1
|
Steiner WP, Iverson N, Venkatakrishnan V, Wu J, Stepniewski TM, Michaelson Z, Bröckel JW, Zhu JF, Bruystens J, Lee A, Nelson I, Bertinetti D, Arveseth CD, Tan G, Spaltenstein P, Xu J, Hüttenhain R, Kay M, Herberg FW, Selent J, Anand GS, Dunbrack RL, Taylor SS, Myers BR. A Structural Mechanism for Noncanonical GPCR Signal Transduction in the Hedgehog Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621410. [PMID: 39554190 PMCID: PMC11565934 DOI: 10.1101/2024.10.31.621410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Hedgehog (Hh) signaling pathway is fundamental to embryogenesis, tissue homeostasis, and cancer. Hh signals are transduced via an unusual mechanism: upon agonist-induced phosphorylation, the noncanonical G protein-coupled receptor SMOOTHENED (SMO) binds the catalytic subunit of protein kinase A (PKA-C) and physically blocks its enzymatic activity. By combining computational structural approaches with biochemical and functional studies, we show that SMO mimics strategies prevalent in canonical GPCR and PKA signaling complexes, despite little sequence or secondary structural homology. An intrinsically disordered region of SMO binds the PKA-C active site, resembling the PKA regulatory subunit (PKA-R) / PKA-C holoenzyme, while the SMO transmembrane domain binds a conserved PKA-C interaction hub, similar to other GPCR-effector complexes. In contrast with prevailing GPCR signal transduction models, phosphorylation of SMO promotes intramolecular electrostatic interactions that stabilize key structural elements within the SMO cytoplasmic domain, thereby remodeling it into a PKA-inhibiting conformation. Our work provides a structural mechanism for a central step in the Hh cascade and defines a paradigm for disordered GPCR domains to transmit signals intracellularly.
Collapse
Affiliation(s)
- William P. Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Nathan Iverson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | | | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jan W. Bröckel
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jessica Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Isaac Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Friedrich W. Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Ganesh S. Anand
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Roland L. Dunbrack
- Institute for Cancer Research. Fox Chase Cancer Center. Philadelphia PA, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Sheetz JB, Lemmon MA, Tsutsui Y. Dynamics of protein kinases and pseudokinases by HDX-MS. Methods Enzymol 2022; 667:303-338. [PMID: 35525545 PMCID: PMC9148214 DOI: 10.1016/bs.mie.2022.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dynamics of the protein kinase fold are deeply intertwined with its structure. The past three decades of kinase biophysical studies revealed key dynamic features of the kinase domain and, more recently, how these features may endow catalytically impaired kinases-or pseudokinases-with signaling properties. Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is proving to be a valuable approach for studies of kinase and pseudokinase domain dynamics. Here, we briefly discuss the methods that have provided insights into protein kinase dynamics, describe how HDX-MS is being used to answer questions in the kinase/pseudokinase field, and provide a detailed protocol for collecting an HDX-MS dataset to study the impacts of small molecule binding to a pseudokinase domain. As more small molecules are discovered that can disrupt pseudokinase conformations, HDX-MS is likely to be a powerful approach for exploring drug-induced changes in pseudokinase dynamics and structure.
Collapse
Affiliation(s)
- Joshua B Sheetz
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, United States
| | - Mark A Lemmon
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, United States.
| | - Yuko Tsutsui
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, United States.
| |
Collapse
|
3
|
Li Y, Liu X, Zhang S, Wang L, Zhang L, Zuo Z. Computational simulation studies on the binding selectivity of Wee1 and Checkpoint kinase 1 by molecular dynamics simulation combined with free energy calculations. J Biomol Struct Dyn 2022; 40:1172-1181. [PMID: 33016857 DOI: 10.1080/07391102.2020.1823882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Wee1 kinase and Checkpoint kinase 1 (Chk1) kinase, which are well known to be involved in cancer, are promising targets for cancer therapy. Most of developed Wee1 inhibitors can inhibit activity of Chk1 kinase to different degrees as well. The poor selectivity brought side effects and selective inhibitor is needed. However, the selective mechanisms of Wee1 versus Chk1 are not clear. Therefore, the design of selective Wee1 and Chk1 inhibitors would provide a meaningful starting for the development of anticancer drugs with optimal efficacy. In this study, Wee1 inhibitors with different selectivity over Chk1 were chosen to analyze the selectivity mechanism by means of molecular docking, molecular dynamics simulations and binding free energy calculations. Two key residues of Wee1 kinase and two critical residues of Chk1 were mutated to detect their effect on ligand binding into protein. The results indicated that these residues play a pivotal role in the binding interactions of ligands to receptors through hydrogen bond and hydrophobic interaction with inhibitors. This may provide a better understanding of the selective mechanism of Wee1 and Chk1. It would be beneficial to the discovery and optimization of selective Wee1 and Chk1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yaping Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Liangliang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhili Zuo
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.,Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
4
|
Ensemble docking-based virtual screening toward identifying inhibitors against Wee1 kinase. Future Med Chem 2020; 11:1889-1906. [PMID: 31517534 DOI: 10.4155/fmc-2019-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Wee1 kinase plays a key role in the arrest of G2/M checkpoint that prevents mitotic entry in response to DNA damage. This work is to discover potent Wee1 inhibitors which can be considered valuable. Materials & Methods: Herein, Ensemble docking using multiple crystal structures was considered an effective strategy in the virtual screening. The performance of 17 scoring functions obtained from different docking software was evaluated for molecular docking. Results: Two novel compounds B1 and A2 were identified as Wee1 inhibitors with IC50 values of 10.23 ± 0.505 and 8.72 ± 0.323 μM, respectively. Further cell viability assay demonstrated that the two active compounds exhibited good anticancer activities. Conclusion: This provides a meaningful starting point for further structure optimization to discover more potent Wee1 inhibitors.
Collapse
|
5
|
Takenoya M, Shimamura T, Yamanaka R, Adachi Y, Ito S, Sasaki Y, Nakamura A, Yajima S. Structural basis for the substrate recognition of aminoglycoside 7''-phosphotransferase-Ia from Streptomyces hygroscopicus. Acta Crystallogr F Struct Biol Commun 2019; 75:599-607. [PMID: 31475927 PMCID: PMC6718145 DOI: 10.1107/s2053230x19011105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 10/14/2023] Open
Abstract
Hygromycin B (HygB) is one of the aminoglycoside antibiotics, and it is widely used as a reagent in molecular-biology experiments. Two kinases are known to inactivate HygB through phosphorylation: aminoglycoside 7''-phosphotransferase-Ia [APH(7'')-Ia] from Streptomyces hygroscopicus and aminoglycoside 4-phosphotransferase-Ia [APH(4)-Ia] from Escherichia coli. They phosphorylate the hydroxyl groups at positions 7'' and 4 of the HygB molecule, respectively. Previously, the crystal structure of APH(4)-Ia was reported as a ternary complex with HygB and 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). To investigate the differences in the substrate-recognition mechanism between APH(7'')-Ia and APH(4)-Ia, the crystal structure of APH(7'')-Ia complexed with HygB is reported. The overall structure of APH(7'')-Ia is similar to those of other aminoglycoside phosphotransferases, including APH(4)-Ia, and consists of an N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe). The latter also comprises a core and a helical domain. Accordingly, the APH(7'')-Ia and APH(4)-Ia structures fit globally when the structures are superposed at three catalytically important conserved residues, His, Asp and Asn, in the Brenner motif, which is conserved in aminoglycoside phosphotransferases as well as in eukaryotic protein kinases. On the other hand, the phosphorylated hydroxyl groups of HygB in both structures come close to the Asp residue, and the HygB molecules in each structure lie in opposite directions. These molecules were held by the helical domain in the C-lobe, which exhibited structural differences between the two kinases. Furthermore, based on the crystal structures of APH(7'')-Ia and APH(4)-Ia, some mutated residues in their thermostable mutants reported previously were located at the same positions in the two enzymes.
Collapse
Affiliation(s)
- Mihoko Takenoya
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryuji Yamanaka
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuya Adachi
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shinsaku Ito
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuyuki Sasaki
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
6
|
Lu TW, Wu J, Aoto PC, Weng JH, Ahuja LG, Sun N, Cheng CY, Zhang P, Taylor SS. Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proc Natl Acad Sci U S A 2019; 116:16347-16356. [PMID: 31363049 PMCID: PMC6697891 DOI: 10.1073/pnas.1906036116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein kinase A (PKA) holoenzyme, comprised of a cAMP-binding regulatory (R)-subunit dimer and 2 catalytic (C)-subunits, is the master switch for cAMP-mediated signaling. Of the 4 R-subunits (RIα, RIβ, RIIα, RIIβ), RIα is most essential for regulating PKA activity in cells. Our 2 RIα2C2 holoenzyme states, which show different conformations with and without ATP, reveal how ATP/Mg2+ functions as a negative orthosteric modulator. Biochemical studies demonstrate how the removal of ATP primes the holoenzyme for cAMP-mediated activation. The opposing competition between ATP/cAMP is unique to RIα. In RIIβ, ATP serves as a substrate and facilitates cAMP-activation. The isoform-specific RI-holoenzyme dimer interface mediated by N3A-N3A' motifs defines multidomain cross-talk and an allosteric network that creates competing roles for ATP and cAMP. Comparisons to the RIIβ holoenzyme demonstrate isoform-specific holoenzyme interfaces and highlights distinct allosteric mechanisms for activation in addition to the structural diversity of the isoforms.
Collapse
Affiliation(s)
- Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Jian Wu
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Phillip C Aoto
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Jui-Hung Weng
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Lalima G Ahuja
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| | - Nicholas Sun
- Department of Biological Science, University of California San Diego, La Jolla, CA 92093
| | - Cecilia Y Cheng
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Ping Zhang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
7
|
Zhang EY, Ha BH, Boggon TJ. PAK4 crystal structures suggest unusual kinase conformational movements. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:356-365. [PMID: 28993291 PMCID: PMC5742302 DOI: 10.1016/j.bbapap.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 01/07/2023]
Abstract
In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. AUTHOR SUMMARY Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may indicate different mechanisms of regulation.
Collapse
Affiliation(s)
- Eric Y Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, United States
| | - Byung Hak Ha
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, United States
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, United States; Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, United States.
| |
Collapse
|
8
|
Binding mechanism and dynamic conformational change of C subunit of PKA with different pathways. Proc Natl Acad Sci U S A 2017; 114:E7959-E7968. [PMID: 28855336 DOI: 10.1073/pnas.1702599114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding.
Collapse
|
9
|
Yao XQ, Cato MC, Labudde E, Beyett TS, Tesmer JJG, Grant BJ. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J Biol Chem 2017; 292:16032-16043. [PMID: 28808053 DOI: 10.1074/jbc.m117.807461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- From the Departments of Computational Medicine and Bioinformatics
| | - M Claire Cato
- Biological Chemistry, and.,Life Sciences Institute and
| | | | - Tyler S Beyett
- Life Sciences Institute and.,Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109 and
| | - John J G Tesmer
- Biological Chemistry, and .,Life Sciences Institute and.,Pharmacology, University of Michigan Medical School and
| | - Barry J Grant
- Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
10
|
Mutation of a kinase allosteric node uncouples dynamics linked to phosphotransfer. Proc Natl Acad Sci U S A 2017; 114:E931-E940. [PMID: 28115705 DOI: 10.1073/pnas.1620667114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The expertise of protein kinases lies in their dynamic structure, wherein they are able to modulate cellular signaling by their phosphotransferase activity. Only a few hundreds of protein kinases regulate key processes in human cells, and protein kinases play a pivotal role in health and disease. The present study dwells on understanding the working of the protein kinase-molecular switch as an allosteric network of "communities" composed of congruently dynamic residues that make up the protein kinase core. Girvan-Newman algorithm-based community maps of the kinase domain of cAMP-dependent protein kinase A allow for a molecular explanation for the role of protein conformational entropy in its catalytic cycle. The community map of a mutant, Y204A, is analyzed vis-à-vis the wild-type protein to study the perturbations in its dynamic profile such that it interferes with transfer of the γ-phosphate to a protein substrate. Conventional biochemical measurements are used to ascertain the effect of these dynamic perturbations on the kinetic profiles of both proteins. These studies pave the way for understanding how mutations far from the kinase active site can alter its dynamic properties and catalytic function even when major structural perturbations are not obvious from static crystal structures.
Collapse
|
11
|
Decoding the Interactions Regulating the Active State Mechanics of Eukaryotic Protein Kinases. PLoS Biol 2016; 14:e2000127. [PMID: 27902690 PMCID: PMC5130182 DOI: 10.1371/journal.pbio.2000127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic protein kinases regulate most cellular functions by phosphorylating targeted protein substrates through a highly conserved catalytic core. In the active state, the catalytic core oscillates between open, intermediate, and closed conformations. Currently, the intramolecular interactions that regulate the active state mechanics are not well understood. Here, using cAMP-dependent protein kinase as a representative model coupled with biochemical, biophysical, and computational techniques, we define a set of highly conserved electrostatic and hydrophobic interactions working harmoniously to regulate these mechanics. These include the previously identified salt bridge between a lysine from the β3-strand and a glutamate from the αC-helix as well as an electrostatic interaction between the phosphorylated activation loop and αC-helix and an ensemble of hydrophobic residues of the Regulatory spine and Shell. Moreover, for over three decades it was thought that the highly conserved β3-lysine was essential for phosphoryl transfer, but our findings show that the β3-lysine is not required for phosphoryl transfer but is essential for the active state mechanics. Eukaryotic protein kinases (EPKs) regulate over a third of the human proteome by transferring the γ-phosphate from adenosine triphosphate (ATP) to a protein substrate in a process known as protein phosphorylation. Biochemical and biophysical studies have shown that EPKs undergo multiconformational rearrangements in which the catalytic core is oscillating between open, intermediate, and closed conformations when active. Presently, the intramolecular interactions that regulate this dynamic process are not well understood. In this paper, we show how a set of conserved electrostatic and hydrophobic interactions harmoniously regulate the active state mechanics. The electrostatic interactions involve the highly conserved salt bridge between the lysine from subdomain-II and glutamate from subdomain-III as well as an interaction between the activation loop and αC-helix. The hydrophobic interactions include the nonlinear motifs known as the Regulatory spine and Shell that traverse both lobes of the catalytic core. Furthermore, our findings show that the highly conserved “catalytic lysine” is not directly required for phosphoryl transfer but rather serves as a hub that aligns and positions the dynamic core elements required for catalysis.
Collapse
|
12
|
Fokas AS, Cole DJ, Ahnert SE, Chin AW. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis. Sci Rep 2016; 6:33213. [PMID: 27623708 PMCID: PMC5021933 DOI: 10.1038/srep33213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/12/2016] [Indexed: 01/23/2023] Open
Abstract
Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.
Collapse
Affiliation(s)
- Alexander S. Fokas
- Theory of Condensed Matter Group, Cavendish Laboratory, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, U.K
| | - Daniel J. Cole
- Theory of Condensed Matter Group, Cavendish Laboratory, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, U.K
| | - Sebastian E. Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, U.K
| | - Alex W. Chin
- Theory of Condensed Matter Group, Cavendish Laboratory, 19 JJ Thomson Avenue, CB3 0HE, Cambridge, U.K
| |
Collapse
|
13
|
Das A, Gerlits O, Parks JM, Langan P, Kovalevsky A, Heller WT. Protein Kinase A Catalytic Subunit Primed for Action: Time-Lapse Crystallography of Michaelis Complex Formation. Structure 2015; 23:2331-2340. [PMID: 26585512 DOI: 10.1016/j.str.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The catalytic subunit of the cyclic AMP-dependent protein kinase A (PKAc) catalyzes the transfer of the γ-phosphate of bound Mg2ATP to a serine or threonine residue of a protein substrate. Here, time-lapse X-ray crystallography was used to capture a series of complexes of PKAc with an oligopeptide substrate and unreacted Mg2ATP, including the Michaelis complex, that reveal important geometric rearrangements in and near the active site preceding the phosphoryl transfer reaction. Contrary to the prevailing view, Mg(2+) binds first to the M1 site as a complex with ATP and is followed by Mg(2+) binding to the M2 site. Concurrently, the target serine hydroxyl of the peptide substrate rotates away from the active site toward the bulk solvent, which breaks the hydrogen bond with D166. Lastly, the serine hydroxyl of the substrate rotates back toward D166 to form the Michaelis complex with the active site primed for phosphoryl transfer.
Collapse
Affiliation(s)
- Amit Das
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Oksana Gerlits
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - William T Heller
- Biology & Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
14
|
Komolov KE, Bhardwaj A, Benovic JL. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases. J Biol Chem 2015; 290:20629-20647. [PMID: 26032409 DOI: 10.1074/jbc.m115.647297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly conserved feature that is divided into three segments as follows: the C-lobe tether, the active-site tether (AST), and the N-lobe tether (NLT). This domain is fully resolved in GRK5 and reveals novel interactions with the nucleotide and N-lobe. Similar to other AGC kinases, the GRK5 AST is an integral part of the nucleotide-binding pocket, a feature not observed in other GRKs. The AST also mediates contact between the kinase N- and C-lobes facilitating closure of the kinase domain. The GRK5 NLT is largely displaced from its previously observed position in other GRKs. Moreover, although the autophosphorylation sites in the NLT are >20 Å away from the catalytic cleft, they are capable of rapid cis-autophosphorylation suggesting high mobility of this region. In summary, we provide a snapshot of GRK5 in a partially closed state, where structural elements of the kinase domain C-tail are aligned to form novel interactions to the nucleotide and N-lobe not previously observed in other GRKs.
Collapse
Affiliation(s)
- Konstantin E Komolov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
15
|
Molecular dynamics of the asymmetric dimers of EGFR: Simulations on the active and inactive conformations of the kinase domain. J Mol Graph Model 2015; 58:16-29. [DOI: 10.1016/j.jmgm.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/10/2023]
|
16
|
Gerlits O, Tian J, Das A, Langan P, Heller WT, Kovalevsky A. Phosphoryl Transfer Reaction Snapshots in Crystals: INSIGHTS INTO THE MECHANISM OF PROTEIN KINASE A CATALYTIC SUBUNIT. J Biol Chem 2015; 290:15538-15548. [PMID: 25925954 DOI: 10.1074/jbc.m115.643213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/06/2022] Open
Abstract
To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca(2+) ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca(2+) cations with Mg(2+) ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. The present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date.
Collapse
Affiliation(s)
- Oksana Gerlits
- From the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Jianhui Tian
- From the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Amit Das
- From the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Paul Langan
- From the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - William T Heller
- From the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.
| | - Andrey Kovalevsky
- From the Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831.
| |
Collapse
|
17
|
Owen GR, Stoychev S, Achilonu I, Dirr HW. Phosphorylation- and nucleotide-binding-induced changes to the stability and hydrogen exchange patterns of JNK1β1 provide insight into its mechanisms of activation. J Mol Biol 2014; 426:3569-89. [PMID: 25178256 DOI: 10.1016/j.jmb.2014.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022]
Abstract
Many studies have characterized how changes to the stability and internal motions of a protein during activation can contribute to their catalytic function, even when structural changes cannot be observed. Here, unfolding studies and hydrogen-deuterium exchange (HX) mass spectrometry were used to investigate the changes to the stability and conformation/conformational dynamics of JNK1β1 induced by phosphorylative activation. Equivalent studies were also employed to determine the effects of nucleotide binding on both inactive and active JNK1β1 using the ATP analogue, 5'-adenylyl-imidodiphosphate (AMP-PNP). JNK1β1 phosphorylation alters HX in regions involved in catalysis and substrate binding, changes that can be ascribed to functional modifications in either structure and/or backbone flexibility. Increased HX in the hinge between the N- and C-terminal domains implied that it acquires enhanced flexibility upon phosphorylation that may be a prerequisite for interdomain closure. In combination with the finding that nucleotide binding destabilizes the kinase, the patterns of solvent protection by AMP-PNP were consistent with a novel mode of nucleotide binding to the C-terminal domain of a destabilized and open domain conformation of inactive JNK1β1. Solvent protection by AMP-PNP of both N- and C-terminal domains in active JNK1β1 revealed that the domains close around nucleotide upon phosphorylation, concomitantly stabilizing the kinase. This suggests that phosphorylation activates JNK1β1 in part by increasing hinge flexibility to facilitate interdomain closure and the creation of a functional active site. By uncovering the complex interplay that occurs between nucleotide binding and phosphorylation, we present new insight into the unique mechanisms by which JNK1β1 is regulated.
Collapse
Affiliation(s)
- Gavin R Owen
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Stoyan Stoychev
- Biosciences, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
18
|
Chamberlain P, Delker S, Pagarigan B, Mahmoudi A, Jackson P, Abbasian M, Muir J, Raheja N, Cathers B. Crystal structures of PRK1 in complex with the clinical compounds lestaurtinib and tofacitinib reveal ligand induced conformational changes. PLoS One 2014; 9:e103638. [PMID: 25111382 PMCID: PMC4128815 DOI: 10.1371/journal.pone.0103638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/30/2014] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C related kinase 1 (PRK1) is a component of Rho-GTPase, androgen receptor, histone demethylase and histone deacetylase signaling pathways implicated in prostate and ovarian cancer. Herein we describe the crystal structure of PRK1 in apo form, and also in complex with a panel of literature inhibitors including the clinical candidates lestaurtinib and tofacitinib, as well as the staurosporine analog Ro-31-8220. PRK1 is a member of the AGC-kinase class, and as such exhibits the characteristic regulatory sequence at the C-terminus of the catalytic domain – the ‘C-tail’. The C-tail fully encircles the catalytic domain placing a phenylalanine in the ATP-binding site. Our inhibitor structures include examples of molecules which both interact with, and displace the C-tail from the active site. This information may assist in the design of inhibitors targeting both PRK and other members of the AGC kinase family.
Collapse
Affiliation(s)
- Philip Chamberlain
- Celgene Corporation, San Diego, California, United States of America
- Department of Biochemistry and Structural Biology, Celgene Corporation, San Diego, California, United States of America
- * E-mail:
| | - Silvia Delker
- Celgene Corporation, San Diego, California, United States of America
| | - Barbra Pagarigan
- Celgene Corporation, San Diego, California, United States of America
| | - Afshin Mahmoudi
- Celgene Corporation, San Diego, California, United States of America
| | - Pilgrim Jackson
- Celgene Corporation, San Diego, California, United States of America
| | - Mahan Abbasian
- Celgene Corporation, San Diego, California, United States of America
| | - Jeff Muir
- Celgene Corporation, San Diego, California, United States of America
| | - Neil Raheja
- Celgene Corporation, San Diego, California, United States of America
| | - Brian Cathers
- Celgene Corporation, San Diego, California, United States of America
| |
Collapse
|
19
|
Abstract
![]()
Although ADP release is the rate
limiting step in product turnover
by protein kinase A, the steps and motions involved in this process
are not well resolved. Here we report the apo and ADP bound structures
of the myristylated catalytic subunit of PKA at 2.9 and 3.5 Å
resolution, respectively. The ADP bound structure adopts a conformation
that does not conform to the previously characterized open, closed,
or intermediate states. In the ADP bound structure, the C-terminal
tail and Gly-rich loop are more closed than in the open state adopted
in the apo structure but are also much more open than the intermediate
or closed conformations. Furthermore, ADP binds at the active site
with only one magnesium ion, termed Mg2 from previous structures.
These structures thus support a model where ADP release proceeds through
release of the substrate and Mg1 followed by lifting of the Gly-rich
loop and disengagement of the C-terminal tail. Coupling of these two
structural elements with the release of the first metal ion fills
in a key step in the catalytic cycle that has been missing and supports
an ensemble of correlated conformational states that mediate the full
catalytic cycle for a protein kinase.
Collapse
Affiliation(s)
- Adam C Bastidas
- Department of Pharmacology, University of California, San Diego , San Diego, California 92093, United States
| | | | | |
Collapse
|
20
|
Smith CA, Toth M, Bhattacharya M, Frase H, Vakulenko SB. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1561-71. [PMID: 24914967 PMCID: PMC4051501 DOI: 10.1107/s1399004714005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 01/04/2023]
Abstract
The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Monolekha Bhattacharya
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hilary Frase
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
21
|
Stamos JL, Chu MLH, Enos MD, Shah N, Weis WI. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. eLife 2014; 3:e01998. [PMID: 24642411 PMCID: PMC3953950 DOI: 10.7554/elife.01998] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/β-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.
Collapse
Affiliation(s)
- Jennifer L Stamos
- Department of Structural Biology, Stanford University, Stanford, United States
| | | | | | | | | |
Collapse
|
22
|
Li C, Ma N, Wang Y, Wang Y, Chen G. Molecular dynamics simulation studies on the positive cooperativity of the Kemptide substrate with protein kinase A induced by the ATP ligand. J Phys Chem B 2014; 118:1273-87. [PMID: 24456306 DOI: 10.1021/jp411111g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positive cooperativity of the Kemptide substrate or the ATP molecule with the PKA catalytic subunit has been studied by dynamics simulations and free energy calculations on a series of binary and ternary models. The results revealed that the first ATP binding to the PKA catalytic subunit is energetically favorable for the successive Kemptide binding, confirming the positive cooperativity. The key residues Thr51, Glu170, and Phe187 in PKA contributing to the positive cooperativity have been found. The binding of ATP to PKA induces the positive cooperativity through one direct allosteric communication network in PKA from the ATP binding sites in the catalytic loop of the large lobe to the Kemptide binding sites in the activation segment of the large lobe, two indirect ones from those in the glycine-rich loop and the β3 strand of the small lobe, and from those in the catalytic loop to those in the activation segment via the αF helix media. The Tyr204Ala mutation in the activation segment of PKA causes both the decoupling of the cooperativity and the disruption of the corresponding allosteric network through the αF helix media.
Collapse
Affiliation(s)
- Chaoqun Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | | | | | | | | |
Collapse
|
23
|
Bastidas AC, Pierce LC, Walker RC, Johnson DA, Taylor SS. Influence of N-myristylation and ligand binding on the flexibility of the catalytic subunit of protein kinase A. Biochemistry 2013; 52:6368-79. [PMID: 24003983 PMCID: PMC3788587 DOI: 10.1021/bi400575k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The catalytic (C) subunit of protein
kinase A is regulated in part
by cotranslational N-myristylation and ligand binding. Using a combination
of time-resolved fluorescence anisotropy and molecular dynamics (MD)
simulations, we characterized the effect of N-myristylation and ligand
binding on C-subunit dynamics. Five single-site cysteine-substitution
mutants of the C-subunit were engineered with and without N-terminal
myristylation and labeled with fluorescein maleimide, and time-resolved
fluorescence anisotropy decays were measured to assess the flexibility
of the labeled regions in the presence and absence of ligands. A parallel
set of in silico experiments were performed to complement the experimental
findings. These experiments showed that myristylation produces both
local and global effects on C-subunit dynamics. The local effects
include stabilization of the N-terminus and myristate pocket, and
the global effects include small increases in mobility along the C-tail
at residue C343. Additionally, ligand binding was associated with
an increase in mobility of the myristate binding pocket for both the
myristylated and nonmyristylated enzyme on the basis of both the experimental
and MD results. Also, MD simulations suggest that the myristylated
protein exhibits increased dynamics when bound to ligands compared
to the nonmyristylated protein.
Collapse
Affiliation(s)
- Adam C Bastidas
- Department of Pharmacology, ‡Department of Chemistry and Biochemistry, ⊥San Diego Supercomputer Center, and ¶Howard Hughes Medical Institute, University of California , San Diego, California 92093, United States
| | | | | | | | | |
Collapse
|
24
|
Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D. Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs). MOLECULAR PLANT 2013; 6:1274-1289. [PMID: 23253603 PMCID: PMC3971370 DOI: 10.1093/mp/sss158] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
14-3-3 proteins play an important role in the regulation of many cellular processes. The Arabidopsis vacuolar two-pore K(+) channel 1 (TPK1) interacts with the 14-3-3 protein GRF6 (GF14-λ). Upon phosphorylation of the putative binding motif in the N-terminus of TPK1, GRF6 binds to TPK1 and activates the potassium channel. In order to gain a deeper understanding of this 14-3-3-mediated signal transduction, we set out to identify the respective kinases, which regulate the phosphorylation status of the 14-3-3 binding motif in TPK1. Here, we report that the calcium-dependent protein kinases (CDPKs) can phosphorylate and thereby activate the 14-3-3 binding motif in TPK1. Focusing on the stress-activated kinase CPK3, we visualized direct and specific interaction of TPK1 with the kinase at the tonoplast in vivo. In line with its proposed role in K(+) homeostasis, TPK1 phosphorylation was found to be induced by salt stress in planta, and both cpk3 and tpk1 mutants displayed salt-sensitive phenotypes. Molecular modeling of the TPK1-CPK3 interaction domain provided mechanistic insights into TPK1 stress-regulated phosphorylation responses and pinpointed two arginine residues in the N-terminal 14-3-3 binding motif in TPK1 critical for kinase interaction. Taken together, our studies provide evidence for an essential role of the vacuolar potassium channel TPK1 in salt-stress adaptation as a target of calcium-regulated stress signaling pathways involving Ca(2+), Ca(2+)-dependent kinases, and 14-3-3 proteins.
Collapse
Affiliation(s)
- Andreas Latz
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Norbert Mehlmer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Simone Zapf
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Thomas D. Mueller
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Barbara Pfister
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Edina Csaszar
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Markus Teige
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
- To whom correspondence should be addressed. , tel. +49 (0)931/888-6108, fax +49 (0)931/888-6157
| |
Collapse
|
25
|
Sims PC, Moody IS, Choi Y, Dong C, Iftikhar M, Corso BL, Gul OT, Collins PG, Weiss GA. Electronic measurements of single-molecule catalysis by cAMP-dependent protein kinase A. J Am Chem Soc 2013; 135:7861-8. [PMID: 23631749 DOI: 10.1021/ja311604j] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule studies of enzymes open a window into their dynamics and kinetics. A single molecule of the catalytic domain of cAMP-dependent protein kinase A (PKA) was attached to a single-walled carbon nanotube device for long-duration monitoring. The electronic recording clearly resolves substrate binding, ATP binding, and cooperative formation of PKA's catalytically functional, ternary complex. Using recordings of a single PKA molecule extending over 10 min and tens of thousands of binding events, we determine the full transition probability matrix and conversion rates governing formation of the apo, intermediate, and closed enzyme configurations. We also observe kinetic rates varying over 2 orders of magnitude from one second to another. Anti-correlation of the on and off rates for PKA binding to the peptide substrate, but not ATP, demonstrates that regulation of enzyme activity results from altering the stability of the PKA-substrate complex, not its binding to ATP. The results depict a highly dynamic enzyme offering dramatic possibilities for regulated activity, an attribute useful for an enzyme with crucial roles in cell signaling.
Collapse
Affiliation(s)
- Patrick C Sims
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yu S, Huang H, Iliuk A, Wang WH, Jayasundera KB, Tao WA, Post CB, Geahlen RL. Syk inhibits the activity of protein kinase A by phosphorylating tyrosine 330 of the catalytic subunit. J Biol Chem 2013; 288:10870-81. [PMID: 23447535 DOI: 10.1074/jbc.m112.426130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Syk protein-tyrosine kinase can have multiple effects on cancer cells, acting in some as a tumor suppressor by inhibiting motility and in others as a tumor promoter by enhancing survival. Phosphoproteomic analyses identified PKA as a Syk-specific substrate. Syk catalyzes the phosphorylation of the catalytic subunit of PKA (PKAc) both in vitro and in cells on Tyr-330. Tyr-330 lies within the adenosine-binding motif in the C-terminal tail of PKAc within a cluster of acidic amino acids (DDYEEEE), which is a characteristic of Syk substrates. The phosphorylation of PKAc on Tyr-330 by Syk strongly inhibits its catalytic activity. Molecular dynamics simulations suggest that this additional negative charge prevents the C-terminal tail from interacting with the substrate and the nucleotide-binding site to stabilize the closed conformation of PKAc, thus preventing catalysis from occurring. Phosphoproteomic analyses and Western blotting studies indicate that Tyr-330 can be phosphorylated in a Syk-dependent manner in MCF7 breast cancer cells and DT40 B cells. The phosphorylation of a downstream substrate of PKAc, cAMP-responsive element-binding protein (CREB), is inhibited in cells expressing Syk but can be rescued by a selective inhibitor of Syk. Modulation of CREB activity alters the expression of the CREB-regulated gene BCL2 and modulates cellular responses to genotoxic agents. Thus, PKA is a novel substrate of Syk, and its phosphorylation on Tyr-330 inhibits its participation in downstream signaling pathways.
Collapse
Affiliation(s)
- Shuai Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hereng TH, Backe PH, Kahmann J, Scheich C, Bjørås M, Skålhegg BS, Rosendal KR. Structure and function of the human sperm-specific isoform of protein kinase A (PKA) catalytic subunit Cα2. J Struct Biol 2012; 178:300-10. [PMID: 22504716 DOI: 10.1016/j.jsb.2012.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
Protein kinase A (PKA) exists as several tissue-specific isoforms that through phosphorylation of serine and threonine residues of substrate proteins act as key regulators of a number of cellular processes. We here demonstrate that the human sperm-specific isoform of PKA named Cα2 is important for sperm motility and thus male fertility. Furthermore, we report on the first three-dimensional crystal structure of human apo Cα2 to 2.1 Å. Apo Cα2 displays an open conformation similar to the well-characterized apo structure of murine Cα1. The asymmetric unit contains two molecules and the core of the small lobe is rotated by almost 13° in the A molecule relative to the B molecule. In addition, a salt bridge between Lys72 and Glu91 was observed for Cα2 in the apo-form, a conformation previously found only in dimeric or ternary complexes of Cα1. Human Cα2 and Cα1 share primary structure with the exception of the amino acids at the N-terminus coded for by an alternative exon 1. The N-terminal glycine of Cα1 is myristoylated and this aliphatic chain anchors the N-terminus to an intramolecular hydrophobic pocket. Cα2 cannot be myristoylated and the crystal structure revealed that the equivalent hydrophobic pocket is unoccupied and exposed. Nuclear magnetic resonance (NMR) spectroscopy further demonstrated that detergents with hydrophobic moieties of different lengths can bind deep into this uncovered pocket. Our findings indicate that Cα2 through the hydrophobic pocket has the ability to bind intracellular targets in the sperm cell, which may modulate protein stability, activity and/or cellular localization.
Collapse
|
28
|
Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem 2012; 287:13694-704. [PMID: 22375015 DOI: 10.1074/jbc.m112.355610] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colony-stimulating factor-1 (CSF-1)-stimulated CSF-1 receptor (CSF-1R) tyrosine phosphorylation initiates survival, proliferation, and differentiation signaling pathways in macrophages. Either activation loop Y807F or juxtamembrane domain (JMD) Y559F mutations severely compromise CSF-1-regulated proliferation and differentiation. YEF, a CSF-1R in which all eight tyrosines phosphorylated in the activated receptor were mutated to phenylalanine, lacks in vitro kinase activity and in vivo CSF-1-regulated tyrosine phosphorylation. The addition of Tyr-807 alone to the YEF backbone (Y807AB) led to CSF-1-independent but receptor kinase-dependent proliferation, without detectable activation loop Tyr-807 phosphorylation. The addition of Tyr-559 alone (Y559AB) supported a low level of CSF-1-independent proliferation that was slightly enhanced by CSF-1, indicating that Tyr-559 has a positive Tyr-807-independent effect. Consistent with the postulated autoinhibitory role of the JMD Tyr-559 and its relief by ligand-induced Tyr-559 phosphorylation, the addition of Tyr-559 to the Y807AB background suppressed proliferation in the absence of CSF-1, but restored most of the CSF-1-stimulated proliferation. Full restoration of kinase activation and proliferation required the additional add back of JMD Tyr-544. Inhibitor experiments indicate that the constitutive proliferation of Y807AB macrophages is mediated by the phosphatidylinositol 3-kinase (PI3K) and ERK1/2 pathways, whereas proliferation of WT and Y559,807AB macrophages is, in addition, contributed to by Src family kinase (SFK)-dependent pathways. Thus Tyr-807 confers sufficient kinase activity for strong CSF-1-independent proliferation, whereas Tyr-559 maintains the receptor in an inactive state. Tyr-559 phosphorylation releases this restraint and may also contribute to the CSF-1-regulated proliferative response by activating Src family kinase.
Collapse
Affiliation(s)
- Wenfeng Yu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ben-Shimon A, Niv MY. Deciphering the Arginine-binding preferences at the substrate-binding groove of Ser/Thr kinases by computational surface mapping. PLoS Comput Biol 2011; 7:e1002288. [PMID: 22125489 PMCID: PMC3219626 DOI: 10.1371/journal.pcbi.1002288] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022] Open
Abstract
Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions. Protein kinases are key signaling enzymes and major drug targets that catalyze the transfer of phosphate group to a phospho-accepting residue in the substrate. Unraveling molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor (substrate consensus sequence, SCS) is important for understanding kinase-substrates specificities and for designing peptidic inhibitors. Current methods used to predict this set of essential residues usually rely on linking between experimentally determined SCSs to kinase sequences. As such, these methods are less sensitive when specificity is dictated by subtle or kinase-unique sequence/structural features. In this study, we took a different approach for studying kinases specificities, by applying a new fragment-based method for mapping amino acid side chains on protein surfaces. We predicted and characterized the preference of Ser/Thr kinases toward Arginine binding, using the unbound kinase structures. The method produced high quality predictions and was able to provide novel insights and interesting departures from the prevailing views regarding the specificity-determining elements governing specificity toward Arginine. This work paves the way for studying the kinase binding preferences for other amino acids, for predicting protein-peptide structures, for facilitating the design of novel inhibitors, and for re-engineering of kinase specificities.
Collapse
Affiliation(s)
- Avraham Ben-Shimon
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Israel
| | - Masha Y. Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment and The Fritz Haber Center for Molecular Dynamics, The Hebrew University, Israel
- * E-mail:
| |
Collapse
|
30
|
Mirza A, Mustafa M, Talevich E, Kannan N. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. PLoS One 2010; 5:e14310. [PMID: 21179209 PMCID: PMC3001462 DOI: 10.1371/journal.pone.0014310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored. Methodology/Principal Findings In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization. Conclusion/Significance Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation.
Collapse
Affiliation(s)
- Amar Mirza
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | | | | | | |
Collapse
|
31
|
Mustafa M, Mirza A, Kannan N. Conformational regulation of the EGFR kinase core by the juxtamembrane and C-terminal tail: A molecular dynamics study. Proteins 2010; 79:99-114. [DOI: 10.1002/prot.22862] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/22/2010] [Accepted: 08/14/2010] [Indexed: 11/10/2022]
|
32
|
Abstract
All known protein kinases, except CASK [calcium/calmodulin (CaM)-activated serine-threonine kinase], require magnesium ions (Mg(2+)) to stimulate the transfer of a phosphate from adenosine 5'-triphosphate (ATP) to a protein substrate. The CaMK (calcium/calmodulin-dependent kinase) domain of CASK shows activity in the absence of Mg(2+); indeed, it is inhibited by divalent ions including Mg(2+). Here, we converted the Mg(2+)-inhibited wild-type CASK kinase (CASK(WT)) into a Mg(2+)-stimulated kinase (CASK(4M)) by substituting four residues within the ATP-binding pocket. Crystal structures of CASK(4M) with and without bound nucleotide and Mn(2+), together with kinetic analyses, demonstrated that Mg(2+) accelerates catalysis of CASK(4M) by stabilizing the transition state, enhancing the leaving group properties of adenosine 5'-diphosphate, and indirectly shifting the position of the gamma-phosphate of ATP. Phylogenetic analysis revealed that the four residues conferring Mg(2+)-mediated stimulation were substituted from CASK during early animal evolution, converting a primordial, Mg(2+)-coordinating form of CASK into a Mg(2+)-inhibited kinase. This emergence of Mg(2+) sensitivity (inhibition by Mg(2+)) conferred regulation of CASK activity by divalent cations, in parallel with the evolution of the animal nervous systems.
Collapse
Affiliation(s)
- Konark Mukherjee
- Dept. of Mol. and Cellular Physiology Stanford University School of Medicine 1050 Arastradero Rd. Palo Alto, CA 94304, USA
| | - Manu Sharma
- Dept. of Mol. and Cellular Physiology Stanford University School of Medicine 1050 Arastradero Rd. Palo Alto, CA 94304, USA
| | - Reinhard Jahn
- Max-Planck-Institut für Biophysikalische Chemie Neurobiologie Am Faßberg 11 D-37077 Göttingen, Germany
| | - Markus C. Wahl
- Freie Universität Berlin Fachbereich Biologie, Chemie, Pharmazie Institut für Chemie und Biochemie AG Strukturbiochemie Takustr. 6, D-14195 Berlin, Germany
| | - Thomas C. Südhof
- Dept. of Mol. and Cellular Physiology Stanford University School of Medicine 1050 Arastradero Rd. Palo Alto, CA 94304, USA
| |
Collapse
|
33
|
Fong DH, Lemke CT, Hwang J, Xiong B, Berghuis AM. Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila. J Biol Chem 2010; 285:9545-9555. [PMID: 20089863 DOI: 10.1074/jbc.m109.038364] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoglycoside phosphotransferases (APHs) constitute a diverse group of enzymes that are often the underlying cause of aminoglycoside resistance in the clinical setting. Several APHs have been extensively characterized, including the elucidation of the three-dimensional structure of two APH(3') isozymes and an APH(2'') enzyme. Although many APHs are plasmid-encoded and are capable of inactivating numerous 2-deoxystreptmaine aminoglycosides with multiple regiospecificity, APH(9)-Ia, isolated from Legionella pneumophila, is an unusual enzyme among the APH family for its chromosomal origin and its specificity for a single non-2-deoxystreptamine aminoglycoside substrate, spectinomycin. We describe here the crystal structures of APH(9)-Ia in its apo form, its binary complex with the nucleotide, AMP, and its ternary complex bound with ADP and spectinomycin. The structures reveal that APH(9)-Ia adopts the bilobal protein kinase-fold, analogous to the APH(3') and APH(2'') enzymes. However, APH(9)-Ia differs significantly from the other two types of APH enzymes in its substrate binding area and that it undergoes a conformation change upon ligand binding. Moreover, kinetic assay experiments indicate that APH(9)-Ia has stringent substrate specificity as it is unable to phosphorylate substrates of choline kinase or methylthioribose kinase despite high structural resemblance. The crystal structures of APH(9)-Ia demonstrate and expand our understanding of the diversity of the APH family, which in turn will facilitate the development of new antibiotics and inhibitors.
Collapse
Affiliation(s)
- Desiree H Fong
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6
| | - Christopher T Lemke
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jiyoung Hwang
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6
| | - Bing Xiong
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6; Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
34
|
Khavrutskii IV, Grant B, Taylor SS, McCammon JA. A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A. Biochemistry 2009; 48:11532-45. [PMID: 19886670 PMCID: PMC2789581 DOI: 10.1021/bi901475g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Protein kinases are key regulators of diverse signaling networks
critical for growth and development. Protein kinase A (PKA) is an
important kinase prototype that phosphorylates protein targets at
Ser and Thr residues by converting ATP to ADP. Mg2+ ions
play a crucial role in regulating phosphoryl transfer and can limit
overall enzyme turnover by affecting ADP release. However, the mechanism
by which Mg2+ participates in ADP release is poorly understood.
Here we use a novel transition path ensemble technique, the harmonic
Fourier beads method, to explore the atomic and energetic details
of the Mg2+-dependent ADP binding and release. Our studies
demonstrate that adenine-driven ADP binding to PKA creates three ion-binding
sites at the ADP/PKA interface that are absent otherwise. Two of these
sites bind the previously characterized Mg2+ ions, whereas
the third site binds a monovalent cation with high affinity. This
third site can bind the P-3 residue of substrate proteins and may
serve as a reporter of the active site occupation. Binding of Mg2+ ions restricts mobility of the Gly-rich loop that closes
over the active site. We find that simultaneous release of ADP with
Mg2+ ions from the active site is unfeasible. Thus, we
conclude that Mg2+ ions act as a linchpin and that at least
one ion must be removed prior to pyrophosphate-driven ADP release.
The results of the present study enhance understanding of Mg2+-dependent association of nucleotides with protein kinases.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Howard Hughes Medical Institute, University of California San Diego,La Jolla, California 92093-0365, USA.
| | | | | | | |
Collapse
|
35
|
Thompson EE, Kornev AP, Kannan N, Kim C, Ten Eyck LF, Taylor SS. Comparative surface geometry of the protein kinase family. Protein Sci 2009; 18:2016-26. [PMID: 19610074 PMCID: PMC2786965 DOI: 10.1002/pro.209] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identifying conserved pockets on the surfaces of a family of proteins can provide insight into conserved geometric features and sites of protein-protein interaction. Here we describe mapping and comparison of the surfaces of aligned crystallographic structures, using the protein kinase family as a model. Pockets are rapidly computed using two computer programs, FADE and Crevasse. FADE uses gradients of atomic density to locate grooves and pockets on the molecular surface. Crevasse, a new piece of software, splits the FADE output into distinct pockets. The computation was run on 10 kinase catalytic cores aligned on the alphaF-helix, and the resulting pockets spatially clustered. The active site cleft appears as a large, contiguous site that can be subdivided into nucleotide and substrate docking sites. Substrate specificity determinants in the active site cleft between serine/threonine and tyrosine kinases are visible and distinct. The active site clefts cluster tightly, showing a conserved spatial relationship between the active site and alphaF-helix in the C-lobe. When the alphaC-helix is examined, there are multiple mechanisms for anchoring the helix using spatially conserved docking sites. A novel site at the top of the N-lobe is present in all the kinases, and there is a large conserved pocket over the hinge and the alphaC-beta4 loop. Other pockets on the kinase core are strongly conserved but have not yet been mapped to a protein-protein interaction. Sites identified by this algorithm have revealed structural and spatially conserved features of the kinase family and potential conserved intermolecular and intramolecular binding sites.
Collapse
Affiliation(s)
- Elaine E Thompson
- Department of Chemistry and Biochemistry, University of California at San DiegoLa Jolla, CA 92093
| | - Alexandr P Kornev
- Department of Pharmacology, Baylor College of MedicineHouston, TX 77030
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthens, GA 30602-7229,Institute of Bioinformatics, University of GeorgiaAthens, GA 30602-7229
| | - Choel Kim
- Department of Pharmacology, Baylor College of MedicineHouston, TX 77030
| | - Lynn F Ten Eyck
- Department of Chemistry and Biochemistry, University of California at San DiegoLa Jolla, CA 92093,San Diego Supercomputer Center, University of California at San DiegoLa Jolla, CA 92093,*Correspondence to: Lynn F. Ten Eyck, San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA 92093. E-mail:
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California at San DiegoLa Jolla, CA 92093,Department of Pharmacology, Baylor College of MedicineHouston, TX 77030,Department of Pharmacology, University of California at San DiegoLa Jolla, CA 92093
| |
Collapse
|
36
|
Romano RA, Kannan N, Kornev AP, Allison CJ, Taylor SS. A chimeric mechanism for polyvalent trans-phosphorylation of PKA by PDK1. Protein Sci 2009; 18:1486-97. [PMID: 19530248 DOI: 10.1002/pro.146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphorylation on the activation loop of AGC kinases is typically mediated by PDK1. The precise mechanism for this in-trans phosphorylation is unknown; however, docking of a hydrophobic (HF) motif in the C-tail of the substrate kinase onto the N-lobe of PDK1 is likely an essential step. Using a peptide array of PKA to identify other PDK1-interacting sites, we discovered a second AGC-conserved motif in the C-tail that interacts with PDK1. Since this motif [FD(X)(1-2)Y/F] lies in the active site tether region and in PKA contributes to ATP binding, we call it the Adenosine binding (Ade) motif. The Ade motif is conserved as a PDK1-interacting site in Akt and PRK2, and we predict it will be a PDK1-interacting site for most AGC kinases. In PKA, the HF motif is only recognized when the turn motif Ser338 is phosphorylated, possibly serving as a phosphorylation "switch" that regulates how the Ade and HF motifs interact with PDK1. These results demonstrate that the extended AGC C-tail serves as a polyvalent element that trans-regulates PDK1 for catalysis. Modeling of the PKA C-tail onto PDK1 structure creates two chimeric sites; the ATP binding pocket, which is completed by the Ade motif, and the C-helix, which is positioned by the HF motif. Together, they demonstrate substrate-assisted catalysis involving two kinases that have co-evolved as symbiotic partners. The highly regulated turn motifs are the most variable part of the AGC C-tail. Elucidating the highly regulated cis and trans functions of the AGC tail is a significant future challenge.
Collapse
Affiliation(s)
- Robert A Romano
- Department of Chemistry, University of California San Diego, La Jolla, California 92093-0654, USA
| | | | | | | | | |
Collapse
|
37
|
Elkins JM, Amos A, Niesen FH, Pike ACW, Fedorov O, Knapp S. Structure of dystrophia myotonica protein kinase. Protein Sci 2009; 18:782-91. [PMID: 19309729 DOI: 10.1002/pro.82] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled-coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM-8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled-coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully-ordered and correctly positioned alphaC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C-terminal extension of the kinase domain is bound to the N-terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C-terminal extension compared to the closely related Rho-associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM-8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Xu F, Du P, Shen H, Hu H, Wu Q, Xie J, Yu L. Correlated mutation analysis on the catalytic domains of serine/threonine protein kinases. PLoS One 2009; 4:e5913. [PMID: 19526051 PMCID: PMC2690836 DOI: 10.1371/journal.pone.0005913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 05/11/2009] [Indexed: 01/15/2023] Open
Abstract
Background Protein kinases (PKs) have emerged as the largest family of signaling proteins in eukaryotic cells and are involved in every aspect of cellular regulation. Great progresses have been made in understanding the mechanisms of PKs phosphorylating their substrates, but the detailed mechanisms, by which PKs ensure their substrate specificity with their structurally conserved catalytic domains, still have not been adequately understood. Correlated mutation analysis based on large sets of diverse sequence data may provide new insights into this question. Methodology/Principal Findings Statistical coupling, residue correlation and mutual information analyses along with clustering were applied to analyze the structure-based multiple sequence alignment of the catalytic domains of the Ser/Thr PK family. Two clusters of highly coupled sites were identified. Mapping these positions onto the 3D structure of PK catalytic domain showed that these two groups of positions form two physically close networks. We named these two networks as θ-shaped and γ-shaped networks, respectively. Conclusions/Significance The θ-shaped network links the active site cleft and the substrate binding regions, and might participate in PKs recognizing and interacting with their substrates. The γ-shaped network is mainly situated in one side of substrate binding regions, linking the activation loop and the substrate binding regions. It might play a role in supporting the activation loop and substrate binding regions before catalysis, and participate in product releasing after phosphoryl transfer. Our results exhibit significant correlations with experimental observations, and can be used as a guide to further experimental and theoretical studies on the mechanisms of PKs interacting with their substrates.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
- * E-mail: (FX); (LY)
| | - Pan Du
- Biomedical Informatics Center, Northwestern University, Chicago, Illinois, United States of America
| | - Hongbo Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hairong Hu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qi Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Long Yu
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (FX); (LY)
| |
Collapse
|
39
|
Sterne-Marr R, Leahey PA, Bresee JE, Dickson HM, Ho W, Ragusa MJ, Donnelly RM, Amie SM, Krywy JA, Brookins-Danz ED, Orakwue SC, Carr MJ, Yoshino-Koh K, Li Q, Tesmer JJG. GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Biochemistry 2009; 48:4285-93. [PMID: 19338266 PMCID: PMC2744320 DOI: 10.1021/bi900151g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) were discovered by virtue of their ability to phosphorylate activated GPCRs. They constitute a branch of the AGC kinase superfamily, but their mechanism of activation is largely unknown. To initiate a study of GRK2 activation, we sought to identify sites on GRK2 remote from the active site that are involved in interactions with their substrate receptors. Using the atomic structure of GRK2 in complex with Gbetagamma as a guide, we predicted that residues on the surface of the kinase domain that face the cell membrane would interact with the intracellular loops and carboxyl-terminal tail of the GPCR. Our study focused on two regions: the kinase large lobe and an extension of the kinase domain known as the C-tail. Residues in the GRK2 large lobe whose side chains are solvent exposed and facing the membrane were targeted for mutagenesis. Residues in the C-tail of GRK2, although not ordered in the crystal structure, were also targeted because this region has been implicated in receptor binding and in the regulation of AGC kinase activity. Four substitutions out of 20, all within or adjacent to the C-tail, resulted in significant deficiencies in the ability of the enzyme to phosphorylate two different GPCRS: rhodopsin, and the beta(2)-adrenergic receptor. The mutant exhibiting the most dramatic impairment, V477D, also showed significant defects in phosphorylation of nonreceptor substrates. Interestingly, Michaelis-Menten kinetics suggested that V477D had a 12-fold lower k(cat), but no changes in K(M), suggesting a defect in acquisition or stabilization of the closed state of the kinase domain. V477D was also resistant to activation by agonist-treated beta(2)AR. Therefore, Val477 and other residues in the C-tail are expected to play a role in the activation of GRK2 by GPCRs.
Collapse
|
40
|
Yang J, Kennedy EJ, Wu J, Deal MS, Pennypacker J, Ghosh G, Taylor SS. Contribution of non-catalytic core residues to activity and regulation in protein kinase A. J Biol Chem 2009; 284:6241-8. [PMID: 19122195 DOI: 10.1074/jbc.m805862200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase A holoenzyme is comprised of two catalytic (C) and two regulatory (R) subunits which keep the enzyme in an inhibited state before activation by cyclic-AMP. The C-subunit folds into a conserved bi-lobal core flanked by N- and C-terminal tails. We report here characterization of a C-tail loss-of-function mutant, CF327A, and a related suppressor mutant, CF327A/K285P. Phe-327 is the only residue outside the kinase core that binds to the adenine ring of ATP, whereas Lys-285 is approximately 45 A away and lies in an AGC kinase-specific insert. The two mutations were previously identified from a yeast genetic screen, where the F327A mutation was unable to complement cell growth but mutation of K285P in the same allele rescued cell viability. We show that CF327A exhibits significant reduction in catalytic efficiency, which likely explains the observed loss-of-function phenotype. Interestingly, the additional K285P mutation does not restore kinase activity but reduces the inhibitory interaction of the double mutant with RII subunits. The additional K285P mutation, thus, helps to keep a low but uninhibited PKA activity that is sufficient for cell viability. The crystal structure of CF327A/K285P further reveals that recruitment of Phe-327 to the ATP binding pocket not only contributes to the hydrophobic pocket, as previously thought, but also recruits its flanking C-tail region to the kinase core, thereby concertedly positioning the glycine-rich loop and ATP for phosphoryl transfer. The study exemplifies two different ways for regulating cAMP-dependent protein kinase activity through non-conserved residues and sheds light on the structural and functional diversity of the kinase family.
Collapse
Affiliation(s)
- Jie Yang
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
It has recently been shown (Kunik et al., PLOS Comput Biol 2007;3(8):e167) that the occurrence of specific peptides (SPs) on sequences of enzymes allows for accurate EC classification of enzymes. We inquire whether these SPs play important roles in bringing about the enzymatic function. This is assessed by cross-checking the occurrence of SPs on enzymes with Swiss-Prot annotations and PDB spatial structures of enzymes. Analyzing the coverage of functional annotations of enzymes, we demonstrate that SPs contain major fractions of all annotated features. This result is statistically highly significant and associates over 10% of all SPs with important biological markers. Concentrating on DNA binding regions, relevant to LexA repressor enzymes, we find interesting coverage patterns. Moreover, for the same data, we demonstrate that SPs allow for subclassification of the relevant bacteria into phylogenetic classes. An analysis of mutagen annotations on SPs appearing on all enzymes leads to the conclusion that mutations on SPs tend to damage the enzymatic function much more than expected from a background model, hence SPs are of high importance to enzymatic functions. SPs that lie in 3D pockets that are shared by active and binding sites, are shown to be significantly enriched by glycine, leading to the hypothesis that they are responsible for conformational plasticity. Finally we show that SPs can partially resolve outstanding difficult problems of convergent evolution by representing correctly enzyme functions in spite of remote homologies in sequence and in structure.
Collapse
Affiliation(s)
- Yasmine Meroz
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
42
|
Effect of metal ions on high-affinity binding of pseudosubstrate inhibitors to PKA. Biochem J 2008; 413:93-101. [PMID: 18373497 DOI: 10.1042/bj20071665] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformational control of protein kinases is an important way of modulating catalytic activity. Crystal structures of the C (catalytic) subunit of PKA (protein kinase A) in complex with physiological inhibitors and/or nucleotides suggest a highly dynamic process switching between open and more closed conformations. To investigate the underlying molecular mechanisms, SPR (surface plasmon resonance) was used for detailed binding analyses of two physiological PKA inhibitors, PKI (heat-stable protein kinase inhibitor) and a truncated form of the R (regulatory) subunit (RIalpha 92-260), in the presence of various concentrations of metals and nucleotides. Interestingly, it could be demonstrated that high-affinity binding of each pseudosubstrate inhibitor was dependent only on the concentration of divalent metal ions. At low micromolar concentrations of Mg2+ with PKI, transient interaction kinetics with fast on- and off-rates were observed, whereas at high Mg2+ concentrations the off-rate was slowed down by a factor of 200. This effect could be attributed to the second, low-affinity metal-binding site in the C subunit. In contrast, when investigating the interaction of RIalpha 92-260 with the C subunit under the same conditions, it was shown that the association rate rather than the dissociation rate was influenced by the presence of high concentrations of Mg2+. A model is presented, where the high-affinity interaction of the C subunit with pseudosubstrate inhibitors (RIalpha and PKI) is dependent on the closed, catalytically inactive conformation induced by the binding of a nucleotide complex where both of the metal-binding sites are occupied.
Collapse
|
43
|
Jacobs MD, Caron PR, Hare BJ. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Proteins 2008; 70:1451-60. [PMID: 17910071 DOI: 10.1002/prot.21633] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report a clustering of public human protein kinase structures based on the conformations of two structural elements, the activation segment and the C-helix, revealing three discrete clusters. One cluster includes kinases in catalytically active conformations. Each of the other clusters contains a distinct inactive conformation. Typically, kinases adopt at most one of the inactive conformations in available X-ray structures, implying that one of the conformations is preferred for many kinases. The classification is consistent with selectivity profiles of several well-characterized kinase inhibitors. We show further that inhibitor selectivity profiles guide kinase classification. For example, selective inhibition of lck among src-family kinases by imatinib (Gleevec) suggests that the relative stabilities of inactive conformations of lck are different from other src-family kinases. We report the X-ray structure of the lck/imatinib complex, confirming that the conformation adopted by lck is distinct from other structurally-characterized src-family kinases and instead resembles kinases abl1 and kit in complex with imatinib. Our classification creates new paths for designing small-molecule inhibitors.
Collapse
Affiliation(s)
- Marc D Jacobs
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
44
|
Kannan N, Haste N, Taylor SS, Neuwald AF. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc Natl Acad Sci U S A 2007; 104:1272-7. [PMID: 17227859 PMCID: PMC1783090 DOI: 10.1073/pnas.0610251104] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catalytic activities of eukaryotic protein kinases (EPKs) are regulated by movement of the C-helix, movement of the N and C lobes upon ATP binding, and movement of the activation loop upon phosphorylation. Statistical analysis of the selective constraints associated with AGC kinase functional divergence reveals conserved interactions between these regulatory regions and three regions of the C-terminal tail (C-tail): the N-lobe tether (NLT), the active-site tether (AST), and the C-lobe tether (CLT). The NLT serves as a docking site for an upstream kinase PDK1 and, upon activation, positions the C-helix within the ATP binding pocket. The AST directly interacts with the ATP binding pocket, and the CLT interacts with the interlobe linker and the alphaC-beta4 loop, which appears to serve as a hinge for C-helix movement. The C-tail is a hallmark of AGC functional divergence inasmuch as most of the conserved core residues that distinguish AGC kinases from other EPKs are associated with the NLT, AST, or CLT. Moreover, several AGC catalytic core conserved residues that interact with the C-tail strikingly diverge from the canonical residues observed at corresponding positions in nearly all other EPKs, suggesting that the catalytic core may have coevolved with the C-tail in AGC kinases. These observations, along with the fact that the C-tail is needed for catalytic activity suggests that the C-tail is a cis-acting regulatory module that can also serve as a regulatory "handle," to which trans-acting cellular components can bind to modulate activity.
Collapse
Affiliation(s)
- Natarajan Kannan
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0654; and
| | - Nina Haste
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0654; and
| | - Susan S. Taylor
- *Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0654; and
- To whom correspondence may be addressed: E-mail:
or
| | - Andrew F. Neuwald
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724
- To whom correspondence may be addressed: E-mail:
or
| |
Collapse
|
45
|
Ung MU, Lu B, McCammon JA. E230Q mutation of the catalytic subunit of cAMP-dependent protein kinase affects local structure and the binding of peptide inhibitor. Biopolymers 2006; 81:428-39. [PMID: 16365849 DOI: 10.1002/bip.20434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The active site of the mammalian cAMP-dependent protein kinase catalytic subunit (C-subunit) has a cluster of nonconserved acidic residues-Glu127, Glu170, Glu203, Glu230, and Asp241-that are crucial for substrate recognition and binding. Studies have shown that the Glu230 to Gln mutant (E230Q) of the enzyme has physical properties similar to the wild-type enzyme and has decreased affinity for a short peptide substrate, Kemptide. However, recent experiments intended to crystallize ternary complex of the E230Q mutant with MgATP and protein kinase inhibitor (PKI) could only obtain crystals of the apo-enzyme of E230Q mutant. To deduce the possible mechanism that prevented ternary complex formation, we used the relaxed-complex method (Lin, J.-H., et al. J Am Chem Soc 2002, 24, 5632-5633) to study PKI binding to the E230Q mutant C-subunit. In the E230Q mutant, we observed local structural changes of the peptide binding site that correlated closely to the reduced PKI affinity. The structural changes occurred in the F-to-G helix loop and appeared to hinder PKI binding. Reduced electrostatic potential repulsion among Asp241 from the helix loop section and the other acidic residues in the peptide binding site appear to be responsible for the structural change.
Collapse
Affiliation(s)
- Man-Un Ung
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0365, USA
| | | | | |
Collapse
|
46
|
Lodowski DT, Tesmer VM, Benovic JL, Tesmer JJG. The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J Biol Chem 2006; 281:16785-93. [PMID: 16613860 DOI: 10.1074/jbc.m601327200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe the 2.6-A crystal structure of human G protein-coupled receptor kinase (GRK)-6, a key regulator of dopaminergic signaling and lymphocyte chemotaxis. GRK6 is a member of the GRK4 subfamily of GRKs, which is represented in most, if not all, metazoans. Comparison of GRK6 with GRK2 confirms that the catalytic core of all GRKs consists of intimately associated kinase and regulator of G protein signaling (RGS) homology domains. Despite being in complex with an ATP analog, the kinase domain of GRK6 remains in an open, presumably inactive conformation, suggesting that G protein-coupled receptors activate GRKs by inducing kinase domain closure. The structure reveals a putative phospholipid-binding site near the N terminus of GRK6 and structural elements within the kinase substrate channel that likely influence G protein-coupled receptor access and specificity. The crystalline GRK6 RGS homology domain forms an extensive dimer interface using conserved hydrophobic residues distinct from those in GRK2 that bind Galpha(q), although dimerization does not appear to occur in solution and is not required for receptor phosphorylation.
Collapse
Affiliation(s)
- David T Lodowski
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-0165, USA
| | | | | | | |
Collapse
|
47
|
Wu J, Yang J, Kannan N, Xuong NH, Ten Eyck LF, Taylor SS. Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal A helix. Protein Sci 2005; 14:2871-9. [PMID: 16253959 PMCID: PMC2253214 DOI: 10.1110/ps.051715205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glu230, one of the acidic residues that cluster around the active site of the catalytic subunit of cAMP-dependent protein kinase, plays an important role in substrate recognition. Specifically, its side chain forms a direct salt-bridge interaction with the substrate's P-2 Arg. Previous studies showed that mutation of Glu230 to Gln (E230Q) caused significant decreases not only in substrate binding but also in the rate of phosphoryl transfer. To better understand the importance of Glu230 for structure and function, we solved the crystal structure of the E230Q mutant at 2.8 A resolution. Surprisingly, the mutant preferred an open conformation with no bound ligands observed, even though the crystals were grown in the presence of MgATP and the inhibitor peptide, IP20. This is in contrast to the wild-type protein that, under the same conditions, prefers the closed conformation of a ternary complex. The structure highlights the importance of the electrostatic surface not only for substrate binding and catalysis, but also for the mechanism for closing the active site cleft. This surface mutation clearly disrupts the recognition and binding of substrate peptide so that the enzyme prefers an open conformation that cannot trap ATP. This is consistent with the reinforcing concepts of conformational dynamics and the synergistic binding of ATP and substrate peptide. Another unusual feature of the structure is the observation of the entire N terminus (Gly1-Thr32) assumes an extended alpha-helix conformation. Finally, based on temperature factors, this mutant structure is more stable than the wild-type C-subunit in the apo state.
Collapse
Affiliation(s)
- Jian Wu
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, Leichtag 415, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
48
|
Noble M, Barrett P, Endicott J, Johnson L, McDonnell J, Robertson G, Zawaira A. Exploiting structural principles to design cyclin-dependent kinase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:58-64. [PMID: 16361058 DOI: 10.1016/j.bbapap.2005.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/12/2005] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
Although cyclin-dependent kinases (CDKs) have been extensively targeted in anti cancer drug design, no CDK inhibitor has yet been approved for use in cancer therapy. While this may in part be because inhibitors clinically evaluated to date have not demonstrated clean inhibition of a single CDK, another contributing factor is an apparent latent functional redundancy in the CDK cell-cycle regulatory system. This further complicates the already challenging goal of targeting CDKs, since it implies that a therapeutically useful inhibitor will have to selectively inhibit more than one CDK family member among the complement of cellular proteins. Despite these difficulties, achieving an appropriate profile of CDK inhibition may yet be possible using ATP-competitive inhibitors, thanks to advances in computational and experimental methods of drug design. However, as an alternative to ATP-competitive inhibitors, inhibitors that interfere with a CDK-specific protein:protein interaction, such as that which occurs at the recruitment site found on several cyclins, may offer a route to a therapeutically useful inhibitory profile.
Collapse
Affiliation(s)
- Martin Noble
- Laboratory of Molecular Biophysics and Department of Biochemistry, The Rex Richards Building, South Parks Road, Oxford, OX1 3QU, UK.
| | | | | | | | | | | | | |
Collapse
|
49
|
Taylor SS, Kim C, Vigil D, Haste NM, Yang J, Wu J, Anand GS. Dynamics of signaling by PKA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:25-37. [PMID: 16214430 DOI: 10.1016/j.bbapap.2005.08.024] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/16/2022]
Abstract
The catalytic and regulatory subunits of cAMP-dependent protein kinase (PKA) are highly dynamic signaling proteins. In its dissociated state the catalytic subunit opens and closes as it moves through its catalytic cycle. In this subunit, the core that is shared by all members of the protein kinase family is flanked by N- and C-terminal segments. Each are anchored firmly to the core by well-defined motifs and serve to stabilize the core. Protein kinases are not only catalysts, they are also scaffolds. One of their major functions is to bind to other proteins. In addition to its interactions with the N- and C- termini, the catalytic subunit interacts with its inhibitor proteins, PKI and the regulatory subunits. Both bind with subnanomolar affinity. To achieve this tight binding requires docking of a substrate mimetic to the active site cleft as well as a peripheral docking site. The peripheral site used by PKI is distinct from that used by RIalpha as revealed by a recent structure of a C:RIalpha complex. Upon binding to the catalytic subunit, the linker region of RIalpha becomes ordered. In addition, cAMP-binding domain A undergoes major conformational changes. RIalpha is a highly malleable protein. Using small angle X-ray scattering, the overall shape of the regulatory subunits and corresponding holoenzymes have been elucidated. These studies reveal striking and surprising isoform differences.
Collapse
Affiliation(s)
- Susan S Taylor
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry and Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0654, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lei M, Robinson MA, Harrison SC. The active conformation of the PAK1 kinase domain. Structure 2005; 13:769-78. [PMID: 15893667 DOI: 10.1016/j.str.2005.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/13/2005] [Accepted: 03/14/2005] [Indexed: 11/24/2022]
Abstract
The p21-activated kinases (PAKs) participate in cytoskeletal control networks, downstream of Rho-family GTPases. A structure of PAK1 in an autoregulated, "off" state showed that a regulatory region, N-terminal to the kinase domain, forces the latter into an inactive conformation, prevents phosphorylation of Thr423 in the activation loop, and promotes dimerization. We have now determined structures at 1.8 A resolution for the free PAK1 kinase domain, with a mutation in the active site that blocks enzymatic activity, and for the same domain with a "phosphomimetic" mutation in the activation loop. The two very similar structures show that even in the absence of a phosphorylated Thr423, the kinase has an essentially active conformation. When Cdc42 binds the regulatory region and dissociates the dimer, PAK1 will be in an "intermediate-active" state, with a capacity to phosphorylate itself or other substrates even prior to modification of its activation loop.
Collapse
Affiliation(s)
- Ming Lei
- Laboratory of Molecular Medicine, Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|