1
|
Chaudhary P, Chaudhary S, Patel F, Patel S, Patel D, Patel L, Trivedi N, Vaishnani T, Jajodia E, Ahmad F, Arora N. Significance of Somatic Mutation Profiling in CML Beyond BCR-ABL: A Retrospective Study of the Indian Population. Indian J Hematol Blood Transfus 2025; 41:10-22. [PMID: 39917513 PMCID: PMC11794774 DOI: 10.1007/s12288-024-01808-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/13/2024] [Indexed: 02/09/2025] Open
Abstract
Somatic mutation and fusion detection in acute myeloid leukemia to determine disease subtype and treatment regime is a common practice, but it's not yet employed in chronic myeloid leukemia (CML). CML is still monitored by routine quantitative determination of the BCR-ABL fusion transcript and treated with tyrosine kinase inhibitors (TKIs). Despite the availability of the three generations of TKIs, resistance and progression in CML pathogenesis suggest a strong role for somatic mutations. The present study aimed to identify the role of somatic mutation profiling in CML patients in disease management. 196 CML patient samples were used in this investigation, comprising 26 CML-BP, 8 CML-AP, and 162 CML-CP samples. Following cytogenetic analysis for confirmation, each sample was sequenced utilizing the Ion Torrent platform by a targeted panel. Of the 196 CML samples, 81 (41.33%) had 125 variations affecting 27 genes, while 115 (58.67%) harboured no mutations. The study revealed that ASXL1 (31.2%), ABL1 (14.4%), and TET2 (8.8%) were the most frequently altered genes. These genes are recognized indicators of CML disease. Few samples found with mutated GATA2, IDH1, NRAS, SETBP1, WT1, PHF6, KIT, etc. and fusions like RUNX1(5)-MECOM (2) and CBFB- MYH11 are indicative of disease progression. The outcome of this study suggests that mutational profiling of CML patients can help in the prognostication of disease. Based on the results of the study, the authors have also provided possible future risk stratification and diagnosis workflow for CML disease. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-024-01808-9.
Collapse
Affiliation(s)
- Pooja Chaudhary
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | | | - Falguni Patel
- Department of Biotechnology and Microbiology, Shri M.M.Patel Institute of Science and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015 India
| | - Shiv Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Dhiren Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Lokesh Patel
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Nikha Trivedi
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Toral Vaishnani
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Ekta Jajodia
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Firoz Ahmad
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| | - Neeraj Arora
- Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat 380015 India
| |
Collapse
|
2
|
Kantankar A, Jayaprakash Rao Y, Mallikarjun G, Hemasri Y, Kethiri RR. Rational design, synthesis, biological evaluation and molecular docking studies of chromone-pyrimidine derivatives as potent anti-cancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Novel mutations in the kinase domain of BCR-ABL gene causing imatinib resistance in chronic myeloid leukemia patients. Sci Rep 2019; 9:2412. [PMID: 30787317 PMCID: PMC6382822 DOI: 10.1038/s41598-019-38672-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/14/2018] [Indexed: 01/16/2023] Open
Abstract
Mutations in the drug binding region of BCR-ABL lead to imatinib resistance during the management of chronic myeloid leukemia (CML). In our study, 62 Philadelphia positive (Ph+) CML patients showing conspicuous expression of BCR-ABL gene were treated with imatinib. At the end of 3 months, 21/62 (33.87%) patients did not obtain complete hematological response (CHR) and also showed no significant decrease in BCR-ABL gene expression. In all the imatinib-resistant patients BCR-ABL gene was PCR amplified and sequenced. The sequence analysis showed four novel missense mutations p.(Leu301Ile), p.(Tyr320His), p.(Glu373Asp), p.(Asp381Asn) and six already reported mutations p.(Val256Gly), p.(Thr315Ile), p.(Gly250Glu), p.(Tyr253His), p.(Phe317Leu), p.(Met351Thr) which contributed in the formation of inactive enzyme and also two novel frameshift mutations p.(Glu281*) and p.(Tyr393*), which resulted in truncated protein formation. Further, the structural analysis revealed all these mutations affected P-loop, gatekeeper, catalytic and activation loop domain regions of the enzyme causing poor imatinib binding in the ATP region. The primary intention of the study was to find out the mutations in the BCR-ABL gene causing imatinib resistance. This study highlights the need for BCR-ABL gene sequence analysis to detect the mutations in CML patients in order to properly guide the therapy.
Collapse
|
4
|
Kumar H, Raj U, Gupta S, Varadwaj PK. In-silico identification of inhibitors against mutated BCR-ABL protein of chronic myeloid leukemia: a virtual screening and molecular dynamics simulation study. J Biomol Struct Dyn 2016; 34:2171-83. [PMID: 26479578 DOI: 10.1080/07391102.2015.1110046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML.
Collapse
Affiliation(s)
- Himansu Kumar
- a Department of Bioinformatics , Indian Institute of Information Technology Allahabad , Allahabad 211012 , Uttar Pradesh , India
| | - Utkarsh Raj
- a Department of Bioinformatics , Indian Institute of Information Technology Allahabad , Allahabad 211012 , Uttar Pradesh , India
| | - Saurabh Gupta
- a Department of Bioinformatics , Indian Institute of Information Technology Allahabad , Allahabad 211012 , Uttar Pradesh , India
| | - Pritish Kumar Varadwaj
- a Department of Bioinformatics , Indian Institute of Information Technology Allahabad , Allahabad 211012 , Uttar Pradesh , India
| |
Collapse
|
5
|
Identification of Dual Natural Inhibitors for Chronic Myeloid Leukemia by Virtual Screening, Molecular Dynamics Simulation and ADMET Analysis. Interdiscip Sci 2015; 8:241-52. [PMID: 26297311 DOI: 10.1007/s12539-015-0118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 11/27/2022]
Abstract
Chronic myeloid leukemia (CML) is a disease of bone marrow stem cells caused by excessive growth and accumulation of granulocytes in the blood. Aberrant expression of the BCR-ABL proteins in bone marrow stem cells have found out in 95 % cases of CML. Tyrosine Kinase domains (SH2 and SH3) of BCR-ABL proteins are the potent targets to inhibit the process. Initially, imatinib is preferred as an efficient inhibitor to control functional activity of disease. Recently, it has been reported that the advanced stage of CML developed resistance against imatinib. In continuation, dasatinib is the first drug to combat against this disease by targeting multiple receptors and proven better as compared to imatinib. Here, an attempt has been made to identify similar analogs of dasatinib. Virtual screening was performed against various natural compound databases to get some potent natural compounds which are able to inhibit more than one receptor. Binding affinity of screened natural compounds was compared with some of the well-known inhibitors like imatinib, dasatinib, nilotinib etc., by analyzing their docking score and binding efficiency with the receptor. Stability of the best ligand-receptor complex was checked by performing 10 ns molecular dynamics simulation. ADMET properties of the obtained screened compounds were analyzed to check drug like property. Based on the aforementioned analysis, it has been suggested that these screened potent compounds are capable to inhibit multiple receptor proteins like ABL and SRC and consequently combat against the deadly disease CML.
Collapse
|
6
|
|
7
|
Gifford SM, Liu W, Mader CC, Halo TL, Machida K, Boggon TJ, Koleske AJ. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin. J Biol Chem 2014; 289:19704-13. [PMID: 24891505 DOI: 10.1074/jbc.m114.556480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases.
Collapse
Affiliation(s)
| | | | | | | | - Kazuya Machida
- the Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, Farmington, Conneticut 06030
| | | | - Anthony J Koleske
- From the Departments of Molecular Biophysics and Biochemistry, the Yale Cancer Center, Interdepartmental Neuroscience Program, and Department of Neurobiology, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
8
|
Finn RD, Miller BL, Clements J, Bateman A. iPfam: a database of protein family and domain interactions found in the Protein Data Bank. Nucleic Acids Res 2013; 42:D364-73. [PMID: 24297255 PMCID: PMC3965099 DOI: 10.1093/nar/gkt1210] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain–domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain–domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain–domain and 15 500 domain–ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.
Collapse
Affiliation(s)
- Robert D Finn
- HHMI Janelia Farm Research Campus, 19700 Helix Drive, Ashburn VA 20147 USA and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | | | | |
Collapse
|
9
|
de Oliveira GAP, Pereira EG, Ferretti GDS, Valente AP, Cordeiro Y, Silva JL. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane. J Biol Chem 2013; 288:28331-45. [PMID: 23928308 PMCID: PMC3784749 DOI: 10.1074/jbc.m113.500926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/01/2013] [Indexed: 11/29/2022] Open
Abstract
c-Abl is a key regulator of cell signaling and is under strict control via intramolecular interactions. In this study, we address changes in the intramolecular dynamics coupling within the c-Abl regulatory unit by presenting its N-terminal segment (N-Cap) with an alternative function in the cell as c-Abl becomes activated. Using small angle x-ray scattering, nuclear magnetic resonance, and confocal microscopy, we demonstrate that the N-Cap and the Src homology (SH) 3 domain acquire μs-ms motions upon N-Cap association with the SH2-L domain, revealing a stabilizing synergy between these segments. The N-Cap-myristoyl tether likely triggers the protein to anchor to the membrane because of these flip-flop dynamics, which occur in the μs-ms time range. This segment not only presents the myristate during c-Abl inhibition but may also trigger protein localization inside the cell in a functional and stability-dependent mechanism that is lost in Bcr-Abl(+) cells, which underlie chronic myeloid leukemia. This loss of intramolecular dynamics and binding to the cellular membrane is a potential therapeutic target.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Membrane/metabolism
- Chlorocebus aethiops
- Chromatography/methods
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Magnetic Resonance Spectroscopy
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-abl/metabolism
- Scattering, Radiation
- Signal Transduction
- Spectrophotometry/methods
- Vero Cells
- X-Rays
- src Homology Domains
Collapse
Affiliation(s)
- Guilherme A. P. de Oliveira
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ and
| | - Elen G. Pereira
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ and
| | - Giulia D. S. Ferretti
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ and
| | - Ana Paula Valente
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ and
| | - Yraima Cordeiro
- the Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Jerson L. Silva
- From the Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ and
| |
Collapse
|
10
|
Corbi-Verge C, Marinelli F, Zafra-Ruano A, Ruiz-Sanz J, Luque I, Faraldo-Gómez JD. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap. Proc Natl Acad Sci U S A 2013; 110:E3372-80. [PMID: 23959873 PMCID: PMC3767523 DOI: 10.1073/pnas.1303966110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulation and localization of signaling enzymes is often mediated by accessory modular domains, which frequently function in tandems. The ability of these tandems to adopt multiple conformations is as important for proper regulation as the individual domain specificity. A paradigmatic example is Abl, a ubiquitous tyrosine kinase of significant pharmacological interest. SH3 and SH2 domains inhibit Abl by assembling onto the catalytic domain, allosterically clamping it in an inactive state. We investigate the dynamics of this SH3-SH2 tandem, using microsecond all-atom simulations and differential scanning calorimetry. Our results indicate that the Abl tandem is a two-state switch, alternating between the conformation observed in the structure of the autoinhibited enzyme and another configuration that is consistent with existing scattering data for an activated form. Intriguingly, we find that the latter is the most probable when the tandem is disengaged from the catalytic domain. Nevertheless, an amino acid stretch preceding the SH3 domain, the so-called N-cap, reshapes the free-energy landscape of the tandem and favors the interaction of this domain with the SH2-kinase linker, an intermediate step necessary for assembly of the autoinhibited complex. This allosteric effect arises from interactions between N-cap and the SH2 domain and SH3-SH2 connector, which involve a phosphorylation site. We also show that the SH3-SH2 connector plays a determinant role in the assembly equilibrium of Abl, because mutations thereof hinder the engagement of the SH2-kinase linker. These results provide a thermodynamic rationale for the involvement of N-cap and SH3-SH2 connector in Abl regulation and expand our understanding of the principles of modular domain organization.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Fabrizio Marinelli
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ana Zafra-Ruano
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Javier Ruiz-Sanz
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, University of Granada, 18071 Granada, Spain; and
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
SH3 domains: modules of protein-protein interactions. Biophys Rev 2012; 5:29-39. [PMID: 28510178 DOI: 10.1007/s12551-012-0081-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Collapse
|
12
|
Modeling of molecular interaction between apoptin, BCR-Abl and CrkL--an alternative approach to conventional rational drug design. PLoS One 2012; 7:e28395. [PMID: 22253690 PMCID: PMC3254606 DOI: 10.1371/journal.pone.0028395] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/07/2011] [Indexed: 12/02/2022] Open
Abstract
In this study we have calculated a 3D structure of apoptin and through modeling and docking approaches, we show its interaction with Bcr-Abl oncoprotein and its downstream signaling components, following which we confirm some of the newly-found interactions by biochemical methods. Bcr-Abl oncoprotein is aberrantly expressed in chronic myelogenous leukaemia (CML). It has several distinct functional domains in addition to the Abl kinase domain. The SH3 and SH2 domains cooperatively play important roles in autoinhibiting its kinase activity. Adapter molecules such as Grb2 and CrkL interact with proline-rich region and activate multiple Bcr-Abl downstream signaling pathways that contribute to growth and survival. Therefore, the oncogenic effect of Bcr-Abl could be inhibited by the interaction of small molecules with these domains. Apoptin is a viral protein with well-documented cancer-selective cytotoxicity. Apoptin attributes such as SH2-like sequence similarity with CrkL SH2 domain, unique SH3 domain binding sequence, presence of proline-rich segments, and its nuclear affinity render the molecule capable of interaction with Bcr-Abl. Despite almost two decades of research, the mode of apoptin's action remains elusive because 3D structure of apoptin is unavailable. We performed in silico three-dimensional modeling of apoptin, molecular docking experiments between apoptin model and the known structure of Bcr-Abl, and the 3D structures of SH2 domains of CrkL and Bcr-Abl. We also biochemically validated some of the interactions that were first predicted in silico. This structure-property relationship of apoptin may help in unlocking its cancer-selective toxic properties. Moreover, such models will guide us in developing of a new class of potent apoptin-like molecules with greater selectivity and potency.
Collapse
|
13
|
Abstract
It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which “redundant” structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm).
Collapse
Affiliation(s)
- Mickey Kosloff
- Department of Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
14
|
Zhou HX. Quantitative relation between intermolecular and intramolecular binding of pro-rich peptides to SH3 domains. Biophys J 2006; 91:3170-81. [PMID: 16891373 PMCID: PMC1614496 DOI: 10.1529/biophysj.106.090258] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Flexible linkers are often found to tether binding sequence motifs or connect protein domains. Here we analyze three usages of flexible linkers: 1), intramolecular binding of proline-rich peptides (PRPs) to SH3 domains for kinase regulation; 2), intramolecular binding of PRP for increasing the folding stability of SH3 domains; and 3), covalent linking of PRPs and other ligands for high-affinity bivalent binding. The basis of these analyses is a quantitative relation between intermolecular and intramolecular binding constants. This relation has the form K(i) = K(e0)p for intramolecular binding and K(e) = K(e01)K(e02)p for bivalent binding. The effective concentration p depends on the length of the linker and the distance between the linker attachment points in the bound state. Several applications illustrate the usefulness of the quantitative relation. These include intramolecular binding to the Itk SH3 domain by an internal PRP and to a circular permutant of the alpha-spectrin SH3 domain by a designed PRP, and bivalent binding to the two SH3 domains of Grb2 by two linked PRPs. These and other examples suggest that flexible linkers and sequence motifs tethered to them, like folded protein domains, are also subject to tight control during evolution.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics and School of Computational Science, Florida State University, Tallahassee, USA.
| |
Collapse
|
15
|
Abstract
Considering the limited success of the most sophisticated docking methods available and the amount of computation required for systematic docking, cataloging all the known interfaces may be an alternative basis for the prediction of protein tertiary and quaternary structures. We classify domain interfaces according to the geometry of domain-domain association. By applying a simple and efficient method called "interface tag clustering," more than 4,000 distinct types of domain interfaces are collected from Protein Quaternary Structure Server and Protein Data Bank. Given a pair of interacting domains, we define "face" as the set of interacting residues in each single domain and the pair of interacting faces as an "interface." We investigate how the geometry of interfaces relates to a network of interacting protein families, such as how many different binding orientations are possible between two families or whether a family uses distinct surfaces or the same surface when the family has diverse interaction partners from various families. We show there are, on average, 1.2-1.9 different types of interfaces between interacting domains and a significant number of family pairs associate in multiple orientations. In general, a family tends to use distinct faces for each partner when the family has diverse interaction partners. Each face is highly specific to its interaction partner and the binding orientation. The relative positions of interface residues are generally well conserved within the same type of interface even between remote homologs. The classification result is available at http://www.biotec.tu-dresden.de/~wkim/supplement.
Collapse
Affiliation(s)
- Wan Kyu Kim
- Biotechnological Centre, TU Dresden, Germany
| | | |
Collapse
|
16
|
Radtke S, Haan S, Jörissen A, Hermanns HM, Diefenbach S, Smyczek T, Schmitz-Vandeleur H, Heinrich PC, Behrmann I, Haan C. The Jak1 SH2 Domain Does Not Fulfill a Classical SH2 Function in Jak/STATSignaling but Plays a Structural Role for Receptor Interaction andUp-regulation of Receptor SurfaceExpression. J Biol Chem 2005; 280:25760-8. [PMID: 15894543 DOI: 10.1074/jbc.m500822200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a Src homology 2 (SH2) domain sequence similarity in the sequence of Janus kinases (Jaks) has been discussed since the first descriptions of these enzymes. We performed an in depth study to determine the function of the Jak1 SH2 domain. We investigated the functionality of the Jak1 SH2 domain by stably reconstituting Jak1-defective human fibrosarcoma cells U4C with endogenous amounts of Jak1 in which the crucial arginine residue Arg466 within the SH2 domain has been replaced by lysine. This mutant still binds to the receptor subunits gp130 and OSMR. Moreover, the SH2 R466K mutation does not affect the subcellular distribution of Jak1 as assessed by cell fractionation and confocal microscopy of cells expressing endogenous levels of non-tagged or a yellow fluorescent protein (YFP)-tagged Jak1-R466K, respectively. Likewise, the signaling capacity of Jak1 was not affected by this point mutation. However, we found that the SH2 domain is structurally important for cytokine receptor binding and surface expression of the OSMR.
Collapse
Affiliation(s)
- Simone Radtke
- Institut für Biochemie, Uniklinik Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Andrea Musacchio
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
18
|
Abstract
In this chapter, we have described the biophysical investigations which have dissected the mechanisms of SH2 domain function. Due to nearly a decade and a half of investigation on SH2 domains, much about their binding mechanism has been characterized. SH2 domains have been found to have a positively charged binding cavity, largely conserved between different SH2 domains, which coordinates binding of the pTyr in the target. The ionic interactions between this pocket and the pTyr, in particular, between Arg beta B5 and the phosphate, provide the majority of the binding energy stabilizing SH2 domain-target interactions. The specificity in SH2 domain-target interactions emanates most often from the interactions between the residues C-terminal to the pTyr in the target and the specificity determining residues in the C-terminal half of the SH2 domain. However, the interactions in the specificity determining region of SH2 domains are weak, and hence single SH2 domains show only a modest level of specificity for tyrosine phosphorylated targets. Greater specificity in SH2 domain-containing protein-tyrosine phosphorylated target interactions can be achieved by placing SH2 domains in tandem (as is often found) or possibly through specific localization of SH2 domain-containing proteins within the cell. Although a relatively good understanding of how SH2 domains function in isolation has been obtained, the ways in which SH2 domain binding is coupled to allosteric transmission of signals in larger SH2 domain-containing proteins are still not clear. Hence, the future should bring further investigations of the mechanisms by which SH2 domain ligation alters the enzymatic activity and cellular localization of SH2 domain-containing proteins.
Collapse
Affiliation(s)
- J Michael Bradshaw
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
19
|
Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003; 112:831-43. [PMID: 12654249 DOI: 10.1016/s0092-8674(03)00190-9] [Citation(s) in RCA: 479] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Bcr-Abl fusion protein kinase causes chronic myeloid leukemia and is targeted by the signal transduction inhibitor STI-571/Gleevec/imatinib (STI-571). Sequencing of the BCR-ABL gene in patients who have relapsed after STI-571 chemotherapy has revealed a limited set of kinase domain mutations that mediate drug resistance. To obtain a more comprehensive survey of the amino acid substitutions that confer STI-571 resistance, we performed an in vitro screen of randomly mutagenized BCR-ABL and recovered all of the major mutations previously identified in patients and numerous others that illuminate novel mechanisms of acquired drug resistance. Structural modeling implies that a novel class of variants acts allosterically to destabilize the autoinhibited conformation of the ABL kinase to which STI-571 preferentially binds. This screening strategy is a paradigm applicable to a growing list of target-directed anti-cancer agents and provides a means of anticipating the drug-resistant amino acid substitutions that are likely to be clinically problematic.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antineoplastic Agents/pharmacology
- Benzamides
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Genetic Variation
- Humans
- Imatinib Mesylate
- Inhibitory Concentration 50
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Piperazines/pharmacology
- Point Mutation
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Mohammad Azam
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
20
|
Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 2003; 112:859-71. [PMID: 12654251 DOI: 10.1016/s0092-8674(03)00194-6] [Citation(s) in RCA: 648] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
c-Abl is normally regulated by an autoinhibitory mechanism, the disruption of which leads to chronic myelogenous leukemia. The details of this mechanism have been elusive because c-Abl lacks a phosphotyrosine residue that triggers the assembly of the autoinhibited form of the closely related Src kinases by internally engaging the SH2 domain. Crystal structures of c-Abl show that the N-terminal myristoyl modification of c-Abl 1b binds to the kinase domain and induces conformational changes that allow the SH2 and SH3 domains to dock onto it. Autoinhibited c-Abl forms an assembly that is strikingly similar to that of inactive Src kinases but with specific differences that explain the differential ability of the drug STI-571/Gleevec/imatinib (STI-571) to inhibit the catalytic activity of Abl, but not that of c-Src.
Collapse
Affiliation(s)
- Bhushan Nagar
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21:5766-74. [PMID: 12411494 PMCID: PMC131059 DOI: 10.1093/emboj/cdf562] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Signal transducer and activator of transcription 5 (STAT5) is constitutively activated by BCR/ABL, the oncogenic tyrosine kinase responsible for chronic myelogenous leukemia. The mechanism of BCR/ABL-mediated STAT5 activation is unknown. We show here that the BCR/ABL SH3 and SH2 domains interact with hematopoietic cell kinase (Hck), leading to the stimulation of Hck catalytic activity. Active Hck phosphorylated STAT5B on Tyr699, which represents an essential step in STAT5B stimulation. Moreover, a kinase-dead Hck mutant and Hck inhibitor PP2 abrogated BCR/ABL-dependent activation of STAT5 and elevation of expression of STAT5 downstream effectors A1 and pim-1. These data identify a novel BCR/ABL-Hck-STAT5 signaling pathway, which plays an important role in BCR/ABL-mediated transformation of myeloid cells.
Collapse
Affiliation(s)
| | - Steven J. Schreiner
- Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122 and
Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | | | | | - Matthew Wilson
- Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122 and
Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Thomas E. Smithgall
- Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122 and
Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| | - Tomasz Skorski
- Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122 and
Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA Corresponding author e-mail:
| |
Collapse
|
22
|
Abstract
The regulatory domains of Src family kinases SH3 and SH2 suppress Src activity when bound to the catalytic domain. Here, the isolated SH3-SH2 fragment from the Src family member Fyn (FynSH32) is studied by NMR. The properties of this fragment are expected to be similar to the domains in the active state, where they are dissociated from the catalytic domain. Crosscommunication between SH3 and SH2 of FynSH32, measured by chemical shift perturbation, was found to be small. Diffusion and alignment anisotropy measurements showed that SH3 and SH2 of peptide-bound FynSH32 are significantly coupled but still exhibit some interdomain flexibility. The observed average domain orientation indicates that a large SH3-SH2 domain closure is required to reach the inactive state. The implications of these results for Src regulation are discussed.
Collapse
Affiliation(s)
- Tobias S Ulmer
- Department of Biochemistry, University of Oxford, South Parks Road, United Kingdom
| | | | | |
Collapse
|
23
|
Hörtner M, Nielsch U, Mayr LM, Heinrich PC, Haan S. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2516-26. [PMID: 12027890 DOI: 10.1046/j.1432-1033.2002.02916.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erythropoietin (Epo) is a hematopoietic cytokine that is crucial for the differentiation and proliferation of erythroid progenitor cells. Epo acts on its target cells by inducing homodimerization of the erythropoietin receptor (EpoR), thereby triggering intracellular signaling cascades. The EpoR encompasses eight tyrosine motifs on its cytoplasmic tail that have been shown to recruit a number of regulatory proteins. Recently, the feedback inhibitor suppressor of cytokine signaling-3 (SOCS-3), also referred to as cytokine-inducible SH2-containing protein 3 (CIS-3), has been shown to act on Epo signaling by both binding to the EpoR and the EpoR-associated Janus kinase 2 (Jak2) [Sasaki, A., Yasukawa, H., Shouda, T., Kitamura, T., Dikic, I. & Yoshimura, A. (2000) J. Biol. Chem 275, 29338-29347]. In this study tyrosine 401 was identified as a binding site for SOCS-3 on the EpoR. Here we show that human SOCS-3 binds to pY401 with a Kd of 9.5 microm while another EpoR tyrosine motif, pY429pY431, can also interact with SOCS-3 but with a ninefold higher affinity than we found for the previously reported motif pY401. In addition, SOCS-3 binds the double phosphorylated motif pY429pY431 more potently than the respective singly phosphorylated tyrosines indicating a synergistic effect of these two tyrosine residues with respect to SOCS-3 binding. Surface plasmon resonance analysis, together with peptide precipitation assays and model structures of the SH2 domain of SOCS-3 complexed with EpoR peptides, provide evidence for pY429pY431 being a new high affinity binding site for SOCS-3 on the EpoR.
Collapse
|
24
|
Hansson H, Okoh MP, Smith CI, Vihinen M, Härd T. Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton's tyrosine kinase. FEBS Lett 2001; 489:67-70. [PMID: 11231015 DOI: 10.1016/s0014-5793(00)02438-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The SH3 domain of Bruton's tyrosine kinase (Btk) is preceded by the Tec homology (TH) region containing proline-rich sequences. We have studied a protein fragment containing both the Btk SH3 domain and the proline-rich sequences of the TH region (PRR-SH3). Intermolecular NMR cross-relaxation measurements, gel permeation chromatography profiles, titrations with proline-rich peptides, and (15)N NMR relaxation measurements are all consistent with a monomer-dimer equilibrium with a dissociation constant on the order of 60 microM. The intermolecular interactions do, at least in part, involve proline-rich sequences in the TH region. This behavior of Btk PRR-SH3 may have implications for the functional action of Btk.
Collapse
Affiliation(s)
- H Hansson
- Department of Biotechnology, Royal Institute of Technology, Center for Structural Biochemistry, Novum, Sweden
| | | | | | | | | |
Collapse
|
25
|
Brazin KN, Fulton DB, Andreotti AH. A specific intermolecular association between the regulatory domains of a Tec family kinase. J Mol Biol 2000; 302:607-23. [PMID: 10986122 DOI: 10.1006/jmbi.2000.4091] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-2 tyrosine kinase (Itk), is a T-cell specific tyrosine kinase of the Tec family. We have examined a novel intermolecular interaction between the SH3 and SH2 domains of Itk. In addition to the interaction between the isolated domains, we have found that the dual SH3/SH2 domain-containing fragment of Itk self-associates in a specific manner in solution. Tec family members contain the SH3, SH2 and catalytic domains common to many kinase families but are distinguished by a unique amino-terminal sequence, which contains a proline-rich stretch. Previous work has identified an intramolecular regulatory association between the proline-rich region and the adjacent SH3 domain of Itk. The intermolecular interaction between the SH3 and SH2 domains of Itk that we describe provides a possible mechanism for displacement of this intramolecular regulatory sequence, a step that may be required for full Tec kinase activation. Additionally, localization of the interacting surfaces on both the SH3 and SH2 domains by chemical shift mapping has provided information about the molecular details of this recognition event. The interaction involves the conserved aromatic binding pocket of the SH3 domain and a newly defined binding surface on the SH2 domain. The interacting residues on the SH2 domain do not conform to the consensus motif for an SH3 proline-rich ligand. Interestingly, we note a striking correlation between the SH2 residues that mediate this interaction and those residues that, when mutated in the Tec family member Btk, cause the hereditary immune disorder, X-linked agamaglobulinemia.
Collapse
Affiliation(s)
- K N Brazin
- Department of Biochemistry Biophysics and Molecular Biology, Molecular Biology Building, Ames, IA 50010, USA
| | | | | |
Collapse
|
26
|
Abstract
The ligand binding preferences, structural features, and biological function of SH3 (Src homology 3) domains are discussed. SH3 domains bind "core" Pro-rich peptide ligands (7-9 amino acids in length) in a polyproline II helical conformation in a highly conserved aromatic rich patch on the protein surface (approximately 390 A2). The ligands can interact with the protein in one of two orientations, depending on the position (N- vs C-terminal) of ligand residues binding to the SH3 selectivity pocket. Core SH3 ligands are characterized by relatively weak interactions (KD = 5-100 microM) that show little binding selectivity within SH3 families. Higher affinity, more selective contiguous ligands require additional flanking residues that bind to less conserved portions of the SH3 surface, with corresponding increase in ligand size and complexity. In contrast to peptide ligands, protein ligands of SH3 domains can exploit multiple discontiguous interactions to enhance affinity and selectivity. A protein-SH3 interaction that utilizes unique interactions may permit the design of small high affinity SH3 ligands. At present, the extended nature of the binding site and homologous nature of the core binding region among SH3 domains present key challenges for structure-based drug design.
Collapse
Affiliation(s)
- D C Dalgarno
- ARIAD Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
27
|
Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Biochem Biophys Res Commun 2000; 269:124-30. [PMID: 10694488 DOI: 10.1006/bbrc.2000.2146] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is a rare and severe immune deficiency, characterized by abnormal immune responses to the Epstein-Barr virus. Recently, the gene responsible for XLP, SH2D1A, has been identified and shown to code for a small cytoplasmic protein with an SH2 domain that interacts with SLAM and 2B4, two receptorial molecules involved in signal transduction in T and NK cells, respectively. A variety of SH2D1A gene mutations have been reported thus far in XLP males. Here we describe a single-strand conformation polymorphism assay for mutation analysis in XLP. Four novel patients with SH2D1A mutations are described. These mutants, and the others previously reported in the literature, have been included in a Registry (SH2D1Abase) that is fully accessible on the World Wide Web. A three-dimensional model of the SH2 domain of the SH2D1A protein has been developed, based on homology with other SH2 domains. The structural consequences of disease-causing SH2D1A mutations are discussed.
Collapse
Affiliation(s)
- I Lappalainen
- Institute of Medical Technology, University of Tampere, Tampere, FIN-33014, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189:1229-42. [PMID: 10209040 PMCID: PMC2193033 DOI: 10.1084/jem.189.8.1229] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)5 is constitutively activated in BCR/ ABL-expressing cells, but the mechanisms and functional consequences of such activation are unknown. We show here that BCR/ABL induces phosphorylation and activation of STAT5 by a mechanism that requires the BCR/ABL Src homology (SH)2 domain and the proline-rich binding site of the SH3 domain. Upon expression in 32Dcl3 growth factor-dependent myeloid precursor cells, STAT5 activation-deficient BCR/ABL SH3+SH2 domain mutants functioned as tyrosine kinase and activated Ras, but failed to protect from apoptosis induced by withdrawal of interleukin 3 and/or serum and did not induce leukemia in severe combined immunodeficiency mice. In complementation assays, expression of a dominant-active STAT5B mutant (STAT5B-DAM), but not wild-type STAT5B (STAT5B-WT), in 32Dcl3 cells transfected with STAT5 activation-deficient BCR/ABL SH3+SH2 mutants restored protection from apoptosis, stimulated growth factor-independent cell cycle progression, and rescued the leukemogenic potential in mice. Moreover, expression of a dominant-negative STAT5B mutant (STAT5B-DNM) in 32Dcl3 cells transfected with wild-type BCR/ABL inhibited apoptosis resistance, growth factor-independent proliferation, and the leukemogenic potential of these cells. In retrovirally infected mouse bone marrow cells, expression of STAT5B-DNM inhibited BCR/ABL-dependent transformation. Moreover, STAT5B-DAM, but not STAT5B-WT, markedly enhanced the ability of STAT5 activation-defective BCR/ABL SH3+SH2 mutants to induce growth factor-independent colony formation of primary mouse bone marrow progenitor cells. However, STAT5B-DAM did not rescue the growth factor-independent colony formation of kinase-deficient K1172R BCR/ABL or the triple mutant Y177F+R522L+ Y793F BCR/ABL, both of which also fail to activate STAT5. Together, these data demonstrate that STAT5 activation by BCR/ABL is dependent on signaling from more than one domain and document the important role of STAT5-regulated pathways in BCR/ABL leukemogenesis.
Collapse
Affiliation(s)
- M Nieborowska-Skorska
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Xu R, Ayers B, Cowburn D, Muir TW. Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A 1999; 96:388-93. [PMID: 9892643 PMCID: PMC15146 DOI: 10.1073/pnas.96.2.388] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 11/09/1998] [Indexed: 01/11/2023] Open
Abstract
A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N. Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.
Collapse
Affiliation(s)
- R Xu
- Laboratory of Physical Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
30
|
Horstman DA, Chattopadhyay A, Carpenter G. The influence of deletion mutations on phospholipase C-gamma 1 activity. Arch Biochem Biophys 1999; 361:149-55. [PMID: 9882440 DOI: 10.1006/abbi.1998.0978] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase C-gamma1, a substrate for many growth factor receptor and nonreceptor tyrosine kinases, produces second messenger molecules that are elements of signal transduction pathways related to cell proliferation. The influence of deletion mutations, which do not intrude on the domains required for catalytic function, on the basal activity of this enzyme is reported. Removal of the first 74 amino-terminal residues increases phospholipase C activity, while deletion of the carboxy-terminal 81 residues decreases enzyme activity. Deletion of the SH2-SH2-SH3 central region, which separates the two domains (X, Y) responsible for catalytic function, also increases enzymatic activity. Interestingly, addition of a recombinant SH2-SH2-SH3 fragment of phospholipase C-gamma1 to the holoenzyme inhibits its phospholipase activity at pH 7.0, but not at pH 5.0. However, addition of individual SH2 or SH3 domains does not influence activity of the holoenzyme. All three deletion mutants, in contrast to the holoenzyme, are relatively resistant to V8 proteolysis and activation induced by the epidermal growth factor receptor tyrosine kinase, which require, respectively, specific proteolysis and phosphorylation sites within the SH region. This suggests a conformational change is induced in the SH region by deletion at either the amino- or carboxy-terminus.
Collapse
Affiliation(s)
- D A Horstman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232, USA
| | | | | |
Collapse
|
31
|
de Rinaldis M, Ausiello G, Cesareni G, Helmer-Citterich M. Three-dimensional profiles: a new tool to identify protein surface similarities. J Mol Biol 1998; 284:1211-21. [PMID: 9837739 DOI: 10.1006/jmbi.1998.2248] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a procedure for the description and comparison of protein surfaces, which is based on a three-dimensional (3D) transposition of the profile method for sensitive protein homology sequence searches. Although the principle of the method can be applied to detect similarities to a single protein surface, the possibility of extending this approach to protein families displaying common structural and/or functional properties, makes it a more powerful tool. In analogy to profiles derived from the multiple alignment of protein sequences, we derive a 3D surface profile from a protein structure or from a multiple structure alignment of several proteins. The 3D profile is used to screen the protein structure database, searching for similar protein surfaces. The application of the procedure to SH2 and SH3 binding pockets and to the nucleotide binding pocket associated with the p-loop structural motif is described. The SH2 and SH3 3D profiles can identify all the SH2 and SH3 binding regions present in the test dataset; the p-loop 3D profile is able to recognize all the p-loop-containing proteins present in the test dataset. Analysis of the p-loop 3D profile allowed the identification of a positive charge whose position is conserved in space but not in sequence. The best ranking non-p-loop-containing protein is an ADP-forming succinyl coenzyme A synthetase, whose nucleotide-binding region has not yet been identified.
Collapse
|
32
|
Liddington R, Frederick C. Paper Alert. Structure 1996. [DOI: 10.1016/s0969-2126(96)00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|