1
|
Kong X, Liu H, Chen S, Liu Z, Chen Q, Li X, Hu H, Su J, Shi Y. Bioengineered bacterial extracellular vesicles for targeted delivery of an osteoclastogenesis-inhibitory peptide to alleviate osteoporosis. J Control Release 2025; 382:113751. [PMID: 40268198 DOI: 10.1016/j.jconrel.2025.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Osteoporosis (OP) is a systemic skeletal disease commonly found in women after 55 years old and men after 65 years old. With the worldwide aging of population, its prevalence rate is increasing rapidly, bringing huge financial burdens to all countries. As a potential alternative to the conventional OP therapeutics with limited efficacies and side effects, a linear peptide FRATtide capable of binding with phosphorylated GSK3β has been discovered by us to inhibit osteoclastogenesis thus reduce bone loss. While its poor proteolytic stability and osteoclast targetability hinder its effective in vivo treatment. As such, bacterial extracellular vesicles secreted by the rationally recombinant probiotics Escherichia coli Nissle 1917 that express pre-osteoclast fusion protein DC-STAMP (BEV-DCS) are engineered and exploited as delivery vehicles. The BEV-DCS not only protect FRAT from enzymatic degradation but also enable its targeted intracellular delivery into pre-osteoclasts. On the ovariectomy mouse model, the FRAT encapsulated BEV-DCS (FRAT@BEV-DCS) exhibit remarkable bone targeting capacity and osteoporosis ameliorating efficacy without any obvious toxicity. These results reveal the great potential of FRAT@BEV-DCS as a novel therapeutic option for the effective and safe OP treatment.
Collapse
Affiliation(s)
- Xiangxiang Kong
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Sumeng Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhinan Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; MedEng-X Insititutes, Shanghai University, Shanghai 200444, China; Shanghai Integration and Innovation Center of Marine Medical Engineering, Shanghai 200444, China.
| |
Collapse
|
2
|
Clark LK, Cullati SN. Activation is only the beginning: mechanisms that tune kinase substrate specificity. Biochem Soc Trans 2025:BST20241420. [PMID: 39907081 DOI: 10.1042/bst20241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 02/06/2025]
Abstract
Kinases are master coordinators of cellular processes, but to appropriately respond to the changing cellular environment, each kinase must recognize its substrates, target only those proteins on the correct amino acids, and in many cases, only phosphorylate a subset of potential substrates at any given time. Therefore, regulation of kinase substrate specificity is paramount to proper cellular function, and multiple mechanisms can be employed to achieve specificity. At the smallest scale, characteristics of the substrate such as its linear peptide motif and three-dimensional structure must be complementary to the substrate binding surface of the kinase. This surface is dynamically shaped by the activation loop and surrounding region of the substrate binding groove, which can adopt multiple conformations, often influenced by post-translational modifications. Domain-scale conformational changes can also occur, such as the interaction with pseudosubstrate domains or other regulatory domains in the kinase. Kinases may multimerize or form complexes with other proteins that influence their structure, function, and/or subcellular localization at different times and in response to different signals. This review will illustrate these mechanisms by examining recent work on four serine/threonine kinases: Aurora B, CaMKII, GSK3β, and CK1δ. We find that these mechanisms are often shared by this diverse set of kinases in diverse cellular contexts, so they may represent common strategies that cells use to regulate cell signaling, and it will be enlightening to continue to learn about the depth and robustness of kinase substrate specificity in additional systems.
Collapse
Affiliation(s)
- Landon K Clark
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| | - Sierra N Cullati
- Department of Chemistry, Western Washington University, Bellingham, WA, U.S.A
| |
Collapse
|
3
|
Yu T, Liu H, Gao M, Liu D, Wang J, Zhang J, Wang J, Yang P, Zhang X, Liu Y. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase 3β. BURNS & TRAUMA 2024; 12:tkae042. [PMID: 39502342 PMCID: PMC11534962 DOI: 10.1093/burnst/tkae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 11/08/2024]
Abstract
Background Our previous research suggested that dexmedetomidine (Dex) promotes autophagy in cardiomyocytes, thus safeguarding them against apoptosis during sepsis. However, the underlying mechanisms of Dex-regulated autophagy have remained elusive. This study aimed to explore the role of exosomes and how they participate in Dex-induced cardioprotection in sepsis. The underlying microRNA (miRNA) mechanisms and possible therapeutic targets for septic myocardial injury were identified. Methods We first collected plasma exosomes from rats with sepsis induced by caecal ligation and puncture (CLP) with or without Dex treatment, and then incubated them with H9c2 cells to observe the effect on cardiomyocytes. Subsequently, the differential expression of miRNAs in plasma exosomes from each group of rats was identified through miRNA sequencing. miR-29b-3p expression in circulating exosomes of septic or non-septic patients, as well as in lipopolysaccharide-induced macrophages after Dex treatment, was analysed by quantitative real-time polymerase chain reaction (qRT-PCR). The autophagy level of cardiomyocytes after macrophage-derived exosome treatment was assessed by an exosome tracing assay, western blotting, and an autophagic flux assay. Specific miRNA mimics and inhibitors or small interfering RNAs were used to predict and evaluate the function of candidate miRNA and its target genes by qRT-PCR, annexin V/propyl iodide staining, autophagy flux analysis, and western blotting. Results We found that plasma-derived exosomes from Dex-treated rats promoted cardiomyocyte autophagy and exerted antiapoptotic effects. Additionally, they exhibited a high expression of miRNA, including miR-29b-3p. Conversely, a significant decrease in miR-29b-3p was observed in circulating exosomes from CLP rats, as well as in plasma exosomes from sepsis patients. Furthermore, Dex upregulated the lipopolysaccharide-induced decrease in miR-29b-3p expression in macrophage-derived exosomes. Exosomal miR-29b-3p from macrophages is thought to be transferred to cardiomyocytes, thus leading to the promotion of autophagy in cardiomyocytes. Database predictions, luciferase reporter assays, and small interfering RNA intervention confirmed that glycogen synthase kinase 3β (GSK-3β) is a target of miR-29b-3p. miR-29b-3p promotes cardiomyocyte autophagy by inhibiting GSK-3β expression and activation. Conclusions These findings demonstrate that Dex attenuates sepsis-associated myocardial injury by modulating exosome-mediated macrophage-cardiomyocyte crosstalk and that the miR-29b-3p/GSK-3β signaling pathway represents a hopeful target for the treatment of septic myocardial injury.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Hsinying Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Min Gao
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - JiaQiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, China
| |
Collapse
|
4
|
Enos MD, Gavagan M, Jameson N, Zalatan JG, Weis WI. Structural and functional effects of phosphopriming and scaffolding in the kinase GSK-3β. Sci Signal 2024; 17:eado0881. [PMID: 39226374 PMCID: PMC11461088 DOI: 10.1126/scisignal.ado0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Glycogen synthase kinase 3β (GSK-3β) targets specific signaling pathways in response to distinct upstream signals. We used structural and functional studies to dissect how an upstream phosphorylation step primes the Wnt signaling component β-catenin for phosphorylation by GSK-3β and how scaffolding interactions contribute to this reaction. Our crystal structure of GSK-3β bound to a phosphoprimed β-catenin peptide confirmed the expected binding mode of the phosphoprimed residue adjacent to the catalytic site. An aspartate phosphomimic in the priming site of β-catenin adopted an indistinguishable structure but reacted approximately 1000-fold slower than the native phosphoprimed substrate. This result suggests that substrate positioning alone is not sufficient for catalysis and that native phosphopriming interactions are necessary. We also obtained a structure of GSK-3β with an extended peptide from the scaffold protein Axin that bound with greater affinity than that of previously crystallized Axin fragments. This structure neither revealed additional contacts that produce the higher affinity nor explained how substrate interactions in the GSK-3β active site are modulated by remote Axin binding. Together, our findings suggest that phosphopriming and scaffolding produce small conformational changes or allosteric effects, not captured in the crystal structures, that activate GSK-3β and facilitate β-catenin phosphorylation. These results highlight limitations in our ability to predict catalytic activity from structure and have potential implications for the role of natural phosphomimic mutations in kinase regulation and phosphosite evolution.
Collapse
Affiliation(s)
- Michael D. Enos
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Maire Gavagan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Noel Jameson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse G. Zalatan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - William I. Weis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94035, USA
- Department Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| |
Collapse
|
5
|
Yang Y, Geng C, Shen H, Chao J, Wang Z, Cong W, Li X, Ye G, Jiang Y. Systematical Mutational Analysis of FRATtide against Osteoclast Differentiation by Alanine Scanning. ACS Med Chem Lett 2024; 15:1242-1249. [PMID: 39140067 PMCID: PMC11318000 DOI: 10.1021/acsmedchemlett.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Osteoporosis, a global bone disease, results in decreased bone density, mass, and microarchitecture deterioration, increasing fracture risk. In previous research, FRATtide, a peptide derived from a glycogen synthase kinase-3 binding protein, effectively hindered osteoclast differentiation to yield therapeutically potent derivatives via single and double stapling. However, FRATtide's structure-activity relationship remains unclear. This study synthesized 25 FRATtide-derived peptides through systematic alanine scanning and evaluated their activities. Substitutions in Pro2, Leu5, Leu9, Val10, Leu11, Ser12, Asn14, Leu15, Ile16, Glu18, Arg22, Ser25, and Arg26 showed reduced activity, while FRT13 and FRT20 with Gly13 and Arg21 substitutions, respectively, displayed enhanced activities. F-actin binding and bone resorption assays on FRT13 and FRT20 showed better inhibition of osteoclast differentiation and bone resorption compared with FRATtide. This study elucidated FRATtide's structure-activity relationship, thereby facilitating future structural optimization for osteoporosis treatment.
Collapse
Affiliation(s)
- Yi Yang
- School
of Pharmacy, Anhui Medical University, HeFei 230032, China
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chenchen Geng
- School
of Pharmacy, Anhui Medical University, HeFei 230032, China
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Huaxing Shen
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingru Chao
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhe Wang
- Institute
of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Wei Cong
- School
of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School
of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guangming Ye
- Xinrui
Hospital, Xinwu District, Wuxi, 214000, China
| | | |
Collapse
|
6
|
El Hajjar L, Page A, Bridot C, Cantrelle FX, Landrieu I, Smet-Nocca C. Regulation of Glycogen Synthase Kinase-3β by Phosphorylation and O-β-Linked N-Acetylglucosaminylation: Implications on Tau Protein Phosphorylation. Biochemistry 2024; 63:1513-1533. [PMID: 38788673 DOI: 10.1021/acs.biochem.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) plays a pivotal role in signaling pathways involved in insulin metabolism and the pathogenesis of neurodegenerative disorders. In particular, the GSK3β isoform is implicated in Alzheimer's disease (AD) as one of the key kinases involved in the hyperphosphorylation of tau protein, one of the neuropathological hallmarks of AD. As a constitutively active serine/threonine kinase, GSK3 is inactivated by Akt/PKB-mediated phosphorylation of Ser9 in the N-terminal disordered domain, and for most of its substrates, requires priming (prephosphorylation) by another kinase that targets the substrate to a phosphate-specific pocket near the active site. GSK3 has also been shown to be post-translationally modified by O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), with still unknown functions. Here, we have found that binding of Akt inhibits GSK3β kinase activity on both primed and unprimed tau substrates. Akt-mediated Ser9 phosphorylation restores the GSK3β kinase activity only on primed tau, thereby selectively inactivating GSK3β toward unprimed tau protein. Additionally, we have shown that GSK3β is highly O-GlcNAcylated at multiple sites within the kinase domain and the disordered N- and C-terminal domains, including Ser9. In contrast to Akt-mediated regulation, neither the O-GlcNAc transferase nor O-GlcNAcylation significantly alters GSK3β kinase activity, but high O-GlcNAc levels reduce Ser9 phosphorylation by Akt. Reciprocally, Akt phosphorylation downregulates the overall O-GlcNAcylation of GSK3β, indicating a crosstalk between both post-translational modifications. Our results indicate that specific O-GlcNAc profiles may be involved in the phosphorylation-dependent Akt-mediated regulation of GSK3β kinase activity.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Adeline Page
- Protein Science Facility, SFR Biosciences Univ Lyon, ENS de Lyon, CNRS UAR3444, Inserm US8, Université Claude Bernard Lyon 1, 50 Avenue Tony Garnier, Lyon F-69007, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille F-59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France
| |
Collapse
|
7
|
Mandlik DS, Mandlik SK, S A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer's disease: a novel therapeutic target. Int J Neurosci 2024; 134:603-619. [PMID: 36178363 DOI: 10.1080/00207454.2022.2130297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is an extremely popular neurodegenerative condition associated with dementia, responsible for around 70% of the cases. There are presently 50 million people living with dementia in the world, but this number is anticipated to increase to 152 million by 2050, posing a substantial socioeconomic encumbrance. Despite extensive research, the precise mechanisms that cause AD remain unidentified, and currently, no therapy is available. Numerous signalling paths related to AD neuropathology, including glycogen synthase kinase 3-β (GSK-3β), have been investigated as potential targets for the treatment of AD in current years.GSK-3β is a proline-directed serine/threonine kinase that is linked to a variety of biological activities, comprising glycogen metabolism to gene transcription. GSK-3β is also involved in the pathophysiology of sporadic as well as familial types of AD, which has led to the development of the GSK3 theory of AD. GSK-3β is a critical performer in the pathology of AD because dysregulation of this kinase affects all the main symbols of the disease such as amyloid formation, tau phosphorylation, neurogenesis and synaptic and memory function. The current review highlights present-day knowledge of GSK-3β-related neurobiology, focusing on its role in AD pathogenesis signalling pathways. It also explores the possibility of targeting GSK-3β for the management of AD and offers an overview of the present research work in preclinical and clinical studies to produce GSK-3β inhibitors.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Satish K Mandlik
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| | - Arulmozhi S
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandawane, Pune, India
| |
Collapse
|
8
|
Solovou TGA, Stravodimos G, Papadopoulos GE, Skamnaki VT, Papadopoulou K, Leonidas DD. Biochemical and Structural Studies of LjSK1, a Lotus japonicus GSK3β/SHAGGY-like Kinase, Reveal Its Functional Role. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3763-3772. [PMID: 38330914 DOI: 10.1021/acs.jafc.3c07101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The crystal structure of a truncated form of the Lotus japonicus glycogen synthase kinase 3β (GSK3β) like kinase (LjSK190-467) has been resolved at 2.9 Å resolution, providing, for the first time, structural data for a plant GKS3β like kinase. The 3D structure of LjSK190-467 revealed conservation at the structural level for this plant member of the GSK3β family. However, comparative structural analysis to the human homologue revealed significant differences at the N- and C-termini, supporting the notion for an additional regulatory mechanism in plant GSK3-like kinases. Structural similarities at the catalytic site and the ATP binding site explained the similarity in the function of the human and plant protein. LjSK1 and lupeol are strongly linked to symbiotic bacterial infection and nodulation initiation. An inhibitory capacity of lupeol (IC50 = 0.77 μM) for LjSK1 was discovered, providing a biochemical explanation for the involvement of these two molecules in nodule formation, and constituted LjSK1 as a molecular target for the discovery of small molecule modulators for crop protection and development. Studies on the inhibitory capacity of two phytogenic triterpenoids (betulinic acid and hederacoside C) to LjSK1 provided their structure-activity relationship and showed that hederacoside C can be the starting point for such endeavors.
Collapse
Affiliation(s)
- Theodora G A Solovou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Georgios E Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Kalliope Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis 41500 Larissa, Greece
| |
Collapse
|
9
|
Shri SR, Manandhar S, Nayak Y, Pai KSR. Role of GSK-3β Inhibitors: New Promises and Opportunities for Alzheimer's Disease. Adv Pharm Bull 2023; 13:688-700. [PMID: 38022801 PMCID: PMC10676556 DOI: 10.34172/apb.2023.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/13/2022] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) was discovered to be a multifunctional enzyme involved in a wide variety of biological processes, including early embryo formation, oncogenesis, as well cell death in neurodegenerative diseases. Several critical cellular processes in the brain are regulated by the GSK-3β, serving as a central switch in the signaling pathways. Dysregulation of GSK-3β kinase has been reported in diabetes, cancer, Alzheimer's disease, schizophrenia, bipolar disorder, inflammation, and Huntington's disease. Thus, GSK-3β is widely regarded as a promising target for therapeutic use. The current review article focuses mainly on Alzheimer's disease, an age-related neurodegenerative brain disorder. GSK-3β activation increases amyloid-beta (Aβ) and the development of neurofibrillary tangles that are involved in the disruption of material transport between axons and dendrites. The drug-binding cavities of GSK-3β are explored, and different existing classes of GSK-3β inhibitors are explained in this review. Non-ATP competitive inhibitors, such as allosteric inhibitors, can reduce the side effects compared to ATP-competitive inhibitors. Whereas ATP-competitive inhibitors produce disarrangement of the cytoskeleton, neurofibrillary tangles formation, and lead to the death of neurons, etc. This could be because they are binding to a site separate from ATP. Owing to their interaction in particular and special binding sites, allosteric ligands interact with substrates more selectively, which will be beneficial in resolving drug-induced resistance and also helpful in reducing side effects. Hence, in this review, we focussed on the allosteric GSK-3β inhibitors and discussed their futuristic opportunities as anti-Alzheimer's compounds.
Collapse
Affiliation(s)
| | | | | | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal -576104, India
| |
Collapse
|
10
|
Gutierrez-Merino C. Brain Hydrophobic Peptides Antagonists of Neurotoxic Amyloid β Peptide Monomers/Oligomers-Protein Interactions. Int J Mol Sci 2023; 24:13846. [PMID: 37762148 PMCID: PMC10531495 DOI: 10.3390/ijms241813846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid β (Aβ) oligomers have been linked to Alzheimer's disease (AD) pathogenesis and are the main neurotoxic forms of Aβ. This review focuses on the following: (i) the Aβ(1-42):calmodulin interface as a model for the design of antagonist Aβ peptides and its limitations; (ii) proteolytic degradation as the major source of highly hydrophobic peptides in brain cells; and (iii) brain peptides that have been experimentally demonstrated to bind to Aβ monomers or oligomers, Aβ fibrils, or Aβ plaques. It is highlighted that the hydrophobic amino acid residues of the COOH-terminal segment of Aβ(1-42) play a key role in its interaction with intracellular protein partners linked to its neurotoxicity. The major source of highly hydrophobic endogenous peptides of 8-10 amino acids in neurons is the proteasome activity. Many canonical antigen peptides bound to the major histocompatibility complex class 1 are of this type. These highly hydrophobic peptides bind to Aβ and are likely to be efficient antagonists of the binding of Aβ monomers/oligomers concentrations in the nanomolar range with intracellular proteins. Also, their complexation with Aβ will protect them against endopeptidases, suggesting a putative chaperon-like physiological function for Aβ that has been overlooked until now. Remarkably, the hydrophobic amino acid residues of Aβ responsible for the binding of several neuropeptides partially overlap with those playing a key role in its interaction with intracellular protein partners that mediates its neurotoxicity. Therefore, these latter neuropeptides are also potential candidates to antagonize Aβ peptides binding to target proteins. In conclusion, the analysis performed in this review points out that hydrophobic endogenous brain neuropeptides could be valuable biomarkers to evaluate the risk of the onset of sporadic AD, as well as for the prognosis of AD.
Collapse
Affiliation(s)
- Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
11
|
Teli DM, Gajjar AK. Glycogen synthase kinase-3: A potential target for diabetes. Bioorg Med Chem 2023; 92:117406. [PMID: 37536264 DOI: 10.1016/j.bmc.2023.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Elevated circulating glucose level due to β-cell dysfunction has been a key marker of Type-II diabetes. Glycogen synthase kinase-3 (GSK-3) has been recognized as an enzyme involved in the control of glycogen metabolism. Consequently, inhibitors of GSK-3 have been explored for anti-diabetic effects in vitro and in animal models. Further, the mechanisms governing the regulation of this enzyme have been elucidated by means of a combination of structural and cellular biological investigations. This review article examines the structural analysis of GSK-3 as well as molecular modeling reports from numerous researchers in the context of the design and development of GSK-3 inhibitors. This article centers on the signaling pathway of GSK-3 relevant to its potential as a target for diabetes and discusses advancements till date on different molecular modification approaches used by researchers in the development of novel GSK-3 inhibitors as potential therapeutics for the treatment of Type II diabetes.
Collapse
Affiliation(s)
- Divya M Teli
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Anuradha K Gajjar
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India.
| |
Collapse
|
12
|
Cong W, Shen H, Liao X, Zheng M, Kong X, Wang Z, Chen S, Li Y, Hu H, Li X. Discovery of an orally effective double-stapled peptide for reducing ovariectomy-induced bone loss in mice. Acta Pharm Sin B 2023; 13:3770-3781. [PMID: 37719364 PMCID: PMC10502273 DOI: 10.1016/j.apsb.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 09/19/2023] Open
Abstract
Stapled peptides with significantly enhanced pharmacological profiles have emerged as promising therapeutic molecules due to their remarkable resistance to proteolysis and performance to penetrate cells. The all-hydrocarbon peptide stapling technique has already widely adopted with great success, yielding numerous potent peptide-based molecules. Based on our prior efforts, we conceived and prepared a double-stapled peptide in this study, termed FRNC-1, which effectively attenuated the bone resorption capacity of mature osteoclasts in vitro through specific inhibition of phosphorylated GSK-3β. The double-stapled peptide FRNC-1 displayed notably improved helical contents and resistance to proteolysis than its linear form. Additionally, FRNC-1 effectively prevented osteoclast activation and improved bone density for ovariectomized (OVX) mice after intravenous injection and importantly, after oral (intragastric) administration. The double-stapled peptide FRNC-1 is the first orally effective peptide that has been validated to date as a therapeutic candidate for postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Wei Cong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huaxing Shen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiufei Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Tarim University, Xinjiang Uygur Autonomous Region, Alar City 843300, China
| | - Mengjun Zheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xianglong Kong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Si Chen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yulei Li
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Honggang Hu
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
13
|
Tian L, Chen X, Cao L, Zhang L, Chen J. Effects of plant-based medicinal food on postoperative recurrence and lung metastasis of gastric cancer regulated by Wnt/β-catenin-EMT signaling pathway and VEGF-C/D-VEGFR-3 cascade in a mouse model. BMC Complement Med Ther 2022; 22:233. [PMID: 36056333 PMCID: PMC9438347 DOI: 10.1186/s12906-022-03703-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background The plant-based medicinal food (PBMF) is a functional compound extracted from 6 medicinal and edible plants: Coix seed, L. edodes, A. officinalis L., H. cordata, Dandelion, and G. frondosa. Our previous studies have confirmed that the PBMF possesses anti-tumor properties in a subcutaneous xenograft model of nude mice. This study aims to further investigate the effects and potential molecular mechanisms of the PBMF on the recurrence and metastasis of gastric cancer (GC). Methods Postoperative recurrence and metastasis model of GC was successfully established in inbred 615 mice inoculated with mouse forestomach carcinoma (MFC) cells. After tumorectomy, 63 GC mice were randomly divided into five groups and respectively subject to different treatments for 15 days as below: model control group, 5-Fu group, and three doses of PBMF (43.22, 86.44, 172.88 g/kg PBMF in diet respectively). The inhibition rate (IR) of recurrence tumor weights and organ coefficients were calculated. Meanwhile, histopathological changes were examined and the metastasis IR in lungs and lymph node tissues was computed. The mRNA expressions related to the canonical Wnt/β-catenin signaling pathway, epithelial-mesenchymal transition (EMT) and lymphangiogenesis were detected by RT-qPCR in recurrence tumors and/or lung tissues. Protein expressions of β-catenin, p-β-catenin (Ser33/37/Thr41), GSK-3β, p-GSK-3β (Ser9), E-cadherin, and Vimentin in recurrence tumors were determined by Western Blot. LYVE-1, VEGF-C/D, and VEGFR-3 levels in recurrence tumors and/or lung tissues were determined by immunohistochemistry staining. Results The mRNA, as well as protein expression of GSK-3β were up-regulated and the mRNA expression of β-catenin was down-regulated after PBMF treatment. Meanwhile, the ratio of p-β-catenin (Ser33/37/Thr41) to β-catenin protein was increased significantly and the p-GSK-3β (Ser9) protein level was decreased. And PMBF could effectively decrease the mRNA and protein levels of Vimentin while increasing those of E-cadherin. Furthermore, PBMF markedly reduced lymphatic vessel density (LVD) (labeled by LYVE-1) in recurrence tumor tissues, and mRNA levels of VEGF-C/D, VEGFR-2/3 of recurrence tumors were all significantly lower in the high-dose group. Conclusions PBMF had a significant inhibitory effect on recurrence and lung metastasis of GC. The potential mechanism may involve reversing EMT by inhabiting the Wnt/β-catenin signaling pathway. Lymphatic metastasis was also inhibited by PBMF via down-regulating the activation of the VEGF-C/D-VEGFR-2/3 signaling cascade. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03703-0.
Collapse
|
14
|
MicroRNA-dependent regulation of targeted mRNAs for improved muscle texture in crisp grass carp fed with broad bean. Food Res Int 2022; 155:111071. [DOI: 10.1016/j.foodres.2022.111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
|
15
|
Natural products as novel scaffolds for the design of glycogen synthase kinase 3β inhibitors. Expert Opin Drug Discov 2022; 17:377-396. [PMID: 35262427 DOI: 10.1080/17460441.2022.2043845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The different and relevant roles of GSK-3 are of critical importance since they deal with development, metabolic homeostasis, cell polarity and fate, neuronal growth and differentiation as well as modulation of apoptotic potential. Given their involvement with different diseases, many investigations have been undertaken with the aim of discovering new and promising inhibitors for this target. In this context, atural products represent an invaluable source of active molecules. AREAS COVERED In order to overcome issues such as poor pharmacokinetic properties or efficacy, frequently associated with natural compounds, different GSK-3β inhibitors belonging to alkaloid or flavonoid classes have been subjected to structural modifications in order to obtain more potent and safer compounds. Herein, the authors report the results obtained from studies where natural compounds have been used as hits with the aim of providing new kinase inhibitors endowed with a better inhibitory profile. EXPERT OPINION Structurally modification of natural scaffolds is a proven approach taking advantage of their pharmacological characteristics. Indeed, whatever the strategy adopted is and, despite the limitations associated with the structural complexity of natural products, the authors recommend the use of natural scaffolds as a promising strategy for the discovery of novel and potent GSK-3β inhibitors.
Collapse
|
16
|
Palanivel C, Chaudhary N, Seshacharyulu P, Cox JL, Yan Y, Batra SK, Ouellette MM. The GSK3 kinase and LZTR1 protein regulate the stability of Ras family proteins and the proliferation of pancreatic cancer cells. Neoplasia 2022; 25:28-40. [PMID: 35114566 PMCID: PMC8814762 DOI: 10.1016/j.neo.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Ras family proteins are membrane-bound GTPases that control proliferation, survival, and motility. Many forms of cancers are driven by the acquisition of somatic mutations in a RAS gene. In pancreatic cancer (PC), more than 90% of tumors carry an activating mutation in KRAS. Mutations in components of the Ras signaling pathway can also be the cause of RASopathies, a group of developmental disorders. In a subset of RASopathies, the causal mutations are in the LZTR1 protein, a substrate adaptor for E3 ubiquitin ligases that promote the degradation of Ras proteins. Here, we show that the function of LZTR1 is regulated by the glycogen synthase kinase 3 (GSK3). In PC cells, inhibiting or silencing GSK3 led to a decline in the level of Ras proteins, including both wild type Ras proteins and the oncogenic Kras protein. This decline was accompanied by a 3-fold decrease in the half-life of Ras proteins and was blocked by the inhibition of the proteasome or the knockdown of LZTR1. Irrespective of the mutational status of KRAS, the decline in Ras proteins was observed and accompanied by a loss of cell proliferation. This loss of proliferation was blocked by the knockdown of LZTR1 and could be recapitulated by the silencing of either KRAS or GSK3. These results reveal a novel GSK3-regulated LZTR1-dependent mechanism that controls the stability of Ras proteins and proliferation of PC cells. The significance of this novel pathway to Ras signaling and its contribution to the therapeutic properties of GSK3 inhibitors are both discussed.
Collapse
|
17
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
18
|
N-terminal phosphorylation regulates the activity of Glycogen Synthase Kinase 3 from Plasmodium falciparum. Biochem J 2022; 479:337-356. [PMID: 35023554 PMCID: PMC8883495 DOI: 10.1042/bcj20210829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
As the decline of malaria cases stalled over the last five years, novel targets in Plasmodium falciparum are necessary for the development of new drugs. Glycogen Synthase Kinase (PfGSK3) has been identified as a potential target, since its selective inhibitors were shown to disrupt the parasitès life cycle. In the uncanonical N-terminal region of the parasite enzyme, we identified several autophosphorylation sites and probed their role in activity regulation of PfGSK3. By combining molecular modeling with experimental small-angle X-ray scattering data, we show that increased PfGSK3 activity is promoted by conformational changes in the PfGSK3 N-terminus, triggered by N-terminal phosphorylation. Our work provides novel insights into the structure and regulation of the malarial PfGSK3.
Collapse
|
19
|
Yang SS, Shi HY, Zeng P, Xia J, Wang P, Lin L. Bushen-Huatan-Yizhi formula reduces spatial learning and memory challenges through inhibition of the GSK-3β/CREB pathway in AD-like model rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153624. [PMID: 34216932 DOI: 10.1016/j.phymed.2021.153624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND There is an increase in cases of Alzheimer's disease (AD) stemming from a globally ageing population demographic. Although substantial research efforts were performed for the scope of prophylaxis and therapeutic measure development against AD, based on its pathogenesis, most were unsuccessful. Bushen-Huatan-Yizhi formula (BSHTYZ) is extensively implemented to manage dementia. However, few studies have been carried out to understand how BSHTYZ enhances recovery of spatial learning and memory and how it modulates relevant molecular interplays in order to achieve this. PURPOSE To investigate neuroprotective function, ameliorating learning/memory capacity of BSHTYZ via GSK-3β / CREB signaling pathway in rat AD models influenced through Aβ1-42. METHODS A total of 60 male SD rats (3 months old) were randomized into six groups and treated with 2.6 μg/μl Aβ1-42 (5 μl) into the lateral ventricle, though the control group (Con) was administered an equivalent volume of vehicle. Consequently, the rat cohorts were administered either BSHTYZ or donepezil hydrochloride or normal saline, by intragastric administration, for four weeks. Spatial learning / memory were detected through the Morris water maze, and possible mechanisms detected by histomorphological examination and Western blot in the rat AD models induced by Aβ1-42. RESULTS Spatial learning/memory issues were monitored after Aβ1-42 infusion in rats. Simultaneously, neuron loss in cornuammonis1 (CA1) / dentate gyrus (DG) within hippocampus region were identified, together with enhanced black granule staining within the hippocampus and hyperphosphorylated tau within Ser202 and Ser396 sites. It was also elucidated that Aβ1-42 had the capacity to up-regulate glycogen synthase kinase-3β (GSK-3β) and down-regulate cAMP response element binding protein (CREB). BSHTYZ was found to reverse such molecular interplays. CONCLUSION The study suggested BSHTYZ could possibly provide neuroprotective role against learning / memory impairment, which provided a potential therapeutic tool delaying the progression of AD molecular interplays that includes the GSK-3β / CREB signaling pathway.
Collapse
Affiliation(s)
- Shu-Sheng Yang
- Department of Traditional Chinese Medicine, Wuhan Red Cross Hospital, Wuhan 430015, China
| | - He-Yuan Shi
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China; Department of Fundamental TCM, College of Basic Medical sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Brain Research Institute, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Xia
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ping Wang
- Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Li Lin
- Laboratory of Medical Molecular and Cellular Biology, College of Basic Medical sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
20
|
Solovou TGA, Garagounis C, Kyriakis E, Bobas C, Papadopoulos GE, Skamnaki VT, Papadopoulou KK, Leonidas DD. Mutagenesis of a Lotus japonicus GSK3β/Shaggy-like kinase reveals functionally conserved regulatory residues. PHYTOCHEMISTRY 2021; 186:112707. [PMID: 33721796 DOI: 10.1016/j.phytochem.2021.112707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The glycogen synthase kinases 3 family (GSK3s/SKs; serine/threonine protein kinases) is conserved throughout eukaryotic evolution from yeast to plants and mammals. We studied a plant SK kinase from Lotus japonicus (LjSK1), previously implicated in nodule development, by enzyme kinetics and mutagenesis studies to compare it to mammalian homologues. Using a phosphorylated peptide as substrate, LjSK1 displays optimum kinase activity at pH 8.0 and 20 °C following Michaelis-Menten kinetics with Km and Vmax values of 48.2 μM and 111.6 nmol/min/mg, respectively, for ATP. Mutation of critical residues, as inferred by sequence comparison to the human homologue GSK3β and molecular modeling, showed a conserved role for Lys167, while residues conferring substrate specificity in the human enzyme are not as significant in modulating LjSK1 substrate specificity. Mutagenesis studies also indicate a regulation mechanism for LjSK1 via proteolysis since removal of a 98 residue long N-terminal segment increases its catalytic efficiency by almost two-fold. In addition, we evaluated the alteration of LjSK1 kinase activity in planta, by overexpressing the mutant variants in hairy-roots and a phenotype in nodulation and lateral root development was verified.
Collapse
Affiliation(s)
- Theodora G A Solovou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Constantine Garagounis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Efthimios Kyriakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Charalambos Bobas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Georgios E Papadopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
21
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
22
|
Snitow ME, Bhansali RS, Klein PS. Lithium and Therapeutic Targeting of GSK-3. Cells 2021; 10:255. [PMID: 33525562 PMCID: PMC7910927 DOI: 10.3390/cells10020255] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lithium salts have been in the therapeutic toolbox for better or worse since the 19th century, with purported benefit in gout, hangover, insomnia, and early suggestions that lithium improved psychiatric disorders. However, the remarkable effects of lithium reported by John Cade and subsequently by Mogens Schou revolutionized the treatment of bipolar disorder. The known molecular targets of lithium are surprisingly few and include the signaling kinase glycogen synthase kinase-3 (GSK-3), a group of structurally related phosphomonoesterases that includes inositol monophosphatases, and phosphoglucomutase. Here we present a brief history of the therapeutic uses of lithium and then focus on GSK-3 as a therapeutic target in diverse diseases, including bipolar disorder, cancer, and coronavirus infections.
Collapse
Affiliation(s)
| | | | - Peter S. Klein
- Department of Medicine, Perelman School of Medicine,
University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (M.E.S.); (R.S.B.)
| |
Collapse
|
23
|
Saundh SL, Patnaik D, Gagné S, Bishop JA, Lipsit S, Amat S, Pujari N, Nambisan AK, Bigsby R, Murphy M, Tsai LH, Haggarty SJ, Leung AKW. Identification and Mechanistic Characterization of a Peptide Inhibitor of Glycogen Synthase Kinase (GSK3β) Derived from the Disrupted in Schizophrenia 1 (DISC1) Protein. ACS Chem Neurosci 2020; 11:4128-4138. [PMID: 33253521 DOI: 10.1021/acschemneuro.0c00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3-beta (GSK3β) is a critical regulator of several cellular pathways involved in neurodevelopment and neuroplasticity and as such is a potential focus for the discovery of new neurotherapeutics toward the treatment of neuropsychiatric and neurodegenerative diseases. The majority of efforts to develop inhibitors of GSK3β have been focused on developing small molecule inhibitors that compete with adenosine triphosphate (ATP) through direct interaction with the ATP binding site. This strategy has presented selectivity challenges due to the evolutionary conservation of this domain within the kinome. The disrupted in schizophrenia 1 (DISC1) protein has previously been shown to bind and inhibit GSK3β activity. Here, we report the characterization of a 44-mer peptide derived from human DISC1 (hDISCtide) that is sufficient to both bind and inhibit GSK3β in a noncompetitive mode distinct from classical ATP competitive inhibitors. Based on multiple independent biochemical and biophysical assays, we propose that hDISCtide interacts at two distinct regions of GSK3β: an inhibitory region that partially overlaps with the binding site of FRATide, a well-known GSK3β binding peptide, and a specific binding region that is unique to hDISCtide. Taken together, our findings present a novel avenue for developing a peptide-based selective inhibitor of GSK3β.
Collapse
Affiliation(s)
- Stephanie L. Saundh
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Steve Gagné
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Joshua A. Bishop
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Sean Lipsit
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Samat Amat
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Narsimha Pujari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Anand Krishnan Nambisan
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Robert Bigsby
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Mary Murphy
- Reichert Technologies, 3362 Walden Avenue, Suite 100, Depew, New York 14043, United States
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
24
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
25
|
Zhu J, Wu Y, Wang M, Li K, Xu L, Chen Y, Cai Y, Jin J. Integrating Machine Learning-Based Virtual Screening With Multiple Protein Structures and Bio-Assay Evaluation for Discovery of Novel GSK3β Inhibitors. Front Pharmacol 2020; 11:566058. [PMID: 33041806 PMCID: PMC7517831 DOI: 10.3389/fphar.2020.566058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 02/04/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK3β) is associated with various key biological processes, and it has been considered as a critical therapeutic target for the treatment of many diseases. However, it is a big challenge to develop ATP-competition GSK3β inhibitors because of the high sequence homology with other kinases. In this work, a novel parallel virtual screening strategy based on multiple GSK3β protein structures, integrating molecular docking, complex-based pharmacophore, and naive Bayesian classification, was developed to screen a large chemical database, the 50 compounds with top-scores then underwent a luminescent kinase assay, which led to the discovery of two GSK3β inhibitor hits. The high screening enrichment rate indicates the reliability and practicability of the integrated protocol. Finally, molecular docking and molecular dynamics simulation were employed to investigate the binding modes of the GSK3β inhibitors, and some “hot residues” critical to GSK3β affinity were highlighted. The present study may provide some valuable guidance for the development of novel GSK3β inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yuanqing Wu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Man Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kan Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Lei Xu
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Mideros-Mora C, Miguel-Romero L, Felipe-Ruiz A, Casino P, Marina A. Revisiting the pH-gated conformational switch on the activities of HisKA-family histidine kinases. Nat Commun 2020; 11:769. [PMID: 32034139 PMCID: PMC7005713 DOI: 10.1038/s41467-020-14540-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
Histidine is a versatile residue playing key roles in enzyme catalysis thanks to the chemistry of its imidazole group that can serve as nucleophile, general acid or base depending on its protonation state. In bacteria, signal transduction relies on two-component systems (TCS) which comprise a sensor histidine kinase (HK) containing a phosphorylatable catalytic His with phosphotransfer and phosphatase activities over an effector response regulator. Recently, a pH-gated model has been postulated to regulate the phosphatase activity of HisKA HKs based on the pH-dependent rotamer switch of the phosphorylatable His. Here, we have revisited this model from a structural and functional perspective on HK853-RR468 and EnvZ-OmpR TCS, the prototypical HisKA HKs. We have found that the rotamer of His is not influenced by the environmental pH, ruling out a pH-gated model and confirming that the chemistry of the His is responsible for the decrease in the phosphatase activity at acidic pH.
Collapse
Affiliation(s)
- Cristina Mideros-Mora
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain.,Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Rumipamba s/n, Quito, Ecuador
| | - Laura Miguel-Romero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain.,Institute of Infection, Inmmunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain
| | - Patricia Casino
- Departament de Bioquímica i Biología molecular, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Spain. .,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain. .,CIBER de enfermedades raras (CIBERER-ISCIII), Madrid, Spain.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain. .,CIBER de enfermedades raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
27
|
Crisan L, Avram S, Kurunczi L, Pacureanu L. Partial Least Squares Discriminant Analysis and 3D Similarity Perspective Applied to Analyze Comprehensively the Selectivity of Glycogen Synthase Kinase 3 Inhibitors. Mol Inform 2020; 39:e1900142. [PMID: 31944600 DOI: 10.1002/minf.201900142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/25/2019] [Indexed: 01/25/2023]
Abstract
The current work was conducted to investigate the effectiveness of two conceptually distinct in silico ligand-based tools: Partial Least Squares Discriminant Analysis (PLS-DA) and 3D similarity, including shape, physico-chemical and electrostatics to classify target-specific pharmacophores with enrichment power for selective GSK-3 inhibitors against the phylogenetically related CDK-2, CDK-4, CDK-5 and PKC. All virtual screens were performed on four data sets of targets matched pairwise, including selective and nonselective inhibitors for GSK-3. The classification method PLS-DA results revealed that all obtained models are statistically robust according to the cross-validation and response permutation tests. Regarding selective GSK-3 inhibitors differentiation in terms of selectivity (Se), specificity (Sp), and accuracy (ACC), the PLS-DA models for CDK-4/GSK-3, and PKC/GSK-3 datasets are highly efficient discriminative. 3D similarity searches for CDK-4/GSK-3, PKC/GSK-3, and CDK-2/GSK-3 datasets using the most selective reference molecules lead to highest enrichments of selective GSK-3 inhibitors. EON yields excellent early and overall enrichments for ET_ST and ET_combo for most selective query for CDK-4/GSK-3. CDK-5/GSK-3 dataset didn't show consistent statistically significant enrichments for 3D similarity virtual screening. The current methodology is reliable and could be used as a powerful tool for the detection of potentially selective molecules targeting GSK-3.
Collapse
Affiliation(s)
- Luminita Crisan
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, 24 Mihai Viteazul Ave., 300223, Timisoara, Romania
| | - Sorin Avram
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, 24 Mihai Viteazul Ave., 300223, Timisoara, Romania
| | - Ludovic Kurunczi
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, 24 Mihai Viteazul Ave., 300223, Timisoara, Romania
| | - Liliana Pacureanu
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, 24 Mihai Viteazul Ave., 300223, Timisoara, Romania
| |
Collapse
|
28
|
Liu T, Cong W, Ye L, Xu X, Liao X, Xie G, Cheng Z, Hu H, Li X, Liao H. Rational design of stapled peptides targeting phosphorylated GSK3β for regulating osteoclast differentiation. RSC Adv 2020; 10:7758-7763. [PMID: 35492160 PMCID: PMC9049898 DOI: 10.1039/d0ra00008f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β), has been reported to show essential roles in osteoclast differentiation. Modeled after FRATtide, a peptide derived from a GSK-3 binding protein, here we designed and synthesized a series of stapled peptides targeting phosphorylated GSK3β, and evaluated the corresponding biological activities. The results indicated that stapled peptides with better helical contents and proteolytic stability than the linear ones showed improved biological activity in inhibiting osteoclast differentiation. Among them, FRC-2 and FRN-2 showed promising prospects for treating osteoporosis. A series of stapled peptides targeting phosphorylated GSK3β were rationally designed and the corresponding biological activities were evaluated.![]()
Collapse
Affiliation(s)
- Tairong Liu
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- P. R. China
- Schoolof Pharmacy
| | - Wei Cong
- School of Translational Medicine
- Shanghai University
- Shanghai 200436
- P. R. China
| | - Lei Ye
- The First Affiliated Hospital of Shandong First Medical University
- Jinan 250014
- P. R. China
| | - Xike Xu
- Schoolof Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Xiufei Liao
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- P. R. China
| | - Gang Xie
- School of Translational Medicine
- Shanghai University
- Shanghai 200436
- P. R. China
| | - Zhaoxi Cheng
- Schoolof Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Honggang Hu
- School of Translational Medicine
- Shanghai University
- Shanghai 200436
- P. R. China
| | - Xiang Li
- Schoolof Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Hongli Liao
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- P. R. China
| |
Collapse
|
29
|
Ma G, Liu C, Hashim J, Conley G, Morriss N, Meehan WP, Qiu J, Mannix R. Memantine Mitigates Oligodendrocyte Damage after Repetitive Mild Traumatic Brain Injury. Neuroscience 2019; 421:152-161. [DOI: 10.1016/j.neuroscience.2019.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
|
30
|
Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. J Biol Chem 2019; 294:13545-13559. [PMID: 31341017 PMCID: PMC6746438 DOI: 10.1074/jbc.ra119.009725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
The homeodomain-interacting protein kinase (HIPK) family is comprised of four nuclear protein kinases, HIPK1-4. HIPK proteins phosphorylate a diverse range of transcription factors involved in cell proliferation, differentiation, and apoptosis. HIPK2, thus far the best-characterized member of this largely understudied family of protein kinases, plays a role in the activation of p53 in response to DNA damage. Despite this tumor-suppressor function, HIPK2 is also found overexpressed in several cancers, and its hyperactivation causes chronic fibrosis. There are currently no structures of HIPK2 or of any other HIPK kinase. Here, we report the crystal structure of HIPK2's kinase domain bound to CX-4945, a casein kinase 2α (CK2α) inhibitor currently in clinical trials against several cancers. The structure, determined at 2.2 Å resolution, revealed that CX-4945 engages the HIPK2 active site in a hybrid binding mode between that seen in structures of CK2α and Pim1 kinases. The HIPK2 kinase domain crystallized in the active conformation, which was stabilized by phosphorylation of the activation loop. We noted that the overall kinase domain fold of HIPK2 closely resembles that of evolutionarily related dual-specificity tyrosine-regulated kinases (DYRKs). Most significant structural differences between HIPK2 and DYRKs included an absence of the regulatory N-terminal domain and a unique conformation of the CMGC-insert region and of a newly defined insert segment in the αC-β4 loop. This first crystal structure of HIPK2 paves the way for characterizing the understudied members of the HIPK family and for developing HIPK2-directed therapies for managing cancer and fibrosis.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Lijun Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wei Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115, Supported by the Kazan McClain Partners' Foundation and the H. N. and Frances C. Berger Foundation. To whom correspondence may be addressed:
1600 Divisadero St., A745, San Francisco, CA 94115. Tel.:
415-353-7502; E-mail:
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, To whom correspondence may be addressed:
555 Mission Bay Blvd. S., Rm. 452W, San Francisco, CA 94158. Tel.:
415-514-1133; E-mail:
| |
Collapse
|
31
|
Lin L, Jadoon SS, Liu SZ, Zhang RY, Li F, Zhang MY, Ai-Hua T, You QY, Wang P. Tanshinone IIA Ameliorates Spatial Learning and Memory Deficits by Inhibiting the Activity of ERK and GSK-3β. J Geriatr Psychiatry Neurol 2019; 32:152-163. [PMID: 30885037 DOI: 10.1177/0891988719837373] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is the most common type of dementia which is becoming a primary problem in the present society, but it lacks effective treatment methods and means of AD. Tanshinone IIA (Tan IIA) has been reported to have neuroprotective effects to restrain the Aβ25-35-mediated apoptosis. However, few studies try to understand how Aβ1-42 affects hyperphosphorylation of tau and how Tan IIA regulates this process at the molecular level. METHODS Fifty male Sprague-Dawley rats were randomly divided into 5 groups and infused through the lateral ventricle with Aβ1-42 except the control group. Then the rats were treated with Tan IIA through intragastric administration for 4 weeks. After the ability of learning and memory being measured, histomorphological examination and Western blot were used to detect the possible mechanism in the AD-associated model rats. RESULTS We observed that Aβ1-42 infusion could induce spatial learning and memory deficits in rats. Simultaneously, Aβ1-42 also could reduce the neuron in cornu ammonis 1 and dentate gyrus of hippocampus, as well as increase the levels of cleaved caspase 3, hyperphosphorylated tau at the sites Ser396, Ser404, and Thr205 with enhancing staining of black granules in brain. We also found that Aβ1-42 could increase the activity of extracellular signal-regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK-3β). Meanwhile, these phenomena could be ameliorated when Tan IIA was used. CONCLUSION We concluded that Tan IIA might have neuroprotective effect and improving learning and memory ability to be a viable candidate in AD therapy with mechanisms involving the ERK and GSK-3β signal pathway.
Collapse
Affiliation(s)
- Li Lin
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Sarmad Sheraz Jadoon
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shang-Zhi Liu
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Ru-Yi Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Fan Li
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Mei-Ya Zhang
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Tan Ai-Hua
- 1 Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China.,2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiu-Yun You
- 3 Department of Pharmacology, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ping Wang
- 2 Hubei Research Institute of Geriatrics, Collaborative Innovation Center of Hubei Province, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
32
|
Lu K, Wang X, Chen Y, Liang D, Luo H, Long L, Hu Z, Bao J. Identification of two potential glycogen synthase kinase 3β inhibitors for the treatment of osteosarcoma. Acta Biochim Biophys Sin (Shanghai) 2018; 50:456-464. [PMID: 29546355 DOI: 10.1093/abbs/gmx142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 11/14/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor among adolescents worldwide with high mortality rate. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase and is considered as a validated target in osteosarcoma therapy. Therefore, the study of GSK3β inhibitors is one of the most popular fields in anti-osteosarcoma drug development. Here, the tools of bioinformatics were used to screen novel effective inhibitors of GSK3β from ZINC Drug Database. The molecular docking, molecular dynamic simulations, MM/GBSA, and energy decomposition analysis were performed to identify the inhibitors. Finally, ZINC08383479 and ZINC08441251 were selected as potential GSK3β inhibitors. These two inhibitors were evaluated by GSK3β kinase inhibition assay in vitro. The inhibition of cell proliferation was tested in osteosarcoma cell lines U2OS and MG63 in vitro. The result showed that ZINC08383479 and ZINC08441251 had high inhibition activity against GSK3β. We found that CHIR99021 (a known GSK3β inhibitor), ZINC08383479, and ZINC08441251 had significant inhibition activity in U2OS cells and MG63 cells. These findings may provide new ideas for the design of more potent GSK3β inhibitors and therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Kaimin Lu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Yuyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Danfeng Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Hao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Li Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zongyue Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
33
|
Tong Y, Park S, Wu D, Harris TE, Moskaluk CA, Brautigan DL, Fu Z. Modulation of GSK3β autoinhibition by Thr-7 and Thr-8. FEBS Lett 2018; 592:537-546. [PMID: 29377106 DOI: 10.1002/1873-3468.12990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 11/08/2022]
Abstract
Glycogen synthase kinase 3β (GSK-3β) is a pivotal signaling node that regulates a myriad of cellular functions and is deregulated in many pathological conditions, making it an attractive therapeutic target. Inhibitory Ser-9 phosphorylation of GSK3β by AKT is an important mechanism for negative regulation of GSK3β activity upon insulin stimulation. Here, we report that Thr-7 and Thr-8 residues located in the AKT/PKB substrate consensus sequence on GSK3β are essential for insulin-stimulated Ser-9 phosphorylation in vivo and for GSK3β inactivation. Intestinal cell kinase (ICK) phosphorylates GSK3β Thr-7 in vitro and in vivo. Thr-8 phosphorylation partially inhibits GSK3β, but Thr-7 phosphorylation promotes GSK3β activity and blocks phospho-Ser-9-dependent GSK3β autoinhibition. Our findings uncover novel mechanistic and signaling inputs involved in the autoinhibition of GSK3β.
Collapse
Affiliation(s)
- Yixin Tong
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Gastrointestinal Surgery Center, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Sohyun Park
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Di Wu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - David L Brautigan
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Zheng Fu
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Lichawska-Cieslar A, Pietrzycka R, Ligeza J, Kulecka M, Paziewska A, Kalita A, Dolicka DD, Wilamowski M, Miekus K, Ostrowski J, Mikula M, Jura J. RNA sequencing reveals widespread transcriptome changes in a renal carcinoma cell line. Oncotarget 2018; 9:8597-8613. [PMID: 29492220 PMCID: PMC5823589 DOI: 10.18632/oncotarget.24269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022] Open
Abstract
We used RNA sequencing (RNA-Seq) technology to investigate changes in the transcriptome profile in the Caki-1 clear cell renal cell carcinoma (ccRCC) cells, which overexpress monocyte chemoattractant protein-induced protein 1 (MCPIP1). RNA-Seq data showed changes in 11.6% and 41.8% of the global transcriptome of Caki-1 cells overexpressing wild-type MCPIP1 or its D141N mutant, respectively. Gene ontology and KEGG pathway functional analyses showed that these transcripts encoded proteins involved in cell cycle progression, protein folding in the endoplasmic reticulum, hypoxia response and cell signalling. We identified 219 downregulated transcripts in MCPIP1-expressing cells that were either unchanged or upregulated in D141N-expressing cells. We validated downregulation of 15 transcripts belonging to different functional pathways by qRT-PCR. The growth and viability of MCPIP1-expressing cells was reduced because of elevated p21Cip1 levels. MCPIP1-expressing cells also showed reduced levels of DDB1 transcript that encodes component of the E3 ubiquitin ligase that degrades p21Cip1. These results demonstrate that MCPIP1 influences the growth and viability of ccRCC cells by increasing or decreasing the transcript levels for proteins involved in cell cycle progression, protein folding, hypoxia response, and cell signaling.
Collapse
Affiliation(s)
- Agata Lichawska-Cieslar
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Roza Pietrzycka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Janusz Ligeza
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Kulecka
- Departments of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Paziewska
- Departments of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Agata Kalita
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dobrochna D. Dolicka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wilamowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Ostrowski
- Departments of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
35
|
Hermida MA, Dinesh Kumar J, Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 2017; 65:5-15. [PMID: 28712664 DOI: 10.1016/j.jbior.2017.06.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
Glycogen Synthase Kinase-3 (GSK3 or GSK-3) is a promiscuous protein kinase and its phosphorylation of its diverse substrates has major influences on many areas of physiology and pathology, including cellular metabolism, lineage commitment and neuroscience. GSK3 was one of the first identified substrates of the heavily studied oncogenic kinase AKT, phosphorylation by which inhibits GSK3 activity via the formation of an autoinhibitory pseudosubstrate sequence. This has led to investigation of the role of GSK3 inhibition as a key component of the cellular responses to growth factors and insulin, which stimulate the class I PI 3-Kinases and in turn AKT activity and GSK3 phosphorylation. GSK3 has been shown to phosphorylate several upstream and downstream components of the PI3K/AKT/mTOR signalling network, including AKT itself, RICTOR, TSC1 and 2, PTEN and IRS1 and 2, with the potential to apply feedback control within the network. However, it has been clear for some time that functionally distinct, insulated pools of GSK3 exist which are regulated independently, so that for some GSK3 substrates such as β-catenin, phosphorylation by GSK3 is not controlled by input from PI3K and AKT. Instead, as almost all GSK3 substrates require a priming phosphorylated residue to be 4 amino acids C-terminal to the Ser/Thr phosphorylated by GSK3, the predominant form of regulation of the activity of GSK3 often appears to be through control over these priming events, specific to individual substrates. Therefore, a major role of GSK3 can be viewed as an amplifier of the electrostatic effects on protein function which are caused by these priming phosphorylation events. Here we discuss these different aspects to GSK3 regulation and function, and the functions of GSK3 as it integrates with signalling through the PI3K-AKT-mTOR signalling axis.
Collapse
Affiliation(s)
- Miguel A Hermida
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - J Dinesh Kumar
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - Nick R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
36
|
Abstract
Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions. [BMB Reports 2016; 49(6): 305-310]
Collapse
Affiliation(s)
- Ryeojin Ko
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
37
|
Arafa RK, Elghazawy NH. Personalized Medicine and Resurrected Hopes for the Management of Alzheimer's Disease: A Modular Approach Based on GSK-3β Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:199-224. [PMID: 28840559 DOI: 10.1007/978-3-319-60733-7_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurological disorders with vast reaching worldwide prevalence. Research attempts to decipher what's happening to the human mind have shown that pathogenesis of AD is associated with misfolded protein intermediates displaying tertiary structure conformational changes eventually leading to forming large polymers of unwanted aggregates. The two hallmarks of AD pathological protein aggregates are extraneuronal β-amyloid (Aβ) based senile plaques and intraneuronal neurofibrillary tangles (NFTs). As such, AD is categorized as a protein misfolding neurodegenerative disease (PMND) . Therapeutic interventions interfering with the formation of these protein aggregates have been widely explored as potential pathways for thwarting AD progression. One such tactic is modulating the function of enzymes involved in the metabolic pathways leading to formation of these misfolded protein aggregates. Much evidence has shown that glycogen synthase kinase-3β (GSK-3β) plays a key role in hyperphosphorylation of tau protein leading eventually to its aggregation to form NFTs. Data presented hereby will display a plethora of information as to how to interfere with progression of AD through the route of GSK-3β activity control.
Collapse
Affiliation(s)
- Reem K Arafa
- Zewail City of Science and Technology, Cairo, 12588, Egypt.
| | | |
Collapse
|
38
|
Abstract
Glycogen synthase kinase-3 (GSK-3) is an unusual protein-serine kinase in that it is primarily regulated by inhibition and lies downstream of multiple cell signaling pathways. This raises a variety of questions in terms of its physiological role(s), how signaling specificity is maintained and why so many eggs have been placed into one basket. There are actually two baskets, as there are two isoforms, GSK-3α and β, that are highly related and largely redundant. Their many substrates range from regulators of cellular metabolism to molecules that control growth and differentiation. In this chapter, we review the characteristics of GSK-3, update progress in understanding the kinase, and try to answer some of the questions raised by its unusual properties. Indeed, the kinase may trigger transformation in our thinking of how cellular signals are organized and controlled.
Collapse
|
39
|
Zhao S, Zhu J, Xu L, Jin J. Theoretical studies on the selective mechanisms of GSK3β and CDK2 by molecular dynamics simulations and free energy calculations. Chem Biol Drug Des 2016; 89:846-855. [PMID: 27863047 DOI: 10.1111/cbdd.12907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine protein kinase which is widely involved in cell signaling and controls a broad number of cellular functions. GSK3 contains α and β isoforms, and GSK3β has received more attention and becomes an attractive drug target for the treatment of several diseases. The binding pocket of cyclin-dependent kinase 2 (CDK2) shares high sequence identity to that of GSK3β, and therefore, the design of highly selective inhibitors toward GSK3β remains a big challenge. In this study, a computational strategy, which combines molecular docking, molecular dynamics simulations, free energy calculations, and umbrella sampling simulations, was employed to explore the binding mechanisms of two selective inhibitors to GSK3β and CDK2. The simulation results highlighted the key residues critical for GSK3β selectivity. It was observed that although GSK3β and CDK2 share the conserved ATP-binding pockets, some different residues have significant contributions to protein selectivity. This study provides valuable information for understanding the GSK3β-selective binding mechanisms and the rational design of selective GSK3β inhibitors.
Collapse
Affiliation(s)
- Sufang Zhao
- Department of Gastroenterology, The 2nd Hospital of Shenzhen (The First Affiliated Hospital of Shenzhen University), ShenZhen, Guangdong, China
| | - Jingyu Zhu
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jian Jin
- School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
40
|
Wang Y, Wach JY, Sheehan P, Zhong C, Zhan C, Harris R, Almo SC, Bishop J, Haggarty SJ, Ramek A, Berry KN, O’Herin C, Koehler AN, Hung AW, Young DW. Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β. ACS Med Chem Lett 2016; 7:852-6. [PMID: 27660690 DOI: 10.1021/acsmedchemlett.6b00230] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022] Open
Abstract
Traditional fragment-based drug discovery (FBDD) relies heavily on structural analysis of the hits bound to their targets. Herein, we present a complementary approach based on diversity-oriented synthesis (DOS). A DOS-based fragment collection was able to produce initial hit compounds against the target GSK3β, allow the systematic synthesis of related fragment analogues to explore fragment-level structure-activity relationship, and finally lead to the synthesis of a more potent compound.
Collapse
Affiliation(s)
- Yikai Wang
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Jean-Yves Wach
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Patrick Sheehan
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Cheng Zhong
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Chenyang Zhan
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| | - Richard Harris
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| | - Joshua Bishop
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
- Department of Neurology & Psychiatry, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Stephen J. Haggarty
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
- Department of Neurology & Psychiatry, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Alexander Ramek
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Kayla N. Berry
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Conor O’Herin
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Angela N. Koehler
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Alvin W. Hung
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Damian W. Young
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
41
|
Histone deacetylase HDA6 enhances brassinosteroid signaling by inhibiting the BIN2 kinase. Proc Natl Acad Sci U S A 2016; 113:10418-23. [PMID: 27562168 DOI: 10.1073/pnas.1521363113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3)-like kinases play important roles in brassinosteroid (BR), abscisic acid, and auxin signaling to regulate many aspects of plant development and stress responses. The Arabidopsis thaliana GSK3-like kinase BR-INSENSITIVE 2 (BIN2) acts as a key negative regulator in the BR signaling pathway, but the mechanisms regulating BIN2 function remain unclear. Here we report that the histone deacetylase HDA6 can interact with and deacetylate BIN2 to repress its kinase activity. The hda6 mutant showed a BR-repressed phenotype in the dark and was less sensitive to BR biosynthesis inhibitors. Genetic analysis indicated that HDA6 regulates BR signaling through BIN2. Furthermore, we identified K189 of BIN2 as an acetylated site, which can be deacetylated by HDA6 to influence BIN2 activity. Glucose can affect the acetylation level of BIN2 in plants, indicating a connection to cellular energy status. These findings provide significant insights into the regulation of GSK3-like kinases in plant growth and development.
Collapse
|
42
|
Ombrato R, Cazzolla N, Mancini F, Mangano G. Structure-Based Discovery of 1H-Indazole-3-carboxamides as a Novel Structural Class of Human GSK-3 Inhibitors. J Chem Inf Model 2015; 55:2540-51. [PMID: 26600430 DOI: 10.1021/acs.jcim.5b00486] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An in silico screening procedure was performed to select new inhibitors of glycogen synthase kinase 3β (GSK-3β), a serine/threonine protein kinase that in the last two decades has emerged as a key target in drug discovery, having been implicated in multiple cellular processes and linked with the pathogenesis of several diseases. GSK-3β inhibitors might prove useful as therapeutic compounds in the treatment of conditions associated with elevated levels of enzyme activity, such as type-2 diabetes and neurological disorders, for example, Alzheimer's disease, bipolar disorder, neuronal cell death, stroke, and depression. In this work, virtual screening studies were applied to proprietary compound libraries, and the functional activities of selected compounds were assayed on human GSK-3β. The in silico screening procedure enabled the identification of eight hit compounds showing pIC50 values ranging from 4.9 to 5.5. X-ray crystallographic studies resulted in a 2.50 Å three-dimensional structure of GSK-3β complexed with one of the selected compounds, confirming that the inhibitor interacts with the enzyme according to the docking hypothesis. Importantly, molecular docking was able to find a new chemical scaffold for GSK-3β inhibition, providing grounds for rational structure-based design aimed at further optimization of the initial hits.
Collapse
Affiliation(s)
- Rosella Ombrato
- R&D, Computational Chemistry Laboratory, ‡Chemistry Department, and §In Vitro Pharmacology Development, Angelini Research Center, ACRAF S.p.A. , Piazzale della Stazione, snc, I-00071 Santa Palomba, Pomezia (RM), Italy
| | - Nicola Cazzolla
- R&D, Computational Chemistry Laboratory, ‡Chemistry Department, and §In Vitro Pharmacology Development, Angelini Research Center, ACRAF S.p.A. , Piazzale della Stazione, snc, I-00071 Santa Palomba, Pomezia (RM), Italy
| | - Francesca Mancini
- R&D, Computational Chemistry Laboratory, ‡Chemistry Department, and §In Vitro Pharmacology Development, Angelini Research Center, ACRAF S.p.A. , Piazzale della Stazione, snc, I-00071 Santa Palomba, Pomezia (RM), Italy
| | - Giorgina Mangano
- R&D, Computational Chemistry Laboratory, ‡Chemistry Department, and §In Vitro Pharmacology Development, Angelini Research Center, ACRAF S.p.A. , Piazzale della Stazione, snc, I-00071 Santa Palomba, Pomezia (RM), Italy
| |
Collapse
|
43
|
Tejeda-Muñoz N, Robles-Flores M. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life 2015; 67:914-22. [PMID: 26600003 DOI: 10.1002/iub.1454] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) was first discovered in 1980 as one of the key enzymes of glycogen metabolism. Since then, GSK-3 has been revealed as one of the master regulators of a diverse range of signaling pathways, including those activated by Wnts, participating in the regulation of numerous cellular functions, suggesting that its activity is tightly regulated. Numerous studies have pointed to an association of GSK-3 dysregulation with the onset and progression of human diseases, including diabetes mellitus, obesity, inflammation, neurological illnesses, and cancer. Therefore, GSK-3 is recognized as an attractive therapeutic target in multiple disorders. However, the great number of substrates that are phosphorylated by GSK-3 has raised the question of whether this limits its feasibility as a therapeutic target because of the potential disruption of many cellular processes and also by the fear that inhibition of GSK-3 may stimulate or aid in malignant transformation, as GSK-3 can phosphorylate pro-oncogenic factors. This mini review focuses on the role played by GSK-3 in Wnt signaling pathway and cancer using as model colon cancer.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, D.F., 04510, México
| | - Martha Robles-Flores
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico, D.F., 04510, México
| |
Collapse
|
44
|
Maqbool M, Mobashir M, Hoda N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease. Eur J Med Chem 2015; 107:63-81. [PMID: 26562543 DOI: 10.1016/j.ejmech.2015.10.018] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 02/09/2023]
Abstract
Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India
| | - Mohammad Mobashir
- Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India; SciLifeLab, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Box 1031, 17121 Stockholm, Sweden
| | - Nasimul Hoda
- Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India.
| |
Collapse
|
45
|
Hinshaw SM, Makrantoni V, Kerr A, Marston AL, Harrison SC. Structural evidence for Scc4-dependent localization of cohesin loading. eLife 2015; 4:e06057. [PMID: 26038942 PMCID: PMC4471937 DOI: 10.7554/elife.06057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/01/2015] [Indexed: 01/21/2023] Open
Abstract
The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2(NIPBL)/Scc4(Mau2) (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surface of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Vasso Makrantoni
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L Marston
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
46
|
Cheng F, Jia P, Wang Q, Zhao Z. Quantitative network mapping of the human kinome interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer therapy. Oncotarget 2015; 5:3697-710. [PMID: 25003367 PMCID: PMC4116514 DOI: 10.18632/oncotarget.1984] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human kinome is gaining importance through its promising cancer therapeutic targets, yet no general model to address the kinase inhibitor resistance has emerged. Here, we constructed a systems biology-based framework to catalogue the human kinome, including 538 kinase genes, in the broader context of the human interactome. Specifically, we constructed three networks: a kinase-substrate interaction network containing 7,346 pairs connecting 379 kinases to 36,576 phosphorylation sites in 1,961 substrates, a protein-protein interaction network (PPIN) containing 92,699 pairs, and an atomic resolution PPIN containing 4,278 pairs. We identified the conserved regulatory phosphorylation motifs (e.g., Ser/Thr-Pro) using a sequence logo analysis. We found the typical anticancer target selection strategy that uses network hubs as drug targets, might lead to a high adverse drug reaction risk. Furthermore, we found the distinct network centrality of kinases creates a high anticancer drug resistance risk by feedback or crosstalk mechanisms within cellular networks. This notion is supported by the systematic network and pathway analyses that anticancer drug resistance genes are significantly enriched as hubs and heavily participate in multiple signaling pathways. Collectively, this comprehensive human kinome interactome map sheds light on anticancer drug resistance mechanisms and provides an innovative resource for rational kinase inhibitor design.
Collapse
Affiliation(s)
- Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
47
|
Overexpression of FRAT1 is associated with malignant phenotype and poor prognosis in human gliomas. DISEASE MARKERS 2015; 2015:289750. [PMID: 25922553 PMCID: PMC4398933 DOI: 10.1155/2015/289750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/20/2015] [Indexed: 01/30/2023]
Abstract
Glioma is the most common malignancy of the central nervous system. Approximately 40 percent of intracranial tumors are diagnosed as gliomas. Difficulties in treatment are associated closely with the malignant phenotype, which is characterized by excessive proliferation, relentless invasion, and angiogenesis. Although the comprehensive treatment level of brain glioma is continuously progressing, the outcome of this malignancy has not been improved drastically. Therefore, the identification of new biomarkers for diagnosis and therapy of this malignancy is of significant scientific and clinical value. FRAT1 is a positive regulator of the Wnt/β-catenin signaling pathway and is overexpressed in many human tumors. In the present study, we investigated the expression status of FRAT1 in 68 patients with human gliomas and its correlation with the pathologic grade, proliferation, invasion, angiogenesis, and prognostic significance. These findings suggest that FRAT1 may be an important factor in the tumorigenesis and progression of glioma and could be explored as a potential biomarker for pathological diagnosis, an indicator for prognosis, and a target for biological therapy of malignancy.
Collapse
|
48
|
McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 2015; 5:2881-911. [PMID: 24931005 PMCID: PMC4102778 DOI: 10.18632/oncotarget.2037] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology,Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kai M, Ueno N, Kinoshita N. Phosphorylation-dependent ubiquitination of paraxial protocadherin (PAPC) controls gastrulation cell movements. PLoS One 2015; 10:e0115111. [PMID: 25580871 PMCID: PMC4291225 DOI: 10.1371/journal.pone.0115111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/17/2014] [Indexed: 01/31/2023] Open
Abstract
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Masatake Kai
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Noriyuki Kinoshita
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Molecular Biomechanics, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- * E-mail:
| |
Collapse
|
50
|
Goc A, Al-Husein B, Katsanevas K, Steinbach A, Lou U, Sabbineni H, DeRemer DL, Somanath PR. Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget 2015; 5:775-87. [PMID: 24519956 PMCID: PMC3996673 DOI: 10.18632/oncotarget.1770] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent studies suggest a positive correlation between glycogen synthase kinase-3 (GSK-3) activation and tumor growth. Currently, it is unclear how both Akt that inhibits GSK-3 and active GSK-3 are maintained concurrently in tumor cells. We investigated the role of GSK-3 and the existence of an Akt-resistant pathway for GSK-3 activation in prostate cancer cells. Our data show that Src, a non-receptor tyrosine kinase is responsible for Y216GSK-3 phosphorylation leading to its activation even when Akt is active. Experiments involving mouse embryonic fibroblasts lacking cSrc, Yes and Fyn, as well as Src activity modulation in prostate cancer cells with constitutively active (CA-Src) and dominant negative Src (DN-Src) plasmids demonstrated the integral role of Src in Y216GSK-3 phosphorylation and activity modulation. Inhibition of GSK-3 with SB415286 in PC3 cells resulted in impaired motility, proliferation and colony formation. Treatment of PC3 cells with the Src inhibitor dasatinib reduced Y216GSK-3 phosphorylation and inhibited proliferation, invasion and micrometastasis in vitro. Dasatinib treatment of athymic nude mice resulted in impaired growth of PC3 cell tumor xenograft. Together, we provide novel insight into the Src-mediated Y216GSK-3 phosphorylation and activation in prostate cancer cells and reveal the potential benefits of targeting Src-GSK-3 axis using drugs such as dasatinib.
Collapse
Affiliation(s)
- Anna Goc
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA
| | | | | | | | | | | | | | | |
Collapse
|