- Hitoshi Sakakibara
- National Institute of Information and Communications Technology, Nishi-ku, Kobe, Japan
| | | |
Collapse
|
17
|
Markus SM, Lee WL. Regulated offloading of cytoplasmic dynein from microtubule plus ends to the cortex. Dev Cell 2011; 20:639-51. [PMID: 21571221 DOI: 10.1016/j.devcel.2011.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/22/2010] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Cytoplasmic dynein mediates spindle orientation from the cell cortex through interactions with astral microtubules, but neither the mechanism governing its cortical targeting nor the regulation thereof is well understood. Here we show that yeast dynein offloads from microtubule plus ends to the daughter cell cortex. Mutants with an engineered peptide inserted between the tail domain and the motor head retain wild-type motor activity but exhibit enhanced offloading and cortical targeting. Conversely, shortening the "neck" sequence between the tail and motor domains precludes offloading from the microtubule plus ends. Furthermore, chimeric mutants with mammalian dynein "neck" sequences rescue targeting and function. These findings provide direct support for an active microtubule-mediated delivery process that appears to be regulated by a conserved masking/unmasking mechanism.
Collapse
Affiliation(s)
- Steven M Markus
- Biology Department, University of Massachusetts Amherst, 221 Morrill South, 611 North Pleasant Street, Amherst, MA 01003, USA
| | | |
Collapse
|
18
|
X-ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 2011; 18:638-42. [PMID: 21602819 DOI: 10.1038/nsmb.2074] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/27/2011] [Indexed: 12/29/2022]
Abstract
Dyneins are large microtubule-based motors that power a wide variety of cellular processes. Here we report a 4.5-Å X-ray crystallographic analysis of the entire functional motor domain of cytoplasmic dynein with ADP from Dictyostelium discoideum, which has revealed the detailed architecture of the functional units required for motor activity, including the ATP-hydrolyzing ring, the long coiled-coil microtubule-binding stalk and the force-generating rod-like linker. We discovered a Y-shaped protrusion composed of two long coiled coils-the stalk and the newly identified 'strut'. This structure supports our model in which the strut coiled coil actively contributes to communication between the primary ATPase site in the ring and the microtubule-binding site at the tip of the stalk coiled coil. Our work also provides insight into how the two motor domains are arranged and how they interact with each other in a functional dimer form of cytoplasmic dynein.
Collapse
|
19
|
Nakano I, Fujiwara R, Wada M, Shingyoji C. Effects of iodide on the coupling between ATP hydrolysis and motile activity in axonemal dynein. Cytoskeleton (Hoboken) 2011; 68:279-89. [PMID: 21520430 DOI: 10.1002/cm.20511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 11/29/2010] [Accepted: 04/07/2011] [Indexed: 11/08/2022]
Abstract
Dynein transduces the chemical energy of ATP hydrolysis into mechanical work through conformational changes. To identify the factors governing the coupling between the ATPase activity and the motile activity of the dynein molecule, we examined the effects of potassium iodide, which can unfold protein tertiary structures, on dynein activity in reactivated sea urchin sperm flagella. The presence of low concentrations of KI (0.05-0.1 M) in the reactivating solution did not influence the stable beating of demembranated flagella at 0.02-1 mM ATP, when the total concentration of potassium was kept at 0.15 M by adding K-acetate. However, double-reciprocal plots of ATP concentration and beat frequency showed a mixed type of inhibition by KI, indicating the possibility that KI inhibits the ATP hydrolysis and decreases the maximum sliding velocity. The ATPase activity of 21S dynein with or without microtubules did not decrease with the KI concentration. In the elastase-treated axonemes, KI decreased the velocity of sliding disintegration, while it increased the frequency of occurrence of axonemes showing no sliding. This may be related to some defect in the coordination of dynein activities. On 21S dynein adsorbed on a glass surface, however, the velocity of microtubule sliding was increased by KI, while KI lowered the dynein-microtubule affinity. The velocity further increased under lower salt conditions enhancing the dynein-microtubule interactions. The results suggest the importance of organized regulation of the dynamic states of dynein-microtubule interactions through the stalk for the coupling between the ATPase activity and the motile activity of dynein in beating flagella.
Collapse
Affiliation(s)
- Izumi Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
20
|
Abstract
X-ray crystallography provides some surprising insights into the dynein class of molecular motors.
Collapse
Affiliation(s)
- James A Spudich
- Biochemistry Department, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Takazaki H, Liu Z, Jin M, Kamiya R, Yasunaga T. Three outer arm dynein heavy chains of Chlamydomonas reinhardtii operate in a coordinated fashion both in vitro and in vivo. Cytoskeleton (Hoboken) 2010; 67:466-76. [DOI: 10.1002/cm.20459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Moore JK, Stuchell-Brereton MD, Cooper JA. Function of dynein in budding yeast: mitotic spindle positioning in a polarized cell. ACTA ACUST UNITED AC 2009; 66:546-55. [PMID: 19402153 DOI: 10.1002/cm.20364] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytoplasmic dynein is a microtubule motor that powers minus-end-directed motility in a variety of biological settings. The budding yeast, Saccharomyces cerevisiae, has been a useful system for the study of dynein, due to its molecular genetics and cell biology capabilities, coupled with the conservation of dynein-pathway proteins. In this review we discuss how budding yeast use dynein to manipulate the position of the mitotic spindle and the nucleus during cell division, using cytoplasmic microtubules, and we describe our current understanding of the genes required for dynein function. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jeffrey K Moore
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA.
| | | | | |
Collapse
|
23
|
Serohijos AWR, Tsygankov D, Liu S, Elston TC, Dokholyan NV. Multiscale approaches for studying energy transduction in dynein. Phys Chem Chem Phys 2009; 11:4840-50. [PMID: 19506759 PMCID: PMC2823375 DOI: 10.1039/b902028d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytoplasmic dynein is an important motor that drives all minus-end directed movement along microtubules. Dynein is a complex motor whose processive motion is driven by ATP-hydrolysis. Dynein's run length has been measured to be several millimetres with typical velocities in the order of a few nanometres per second. Therefore, the average time between steps is a fraction of a second. When this time scale is compared with typical time scales for protein side chain and backbone movements (approximately 10(-9) s and approximately 10(-5) s, respectively), it becomes clear that a multi-timescale modelling approach is required to understand energy transduction in this protein. Here, we review recent efforts to use computational and mathematical modelling to understand various aspects of dynein's chemomechanical cycle. First, we describe a structural model of dynein's motor unit showing a heptameric organization of the motor subunits. Second, we describe our molecular dynamics simulations of the motor unit that are used to investigate the dynamics of the various motor domains. Third, we present a kinetic model of the coordination between the two dynein heads. Lastly, we investigate the various potential geometries of the dimer during its hydrolytic and stepping cycle.
Collapse
Affiliation(s)
- Adrian W. R. Serohijos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Denis Tsygankov
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Shubin Liu
- Research Computing Center, University of North Carolina at Chapel Hill, NC, USA
| | - Timothy C. Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
24
|
Gangwar D, Kalita MK, Gupta D, Chauhan VS, Mohmmed A. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation. Malar J 2009; 8:69. [PMID: 19374766 PMCID: PMC2674469 DOI: 10.1186/1475-2875-8-69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/18/2009] [Indexed: 11/21/2022] Open
Abstract
Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B) are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s) for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from the parasite that could provide leads to identify novel drug targets against malaria.
Collapse
Affiliation(s)
- Deepti Gangwar
- Malaria Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| | | | | | | | | |
Collapse
|
25
|
Tsygankov D, Serohijos AWR, Dokholyan NV, Elston TC. Kinetic models for the coordinated stepping of cytoplasmic dynein. J Chem Phys 2009; 130:025101. [PMID: 19154055 DOI: 10.1063/1.3050098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To generate processive motion along a polymer track requires that motor proteins couple their ATP hydrolysis cycle with conformational changes in their structural subunits. Numerous experimental and theoretical efforts have been devoted to establishing how this chemomechanical coupling occurs. However, most processive motors function as dimers. Therefore a full understanding of the motor's performance also requires knowledge of the coordination between the chemomechanical cycles of the two heads. We consider a general two-headed model for cytoplasmic dynein that is built from experimental measurements on the chemomechanical states of monomeric dynein. We explore different possible scenarios of coordination that simultaneously satisfy two main requirements of the dimeric protein: high processivity (long run length) and high motor velocity (fast ATP turnover). To demonstrate the interplay between these requirements and the necessity for coordination, we first develop and analyze a simple mechanical model for the force-induced stepping in the absence of ATP. Next we use a simplified model of dimeric dynein's chemomechanical cycle to establish the kinetic rules that must be satisfied for the model to be consistent with recent data for the motor's performance from single molecule experiments. Finally, we use the results of these investigations to develop a full model for dimeric dynein's chemomechanical cycle and analyze this model to make experimentally testable predictions.
Collapse
Affiliation(s)
- Denis Tsygankov
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
26
|
Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K, Burgess SA. AAA+ Ring and linker swing mechanism in the dynein motor. Cell 2009; 136:485-95. [PMID: 19203583 PMCID: PMC2706395 DOI: 10.1016/j.cell.2008.11.049] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/12/2008] [Accepted: 11/26/2008] [Indexed: 12/22/2022]
Abstract
Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood. Here, using electron microscopy and image processing of tagged and truncated Dictyostelium cytoplasmic dynein constructs, we show that the heart of the motor is a hexameric ring of AAA+ modules, with the stalk emerging opposite the primary ATPase site (AAA1). The C-terminal region is not an integral part of the ring but spans between AAA6 and near the stalk base. The N-terminal region includes a lever-like linker whose N terminus swings by ∼17 nm during the ATPase cycle between AAA2 and the stalk base. Together with evidence of stalk tilting, which may communicate changes in microtubule binding affinity, these findings suggest a model for dynein's structure and mechanism.
Collapse
Affiliation(s)
- Anthony J Roberts
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Markus SM, Punch JJ, Lee WL. Motor- and tail-dependent targeting of dynein to microtubule plus ends and the cell cortex. Curr Biol 2009; 19:196-205. [PMID: 19185494 DOI: 10.1016/j.cub.2008.12.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cytoplasmic dynein mediates spindle positioning in budding yeast by powering sliding of microtubules along the cell cortex. Although previous studies have demonstrated cortical and plus-end targeting of dynein heavy chain (Dyn1/HC), the regulation of its recruitment to these sites remains elusive. RESULTS Here we show that separate domains of Dyn1/HC confer differential localization to the dynein complex. The N-terminal tail domain targets Dyn1/HC to cortical Num1 receptor sites, whereas the C-terminal motor domain targets Dyn1/HC to microtubule plus ends in a Bik1/CLIP-170- and Pac1/LIS1-dependent manner. Surprisingly, the isolated motor domain blocks plus-end targeting of Dyn1/HC, leading to a dominant-negative effect on dynein function. Overexpression of Pac1/LIS1, but not Bik1/CLIP-170, rescues the dominant negativity by restoring Dyn1/HC to plus ends. In contrast, the isolated tail domain has no inhibitory effect on Dyn1/HC targeting and function. However, cortical targeting of the tail construct is more robust than full-length Dyn1/HC and occurs independently of Bik1/CLIP-170 or Pac1/LIS1. CONCLUSIONS Our results suggest that the cortical association domain is normally masked in the full-length dynein molecule. We propose that targeting of dynein to plus ends unmasks the tail, priming the motor for off-loading to cortical Num1 sites.
Collapse
Affiliation(s)
- Steven M Markus
- Biology Department, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
28
|
Wilkes DE, Watson HE, Mitchell DR, Asai DJ. Twenty-five dyneins in Tetrahymena: A re-examination of the multidynein hypothesis. ACTA ACUST UNITED AC 2008; 65:342-51. [PMID: 18300275 DOI: 10.1002/cm.20264] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dyneins are responsible for essential movements in eukaryotic cells. The motor activity of each dynein complex resides in its complement of heavy chains. In the present study, we examined 136 heavy chain sequences from the completed genomes of 11 diverse model organisms, including examples from Viridiplantae, Excavata, Chromalveolata, and Metazoa. In many cases, we discovered dynein heavy chains previously not identified. For example, Tetrahymena expresses a total of 25 DYH genes rather than the previously identified 14. The Tetrahymena DYH genes are nonaxonemal DYH1 and DYH2; axonemal outer arm alpha, beta, and gamma; axonemal two-headed inner arm 1alpha and 1beta; and 18 single-headed inner arm heavy chains. The heavy chains divide into nine classes; six of these are highly conserved in sequence and number of isoforms in a given organism. The other three are single-headed inner arm dyneins, whose numbers vary significantly in different organisms. These findings lead to two conclusions. One, the last common ancestor of all eukaryotes expressed nine different dynein heavy chains. Two, subsequent to the divergences leading to different organisms, additional dynein heavy chains emerged. These newer dyneins are not well conserved across species and the variation may reflect different motility requirements in different organisms. Together, these results suggest that each of the nine classes of dyneins is functionally distinct, but members within some of the classes are not specialized. An understanding of the relationships among the various dynein heavy chains is important when deducing functions across species.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biology, Harvey Mudd College, Claremont, California 91711, USA
| | | | | | | |
Collapse
|
29
|
Githui EK, De Villiers EP, McArthur AG. Plasmodium possesses dynein light chain classes that are unique and conserved across species. INFECTION GENETICS AND EVOLUTION 2008; 9:337-43. [PMID: 18467191 DOI: 10.1016/j.meegid.2008.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/09/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
Abstract
Plasmodium belongs to the phylum Apicomplexa. Within the Apicomplexa, Plasmodium, Toxoplasma and Cryptosporidium are parasites of considerable medical importance while Theileria and Eimeria are animal pathogens. P. falciparum is particularly important as it causes malaria, resulting in more than 1 million deaths each year. The malaria parasite actively invades the host cell in which it propagates and several proteins associated with the apical organelles have been implicated to be crucial in the invasion process. The biogenesis of the apical organelles is not well understood, but several studies indicate that microtubule-based vesicular transport is involved. Vesicular transport proteins are also present in Plasmodium and are presumed to be involved in transcellular transport in infected erythrocytes. Dynein is a multi-subunit motor protein involved in microtubule-based vesicular transport. In this study, we analyzed the cytoplasmic dynein light chains (Dlcs) of P. falciparum since they provide adaptor surface to the cargoes and are likely to be involved in differential transport. Dlcs consist of three different families: TcTex1/2, LC8 and LC7/roadblock. The data presented demonstrate that P. falciparum Dlcs sequences and functional domains show high sequence similarity within the species, but that only the Dlc group 1 (LC8) has a high similarity to human orthologues. TcTex1 and LC7/roadblock have low similarity to human orthologues. This sequence variation could be targeted for vaccine or drug development.
Collapse
Affiliation(s)
- Elijah K Githui
- Laboratory of Molecular Genetics, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya.
| | | | | |
Collapse
|
30
|
Abstract
Models commonly used to explain the mechanism of myosin motors typically include a power stroke that is attributed to a conformational change in the motor domain and amplified by a long lever arm that connects the motor domain to the cargo. Similar models have proved less enlightening in the case of microtubule motors, for which it may be more helpful to consider models involving thermally driven mechanisms.
Collapse
Affiliation(s)
- L A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
31
|
Lorch DP, Lindemann CB, Hunt AJ. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules. ACTA ACUST UNITED AC 2008; 65:487-94. [DOI: 10.1002/cm.20277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Inoue Y, Shingyoji C. The roles of noncatalytic ATP binding and ADP binding in the regulation of dynein motile activity in flagella. ACTA ACUST UNITED AC 2007; 64:690-704. [PMID: 17630661 DOI: 10.1002/cm.20216] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The regulation of dynein activity to produce microtubule sliding in flagella has not been well understood. To gain more insight into the roles of ATP and ADP in the regulation, we examined the effects of fluorescent ATP analogues and fluorescent ADP analogues on the ATPase activity and motile activity of dynein. 21S dynein purified from the outer arms of sea urchin sperm flagella hydrolyzed BODIPY(R) FL ATP (FL-ATP) at 78% of the rate for ATP hydrolysis. FL-ATP at 0.1-1 mM, however, induced neither microtubule translocation on a dynein-coated glass surface nor sliding disintegration of elastase-treated axonemes. Direct observation of single molecules of the fluorescent analogues showed that both the ATP and ADP analogues were stably bound to dynein over several minutes (dissociation rates = 0.0038-0.0082/s). When microtubule translocation on 21S dynein was induced by ATP, the initial increase of the mean velocity was accelerated by preincubation of the dynein with ADP. Similar increase was also induced by the preincubation with the ADP analogues. Even after preincubation with ADP, FL-ATP did not induce sliding disintegration of elastase-treated axonemes. After preincubation with a nonhydrolyzable ATP analogue, AMPPNP (adenosine 5'-(beta:gamma-imido)triphosphate), however, FL-ATP induced sliding disintegration in approximately 10% of the axonemes. These results indicate that both noncatalytic ATP binding and stable ADP binding, in addition to ATP hydrolysis, are involved in the regulation of the chemo-mechanical transduction in axonemal dynein.
Collapse
Affiliation(s)
- Yuichi Inoue
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|
33
|
Wood CR, Hard R, Hennessey TM. Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed. J Cell Sci 2007; 120:3075-85. [PMID: 17684060 DOI: 10.1242/jcs.007369] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahymena thermophila swims by the coordinated beating of hundreds of cilia that cover its body. It has been proposed that the outer arm dyneins of the ciliary axoneme control beat frequency, whereas the inner arm dyneins control waveform. To test the role of one of these inner arms, dynein heavy chain 7 protein (Dyh7p), a knockout mutant was generated by targeted biolistic transformation of the vegetative macronucleus. Disruption of DYH7, the gene which encodes Dyh7p, was confirmed by PCR examination of both genomic and cDNA templates. Both intact and detergent extracted, reactivated cell model preparations of these mutants, which we call DYH7neo3, displayed swim speeds that were almost half that of wild-type cells. Although the DYH7neo3 mutants were slower than wild type, they were able to modulate their swim speed and show ciliary reversal in response to depolarizing stimuli. High-speed video microscopy of intact, free-swimming DYH7neo3 mutants revealed an irregular pattern of ciliary beat and waveform. The mutant cilia appeared to be engaging in less coordinated, swiveling movements in which the typical shape, periodicity and coordination seen in wild-type cilia were absent or disturbed. We propose that the axonemal inner arm dynein heavy chain 7 proteins contribute to the formation of normal ciliary waveform, which in turn governs the forward swimming velocity of these cells.
Collapse
Affiliation(s)
- Christopher R Wood
- Department of Biological Sciences, State University of New York at Buffalo, Amherst, NY 14260, USA
| | | | | |
Collapse
|
34
|
Wilkes DE, Rajagopalan V, Chan CWC, Kniazeva E, Wiedeman AE, Asai DJ. Dynein light chain family in Tetrahymena thermophila. ACTA ACUST UNITED AC 2007; 64:82-96. [PMID: 17009324 DOI: 10.1002/cm.20165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dyneins are large protein complexes that produce directed movement on microtubules. In situ, dyneins comprise combinations of heavy, intermediate, light-intermediate, and light chains. The light chains regulate the locations and activities of dyneins but their functions are not completely understood. We have searched the recently sequenced Tetrahymena thermophila macronuclear genome to describe the entire family of dynein light chains expressed in this organism. We identified fourteen genes encoding putative dynein light chains and seven genes encoding light chain-like proteins. RNA-directed PCR revealed that all 21 genes were expressed. Quantitative real time reverse transcription PCR showed that many of these genes were upregulated after deciliation, indicating that these proteins are present in cilia. Using the nomenclature developed in Chlamydomonas, Tetrahymena expresses two isoforms each of LC2, LC4, LC7, and Tctex1, three isoforms of p28, and six LC8/LC8-like isoforms. Tetrahymena also expresses two LC3-like genes. No Tetrahymena orthologue was found for Chlamydomonas LC5 or LC6. This study provides a complete description of the different genes and isoforms of the dynein light chains that are expressed in Tetrahymena, a model organism in which the targeted manipulation of genes is straightforward.
Collapse
Affiliation(s)
- David E Wilkes
- Department of Biology, Harvey Mudd College, Claremont, California 91711-5990, USA
| | | | | | | | | | | |
Collapse
|
35
|
Serohijos AWR, Chen Y, Ding F, Elston TC, Dokholyan NV. A structural model reveals energy transduction in dynein. Proc Natl Acad Sci U S A 2006; 103:18540-5. [PMID: 17121997 PMCID: PMC1693698 DOI: 10.1073/pnas.0602867103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular active transport is driven by ATP-hydrolyzing motor proteins that move along cytoskeletal filaments. In particular, the microtubule-associated dynein motor is involved in the transport of organelles and vesicles, the maintenance of the Golgi, and mitosis. However, unlike kinesin and myosin, the mechanism by which dynein converts chemical energy into mechanical force remains largely a mystery, due primarily to the lack of a high-resolution molecular structure. Using homology modeling and normal mode analysis, we propose a complete atomic structure and a mechanism for force generation by the motor protein dynein. In agreement with very recent electron microscopy (EM) reconstructions showing dynein as a ring-shaped heptamer, our model consists of six ATPases of the AAA (ATPases associated with various cellular activities) superfamily and a C-terminal domain, which is experimentally known to control motor function. Our model shows a coiled coil spanning the diameter of the motor that accounts for previously unidentified structures in EM studies and provides a potential mechanism for long-range communication between the AAA domains. Furthermore, normal mode analysis reveals that the subunits of the motor that contain the nucleotide binding sites exhibit minimal movement, whereas the rest of the motor is very mobile. Our analysis suggests the likely domain rearrangements of the motor unit that generate its power stroke. This study provides insights into the structure and function of dynein that can guide further experimental investigations into energy transduction in dynein.
Collapse
Affiliation(s)
| | | | | | - Timothy C. Elston
- Pharmacology, University of North Carolina, Chapel Hill, NC 27599
- To whom correspondence may be addressed. E-mail:
or
| | - Nikolay V. Dokholyan
- Biochemistry and Biophysics, and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
36
|
Abstract
Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-grained models, treating the case of dynein in detail. The models predict that coupling of slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of approximately 2kBT, consistent with experimental results. A further prediction is a quantitative increase in the effective stiffness of the coiled-coil without any change in inherent flexibility of the individual helices. The model provides a possible and experimentally testable mechanism for transmission of information through the alpha helical coiled-coil of dynein.
Collapse
Affiliation(s)
- Rhoda J Hawkins
- School of Physics and Astronomy, and Astbury Centre for Structural Molecular Biology, University of Leeds, IRC in Polymer Science and Technology, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
37
|
Toyo-Oka K, Sasaki S, Yano Y, Mori D, Kobayashi T, Toyoshima YY, Tokuoka SM, Ishii S, Shimizu T, Muramatsu M, Hiraiwa N, Yoshiki A, Wynshaw-Boris A, Hirotsune S. Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Hum Mol Genet 2005; 14:3113-28. [PMID: 16203747 DOI: 10.1093/hmg/ddi339] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
LIS1 is mutated in the human neuronal migration defect lissencephaly and along with NDEL1 (formerly NUDEL) participates in the regulation of cytoplasmic dynein function during neuronal development. Targeted disruption of Ndel1 suggested that NDEL1 could have other molecular targets that regulate microtubule organization for proper neuronal migration. To further understanding the molecular mechanism of LIS1 and lissencephaly, we identified the katanin p60 microtubule-severing protein as an additional molecular target of NDEL1. We demonstrate that phosphorylation of NDEL1 by Cdk5 facilitates interaction between NDEL1 and p60, suggesting that P-NDEL1 regulates the distribution of katanin p60. Abnormal accumulation of p60 in nucleus of Ndel1 null mutants supports an essential role of NDEL1 in p60 regulation. Complete loss of NDEL1 or expression of dominant negative mutants of p60 in migrating neurons results in defective migration and elongation of nuclear-centrosomal distance. Our results suggest that NDEL1 is essential for mitotic cell division and neuronal migration not only via regulation of cytoplasmic dynein function but also by modulation of katanin p60 localization and function.
Collapse
Affiliation(s)
- Kazuhito Toyo-Oka
- Department of Genetic Disease Research, Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Samant SA, Ogunkua OO, Hui L, Lu J, Han Y, Orth JM, Pilder SH. The mouse t complex distorter/sterility candidate, Dnahc8, expresses a γ-type axonemal dynein heavy chain isoform confined to the principal piece of the sperm tail. Dev Biol 2005; 285:57-69. [PMID: 16054618 DOI: 10.1016/j.ydbio.2005.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 05/26/2005] [Accepted: 06/03/2005] [Indexed: 11/16/2022]
Abstract
Heterozygosity for a t haplotype (t) in male mice results in distorted transmission (TRD) of the t-bearing chromosome 17 homolog to their offspring. However, homozygosity for t causes male sterility, thus limiting the spread of t through the population at large. The Ca(2+)-dependent sperm tail curvature phenotypes, "fishhook", where abnormally high levels of sperm exhibit sharp bends in the midpiece, and "curlicue", where motile sperm exhibit a chronic negative curving of the entire tail, have been tightly linked to t-associated male TRD and sterility traits, respectively. Genetic studies have indicated that homozygosity for the t allele of Dnahc8, an axonemal gamma-type dynein heavy chain (gammaDHC) gene, is partially responsible for expression of "curlicue"; however, its involvement in "fishhook"/TRD, if any, is unknown. Here we report that the major isoform of DNAHC8 is copiously expressed, carries an extended N-terminus and full-length C-terminus, and is stable and equally abundant in both testis and sperm from +/+ and t/t animals. By in silico analysis we also demonstrate that at least three of the seventeen DNAHC8(t) mutations at highly conserved positions in wild-type DHCs may be capable of substantially altering normal DNAHC8 function. Interestingly, DNAHC8 is confined to the principal piece of the sperm tail. The combined results of this study suggest possible mechanisms of DNAHC8(t) dysfunction and involvement in "curlicue", and support the hypothesis that "curlicue" is a multigenic phenomenon. They also demonstrate that the accelerated "fishhook" phenotype of sperm from +/t males is not directly linked to DNAHC8(t) dysfunction.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Anatomy and Cell Biology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Singh MP, Mallik R, Gross SP, Yu CC. Monte Carlo modeling of single-molecule cytoplasmic dynein. Proc Natl Acad Sci U S A 2005; 102:12059-64. [PMID: 16103365 PMCID: PMC1189307 DOI: 10.1073/pnas.0501570102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.
Collapse
Affiliation(s)
- Manoranjan P Singh
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
40
|
Höök P, Mikami A, Shafer B, Chait BT, Rosenfeld SS, Vallee RB. Long range allosteric control of cytoplasmic dynein ATPase activity by the stalk and C-terminal domains. J Biol Chem 2005; 280:33045-54. [PMID: 16030013 DOI: 10.1074/jbc.m504693200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynein motor domain consists of a ring of six AAA domains with a protruding microtubule-binding stalk and a C-terminal domain of unknown function. To understand how conformational information is communicated within this complex structure, we produced a series of recombinant and proteolytic rat motor domain fragments, which we analyzed enzymatically. A recombinant 210-kDa half-motor domain fragment surprisingly exhibited a 6-fold higher steady state ATPase activity than a 380-kDa complete motor domain fragment. The increased ATPase activity was associated with a complete loss of sensitivity to inhibition by vanadate and an approximately 100-fold increase in the rate of ADP release. The time course of product release was discovered to be biphasic, and each phase was stimulated approximately 1000-fold by microtubule binding to the 380-kDa motor domain. Both the half-motor and full motor domain fragments were remarkably resistant to tryptic proteolysis, exhibiting either two or three major cleavage sites. Cleavage near the C terminus of the 380-kDa motor domain released a 32-kDa fragment and abolished sensitivity to vanadate. Cleavage at this site was insensitive to ATP or 5'-adenylyl-beta,gamma-imidodiphosphate but was blocked by ADP-AlF3 or ADP-vanadate. Based on these data, we proposed a model for long range allosteric control of product release at AAA1 and AAA3 through the microtubule-binding stalk and the C-terminal domain, the latter of which may interact with AAA1 to close the motor domain ring in a cross-bridge cycle-dependent manner.
Collapse
Affiliation(s)
- Peter Höök
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
41
|
Wu H, Maciejewski MW, Takebe S, King SM. Solution structure of the Tctex1 dimer reveals a mechanism for dynein-cargo interactions. Structure 2005; 13:213-23. [PMID: 15698565 DOI: 10.1016/j.str.2004.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/10/2004] [Accepted: 11/15/2004] [Indexed: 11/19/2022]
Abstract
Tctex1 is a light chain found in both cytoplasmic and flagellar dyneins and is involved in many fundamental cellular activities, including rhodopsin transport within photoreceptors, and may function in the non-Mendelian transmission of t haplotypes in mice. Here, we present the NMR solution structure for the Tctex1 dimer from Chlamydomonas axonemal inner dynein arm I1. Structural comparisons reveal a strong similarity with the LC8 dynein light chain dimer, including formation of a strand-switched beta sheet interface. Analysis of the Tctex1 structure enables the dynein intermediate chain binding site to be identified and suggests a mechanism by which cargo proteins might be attached to this microtubule motor complex. Comparison with the alternate dynein light chain rp3 reveals how the specificity of dynein-cargo interactions mediated by these dynein components is achieved. In addition, this structure provides insight into the consequences of the mutations found in the t haplotype forms of this protein.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Molecular, Microbial, and Structural Biology, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
42
|
Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J Biol Chem 2005; 280:23960-5. [PMID: 15826937 PMCID: PMC1464088 DOI: 10.1074/jbc.m501636200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule-binding domain (MTBD) of dynein is separated from the AAA (ATPase with any other activity) core of the motor by an approximately 15-nm stalk that is predicted to consist of an antiparallel coiled coil. However, the structure of this coiled coil and the mechanism it uses to mediate communication between the MTBD and ATP-binding core are unknown. Here, we sought to identify the optimal alignment between the hydrophobic heptad repeats in the two strands of the stalk coiled coil. To do this, we fused the MTBD of mouse cytoplasmic dynein, together with 12-36 residues of its stalk, onto a stable coiled-coil base provided by Thermus thermophilus seryl-tRNA synthetase and tested these chimeric constructs for microtubule binding in vitro. The results identified one alignment that yielded a protein displaying high affinity for microtubules (2.2 microM). The effects of mutations applied to the MTBD of this construct paralleled those previously reported (Koonce, M. P., and Tikhonenko, I. (2000) Mol. Biol. Cell 11, 523-529) for an intact dynein motor unit in the absence of ATP, suggesting that it resembles the tight binding state of native intact dynein. All other alignments showed at least 10-fold lower affinity for microtubules with the exception of one, which had an intermediate affinity. Based on these results and on amino acid sequence analysis, we hypothesize that dynein utilizes small amounts of sliding displacement between the two strands of its coiled-coil stalk as a means of communication between the AAA core of the motor and the MTBD during the mechanochemical cycle.
Collapse
Affiliation(s)
- I R Gibbons
- Molecular and Cell Biology Department, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Dyneins are the largest and most complex of the three classes of linear motor proteins in eukaryotic cells. The mass of the dynein motor domain is about ten times that of the other microtubule motor, kinesin. Dynein's homology with the AAA+ superfamily of mechanoenzymes distinguishes it from both kinesin and myosin, which share a common fold and ancestry as members of the G-protein superfamily. In contrast to the other motor proteins, little is known about the mechanism of dynein; its three-dimensional structure is unknown even at low resolution. Recent two-dimensional images from electron microscopy have revealed new details of its structure and how this changes to produce movement. These and the recently solved crystal structure of another AAA+ protein, ClpB, offer tantalising hints about dynein's mechanism, suggesting it may act like a molecular winch.
Collapse
Affiliation(s)
- Stan A Burgess
- Astbury Centre for Structural Molecular Biology & School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
44
|
Marx A, Müller J, Mandelkow E. The structure of microtubule motor proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 71:299-344. [PMID: 16230115 DOI: 10.1016/s0065-3233(04)71008-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microtubules are the intracellular tracks for two classes of motor proteins: kinesins and dyneins. During the past few years, the motor domain structures of several kinesins from different organisms have been determined by X-ray crystallography. Compared with kinesins, dyneins are much larger proteins and attempts to crystallize them have failed so far. Structural information about these proteins comes mostly from electron microscopy. In this chapter, we mainly focus on the crystal structures of kinesin motor domains.
Collapse
Affiliation(s)
- A Marx
- Max-Planck-Unit for Structural Molecular Biology; Notkestrasse 85, 22607 Hamburg, Germany
| | | | | |
Collapse
|
45
|
Iyer LM, Leipe DD, Koonin EV, Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004; 146:11-31. [PMID: 15037234 DOI: 10.1016/j.jsb.2003.10.010] [Citation(s) in RCA: 622] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 10/08/2003] [Indexed: 12/29/2022]
Abstract
The AAA+ ATPases are enzymes containing a P-loop NTPase domain, and function as molecular chaperones, ATPase subunits of proteases, helicases or nucleic-acid-stimulated ATPases. All available sequences and structures of AAA+ protein domains were compared with the aim of identifying the definitive sequence and structure features of these domains and inferring the principal events in their evolution. An evolutionary classification of the AAA+ class was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of 26 major families within the AAA+ ATPase class. We also describe the position of the AAA+ ATPases with respect to the RecA/F1, helicase superfamilies I/II, PilT, and ABC classes of P-loop NTPases. The AAA+ class appears to have undergone an early radiation into the clamp-loader, DnaA/Orc/Cdc6, classic AAA, and "pre-sensor 1 beta-hairpin" (PS1BH) clades. Within the PS1BH clade, chelatases, MoxR, YifB, McrB, Dynein-midasin, NtrC, and MCMs form a monophyletic assembly defined by a distinct insert in helix-2 of the conserved ATPase core, and additional helical segment between the core ATPase domain and the C-terminal alpha-helical bundle. At least 6 distinct AAA+ proteins, which represent the different major clades, are traceable to the last universal common ancestor (LUCA) of extant cellular life. Additionally, superfamily III helicases, which belong to the PS1BH assemblage, were probably present at this stage in virus-like "selfish" replicons. The next major radiation, at the base of the two prokaryotic kingdoms, bacteria and archaea, gave rise to several distinct chaperones, ATPase subunits of proteases, DNA helicases, and transcription factors. The third major radiation, at the outset of eukaryotic evolution, contributed to the origin of several eukaryote-specific adaptations related to nuclear and cytoskeletal functions. The new relationships and previously undetected domains reported here might provide new leads for investigating the biology of AAA+ ATPases.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The majority of active transport in the cell is driven by three classes of molecular motors: the kinesin and dynein families that move toward the plus-end and minus-end of microtubules, respectively, and the unconventional myosin motors that move along actin filaments. Each class of motor has different properties, but in the cell they often function together. In this review we summarize what is known about their single-molecule properties and the possibilities for regulation of such properties. In view of new results on cytoplasmic dynein, we attempt to rationalize how these different classes of motors might work together as part of the intracellular transport machinery. We propose that kinesin and myosin are robust and highly efficient transporters, but with somewhat limited room for regulation of function. Because cytoplasmic dynein is less efficient and robust, to achieve function comparable to the other motors it requires a number of accessory proteins as well as multiple dyneins functioning together. This necessity for additional factors, as well as dynein's inherent complexity, in principle allows for greatly increased control of function by taking the factors away either singly or in combination. Thus, dynein's contribution relative to the other motors can be dynamically tuned, allowing the motors to function together differently in a variety of situations.
Collapse
Affiliation(s)
- Roop Mallik
- Department of Developmental and Cell Biology, University of California Irvine, California 92697, USA
| | | |
Collapse
|
47
|
Takahashi Y, Edamatsu M, Toyoshima YY. Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein. Proc Natl Acad Sci U S A 2004; 101:12865-9. [PMID: 15326307 PMCID: PMC516486 DOI: 10.1073/pnas.0403429101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic dynein is a minus-end-directed microtubule motor involved in numerous essential processes within eukaryotic cells, such as nuclear segregation and trafficking of intracellular particles. The motor domain of the dynein heavy chain comprises six tandemly linked AAA (ATPase associated with diverse cellular activities) modules (AAA1-AAA6). The first four modules include nucleotide-binding sites (Walker A or P-loop motifs), and each of the four sites appears to bind ATP. However, the role and the function of each binding site are unknown. Especially, the question of which P-loops are ATP-hydrolyzing sites has not been answered, because it is difficult to measure the ATPase activity of each P-loop. Here, we purified several truncated Saccharomyces cerevisiae cytoplasmic dynein fragments and their mutants expressed in Escherichia coli and then measured their ATPase activities. Our results suggest that there are multiple ATP-binding sites that have abilities to hydrolyze ATP in cytoplasmic dynein. Furthermore, a single AAA module is insufficient for ATP hydrolysis, and the adjacent module facing the ATP-binding site is necessary for ATP-hydrolyzing activity.
Collapse
Affiliation(s)
- Yoshinori Takahashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
48
|
Eichenmüller B, Kedersha N, Solovyeva E, Everley P, Lang J, Himes RH, Suprenant KA. Vaults bind directly to microtubules via their caps and not their barrels. ACTA ACUST UNITED AC 2004; 56:225-36. [PMID: 14584025 DOI: 10.1002/cm.10147] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vaults are large (13 Mda) ribonucleoprotein particles that are especially abundant in multidrug resistant cancer cells and have been implicated in nucleocytoplasmic drug transport. To understand how these large barrel-shaped complexes are transported through the cytosol, we examined the association of vaults with microtubules both in vitro and in vivo. Within cells, a subpopulation of vaults clearly associates with microtubules, and these vaults remain associated with tubulin dimers/oligomers when microtubules are disassembled by nocodazole treatment. In vitro, a microtubule-pull down assay using highly purified rat vaults and reassembled microtubules reveals that vaults exhibit concentration-dependent binding to microtubules that does not require the carboxyl terminal end of tubulin. Remarkably, negative staining for electron microscopy reveals that vault binding to microtubules is mediated by the vault caps; more than 82% of bound vaults attach to the microtubule lattice with their long axes perpendicular to the long axis of the microtubule. Five to six vault particles were bound per micron of microtubule, with no crosslinking of microtubules observed, suggesting that only one end of the vault can bind microtubules. Taken together, the data support the model of vaults as barrel-shaped containers that transiently interact with microtubules.
Collapse
Affiliation(s)
- Bernd Eichenmüller
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Dynein is the large molecular motor that translocates to the (-) ends of microtubules. Dynein was first isolated from Tetrahymena cilia four decades ago. The analysis of the primary structure of the dynein heavy chain and the discovery that many organisms express multiple dynein heavy chains have led to two insights. One, dynein, whose motor domain comprises six AAA modules and two potential mechanical levers, generates movement by a mechanism that is fundamentally different than that which underlies the motion of myosin and kinesin. And two, organisms with cilia or flagella express approximately 14 different dynein heavy chain genes, each gene encodes a distinct dynein protein isoform, and each isoform appears to be functionally specialized. Sequence comparisons demonstrate that functionally equivalent isoforms of dynein heavy chains are well conserved across species. Alignments of portions of the motor domain result in seven clusters: (i) cytoplasmic dynein Dyhl; (ii) cytoplasmic dynein Dyh2; (iii) axonemal outer arm dynein alpha; (iv) outer arm dyneins beta and gamma; (v) inner arm dynein 1alpha; (vi) inner arm dynein 1beta; and (vii) a group of apparently single-headed inner arm dyneins. Some of the dynein groups contained more than one representative from a single organism, suggesting that these may be tissue-specific variants.
Collapse
Affiliation(s)
- David J Asai
- Department of Biology, Harvey Mudd College, 301 East 12th Street, Claremont, California 91711-5990, USA.
| | | |
Collapse
|
50
|
Samsó M, Koonce MP. 25Å Resolution Structure of a Cytoplasmic Dynein Motor Reveals a Seven-member Planar Ring. J Mol Biol 2004; 340:1059-72. [PMID: 15236967 DOI: 10.1016/j.jmb.2004.05.063] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/26/2004] [Accepted: 05/27/2004] [Indexed: 11/25/2022]
Abstract
Dyneins form one of the three major families of cytoskeleton-based motor proteins that together drive most of the visible forms of cell and organelle movement. We present here a 3D reconstruction of a cytoplasmic dynein motor domain obtained by electron microscopy, at 25 Angstrom resolution. This work demonstrates a basic motor architecture of a flat, slightly elliptical ring composed of seven densities arranged around a partially enclosed central cavity. We have used specific Fab tags to localize the microtubule-binding domain; the connecting stalk emerges at one end of the motor's long axis. Through proposed fitting of representative AAA domain structures, we show that the nucleotide catalytic P-1 domain is likely located at the opposite end of the motor. Thus mechanisms that couple nucleotide hydrolysis with microtubule binding must be propagated around a ring structure, in a manner clearly distinct from kinesin or myosin-mediated movements. Analysis of the Fab tagged datasets reveals classes of particles with stalks protruding at distinct angles from the motor. There is a approximately 40 degrees variation in microtubule-binding stalk angle that may reflect linkage to dynein's mechanochemical cycle. Overall, the work provides sufficient resolution to begin the mapping of landmark features onto a dynein motor, and provides a foundation for understanding the mechanics of dynein movement.
Collapse
Affiliation(s)
- Montserrat Samsó
- Division of Molecular Medicine Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY 12201-0509, USA
| | | |
Collapse
|