1
|
Larda S, Ayotte Y, Denk MM, Coote P, Heffron G, Bendahan D, Shahout F, Girard N, Iddir M, Bouchard P, Bilodeau F, Woo S, Farmer LJ, LaPlante SR. Robust Strategy for Hit-to-Lead Discovery: NMR for SAR. J Med Chem 2023; 66:13416-13427. [PMID: 37732695 PMCID: PMC10578354 DOI: 10.1021/acs.jmedchem.3c00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Indexed: 09/22/2023]
Abstract
Establishing robust structure-activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an "undruggable" protein target, HRas.
Collapse
Affiliation(s)
| | - Yann Ayotte
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Maria M. Denk
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Paul Coote
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- Harvard
Medical School, Boston, Massachusetts 02115, United States
- Dana-Farber
Cancer Institute, Boston, Massachusetts 02215, United States
| | - Gregory Heffron
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - David Bendahan
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Fatma Shahout
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | | | - Mustapha Iddir
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | | | | | - Simon Woo
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Luc J. Farmer
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
| | - Steven R. LaPlante
- NMX
Research and Solutions Inc., Laval H7V 5B7, Canada
- INRS
− Centre Armand-Frappier Santé Biotechnologie, Laval H7V 1B7, Canada
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Plata M, Sharma M, Utz M, Werner JM. Fully Automated Characterization of Protein-Peptide Binding by Microfluidic 2D NMR. J Am Chem Soc 2023; 145:3204-3210. [PMID: 36716203 PMCID: PMC9912330 DOI: 10.1021/jacs.2c13052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We demonstrate an automated microfluidic nuclear magnetic resonance (NMR) system that quantitatively characterizes protein-ligand interactions without user intervention and with minimal sample needs through protein-detected heteronuclear 2D NMR spectroscopy. Quantitation of protein-ligand interactions is of fundamental importance to the understanding of signaling and other life processes. As is well-known, NMR provides rich information both on the thermodynamics of binding and on the binding site. However, the required titrations are laborious and tend to require large amounts of sample, which are not always available. The present work shows how the analytical power of NMR detection can be brought in line with the trend of miniaturization and automation in life science workflows.
Collapse
Affiliation(s)
- Marek Plata
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Manvendra Sharma
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom
| | - Marcel Utz
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, United Kingdom,Email
for M.U.:
| | - Jörn M. Werner
- School
for Biological Sciences, University of Southampton, B85 Life Science Building, University
Rd, SouthamptonSO17 1BJ, United Kingdom,Email for J.M.W.:
| |
Collapse
|
3
|
Fyn nanoclustering requires switching to an open conformation and is enhanced by FTLD-Tau biomolecular condensates. Mol Psychiatry 2023; 28:946-962. [PMID: 36258016 PMCID: PMC9908554 DOI: 10.1038/s41380-022-01825-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.
Collapse
|
4
|
Studying the Interactions of U24 from HHV-6 in Order to Further Elucidate Its Potential Role in MS. Viruses 2022; 14:v14112384. [PMID: 36366483 PMCID: PMC9696605 DOI: 10.3390/v14112384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
A number of studies have suggested that human herpesvirus 6A (HHV-6A) may play a role in multiple sclerosis (MS). Three possible hypotheses have been investigated: (1) U24 from HHV-6A (U24-6A) mimics myelin basic protein (MBP) through analogous phosphorylation and interaction with Fyn-SH3; (2) U24-6A affects endocytic recycling by binding human neural precursor cell (NPC) expressed developmentally down-regulated protein 4-like WW3* domain (hNedd4L-WW3*); and (3) MS patients who express Killer Cell Immunoglobulin Like Receptor 2DL2 (KIR2DL2) on natural killer (NK) cells are more susceptible to HHV-6 infection. In this contribution, we examined the validity of these propositions by investigating the interactions of U24 from HHV-6B (U24-6B), a variant less commonly linked to MS, with Fyn-SH3 and hNedd4L-WW3* using heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) titrations and isothermal titration calorimetry (ITC). In addition, the importance of phosphorylation and the specific role of U24 in NK cell activation in MS patients were examined. Overall, the findings allowed us to shed light into the models linking HHV-6 to MS and the involvement of U24.
Collapse
|
5
|
Luo K, Zhang L, Liao Y, Zhou H, Yang H, Luo M, Qing C. Effects and mechanisms of Eps8 on the biological behaviour of malignant tumours (Review). Oncol Rep 2021; 45:824-834. [PMID: 33432368 PMCID: PMC7859916 DOI: 10.3892/or.2021.7927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor pathway substrate 8 (Eps8) was initially identified as the substrate for the kinase activity of EGFR, improving the responsiveness of EGF, which is involved in cell mitosis, differentiation and other physiological functions. Numerous studies over the last decade have demonstrated that Eps8 is overexpressed in most ubiquitous malignant tumours and subsequently binds with its receptor to activate multiple signalling pathways. Eps8 not only participates in the regulation of malignant phenotypes, such as tumour proliferation, invasion, metastasis and drug resistance, but is also related to the clinicopathological characteristics and prognosis of patients. Therefore, Eps8 is a potential tumour diagnosis and prognostic biomarker and even a therapeutic target. This review aimed to describe the structural characteristics, role and related molecular mechanism of Eps8 in malignant tumours. In addition, the prospect of Eps8 as a target for cancer therapy is examined.
Collapse
Affiliation(s)
- Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongyu Zhou
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital and The Third Affiliated Hospital of Kunming Medical University; Kunming, Yunnan 650118, P.R. China
| | - Min Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
6
|
Esfandiyari R, Halabian R, Behzadi E, Sedighian H, Jafari R, Imani Fooladi AA. Performance evaluation of antimicrobial peptide ll-37 and hepcidin and β-defensin-2 secreted by mesenchymal stem cells. Heliyon 2019; 5:e02652. [PMID: 31687504 PMCID: PMC6820248 DOI: 10.1016/j.heliyon.2019.e02652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/02/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Peptides are secreted by different cell types and are trendy therapeutic agents that have attracted attention for the treatment of several diseases such as infections. Antimicrobial peptides exert various mechanisms such as changing cell membrane permeability which leads to inhibition or death of bacterial cells. mesenchymal stem cells (MSCs) are key to produce antimicrobial peptides and to inhibit the growth of pathogens. These cells have been shown to be capable of producing antimicrobial peptides upon exposure to different bacteria. As a result, antimicrobial peptides can be considered as novel agents for the treatment of infectious diseases. The purpose of this review was to investigate the targets and mechanisms of antimicrobial peptides secreted by MSCs.
Collapse
Affiliation(s)
- Reza Esfandiyari
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
de Alba E. Structure, interactions and self-assembly of ASC-dependent inflammasomes. Arch Biochem Biophys 2019; 670:15-31. [PMID: 31152698 PMCID: PMC8455077 DOI: 10.1016/j.abb.2019.05.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The inflammasome is a multi-protein platform that assembles upon the presence of cues derived from infection or tissue damage, and triggers the inflammatory response. Inflammasome components include sensor proteins that detect danger signals, procaspase 1 and the adapter ASC (apoptosis-associated speck-like protein containing a CARD) tethering these molecules together. Upon inflammasome assembly, procaspase 1 self-activates and renders functional cytokines to arbitrate in the defense mechanism. This assembly is mediated by self-association and protein interactions via Death Domains. The inflammasome plays a critical role in innate immunity and its dysregulation is the culprit of many autoimmune disorders. An in-depth understanding of the factors involved in inflammasome assembly could help fight these conditions. This review describes our current knowledge on the biophysical aspects of inflammasome formation from the perspective of ASC. The specific characteristics of the three-dimensional solution structure and interdomain dynamics of ASC are explained in relation to its function in inflammasome assembly. Additionally, the review elaborates on the identification of ASC interacting surfaces at the amino acid level using NMR techniques. Finally, the macrostructures formed by full-length ASC and its two Death Domains studied with Transmission Electron Microscopy are compared in the context of a directional model for inflammasome assembly.
Collapse
Affiliation(s)
- Eva de Alba
- Department of Bioengineering. School of Engineering. University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
8
|
Islam MS, McDonough MA, Chowdhury R, Gault J, Khan A, Pires E, Schofield CJ. Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. J Biol Chem 2019; 294:11637-11652. [PMID: 31147442 PMCID: PMC6663879 DOI: 10.1074/jbc.ra119.008693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
JmjC domain-containing protein 6 (JMJD6) is a 2-oxoglutarate (2OG)-dependent oxygenase linked to various cellular processes, including splicing regulation, histone modification, transcriptional pause release, hypoxia sensing, and cancer. JMJD6 is reported to catalyze hydroxylation of lysine residue(s) of histones, the tumor-suppressor protein p53, and splicing regulatory proteins, including u2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65). JMJD6 is also reported to catalyze N-demethylation of N-methylated (both mono- and di-methylated) arginine residues of histones and other proteins, including HSP70 (heat-shock protein 70), estrogen receptor α, and RNA helicase A. Here, we report MS- and NMR-based kinetic assays employing purified JMJD6 and multiple substrate fragment sequences, the results of which support the assignment of purified JMJD6 as a lysyl hydroxylase. By contrast, we did not observe N-methyl arginyl N-demethylation with purified JMJD6. Biophysical analyses, including crystallographic analyses of JMJD6Δ344-403 in complex with iron and 2OG, supported its assignment as a lysyl hydroxylase rather than an N-methyl arginyl-demethylase. The screening results supported some, but not all, of the assigned JMJD6 substrates and identified other potential JMJD6 substrates. We envision these results will be useful in cellular and biological work on the substrates and functions of JMJD6 and in the development of selective inhibitors of human 2OG oxygenases.
Collapse
Affiliation(s)
- Md Saiful Islam
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A McDonough
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Rasheduzzaman Chowdhury
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Gault
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Amjad Khan
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
9
|
Berndt S, Gurevich VV, Iverson TM. Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase. PLoS One 2019; 14:e0215140. [PMID: 30969999 PMCID: PMC6457566 DOI: 10.1371/journal.pone.0215140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Lyn kinase (Lck/Yes related novel protein tyrosine kinase) belongs to the family of Src-related non-receptor tyrosine kinases. Consistent with physiological roles in cell growth and proliferation, aberrant function of Lyn is associated with various forms of cancer, including leukemia, breast cancer and melanoma. Here, we determine a 1.3 Å resolution crystal structure of the polyproline-binding SH3 regulatory domain of human Lyn kinase, which adopts a five-stranded β-barrel fold. Mapping of cancer-associated point mutations onto this structure reveals that these amino acid substitutions are distributed throughout the SH3 domain and may affect Lyn kinase function distinctly.
Collapse
Affiliation(s)
- Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, TN, United States of America
- Center for Structural Biology, Nashville, TN, United States of America
| |
Collapse
|
10
|
High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Sci Rep 2018; 8:17512. [PMID: 30504845 PMCID: PMC6269442 DOI: 10.1038/s41598-018-35754-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
T-cell immunoglobulin and mucin domain containing protein-3 (TIM-3) is an important immune regulator. Here, we describe a novel high resolution (1.7 Å) crystal structure of the human (h)TIM-3 N-terminal variable immunoglobulin (IgV) domain with bound calcium (Ca++) that was confirmed by nuclear magnetic resonance (NMR) spectroscopy. Significant conformational differences were observed in the B-C, C'-C″ and C'-D loops of hTIM-3 compared to mouse (m)TIM-3, hTIM-1 and hTIM-4. Further, the conformation of the C-C' loop of hTIM-3 was notably different from hTIM-4. Consistent with the known metal ion-dependent binding of phosphatidylserine (PtdSer) to mTIM-3 and mTIM-4, the NMR spectral analysis and crystal structure of Ca++-bound hTIM-3 revealed that residues in the hTIM-3 F-G loop coordinate binding to Ca++. In addition, we established a novel biochemical assay to define hTIM-3 functionality as determined by binding to human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1). These studies provide new insights useful for understanding and targeting hTIM-3.
Collapse
|
11
|
Allosteric Modulation of Binding Specificity by Alternative Packing of Protein Cores. J Mol Biol 2018; 431:336-350. [PMID: 30471255 DOI: 10.1016/j.jmb.2018.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022]
Abstract
Hydrophobic cores are often viewed as tightly packed and rigid, but they do show some plasticity and could thus be attractive targets for protein design. Here we explored the role of different functional pressures on the core packing and ligand recognition of the SH3 domain from human Fyn tyrosine kinase. We randomized the hydrophobic core and used phage display to select variants that bound to each of three distinct ligands. The three evolved groups showed remarkable differences in core composition, illustrating the effect of different selective pressures on the core. Changes in the core did not significantly alter protein stability, but were linked closely to changes in binding affinity and specificity. Structural analysis and molecular dynamics simulations revealed the structural basis for altered specificity. The evolved domains had significantly reduced core volumes, which in turn induced increased backbone flexibility. These motions were propagated from the core to the binding surface and induced significant conformational changes. These results show that alternative core packing and consequent allosteric modulation of binding interfaces could be used to engineer proteins with novel functions.
Collapse
|
12
|
Bondarenko V, Wells M, Xu Y, Tang P. Solution NMR Studies of Anesthetic Interactions with Ion Channels. Methods Enzymol 2018; 603:49-66. [PMID: 29673534 DOI: 10.1016/bs.mie.2018.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NMR spectroscopy is one of the major tools to provide atomic resolution protein structural information. It has been used to elucidate the molecular details of interactions between anesthetics and ion channels, to identify anesthetic binding sites, and to characterize channel dynamics and changes introduced by anesthetics. In this chapter, we present solution NMR methods essential for investigating interactions between ion channels and general anesthetics, including both volatile and intravenous anesthetics. Case studies are provided with a focus on pentameric ligand-gated ion channels and the voltage-gated sodium channel NaChBac.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marta Wells
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Toleikis Z, Sirotkin VA, Skvarnavičius G, Smirnovienė J, Roumestand C, Matulis D, Petrauskas V. Volume of Hsp90 Protein–Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry, and NMR. J Phys Chem B 2016; 120:9903-12. [DOI: 10.1021/acs.jpcb.6b06863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zigmantas Toleikis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vladimir A. Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Gediminas Skvarnavičius
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Zafra Ruano A, Cilia E, Couceiro JR, Ruiz Sanz J, Schymkowitz J, Rousseau F, Luque I, Lenaerts T. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors. PLoS Comput Biol 2016; 12:e1004938. [PMID: 27213566 PMCID: PMC4877006 DOI: 10.1371/journal.pcbi.1004938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 04/24/2016] [Indexed: 12/04/2022] Open
Abstract
Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis. Small protein domains as Src Homology 3 often act as docking sites and serve as regulatory elements. To understand their role in the regulation of a protein’s activity, one needs to understand how their backbone and sidechain dynamics are affected when binding to peptides. We have therefore computationally analyzed eight different SH3 domain structures, predicting dynamical effects induced by binding through our MCIT approach that has been shown to correlate well with experimental data. We show first that binding the Src SH3 domain triggers a particular cascade of dynamic effects, which are compatible with an induced fit mechanism reported before. We then combined the predictions for the eight SH3 domains into different consensus models, with the aim of analyzing, for the first time from a structural perspective, commonalities and differences in the transduction mechanisms among these SH3 domains. These consensus results are, on one hand, in agreement with the domain sectors recently identified for the entire family of SH3 domains. On the other hand, they reveal also that differences exist between the different subgroups that were studied here, requiring extensive experimental investigations of the importance of these differences for the proteins wherein these SH3 domains can be found.
Collapse
Affiliation(s)
- Ana Zafra Ruano
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Elisa Cilia
- MLG, Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Brussels, Belgium
| | - José R. Couceiro
- VIB SWITCH Laboratory, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Javier Ruiz Sanz
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Joost Schymkowitz
- VIB SWITCH Laboratory, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Frederic Rousseau
- VIB SWITCH Laboratory, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, Leuven, Belgium
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, Campus Fuentenueva s/n, Granada, Spain
| | - Tom Lenaerts
- MLG, Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Brussels, Belgium
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
15
|
Gerbec ZJ, Thakar MS, Malarkannan S. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Front Immunol 2015; 6:472. [PMID: 26441977 PMCID: PMC4584950 DOI: 10.3389/fimmu.2015.00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Lymphocyte signaling cascades responsible for anti-tumor cytotoxicity and inflammatory cytokine production must be tightly regulated in order to control an immune response. Disruption of these cascades can cause immune suppression as seen in a tumor microenvironment, and loss of signaling integrity can lead to autoimmunity and other forms of host-tissue damage. Therefore, understanding the distinct signaling events that exclusively control specific effector functions of “killer” lymphocytes (T and NK cells) is critical for understanding disease progression and formulating successful immunotherapy. Elucidation of divergent signaling pathways involved in receptor-mediated activation has provided insights into the independent regulation of cytotoxicity and cytokine production in lymphocytes. Specifically, the Fyn signaling axis represents a branch point for killer cell effector functions and provides a model for how cytotoxicity and cytokine production are differentially regulated. While the Fyn–PI(3)K pathway controls multiple functions, including cytotoxicity, cell development, and cytokine production, the Fyn–ADAP pathway preferentially regulates cytokine production in NK and T cells. In this review, we discuss how the structure of Fyn controls its function in lymphocytes and the role this plays in mediating two facets of lymphocyte effector function, cytotoxicity and production of inflammatory cytokines. This offers a model for using mechanistic and structural approaches to understand clinically relevant lymphocyte signaling.
Collapse
Affiliation(s)
- Zachary J Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Microbiology, Immunology and Molecular Genetics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Pediatrics, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Medicine, Medical College of Wisconsin , Milwaukee, WI , USA
| |
Collapse
|
16
|
Chan MC, Atasoylu O, Hodson E, Tumber A, Leung IKH, Chowdhury R, Gómez-Pérez V, Demetriades M, Rydzik AM, Holt-Martyn J, Tian YM, Bishop T, Claridge TDW, Kawamura A, Pugh CW, Ratcliffe PJ, Schofield CJ. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS One 2015; 10:e0132004. [PMID: 26147748 PMCID: PMC4492579 DOI: 10.1371/journal.pone.0132004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023] Open
Abstract
As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs). Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs). Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4) induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke.
Collapse
Affiliation(s)
- Mun Chiang Chan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Onur Atasoylu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Emma Hodson
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Anthony Tumber
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Ivanhoe K. H. Leung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Verónica Gómez-Pérez
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Marina Demetriades
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Anna M. Rydzik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - James Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Ya-Min Tian
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Tammie Bishop
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher W. Pugh
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Sorge JL, Wagstaff JL, Rowe ML, Williamson RA, Howard MJ. Q2DSTD NMR deciphers epitope-mapping variability for peptide recognition of integrin αvβ6. Org Biomol Chem 2015; 13:8001-7. [PMID: 26119198 PMCID: PMC4541471 DOI: 10.1039/c5ob01237f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Integrin αvβ6 is a cell surface arginine-glycine-aspartic acid (RGD)-specific heterodimeric glycoprotein that is only expressed on epithelia during processes of tissue remodelling, including cancer. The specificity and molecular nature of interactions toward this integrin are poorly understood and new insights into such processes are important to cell biologists and pharmaceutical drug discovery. This study demonstrates the application of quantitative two-dimensional saturation transfer (Q2DSTD) NMR to obtain precise details of peptide interactions with integrin αvβ6 and their correlation to specificity for the integrin. This approach highlights subtle but significant differences in ligand contact by three related 21-mer peptides: FMDV2, an αvβ6 specific peptide and DBD1 and LAP2T1 peptides that bind many αv integrins in addition to αvβ6. FMDV2 and DBD1 differ only by the cyclisation of DBD1; a process that removes αvβ6 specificity. Q2DSTD NMR demonstrates these peptides experience significantly different interactions with the integrin; FMDV contacts primarily through four residues: 6Leu, 10Leu, 12Val and 13Leu, whereas DBD1 and LAP2T1 have more widespread contacts across their sequences. Q2DSTD NMR combined two-dimensional STD with quantitation by considering the relaxation of the ligand (CRL) to provide precise ligand contact information. This study also examines the role of CRL in the Q2DSTD process and how quantitation modifies STD data and unravels epitope-mapping variability to provide precise results that differentiate interactions at the atomic level for each peptide.
Collapse
Affiliation(s)
- Jessica L Sorge
- School of Biosciences, University of Kent, Canterbury, Kent, UK.
| | | | | | | | | |
Collapse
|
18
|
Aillard B, Kilburn JD, Blaydes JP, Tizzard GJ, Findlow S, Werner JM, Bloodworth S. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-l-proline type II helix conformation. Org Biomol Chem 2015; 13:4562-9. [DOI: 10.1039/c5ob00180c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stereoselective synthesis of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane mimic of Xaa-trans-Pro in poly-l-proline type II helix conformation is reported.
Collapse
Affiliation(s)
- Boris Aillard
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
- UK
| | - Jeremy D. Kilburn
- School of Biological and Chemical Sciences
- Queen Mary
- University of London
- London
- UK
| | - Jeremy P. Blaydes
- Cancer Sciences
- Faculty of Medicine
- University of Southampton
- Southampton
- UK
| | - Graham J. Tizzard
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
- UK
| | - Stuart Findlow
- Centre for Biological Sciences
- University of Southampton
- Southampton
- UK
| | - Jörn M. Werner
- Centre for Biological Sciences
- University of Southampton
- Southampton
- UK
| | - Sally Bloodworth
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
- UK
| |
Collapse
|
19
|
Sang Y, Tait AR, Scott WRP, Creagh AL, Kumar P, Haynes CA, Straus SK. Probing the interaction between U24 and the SH3 domain of Fyn tyrosine kinase. Biochemistry 2014; 53:6092-102. [PMID: 25225878 DOI: 10.1021/bi500945x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The putative membrane protein U24 from HHV-6A shares a seven-residue sequence identity (which includes a PxxP motif) with myelin basic protein (MBP), a protein responsible for the compaction of the myelin sheath in the central nervous system. U24 from HHV-6A also shares a PPxY motif with U24 from the related virus HHV-7, allowing them both to block early endosomal recycling. Recently, MBP has been shown to have protein-protein interactions with a range of proteins, including proteins containing SH3 domains. Given that this interaction is mediated by the proline-rich segment in MBP, and that similar proline-rich segments are found in U24, we investigate here whether U24 also interacts with SH3 domain-containing proteins and what the nature of that interaction might be. The implications of a U24-Fyn tyrosine kinase SH3 domain interaction are discussed in terms of the hypothesis that U24 may function like MBP through molecular mimicry, potentially contributing to the disease state of multiple sclerosis or other demyelinating disorders.
Collapse
Affiliation(s)
- Yurou Sang
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Tarhonskaya H, Szöllössi A, Leung IKH, Bush JT, Henry L, Chowdhury R, Iqbal A, Claridge TDW, Schofield CJ, Flashman E. Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry 2014; 53:2483-93. [DOI: 10.1021/bi500086p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hanna Tarhonskaya
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrea Szöllössi
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Ivanhoe K. H. Leung
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Jacob T. Bush
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Luc Henry
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Aman Iqbal
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Timothy D. W. Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Emily Flashman
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
21
|
Rydzik AM, Brem J, van Berkel SS, Pfeffer I, Makena A, Claridge TDW, Schofield CJ. Monitoring conformational changes in the NDM-1 metallo-β-lactamase by 19F NMR spectroscopy. Angew Chem Int Ed Engl 2014; 53:3129-33. [PMID: 24615874 PMCID: PMC4499255 DOI: 10.1002/anie.201310866] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Indexed: 12/26/2022]
Abstract
The New Delhi metallo-β-lactamase (NDM-1) is involved in the emerging antibiotic resistance problem. Development of metallo-β-lactamases (MBLs) inhibitors has proven challenging, due to their conformational flexibility. Here we report site-selective labeling of NDM-1 with 1,1,1-trifluoro-3-bromo acetone (BFA), and its use to study binding events and conformational changes upon ligand-metal binding using (19) F NMR spectroscopy. The results demonstrate different modes of binding of known NDM-1 inhibitors, including L- and D-captopril by monitoring the changing chemical environment of the active-site loop of NDM-1. The method described will be applicable to other MBLs and more generally to monitoring ligand-induced conformational changes.
Collapse
Affiliation(s)
- Anna M Rydzik
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Sander S van Berkel
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Inga Pfeffer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Anne Makena
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Timothy D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| | - Christopher J Schofield
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory12 Mansfield Road, Oxford OX1 3TA (UK)
| |
Collapse
|
22
|
Rydzik AM, Brem J, van Berkel SS, Pfeffer I, Makena A, Claridge TDW, Schofield CJ. Monitoring Conformational Changes in the NDM-1 Metallo-β-lactamase by19F NMR Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Probing the protein-folding mechanism using denaturant and temperature effects on rate constants. Proc Natl Acad Sci U S A 2013; 110:16784-9. [PMID: 24043778 DOI: 10.1073/pnas.1311948110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein folding has been extensively studied, but many questions remain regarding the mechanism. Characterizing early unstable intermediates and the high-free-energy transition state (TS) will help answer some of these. Here, we use effects of denaturants (urea, guanidinium chloride) and temperature on folding and unfolding rate constants and the overall equilibrium constant as probes of surface area changes in protein folding. We interpret denaturant kinetic m-values and activation heat capacity changes for 13 proteins to determine amounts of hydrocarbon and amide surface buried in folding to and from TS, and for complete folding. Predicted accessible surface area changes for complete folding agree in most cases with structurally determined values. We find that TS is advanced (50-90% of overall surface burial) and that the surface buried is disproportionately amide, demonstrating extensive formation of secondary structure in early intermediates. Models of possible pre-TS intermediates with all elements of the native secondary structure, created for several of these proteins, bury less amide and hydrocarbon surface than predicted for TS. Therefore, we propose that TS generally has both the native secondary structure and sufficient organization of other regions of the backbone to nucleate subsequent (post-TS) formation of tertiary interactions. The approach developed here provides proof of concept for the use of denaturants and other solutes as probes of amount and composition of the surface buried in coupled folding and other large conformational changes in TS and intermediates in protein processes.
Collapse
|
24
|
Insights into the folding and unfolding processes of wild-type and mutated SH3 domain by molecular dynamics and replica exchange molecular dynamics simulations. PLoS One 2013; 8:e64886. [PMID: 23734224 PMCID: PMC3667132 DOI: 10.1371/journal.pone.0064886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/19/2013] [Indexed: 01/14/2023] Open
Abstract
Src-homology regions 3 (SH3) domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5), including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field) and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family.
Collapse
|
25
|
Diana D, Di Stasi R, De Rosa L, Isernia C, D'Andrea LD, Fattorusso R. Structural investigation of the VEGF receptor interaction with a helical antagonist peptide. J Pept Sci 2013; 19:214-9. [DOI: 10.1002/psc.2480] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Donatella Diana
- Istituto di Biostrutture e Bioimmagini; CNR; Via Mezzocannone 16; Napoli; Italy
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini; CNR; Via Mezzocannone 16; Napoli; Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini; CNR; Via Mezzocannone 16; Napoli; Italy
| | - Carla Isernia
- Dipartimento di Scienze Ambientali; Seconda Università di Napoli; Via Vivaldi 43; Caserta; Italy
| | - Luca D. D'Andrea
- Istituto di Biostrutture e Bioimmagini; CNR; Via Mezzocannone 16; Napoli; Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze Ambientali; Seconda Università di Napoli; Via Vivaldi 43; Caserta; Italy
| |
Collapse
|
26
|
Leung IKH, Demetriades M, Hardy AP, Lejeune C, Smart TJ, Szöllössi A, Kawamura A, Schofield CJ, Claridge TDW. Reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors. J Med Chem 2013; 56:547-55. [PMID: 23234607 DOI: 10.1021/jm301583m] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The human 2-oxoglutarate (2OG) dependent oxygenases belong to a family of structurally related enzymes that play important roles in many biological processes. We report that competition-based NMR methods, using 2OG as a reporter ligand, can be used for quantitative and site-specific screening of ligand binding to 2OG oxygenases. The method was demonstrated using hypoxia inducible factor hydroxylases and histone demethylases, and K(D) values were determined for inhibitors that compete with 2OG at the metal center. This technique is also useful as a screening or validation tool for inhibitor discovery, as exemplified by work with protein-directed dynamic combinatorial chemistry.
Collapse
Affiliation(s)
- Ivanhoe K H Leung
- Department of Chemistry, University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Secondary structure, a missing component of sequence-based minimotif definitions. PLoS One 2012; 7:e49957. [PMID: 23236358 PMCID: PMC3517595 DOI: 10.1371/journal.pone.0049957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022] Open
Abstract
Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis of occurrences of minimotifs in structured and disordered regions of proteins, and review of the literature support a new model for minimotif definitions that includes sequence, structure, and function.
Collapse
|
28
|
Wagstaff JL, Rowe ML, Hsieh SJ, DiCara D, Marshall JF, Williamson RA, Howard MJ. NMR relaxation and structural elucidation of peptides in the presence and absence of trifluoroethanol illuminates the critical molecular nature of integrin αvβ6 ligand specificity. RSC Adv 2012; 2:11019-11028. [PMID: 27182435 PMCID: PMC4864471 DOI: 10.1039/c2ra21655h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrin αvβ6 is an important emerging target for both imaging and therapy of cancer that requires specific ligands based on Arg-Gly-Asp (RGD) peptides. There remains little correlation between integrin-RGD ligand specificity despite studies suggesting an RGD-turn-helix ligand motif is required. Here, we describe the application of 15N NMR relaxation analyses and structure determination of αvβ6 peptide ligands in the presence and absence of trifluoroethanol (TFE) to identify their critical molecular nature that influences specificity, interaction and function. Two linear peptides; one known to demonstrate αvβ6 specificity (FMDV2) and the other based on a natural RGD ligand (LAP2), were compared to two additional peptides based on FMDV2 but cyclised in different positions using a disulphide bond (DBD1 and DBD2). The cyclic adaptation in DBD1 produces a significant alteration in backbone dynamic properties when compared to FMDV2; a potential driver for the loss in αvβ6 specificity by DBD1. The importance of ligand dynamics are highlighted through a comprehensive reduced spectral density and ModelFree analysis of peptide 15N NMR relaxation data and suggest αvβ6 specificity requires the formation of a structurally rigid helix preceded by a RGD motif exhibiting slow internal motion. Additional observations include the effect of TFE/water viscosity on global NMR dynamics and the advantages of using spectral density NMR relaxation data to estimate correlation times and motional time regimes for peptides in solution.
Collapse
Affiliation(s)
- Jane L. Wagstaff
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michelle L. Rowe
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Shu-Ju Hsieh
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Danielle DiCara
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Institute of Cancer and CRUK Clinical Centre, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | - John F. Marshall
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Institute of Cancer and CRUK Clinical Centre, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Richard A. Williamson
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Mark J. Howard
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
29
|
Gushchina LV, Gabdulkhakov AG, Nikonov SV, Filimonov VV. High-resolution crystal structure of spectrin SH3 domain fused with a proline-rich peptide. J Biomol Struct Dyn 2012; 29:485-95. [PMID: 22066535 DOI: 10.1080/07391102.2011.10507400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A new chimeric protein, named WT-CIIA, was designed by connecting the proline-rich decapeptide PPPVPPYSAG to the C-terminus of the alpha-spectrin SH3 domain through a natural twelve-residue linker to obtain a single-chain model that would imitate intramolecular SH3-ligand interaction. The crystal structure of this fusion protein was determined at 1.7 Å resolution. The asymmetric unit of the crystal contained two SH3 globules contacting with one PPPVPPY fragment located between them. The domains are related by the two-fold non-crystallographic axis and the ligand lies in two opposite orientations with respect to the conservative binding sites of SH3 domains.
Collapse
Affiliation(s)
- Liubov V Gushchina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
30
|
Piotukh K, Freund C. A novel hSH3 domain scaffold engineered to bind folded domains in CD2BP2 and HIV capsid protein. Protein Eng Des Sel 2012; 25:649-56. [DOI: 10.1093/protein/gzs062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Martin-Garcia JM, Luque I, Ruiz-Sanz J, Camara-Artigas A. The promiscuous binding of the Fyn SH3 domain to a peptide from the NS5A protein. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1030-40. [PMID: 22868769 DOI: 10.1107/s0907444912019798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022]
Abstract
The hepatitis C virus nonstructural 5A (NS5A) protein is a large zinc-binding phosphoprotein that plays an important role in viral RNA replication and is involved in altering signal transduction pathways in the host cell. This protein interacts with Fyn tyrosine kinase in vivo and regulates its kinase activity. The 1.5 Å resolution crystal structure of a complex between the SH3 domain of the Fyn tyrosine kinase and the C-terminal proline-rich motif of the NS5A-derived peptide APPIPPPRRKR has been solved. Crystals were obtained in the presence of ZnCl(2) and belonged to the tetragonal space group P4(1)2(1)2. The asymmetric unit is composed of four SH3 domains and two NS5A peptide molecules; only three of the domain molecules contain a bound peptide, while the fourth molecule seems to correspond to a free form of the domain. Additionally, two of the SH3 domains are bound to the same peptide chain and form a ternary complex. The proline-rich motif present in the NS5A protein seems to be important for RNA replication and virus assembly, and the promiscuous interaction of the Fyn SH3 domain with the NS5A C-terminal proline-rich peptide found in this crystallographic structure may be important in the virus infection cycle.
Collapse
Affiliation(s)
- Jose Manuel Martin-Garcia
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento, 04120 Almería, Spain
| | | | | | | |
Collapse
|
32
|
Huculeci R, Buts L, Lenaerts T, van Nuland NAJ, Garcia-Pino A. Purification, crystallization and preliminary X-ray diffraction analysis of the Fyn SH2 domain and its complex with a phosphotyrosine peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:359-64. [PMID: 22442244 PMCID: PMC3310552 DOI: 10.1107/s1744309112004186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/31/2012] [Indexed: 11/10/2022]
Abstract
SH2 domains are widespread protein-binding modules that recognize phosphotyrosines and play central roles in intracellular signalling pathways. The SH2 domain of the human protein tyrosine kinase Fyn has been expressed, purified and crystallized in the unbound state and in complex with a high-affinity phosphotyrosine peptide. X-ray data were collected to a resolution of 2.00 Å for the unbound form and 1.40 Å for the protein in complex with the phosphotyrosine peptide.
Collapse
Affiliation(s)
- Radu Huculeci
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Lieven Buts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tom Lenaerts
- MLG, Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP212, B-1050 Brussels, Belgium
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nico A. J. van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
33
|
Stark JL, Powers R. Application of NMR and molecular docking in structure-based drug discovery. Top Curr Chem (Cham) 2011; 326:1-34. [PMID: 21915777 DOI: 10.1007/128_2011_213] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug discovery is a complex and costly endeavor, where few drugs that reach the clinical testing phase make it to market. High-throughput screening (HTS) is the primary method used by the pharmaceutical industry to identify initial lead compounds. Unfortunately, HTS has a high failure rate and is not particularly efficient at identifying viable drug leads. These shortcomings have encouraged the development of alternative methods to drive the drug discovery process. Specifically, nuclear magnetic resonance (NMR) spectroscopy and molecular docking are routinely being employed as important components of drug discovery research. Molecular docking provides an extremely rapid way to evaluate likely binders from a large chemical library with minimal cost. NMR ligand-affinity screens can directly detect a protein-ligand interaction, can measure a corresponding dissociation constant, and can reliably identify the ligand binding site and generate a co-structure. Furthermore, NMR ligand affinity screens and molecular docking are perfectly complementary techniques, where the combination of the two has the potential to improve the efficiency and success rate of drug discovery. This review will highlight the use of NMR ligand affinity screens and molecular docking in drug discovery and describe recent examples where the two techniques were combined to identify new and effective therapeutic drugs.
Collapse
Affiliation(s)
- Jaime L Stark
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | |
Collapse
|
34
|
Stark JL, Mercier KA, Mueller GA, Acton TB, Xiao R, Montelione GT, Powers R. Solution structure and function of YndB, an AHSA1 protein from Bacillus subtilis. Proteins 2010; 78:3328-40. [PMID: 20818668 PMCID: PMC2976784 DOI: 10.1002/prot.22840] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The solution structure of the Bacillus subtilis protein YndB has been solved using NMR to investigate proposed biological functions. The YndB structure exhibits the helix-grip fold, which consists of a β-sheet with two small and one long α-helix, forming a hydrophobic cavity that preferentially binds lipid-like molecules. Sequence and structure comparisons with proteins from eukaryotes, prokaryotes, and archaea suggest that YndB is very similar to the eukaryote protein Aha1, which binds to the middle domain of Hsp90 and induces ATPase activity. On the basis of these similarities, YndB has been classified as a member of the activator of Hsp90 ATPase homolog 1-like protein (AHSA1) family with a function that appears to be related to stress response. An in silico screen of a compound library of ∼ 18,500 lipids was used to identify classes of lipids that preferentially bind YndB. The in silico screen identified, in order of affinity, the chalcone/hydroxychalcone, flavanone, and flavone/flavonol classes of lipids, which was further verified by 2D (1) H-(15) N HSQC NMR titration experiments with trans-chalcone, flavanone, flavone, and flavonol. All of these compounds are typically found in plants as precursors to various flavonoid antibiotics and signaling molecules. The sum of the data suggests an involvement of YndB with the stress response of B. subtilis to chalcone-like flavonoids released by plants due to a pathogen infection. The observed binding of chalcone-like molecules by YndB is likely related to the symbiotic relationship between B. subtilis and plants.
Collapse
Affiliation(s)
- Jaime L. Stark
- Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE 68588-0304
| | - Kelly A. Mercier
- Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE 68588-0304
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Durham, NC, 27709
| | - Geoffrey A. Mueller
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Durham, NC, 27709
| | - Thomas B. Acton
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854, USA
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 09954, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska Lincoln, Lincoln, NE 68588-0304
| |
Collapse
|
35
|
Bai G, Feng B, Wang JB, Pozharski E, Shapiro M. Studies on ligand binding to histidine triad nucleotide binding protein 1. Bioorg Med Chem 2010; 18:6756-62. [DOI: 10.1016/j.bmc.2010.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/14/2010] [Accepted: 07/22/2010] [Indexed: 11/26/2022]
|
36
|
Kaieda S, Matsui C, Mimori-Kiyosue Y, Ikegami T. Structural basis of the recognition of the SAMP motif of adenomatous polyposis coli by the Src-homology 3 domain. Biochemistry 2010; 49:5143-53. [PMID: 20509626 DOI: 10.1021/bi100563z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elucidation of the basis of interactions between biological molecules is essential for the understanding of living systems. Src-homology 3 (SH3) domains play critical roles in interaction networks of proteins by recognizing a proline-rich sequence motif, PxxP. There are, however, several SH3 domains that specifically bind to polypeptide chains without the conventional recognition sequence. The SH3 domain of DDEF1 associates with the SAMP motifs of the adenomatous polyposis coli (APC) tumor suppressor. The SAMP motifs are indispensable for the normal function of APC in tumor suppression. Here we present the structural basis of the interaction between the DDEF1-SH3 domain and the APC-SAMP motifs. We determined the solution structures of the DDEF1-SH3 domain both in a free state and in a complex with APC-SAMP. As the affinity of the interaction was not sufficiently high for the determination of the complex structure in solution by conventional methods, we utilized a fusion protein of the DDEF1-SH3 domain and APC-SAMP. The structures revealed that the SAMP motif adopts a class II polyproline type II helix even though it does not contain the PxxP motif and that a characteristically large hydrophobic pocket of the SH3 domain confers high selectivity to the interaction. Furthermore, investigation into the backbone dynamics of the free and bound systems by NMR spin relaxation experiments demonstrated that the DDEF1-SH3 domain exhibits high flexibility at the peptide recognition site in the absence of the ligand and that most residues of the APC-SAMP motif display extensive local motions even in the stable complex.
Collapse
Affiliation(s)
- Shuji Kaieda
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
37
|
NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 2009; 14:1051-7. [DOI: 10.1016/j.drudis.2009.07.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/23/2009] [Accepted: 07/27/2009] [Indexed: 11/19/2022]
|
38
|
Vyas J, Nowling RJ, Maciejewski MW, Rajasekaran S, Gryk MR, Schiller MR. A proposed syntax for Minimotif Semantics, version 1. BMC Genomics 2009; 10:360. [PMID: 19656396 PMCID: PMC2733157 DOI: 10.1186/1471-2164-10-360] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 08/05/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of related data elements. With these two purposes in mind, the authors provide a proposed syntax for minimotif semantics primarily useful for functional annotation. RESULTS Herein, we present a structured syntax of minimotifs and their functional annotation. A syntax-based model of minimotif function with established minimotif sequence definitions was implemented using a relational database management system (RDBMS). To assess the usefulness of our standardized semantics, a series of database queries and stored procedures were used to classify SH3 domain binding minimotifs into 10 groups spanning 700 unique binding sequences. CONCLUSION Our derived minimotif syntax is currently being used to normalize minimotif covalent chemistry and functional definitions within the MnM database. Analysis of SH3 binding minimotif data spanning many different studies within our database reveals unique attributes and frequencies which can be used to classify different types of binding minimotifs. Implementation of the syntax in the relational database enables the application of many different analysis protocols of minimotif data and is an important tool that will help to better understand specificity of minimotif-driven molecular interactions with proteins.
Collapse
Affiliation(s)
- Jay Vyas
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305 USA.
| | | | | | | | | | | |
Collapse
|
39
|
Maruyoshi K, Nonaka K, Sagane T, Demura T, Yamaguchi T, Matsumori N, Oishi T, Murata M. Conformational change of spermidine upon interaction with adenosine triphosphate in aqueous solution. Chemistry 2009; 15:1618-26. [PMID: 19130510 DOI: 10.1002/chem.200801961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Endogenous polyamines, represented by putrescine, spermidine, and spermine, are known to exert their physiological functions by interacting with polyanionic biomolecules such as DNA, RNA, adenosine triphosphate (ATP), and phospholipids. Very few examples of conformation analysis have been reported for these highly flexible polymethylene compounds, mainly due to the lack of appropriate methodologies. To understand the molecular basis of the weak interaction between polyamines and polyanions that underlies their physiological functions, we aimed to elucidate the solution conformation of spermidine by using diastereospecifically deuterated and (13)C-labeled derivatives (1-7), which were designed to diagnose the orientation of seven conformationally relevant bonds in spermidine. (1)H-(1)H and (13)C-(1)H NMR coupling constants ((3)J(H,H) and (3)J(C,H)) were successfully determined for a spermidine-ATP complex. The relevant coupling constants markedly decreased upon complexation. The results reveal that spermidine, when interacting with ATP, undergoes changes that make the conformation more bent and forms the complex with the triphosphate part of ATP in an orientation-sensitive manner.
Collapse
Affiliation(s)
- Keisuke Maruyoshi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Prokhorov DA, Timchenko MA, Kudrevatykh YA, Fedyukina DV, Gushchina LV, Khristoforov VS, Filimonov VV, Kutyshenko VP. Study of the structure and dynamics of a chimeric variant of the SH3 domain (SHA-Bergerac) by NMR spectroscopy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:645-53. [DOI: 10.1134/s1068162008050075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Solheim SA, Petsalaki E, Stokka AJ, Russell RB, Taskén K, Berge T. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. FEBS J 2008; 275:4863-74. [PMID: 18721137 DOI: 10.1111/j.1742-4658.2008.06626.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched domains is a transmembrane adaptor protein primarily involved in negative regulation of T-cell activation by recruitment of C-terminal Src kinase (Csk), a protein tyrosine kinase which represses Src kinase activity through C-terminal phosphorylation. Recruitment of Csk occurs via SH2-domain binding to PAG pTyr317, thus, the interaction is highly dependent on phosphorylation performed by the Src family kinase Fyn, which docks onto PAG using a dual-domain binding mode involving both SH3- and SH2-domains of Fyn. In this study, we investigated Fyn SH3-domain binding to 14-mer peptide ligands derived from Cbp/PAG-enriched microdomains sequence using biochemical, biophysical and computational techniques. Interaction kinetics and dissociation constants for the various ligands were determined by SPR. The local structural impact of ligand association has been evaluated using CD, and molecular modelling has been employed to investigate details of the interactions. We show that data from these investigations correlate with functional effects of ligand binding, assessed experimentally by kinase assays using full-length PAG proteins as substrates. The presented data demonstrate a potential method for modulation of Src family kinase tyrosine phosphorylation through minor changes of the substrate SH3-interacting motif.
Collapse
Affiliation(s)
- Silje A Solheim
- The Biotechnology Centre of Oslo, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
42
|
Petzold K, Öhman A, Backman L. Folding of the αΙΙ-spectrin SH3 domain under physiological salt conditions. Arch Biochem Biophys 2008; 474:39-47. [PMID: 18358826 DOI: 10.1016/j.abb.2008.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
|
43
|
Four-alpha-helix bundle with designed anesthetic binding pockets. Part II: halothane effects on structure and dynamics. Biophys J 2008; 94:4464-72. [PMID: 18310239 DOI: 10.1529/biophysj.107.117853] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a model of the protein targets for volatile anesthetics, the dimeric four-alpha-helix bundle, (Aalpha(2)-L1M/L38M)(2), was designed to contain a long hydrophobic core, enclosed by four amphipathic alpha-helices, for specific anesthetic binding. The structural and dynamical analyses of (Aalpha(2)-L1M/L38M)(2) in the absence of anesthetics (another study) showed a highly dynamic antiparallel dimer with an asymmetric arrangement of the four helices and a lateral accessing pathway from the aqueous phase to the hydrophobic core. In this study, we determined the high-resolution NMR structure of (Aalpha(2)-L1M/L38M)(2) in the presence of halothane, a clinically used volatile anesthetic. The high-solution NMR structure, with a backbone root mean-square deviation of 1.72 A (2JST), and the NMR binding measurements revealed that the primary halothane binding site is located between two side-chains of W15 from each monomer, different from the initially designed anesthetic binding sites. Hydrophobic interactions with residues A44 and L18 also contribute to stabilizing the bound halothane. Whereas halothane produces minor changes in the monomer structure, the quaternary arrangement of the dimer is shifted by about half a helical turn and twists relative to each other, which leads to the closure of the lateral access pathway to the hydrophobic core. Quantitative dynamics analyses, including Modelfree analysis of the relaxation data and the Carr-Purcell-Meiboom-Gill transverse relaxation dispersion measurements, suggest that the most profound anesthetic effect is the suppression of the conformational exchange both near and remote from the binding site. Our results revealed a novel mechanism of an induced fit between anesthetic molecule and its protein target, with the direct consequence of protein dynamics changing on a global rather than a local scale. This mechanism may be universal to anesthetic action on neuronal proteins.
Collapse
|
44
|
Boudet J, Duval V, Van Melckebeke H, Blackledge M, Amoroso A, Joris B, Simorre JP. Conformational and thermodynamic changes of the repressor/DNA operator complex upon monomerization shed new light on regulation mechanisms of bacterial resistance against beta-lactam antibiotics. Nucleic Acids Res 2007; 35:4384-95. [PMID: 17576674 PMCID: PMC1935004 DOI: 10.1093/nar/gkm448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In absence of β-lactam antibiotics, BlaI and MecI homodimeric repressors negatively control the expression of genes involved in β-lactam resistance in Bacillus licheniformis and in Staphylococcus aureus. Subsequently to β-lactam presence, BlaI/MecI is inactivated by a single-point proteolysis that separates its N-terminal DNA-binding domain to its C-terminal domain responsible for its dimerization. Concomitantly to this proteolysis, the truncated repressor acquires a low affinity for its DNA target that explains the expression of the structural gene for resistance. To understand the loss of the high DNA affinity of the truncated repressor, we have determined the different dissociation constants of the system and solved the solution structure of the B. licheniformis monomeric repressor complexed to the semi-operating sequence OP1 of blaP (1/2OP1blaP) by using a de novo docking approach based on inter-molecular nuclear Overhauser effects and chemical-shift differences measured on each macromolecular partner. Although the N-terminal domain of the repressor is not subject to internal structural rearrangements upon DNA binding, the molecules adopt a tertiary conformation different from the crystallographic operator–repressor dimer complex, leading to a 30° rotation of the monomer with respect to a central axis extended across the DNA. These results open new insights for the repression and induction mechanisms of bacterial resistance to β-lactams.
Collapse
Affiliation(s)
- Julien Boudet
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Valérie Duval
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Hélène Van Melckebeke
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Martin Blackledge
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Ana Amoroso
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Bernard Joris
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale Jean-Pierre Ebel CEA-CNRS-UJF, 41 Avenue Jules Horowitz, 38027 Grenoble Cedex 1, France, Centre d’Ingénierie des Protéines, Institut de Chimie B6A, Université de Liège Sart-Tilman B4000, Belgium and Cátedra de Microbiología, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires, Junín 954 (1113), Buenos Aires, Argentina
- *To whom correspondence should be addressed. +33-4-38785799+33-4-38785494
| |
Collapse
|
45
|
Zhang J, Li X, Yao B, Shen W, Sun H, Xu C, Wu J, Shi Y. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides. Biochem Biophys Res Commun 2007; 357:931-7. [PMID: 17467669 DOI: 10.1016/j.bbrc.2007.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 10/23/2022]
Abstract
Solution structure of the first Src homology (SH) 3 domain of human vinexin (V_SH3_1) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical beta-beta-beta-beta-alpha-beta fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V_SH3_1. The interaction between P868 and V_SH3_1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V_SH3_1 had a low binding affinity. The structure and ligand-binding interface of V_SH3_1 provide a structural basis for the further functional study of this important molecule.
Collapse
Affiliation(s)
- Jiahai Zhang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Martín-García JM, Luque I, Mateo PL, Ruiz-Sanz J, Cámara-Artigas A. Crystallographic structure of the SH3 domain of the human c-Yes tyrosine kinase: loop flexibility and amyloid aggregation. FEBS Lett 2007; 581:1701-6. [PMID: 17418139 DOI: 10.1016/j.febslet.2007.03.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 03/19/2007] [Indexed: 11/26/2022]
Abstract
SH3 domains from the Src family of tyrosine kinases represent an interesting example of the delicate balance between promiscuity and specificity characteristic of proline-rich ligand recognition by SH3 domains. The development of inhibitors of therapeutic potential requires a good understanding of the molecular determinants of binding affinity and specificity and relies on the availability of high quality structural information. Here, we present the first high-resolution crystal structure of the SH3 domain of the c-Yes oncogen. Comparison with other SH3 domains from the Src family revealed significant deviations in the loop regions. In particular, the n-Src loop, highly flexible and partially disordered, is stabilized in an unusual conformation by the establishment of several intramolecular hydrogen bonds. Additionally, we present here the first report of amyloid aggregation by an SH3 domain from the Src family.
Collapse
Affiliation(s)
- José M Martín-García
- Department of Physical Chemistry and Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
47
|
Jelić D, Mildner B, Kostrun S, Nujić K, Verbanac D, Culić O, Antolović R, Brandt W. Homology modeling of human Fyn kinase structure: discovery of rosmarinic acid as a new Fyn kinase inhibitor and in silico study of its possible binding modes. J Med Chem 2007; 50:1090-100. [PMID: 17315853 DOI: 10.1021/jm0607202] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tyrosine phosphorylation represents a unique signaling process that controls metabolic pathways, cell activation, growth and differentiation, membrane transport, apoptosis, neural, and other functions. We present here the three-dimensional structure of Fyn tyrosine kinase, a Src-family enzyme involved in T-cell receptor signal transduction. The structure of Fyn was modeled for homology using the Sybyl-Composer suite of programs for modeling. Procheck and Prosa II programs showed the high quality of the obtained three-dimensional model. Rosmarinic acid, a secondary metabolite of herbal plants, was discovered as a new Fyn kinase inhibitor using immunochemical and in silico methods. Two possible binding modes of rosmarinic acid were evaluated here, i.e., near to or in the ATP-binding site of kinase domain of Fyn. Enzyme kinetic experiments revealed that Fyn is inhibited by a linear-mixed noncompetitive mechanism of inhibition by rosmarinic acid. This indicates that rosmarinic acid binds to the second "non-ATP" binding site of the Fyn tyrosine kinase.
Collapse
Affiliation(s)
- Dubravko Jelić
- GlaxoSmithKline Research Centre Zagreb, Prilaz baruna Filipovića 29, 10000 Zagreb,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shehu A, Kavraki LE, Clementi C. On the characterization of protein native state ensembles. Biophys J 2007; 92:1503-11. [PMID: 17158570 PMCID: PMC1796840 DOI: 10.1529/biophysj.106.094409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 11/13/2006] [Indexed: 11/18/2022] Open
Abstract
Describing and understanding the biological function of a protein requires a detailed structural and thermodynamic description of the protein's native state ensemble. Obtaining such a description often involves characterizing equilibrium fluctuations that occur beyond the nanosecond timescale. Capturing such fluctuations remains nontrivial even for very long molecular dynamics and Monte Carlo simulations. We propose a novel multiscale computational method to exhaustively characterize, in atomistic detail, the protein conformations constituting the native state with no inherent timescale limitations. Applications of this method to proteins of various folds and sizes show that thermodynamic observables measured as averages over the native state ensembles obtained by the method agree remarkably well with nuclear magnetic resonance data that span multiple timescales. By characterizing equilibrium fluctuations at atomistic detail over a broad range of timescales, from picoseconds to milliseconds, our method offers to complement current simulation techniques and wet-lab experiments and can impact our understanding and description of the relationship between protein flexibility and function.
Collapse
Affiliation(s)
- Amarda Shehu
- Departments of Computer Science, Bioengineering, and Chemistry, Rice University, Houston, Texas, USA
| | | | | |
Collapse
|
49
|
Evanics F, Kitevski JL, Bezsonova I, Forman-Kay J, Prosser RS. 19F NMR studies of solvent exposure and peptide binding to an SH3 domain. Biochim Biophys Acta Gen Subj 2006; 1770:221-30. [PMID: 17182189 DOI: 10.1016/j.bbagen.2006.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/02/2006] [Accepted: 10/23/2006] [Indexed: 11/21/2022]
Abstract
(19)F NMR was used to study topological features of the SH3 domain of Fyn tyrosine kinase for both the free protein and a complex formed with a binding peptide. Metafluorinated tyrosine was biosynthetically incorporated into each of 5 residues of the G48M mutant of the SH3 domain (i.e. residues 8, 10, 49 and 54 in addition to a single residue in the linker region to the C-terminal polyhistidine tag). Distinct (19)F NMR resonances were observed and subsequently assigned after separately introducing single phenylalanine mutations. (19)F NMR chemical shifts were dependent on protein concentration above 0.6 mM, suggestive of dimerization via the binding site in the vicinity of the tyrosine side chains. (19)F NMR spectra of Fyn SH3 were also obtained as a function of concentration of a small peptide (2-hydroxynicotinic-NH)-Arg-Ala-Leu-Pro-Pro-Leu-Pro-diaminopropionic acid -NH(2), known to interact with the canonical polyproline II (PPII) helix binding site of the SH3 domain. Based on the (19)F chemical shifts of Tyr8, Tyr49, and Tyr54, as a function of peptide concentration, an equilibrium dissociation constant of 18 +/- 4 microM was obtained. Analysis of the line widths suggested an average exchange rate, k(ex), associated with the peptide-protein two-site exchange, of 5200 +/- 600 s(-1) at a peptide concentration where 96% of the FynSH3 protein was assumed to be bound. The extent of solvent exposure of the fluorine labels was studied by a combination of solvent isotope shifts and paramagnetic effects from dissolved oxygen. Tyr54, Tyr49, Tyr10, and Tyr8, in addition to the Tyr on the C-terminal tag, appear to be fully exposed to the solvent at the metafluoro position in the absence of binding peptide. Tyr54 and, to some extent, Tyr10 become protected from the solvent in the peptide bound state, consistent with known structural data on SH3-domain peptide complexes. These results show the potential utility of (19)F-metafluorotyrosine to probe protein-protein interactions in conjunction with paramagnetic contrast agents.
Collapse
Affiliation(s)
- Ferenc Evanics
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, ON, Canada L5L 1C6
| | | | | | | | | |
Collapse
|
50
|
Neudecker P, Zarrine-Afsar A, Choy WY, Muhandiram DR, Davidson AR, Kay LE. Identification of a Collapsed Intermediate with Non-native Long-range Interactions on the Folding Pathway of a Pair of Fyn SH3 Domain Mutants by NMR Relaxation Dispersion Spectroscopy. J Mol Biol 2006; 363:958-76. [PMID: 16989862 DOI: 10.1016/j.jmb.2006.08.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/16/2006] [Accepted: 08/17/2006] [Indexed: 11/19/2022]
Abstract
Recent 15N and 13C spin-relaxation dispersion studies of fast-folding mutants of the Fyn SH3 domain have established that folding proceeds through a low-populated on-pathway intermediate (I) where the central beta-sheet is at least partially formed, but without interactions between the NH2- and COOH-terminal beta-strands that exist in the folded state (F). Initial studies focused on mutants where Gly48 is replaced; in an effort to establish whether this intermediate is a general feature of Fyn SH3 folding a series of 15N relaxation experiments monitoring the folding of Fyn SH3 mutants N53P/V55L and A39V/N53P/V55L are reported here. For these mutants as well, folding proceeds through an on-pathway intermediate with similar features to those observed for G48M and G48V Fyn SH3 domains. However, the 15N chemical shifts extracted for the intermediate indicate pronounced non-native contacts between the NH2 and COOH-terminal regions not observed previously. The kinetic parameters extracted for the folding of A39V/N53P/V55L Fyn SH3 from the three-state folding model F<-->I<-->U are in good agreement with folding and unfolding rates extrapolated to zero denaturant obtained from stopped-flow experiments analyzed in terms of a simplified two-state folding reaction. The folding of the triple mutant was studied over a wide range of temperatures, establishing that there is no difference in heat capacities between F and I states. This confirms a compact folding intermediate structure, which is supported by the 15N chemical shifts of the I state extracted from the dispersion data. The temperature-dependent relaxation data simplifies data analysis because at low temperatures (< 25 degrees C) the unfolded state (U) is negligibly populated relative to I and F. A comparison between parameters extracted at low temperatures where the F<-->I exchange model is appropriate with those from the more complex, three-state model at higher temperatures has been used to validate the protocol for analysis of three-site exchange relaxation data.
Collapse
Affiliation(s)
- Philipp Neudecker
- Departments of Medical Genetics and Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|