1
|
Dong J, Fu YX, Zheng BF, Chen MX, Chen Q, Wishwajith K, Dong J, Lin HY, Yang GF. Repurposing 4-Hydroxyphenylpyruvate dioxygenase inhibitors as novel agents for mosquito control: A structure-based design approach. Int J Biol Macromol 2025; 315:144566. [PMID: 40412679 DOI: 10.1016/j.ijbiomac.2025.144566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Mosquito-borne diseases remain a significant global health burden, necessitating innovative vector control strategies. 4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors, widely used as herbicides, have been recently explored for their potential to disrupt mosquito tyrosine metabolic pathways, offering a novel approach to mosquito control. This study utilized a structure-based rational design strategy to repurpose existing HPPD inhibitors, such as pyrazole-benzene 2,2-dioxothiadiazole and pyrazole-1,3-isoindolinone hybrids, targeting Aedes aegypti HPPD (AaHPPD). Biochemical assays demonstrated that a series of synthesized hybrid compounds exhibited superior inhibitory activity against mosquito-derived HPPD compared to traditional inhibitors, the IC50 values of compound a9 and compound c14 are 7.70 nM and 53.80 nM, respectively. Crystallographic analysis showed stable inhibitor binding mediated by chelation with metal ions in the active site and π-π interactions with Phe336 and Phe364. C6/36 cell assays further confirmed elevated tyrosine accumulation and significantly affected energy metabolism in the tricarboxylic acid cycle following treatment with the newly designed inhibitors. These findings highlight the potential of repurposed HPPD inhibitors as safe and effective mosquito control agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Jin Dong
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Yi-Xuan Fu
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Bai-Feng Zheng
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Xi Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Kandegama Wishwajith
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170, Sri Lanka
| | - Jiangqing Dong
- Hubei Shizhen Laboratory, Wuhan 430061, PR China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Nanan LF, Esmel AE, Dali BL, Keita M, Koblavi-Mansilla F, Megnassan E. Computer-Aided Design and Pharmacophore-Based Screening of a Diverse Combinatorial Library of Phytoselective Aryloxyacetic Acid Derivatives as HPPD Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8129-8147. [PMID: 40017298 DOI: 10.1021/acs.jafc.4c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We investigated the inhibitory potency of aryloxyacetic acid derivatives (AADs) on 4-hydroxyphenylpyruvate dioxygenase (HPPD), a crucial enzyme target for HPPD herbicide development. Developing a wide-ranging approach combining reported structure-activity relationships (SARs with the observed inhibitory potencies of the enzyme Kiexp), our simulations for molecular mechanics Poisson-Boltzmann (MM-PB) complexation quantitative SAR (QSAR) (computed relative Gibbs free energies of the HPPD-AADx complex formation ΔΔGcom), and three-dimensional (3D)-QSAR pharmacophore (PH4) models for screening the chemical subspace of aryloxyacetic acid derivatives (a virtual library of AADs, VL), we come out with a handful of novel AADs with promising predictive HPPD inhibitory potency and confirmed molecular dynamics (MD) conformational stability. The 3D-QSAR model revealed a correlation (pKiexp = a × ΔΔGcom + b) between computed data and observed inhibition ones: pKiexp = -0.0544 × ΔΔGcom + 6.93, R2 = 0.87 for a training set (TS) of 30 AAD (AAD1-30). The subsequent 3D-QSAR pharmacophore (PH4) of HPPD inhibition by AADs confirmed the correlation (pKiexp = 0.863 × pKipre + 7.92, R2 = 0.86) between PH4-predicted pKipre and the observed ones pKiexp. The structural information derived from these models suggested suitable substituents for building a virtual library (VL) of AAD analogues representing a chemical subspace of 79,500 compounds to be PH4-screened in search of more potent inhibitors; the best predicted Kipre of them reached 40 pM. Finally, the good stability of the AtHPPD-AADx complex and the flexibility of the active conformation of the inhibitor for selected top-ranked AAD analogues were checked with the help of molecular dynamics (MD, 200 ns runs). This computational study proposed a set of new predicted potent inhibitors with herbicidal effects.
Collapse
Affiliation(s)
- Landry F Nanan
- Laboratory of Fundamental and Applied Physics, University of Abobo-Adjamé (Now Nangui ABROGOUA), Autoroute d'Abobo, Abidjan 02, Ivory Coast
| | - Akori E Esmel
- Laboratory of Fundamental and Applied Physics, University of Abobo-Adjamé (Now Nangui ABROGOUA), Autoroute d'Abobo, Abidjan 02, Ivory Coast
| | - Brice L Dali
- Laboratory of Fundamental and Applied Physics, University of Abobo-Adjamé (Now Nangui ABROGOUA), Autoroute d'Abobo, Abidjan 02, Ivory Coast
| | - Melalie Keita
- Laboratory of Fundamental and Applied Physics, University of Abobo-Adjamé (Now Nangui ABROGOUA), Autoroute d'Abobo, Abidjan 02, Ivory Coast
| | - Frederica Koblavi-Mansilla
- Laboratory of Crystallography and Molecular Physics, University of Cocody (Now Felix Houphouët-Boigny), Avenue de l'Université, Abidjan 22, Ivory Coast
- Laboratory of Material Sciences, The Environment and Solar Energy, University Felix Houphouët-Boigny, Avenue de l'Université, Abidjan 22, Ivory Coast
| | - Eugene Megnassan
- Laboratory of Fundamental and Applied Physics, University of Abobo-Adjamé (Now Nangui ABROGOUA), Autoroute d'Abobo, Abidjan 02, Ivory Coast
- Laboratory of Crystallography and Molecular Physics, University of Cocody (Now Felix Houphouët-Boigny), Avenue de l'Université, Abidjan 22, Ivory Coast
- Laboratory of Material Sciences, The Environment and Solar Energy, University Felix Houphouët-Boigny, Avenue de l'Université, Abidjan 22, Ivory Coast
- Laboratory of Structural and Theoretical Organic Chemistry, University Felix Houphouët-Boigny, Avenue de l'Université, Abidjan 22, Ivory Coast
- QLS, ICTP-UNESCO, Strada Costiera 11, I 34151 Trieste, Italy
| |
Collapse
|
3
|
Sánchez R, Torres JE, Vico LG, Luaces P, Sanz C, Pérez AG. Molecular and Biochemical Characterization of Olive 4-Hydroxyphenyl Pyruvate Dioxygenase Involved in the Biosynthesis of Tocopherols Present in Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28270-28279. [PMID: 39668601 DOI: 10.1021/acs.jafc.4c06657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Olive (Olea europaea) fruit contains high amounts of tocopherols that are responsible, along with secoiridoid phenolic compounds, for most of the antioxidant and anti-inflammatory properties of virgin olive oil. This study focuses on the molecular and biochemical characterization of olive 4-hydroxyphenyl pyruvate dioxygenase (OeHPPD) catalyzing the biosynthesis of homogentisic acid, which constitutes the phenolic residue in the tocopherol molecule. OeHPPD is a cytoplasmic enzyme with a molecular weight of 49.8 kDa and a predicted tertiary structure very similar to the Arabidopsis enzyme that suggests similar catalytic mechanisms. OeHPPD has an estimated Kcat of 75.26 s-1 and catalytic efficiency (Km/Kcat) of 0.145 μM-1 s-1 with 4-hydroxyphenyl pyruvate as the substrate. The expression analysis in fruits from selected olive cultivars harvested at different ripening stages indicates that the OeHPPD gene is temporally regulated and cultivar-dependent. Moreover, the analysis of OeHPPD expression in fruits affected by drought stress suggests that HPPD is involved in olive environmental adaptation.
Collapse
Affiliation(s)
- Rosario Sánchez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Jesús Expósito Torres
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Lourdes García Vico
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Pilar Luaces
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Carlos Sanz
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| | - Ana G Pérez
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (CSIC), 41013 Sevilla, Spain
| |
Collapse
|
4
|
Crown M, Bashton M. ProCogGraph: a graph-based mapping of cognate ligand domain interactions. BIOINFORMATICS ADVANCES 2024; 4:vbae161. [PMID: 39544627 PMCID: PMC11561043 DOI: 10.1093/bioadv/vbae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/06/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Motivation Mappings of domain-cognate ligand interactions can enhance our understanding of the core concepts of evolution and be used to aid docking and protein design. Since the last available cognate-ligand domain database was released, the PDB has grown significantly and new tools are available for measuring similarity and determining contacts. Results We present ProCogGraph, a graph database of cognate-ligand domain mappings in PDB structures. Building upon the work of the predecessor database, PROCOGNATE, we use data-driven approaches to develop thresholds and interaction modes. We explore new aspects of domain-cognate ligand interactions, including the chemical similarity of bound cognate ligands and how domain combinations influence cognate ligand binding. Finally, we use the graph to add specificity to partial EC IDs, showing that ProCogGraph can complete partial annotations systematically through assigned cognate ligands. Availability and implementation The ProCogGraph pipeline, database and flat files are available at https://github.com/bashton-lab/ProCogGraph and https://doi.org/10.5281/zenodo.13165851.
Collapse
Affiliation(s)
- Matthew Crown
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Matthew Bashton
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
5
|
Ma T, Gao S, Zhao LX, Ye F, Fu Y. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Molecular Design to Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17125-17137. [PMID: 39047218 DOI: 10.1021/acs.jafc.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Weed resistance is a critical issue in crop production. Among the known herbicides, 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are crucial for addressing weed resistance. HPPD inhibitors constitute a pivotal aspect of contemporary crop protection strategies. The advantages of these herbicides are their broad weed spectrum, flexible application, and excellent compatibility with other herbicides. They also exhibit satisfactory crop selectivity and low toxicity and are environmentally friendly. An increasing number of new HPPD inhibitors have been designed by combining computer-aided drug design with conventional design approaches. Herein, the molecular design and structural features of innovative HPPD inhibitors are reviewed to guide the development of new HPPD inhibitors possessing an enhanced biological efficacy.
Collapse
Affiliation(s)
- Tengfei Ma
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Trezza A, Birgauan A, Geminiani M, Visibelli A, Santucci A. Molecular and Evolution In Silico Studies Unlock the h4-HPPD C-Terminal Tail Gating Mechanism. Biomedicines 2024; 12:1196. [PMID: 38927403 PMCID: PMC11201076 DOI: 10.3390/biomedicines12061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) is involved in the catabolism of the amino acid tyrosine in organisms such as bacteria, plants, and animals. It catalyzes the conversion of 4-hydroxyphenylpyruvate to a homogenisate in the presence of molecular oxygen and Fe(II) as a cofactor. This enzyme represents a key step in the biosynthesis of important compounds, and its activity deficiency leads to severe, rare autosomal recessive disorders, like tyrosinemia type III and hawkinsinuria, for which no cure is currently available. The 4-HPPD C-terminal tail plays a crucial role in the enzyme catalysis/gating mechanism, ensuring the integrity of the active site for catalysis through fine regulation of the C-terminal tail conformation. However, despite growing interest in the 4-HPPD catalytic mechanism and structure, the gating mechanism remains unclear. Furthermore, the absence of the whole 3D structure makes the bioinformatic approach the only possible study to define the enzyme structure/molecular mechanism. Here, wild-type 4-HPPD and its mutants were deeply dissected by applying a comprehensive bioinformatics/evolution study, and we showed for the first time the entire molecular mechanism and regulation of the enzyme gating process, proposing the full-length 3D structure of human 4-HPPD and two novel key residues involved in the 4-HPPD C-terminal tail conformational change.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
| | - Ancuta Birgauan
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
- SienabioACTIVE, Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy
| | - Anna Visibelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
- SienabioACTIVE, Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, PI, Italy
| |
Collapse
|
7
|
Pimviriyakul P, Buttranon S, Soithongcharoen S, Supawatkon C, Disayabootr K, Watthaisong P, Tinikul R, Jaruwat A, Chaiyen P, Chitnumsub P, Maenpuen S. Structure and biochemical characterization of an extradiol 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Acinetobacter baumannii. Arch Biochem Biophys 2023; 747:109768. [PMID: 37769893 DOI: 10.1016/j.abb.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
3,4-Dihydroxyphenylacetate (DHPA) 2,3-dioxygenase (EC 1.13.11.15) from Acinetobacter baumannii (AbDHPAO) is an enzyme that catalyzes the 2,3-extradiol ring-cleavage of DHPA in the p-hydroxyphenylacetate (HPA) degradation pathway. While the biochemical reactions of various DHPAOs have been reported, only structures of DHPAO from Brevibacterium fuscum and their homologs are available. Here, we report the X-ray structure and biochemical characterization of an Fe2+-specific AbDHPAO that shares 12% sequence identity to the enzyme from B. fuscum. The 1.8 Å X-ray structure of apo-AbDHPAO was determined with four subunits per asymmetric unit, consistent with a homotetrameric structure. Interestingly, the αβ-sandwiched fold of the AbDHPAO subunit is different from the dual β-barrel-like motif of the well-characterized B. fuscum DHPAO structures; instead, it is similar to the structures of non-DHPA extradiol dioxygenases from Comamonas sp. and Sphingomonas paucimobilis. Similarly, these extradiol dioxygenases share the same chemistry owing to a conserved 2-His-1-carboxylate catalytic motif. Structure analysis and molecular docking suggested that the Fe2+ cofactor and substrate binding sites consist of the conserved residues His12, His57, and Glu238 forming a 2-His-1-carboxylate motif ligating to Fe2+ and DHPA bound with Fe2+ in an octahedral coordination. In addition to DHPA, AbDHPAO can also use other 3,4-dihydroxyphenylacetate derivatives with different aliphatic carboxylic acid substituents as substrates, albeit with low reactivity. Altogether, this report provides a better understanding of the structure and biochemical properties of AbDHPAO and its homologs, which is advancing further modification of DHPAO in future applications.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supacha Buttranon
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Sahachat Soithongcharoen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Cheerapat Supawatkon
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand; School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Kasidis Disayabootr
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand.
| |
Collapse
|
8
|
Lin HY, Dong J, Dong J, Yang WC, Yang GF. Insights into 4-hydroxyphenylpyruvate dioxygenase-inhibitor interactions from comparative structural biology. Trends Biochem Sci 2023; 48:568-584. [PMID: 36959016 DOI: 10.1016/j.tibs.2023.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.
Collapse
Affiliation(s)
- Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jiangqing Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
9
|
Thiour-Mauprivez C, Dayan FE, Terol H, Devers M, Calvayrac C, Martin-Laurent F, Barthelmebs L. Assessing the effects of β-triketone herbicides on HPPD from environmental bacteria using a combination of in silico and microbiological approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9932-9944. [PMID: 36068455 DOI: 10.1007/s11356-022-22801-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of β-triketone herbicides in plants. This enzyme, involved in the tyrosine pathway, is also present in a wide range of living organisms, including microorganisms. Previous studies, focusing on a few strains and using high herbicide concentrations, showed that β-triketones are able to inhibit microbial HPPD. Here, we measured the effect of agronomical doses of β-triketone herbicides on soil bacterial strains. The HPPD activity of six bacterial strains was tested with 1× or 10× the recommended field dose of the herbicide sulcotrione. The selected strains were tested with 0.01× to 15× the recommended field dose of sulcotrione, mesotrione, and tembotrione. Molecular docking was also used to measure and model the binding mode of the three herbicides with the different bacterial HPPD. Our results show that responses to herbicides are strain-dependent with Pseudomonas fluorescens F113 HPPD activity not inhibited by any of the herbicide tested, when all three β-triketone herbicides inhibited HPPD in Bacillus cereus ATCC14579 and Shewanella oneidensis MR-1. These responses are also molecule-dependent with tembotrione harboring the strongest inhibitory effect. Molecular docking also reveals different binding potentials. This is the first time that the inhibitory effect of β-triketone herbicides is tested on environmental strains at agronomical doses, showing a potential effect of these molecules on the HPPD enzymatic activity of non-target microorganisms. The whole-cell assay developed in this study, coupled with molecular docking analysis, appears as an interesting way to have a first idea of the effect of herbicides on microbial communities, prior to setting up microcosm or even field experiments. This methodology could then largely be applied to other family of pesticides also targeting an enzyme present in microorganisms.
Collapse
Affiliation(s)
- Clémence Thiour-Mauprivez
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
- Agroécologie, INRAE, Institut Agro, Unv. Bourgogne, University Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franck Emmanuel Dayan
- Agricultural Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hugo Terol
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Marion Devers
- Agroécologie, INRAE, Institut Agro, Unv. Bourgogne, University Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Christophe Calvayrac
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Fabrice Martin-Laurent
- Agroécologie, INRAE, Institut Agro, Unv. Bourgogne, University Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lise Barthelmebs
- University Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| |
Collapse
|
10
|
Wang H, Lei P, Liu B, Zhu J, He Q, Chen L, He J. Mutations of Asn321 and Glu322 Improve Resistance of 4-Hydroxyphenylpyruvate Dioxygenase SpHPPDm to Topramezone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9703-9710. [PMID: 35856450 DOI: 10.1021/acs.jafc.2c02327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a highly efficient 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicide, topramezone is an ideal target for herbicide-resistant genetic engineering. In this study, two mutants, K-19 (N321Y) and K-63 (Q166R/E322V), with topramezone resistance increased by 205.3 and 58.5%, respectively, were screened from the random mutation library of SpHPPDm, a topramezone-resistant HPPD mutant that we previously obtained. Sites N321 and E322 were identified as key sites for increased topramezone resistance by single-site mutation analysis. A mutant KB-145 (N321Y/E322K) was further obtained by saturation mutation at sites N321 and E322. The topramezone resistance of KB-145 increased by 955.3% compared to mutant SpHPPDm. In conclusion, this study identifies two new sites that significantly affect the topramezone resistance of SpHPPDm, which provides new insights into the molecular mechanism of herbicide resistance of HPPD, and the acquired mutants have great application potential in the construction of herbicide-resistant crops.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Lei
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Le Chen
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
11
|
Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E. Survey on the Recent Advances in 4-Hydroxyphenylpyruvate Dioxygenase (HPPD) Inhibition by Diketone and Triketone Derivatives and Congeneric Compounds: Structural Analysis of HPPD/Inhibitor Complexes and Structure-Activity Relationship Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6963-6981. [PMID: 35652597 DOI: 10.1021/acs.jafc.2c02010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The serendipitous discovery of the HPPD inhibitors from allelopathic plants opened the way for searching new and effective herbicidal agents by application of classical hit-to-lead optimization approaches. A plethora of active and selective compounds were discovered that belong to three major classes of cyclohexane-based triketones, pyrazole-based diketones, and diketonitriles. In addition, to enhance inhibitory constant and herbicidal activity, many efforts were also made to gain broader weed control, crop safety, and eventual agricultural applicability. Moreover, HPPD inhibitors emerged as therapeutic agents for inherited and metabolic human diseases as well as vector-selective insecticides in the control of hematophagous arthropods. Given the large set of experimental data available, structure-activity relationship analysis could be used to derive suggestions for next generation optimized compounds.
Collapse
Affiliation(s)
- Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| |
Collapse
|
12
|
Liang W, Zhang W, Li C. Vibrio splendidus virulence to Apostichopus japonicus is mediated by hppD through glutamate metabolism and flagellum assembly. Virulence 2022; 13:458-470. [PMID: 35259068 PMCID: PMC8920201 DOI: 10.1080/21505594.2022.2046949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Vibrio splendidus is the main opportunistic pathogen that causes skin ulcer syndrome in Apostichopus japonicus. hppDIn the present study, mutant V. splendidus with an in-frame deletion of hppDV.s. (MTVs) was constructed. The median lethal doses of wild-type V. splendidus (WTVs) and MTVs were 5.129 × 106 and 2.606 × 1010 CFU mL−1, respectively. RNA-Seq was performed using WTVs and MTVs cells at different growth stages to explore the mechanisms of the pathogenesis mediated by hppDV.s. Gene Ontology analysis showed that the expression levels of 105 genes involved in amino acid metabolism and protein binding were remarkably different between MTVs and WTVs. Kyoto Encyclopedia of Genes and Genomes analysis showed that the pathways of glutamate metabolism and flagellum assembly involved in biofilm formation and swarming motility were suppressed in MTVs. Correspondingly, the swarming motility, biofilm formation and colonisation of MTVs were remarkably decreased compared with those of WTVs. The results showed that 4-hppD catalyses tyrosine into fumarate, which could enhance glutamate metabolism and ATP production; promote flagellum assembly through the TCA cycle and lead to higher swarming, biofilm formation and colonisation abilities, to contribute to the pathogenesis of V. splendidus.
Collapse
Affiliation(s)
- Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, Ningbo, P. R. China
| | - Weiwei Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, Ningbo, P. R. China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Ningbo University, Ningbo, P. R. China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China
| |
Collapse
|
13
|
Li H, Tan Y, Zhang D. Genomic discovery and structural dissection of a novel type of polymorphic toxin system in gram-positive bacteria. Comput Struct Biotechnol J 2022; 20:4517-4531. [PMID: 36051883 PMCID: PMC9424270 DOI: 10.1016/j.csbj.2022.08.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Bacteria have developed several molecular conflict systems to facilitate kin recognition and non-kin competition to gain advantages in the acquisition of growth niches and of limited resources. One such example is a large class of so-called polymorphic toxin systems (PTSs), which comprise a variety of the toxin proteins secreted via T2SS, T5SS, T6SS, T7SS and many others. These systems are highly divergent in terms of sequence/structure, domain architecture, toxin-immunity association, and organization of the toxin loci, which makes it difficult to identify and characterize novel systems using traditional experimental and bioinformatic strategies. In recent years, we have been developing and utilizing unique genome-mining strategies and pipelines, based on the organizational principles of both domain architectures and genomic loci of PTSs, for an effective and comprehensive discovery of novel PTSs, dissection of their components, and prediction of their structures and functions. In this study, we present our systematic discovery of a new type of PTS (S8-PTS) in several gram-positive bacteria. We show that the S8-PTS contains three components: a peptidase of the S8 family (subtilases), a polymorphic toxin, and an immunity protein. We delineated the typical organization of these polymorphic toxins, in which a N-terminal signal peptide is followed by a potential receptor binding domain, BetaH, and one of 16 toxin domains. We classified each toxin domain by the distinct superfamily to which it belongs, identifying nine BECR ribonucleases, one Restriction Endonuclease, one HNH nuclease, two novel toxin domains homologous to the VOC enzymes, one toxin domain with the Frataxin-like fold, and several other unique toxin families such as Ntox33 and HicA. Accordingly, we identified 20 immunity families and classified them into different classes of folds. Further, we show that the S8-PTS-associated peptidases are analogous to many other processing peptidases found in T5SS, T7SS, T9SS, and many proprotein-processing peptidases, indicating that they function to release the toxin domains during secretion. The S8-PTSs are mostly found in animal and plant-associated bacteria, including many pathogens. We propose S8-PTSs will facilitate the competition of these bacteria with other microbes or contribute to the pathogen-host interactions.
Collapse
Affiliation(s)
- Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts & Sciences, Saint Louis University, MO 63103, USA
- Corresponding author at: Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
14
|
Wang H, Liu B, Lei P, Zhu J, Chen L, He Q, He J. Improving the herbicide resistance of 4-hydroxyphenylpyruvate dioxygenase SpHPPD by directed evolution. Enzyme Microb Technol 2021; 154:109964. [PMID: 34902641 DOI: 10.1016/j.enzmictec.2021.109964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
Topramezone, a highly efficient 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitor herbicide, is an ideal target for herbicide-resistant genetic engineering. However, there is still a lack of HPPD gene that is highly resistant to topramezone. In previous studies, we obtained a topramezone-resistant HPPD (SpHPPDm) gene from Sphingobium sp. TPM-19, however, its resistance strength still could not meet the requirements for construction of herbicide-resistant crop. In this study, random mutagenesis (error-prone PCR) was employed to improve the topramezone resistance of SpHPPDm. Two mutants with improved resistance, K-28 (E322R) and K-113 (K249R, G327C), were screened from the random mutation library of SpHPPDm. The catalytic efficiency (kcat/Km) of mutants K-28 and K-113 only slightly decreased by approximately 2%. The half-maximal inhibitory concentration (IC50) of topramezone increased by 58.5% and 195.5% for mutants K-28 and K-113, respectively. Furthermore, mutant K-113 also showed significantly improved resistance to mesotrione and DKN (the active ingredient of isoxaflutole) with the IC50 increasing by 60.3% and 167.5%, respectively; while mutant K-28 only showed increased resistance to mesotrione with IC50 increasing by 77.6%, but reduced resistance to DKN with IC50 declining by 20.9%. Site-directed mutation assays revealed that G327C, but not K249R, contributed to topramezone resistance in mutant K-113. This study provides genetic resources for the genetic engineering of HPPD-inhibitor-resistant crops and a basis for further research on HPPD resistance mechanisms.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Peng Lei
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Le Chen
- Excellence and innovation center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| |
Collapse
|
15
|
Lin HY, Chen X, Dong J, Yang JF, Xiao H, Ye Y, Li LH, Zhan CG, Yang WC, Yang GF. Rational Redesign of Enzyme via the Combination of Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and Structural Biology Study. J Am Chem Soc 2021; 143:15674-15687. [PMID: 34542283 DOI: 10.1021/jacs.1c06227] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations. This strategy enriched our understanding of the HPPD catalytic reaction pathway and led to the discovery of a series of HPPD mutants producing hydroxyphenylacetate (HPA) as the alternative product other than the native product homogentisate. The predicted HPPD-Fe(IV)═O-HPA intermediate was further confirmed by the crystal structure of Arabidopsis thaliana HPPD/S267W complexed with HPA. These findings not only provide a good understanding of the structure-function relationship of HPPD but also demonstrate a generally applicable platform for the development of biocatalysts.
Collapse
Affiliation(s)
- Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xi Chen
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Jin Dong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Han Xiao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ying Ye
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Lin-Hui Li
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
16
|
Pyomelanin produced by Streptomyces sp. ZL-24 and its protective effects against SH-SY5Y cells injury induced by hydrogen peroxide. Sci Rep 2021; 11:16649. [PMID: 34404820 PMCID: PMC8371117 DOI: 10.1038/s41598-021-94598-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
A soluble melanin pigment produced by Streptomyces sp. ZL-24 was purified and named StrSM. The elemental analysis of StrSM showed it consists of carbon, hydrogen, and oxygen. The spectrum analysis, including ultraviolet-visible absorption spectrum, Fourier-transform infrared spectrum, and pyrolysis-gas chromatography-mass spectrometry, indicated that StrSM might be pyomelanin. High performance liquid chromatography and liquid chromatography-mass spectra analysis of intermediate metabolite showed the presence of homogentisic acid (HGA). Moreover, the enzyme 4-hydroxyphenylpyruvate dioxygenase, involved in HGA biosynthesis, showed high activity during melanin production. Subsequently, a tyrosinase gene (melC2) and hydroxyphenylpyruvate dioxygenase gene double mutant demonstrated StrSM is pyomelanin. In vitro bioactivity assay showed that StrSM had excellent protective capability against SH-SY5Y cell oxidative injury. To our knowledge, the results firstly provide comprehensive data on Streptomyces pyomelanin identification and a promising candidate compound to treat oxidative injury of neurocytes.
Collapse
|
17
|
Wang H, Wang L, Zhang X, Bai S, Jin T, Liu W, Wang J. Unravelling Phytotoxicity and Mode of Action of Tripyrasulfone, a Novel Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7168-7177. [PMID: 34152147 DOI: 10.1021/acs.jafc.1c01294] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tripyrasulfone is a novel herbicide post-emergence applied in paddy fields. In this study, tripyrasulfone phytotoxicity and its mode of action were investigated. Within 3-7 days after treatment (DAT), tripyrasulfone caused strong bleaching symptoms on newly developed leaves of Echinochloa crus-galli followed by necrosis prior to death within 14 DAT. By investigating pigment composition, photosynthetic activity and energy dissipation of E. crus-galli treated with tripyrasulfone, the accumulation of phytoene and significant decreases in total carotenoids were observed; the photosystem II complex (PSII) reaction center and PSII-PSI electron transport chain were damaged; and the non-photochemical energy quenching and reactive oxygen species were significantly increased. Based on the reversion of bleaching symptoms in treated Spirodela polyrrhiza by the addition of homogentisic acid, it was hypothesized that tripyrasulfone blocks the biosynthesis of HGA, possibly by the inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD). However, based on its chemical structure, tripyrasulfone may tend to be hydrolyzed in plants. Indeed, the hydrolyzed tripyrasulfone (HDT) inhibited the activity of HPPD from Arabidopsis thaliana produced by Escherichia coli, which was approximately 6 times less effective than mesotrione. Molecular docking showed that the HDT formed a stable bidentate interaction with the active center Fe2+ chelation of A. thaliana HPPD.
Collapse
Affiliation(s)
- Hengzhi Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Lipeng Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Xiaolin Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Shuang Bai
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266000, PR China
| | - Tao Jin
- Qingdao Kingagroot Chemical Compound Co., Ltd., Qingdao 266000, PR China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| |
Collapse
|
18
|
Functional role of residues involved in substrate binding of human 4-hydroxyphenylpyruvate dioxygenase. Biochem J 2021; 478:2201-2215. [PMID: 34047349 DOI: 10.1042/bcj20210005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022]
Abstract
4-Hydroxylphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxylphenylpyruvate (HPP) to homogentisate, the important step for tyrosine catabolism. Comparison of the structure of human HPPD with the substrate-bound structure of A. thaliana HPPD revealed notably different orientations of the C-terminal helix. This helix performed as a closed conformation in human enzyme. Simulation revealed a different substrate-binding mode in which the carboxyl group of HPP interacted by a H-bond network formed by Gln334, Glu349 (the metal-binding ligand), and Asn363 (in the C-terminal helix). The 4-hydroxyl group of HPP interacted with Gln251 and Gln265. The relative activity and substrate-binding affinity were preserved for the Q334A mutant, implying the alternative role of Asn363 for HPP binding and catalysis. The reduction in kcat/Km of the Asn363 mutants confirmed the critical role in catalysis. Compared to the N363A mutant, the dramatic reduction in the Kd and thermal stability of the N363D mutant implies the side-chain effect in the hinge region rotation of the C-terminal helix. The activity and binding affinity were not recovered by double mutation; however, the 4-hydroxyphenylacetate intermediate formation by the uncoupled reaction of Q334N/N363Q and Q334A/N363D mutants indicated the importance of the H-bond network in the electrophilic reaction. These results highlight the functional role of the H-bond network in a closed conformation of the C-terminal helix to stabilize the bound substrate. The extremely low activity and reduction in Q251E's Kd suggest that interaction coupled with the H-bond network is crucial to locate the substrate for nucleophilic reaction.
Collapse
|
19
|
Liu B, Wang H, Zhang K, Zhu J, He Q, He J. Improved Herbicide Resistance of 4-Hydroxyphenylpyruvate Dioxygenase from Sphingobium sp. TPM-19 through Directed Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12365-12374. [PMID: 33105985 DOI: 10.1021/acs.jafc.0c05785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted extensive interest as a promising target for the genetic engineering of herbicide-resistant crops. However, naturally occurring HPPDs are generally very sensitive to HPPD inhibitors. In this study, random mutagenesis was performed to increase the HPPD inhibitors' resistance of Sphingobium sp. HPPD (SpHPPD). Two mutants, Q258M and Y333F, with improved resistance were obtained. Subsequently, a double-mutant (Q258M/Y333F) was generated through combined mutation. Q258M/Y333F exhibited the highest resistance to four HPPD inhibitors [topramezone, mesotrione, tembotrione, and diketonitrile (DKN)]. The enzyme fitness of Q258M/Y333F to topramezone, mesotrione, tembotrione, and DKN was increased by 4.0-, 4.1-, 4.2-, and 3.2-folds, respectively, in comparison with that of the wild-type. Molecular modeling and docking revealed that Q258M mutation leads to the decrease of enzyme-inhibitor-binding strength by breaking the hydrogen bond between the enzyme and the inhibitor, and Y333F mutation changes the conformational balance of the C-terminal helix H11, which hinders the binding of the inhibitor to the enzyme and thus would contribute to improved herbicide resistance. This study helps to further elucidate the structural basis for herbicide resistance and provides better genetic resources for the genetic engineering of herbicide-resistant crops.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Haiyan Wang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Kaiyun Zhang
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Jianchun Zhu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P. R. China
| |
Collapse
|
20
|
Sheng M, Liu B, Xu J, Peng Q, Zhang L, Chen K, He J. Cloning of a novel topramezone-resistant 4-hydroxyphenylpyruvate dioxygenase gene and improvement of its resistance through pressure acclimation. Enzyme Microb Technol 2020; 140:109642. [DOI: 10.1016/j.enzmictec.2020.109642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
|
21
|
Li X, Yang X, Zheng X, Bai M, Hu D. Review on Structures of Pesticide Targets. Int J Mol Sci 2020; 21:E7144. [PMID: 32998191 PMCID: PMC7582455 DOI: 10.3390/ijms21197144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular targets play important roles in agrochemical discovery. Numerous pesticides target the key proteins in pathogens, insect, or plants. Investigating ligand-binding pockets and/or active sites in the proteins' structures is usually the first step in designing new green pesticides. Thus, molecular target structures are extremely important for the discovery and development of such pesticides. In this manuscript, we present a review of the molecular target structures, including those of antiviral, fungicidal, bactericidal, insecticidal, herbicidal, and plant growth-regulator targets, currently used in agrochemical research. The data will be helpful in pesticide design and the discovery of new green pesticides.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Miao Bai
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China;
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| |
Collapse
|
22
|
Mitra M, Nguyen KMAK, Box TW, Gilpin JS, Hamby SR, Berry TL, Duckett EH. Isolation and characterization of a novel bacterial strain from a Tris-Acetate-Phosphate agar medium plate of the green micro-alga Chlamydomonas reinhardtii that can utilize common environmental pollutants as a carbon source. F1000Res 2020; 9:656. [PMID: 32855811 PMCID: PMC7425125 DOI: 10.12688/f1000research.24680.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 12/28/2022] Open
Abstract
Background:Chlamydomonas reinhardtii, a green micro-alga can be grown at the lab heterotrophically or photo-heterotrophically in Tris-Phosphate-Acetate (TAP) medium which contains acetate as the sole carbon source. When grown in TAP medium,
Chlamydomonas can utilize the exogenous acetate in the medium for gluconeogenesis using the glyoxylate cycle, which is also present in many bacteria and higher plants. A novel bacterial strain, LMJ, was isolated from a contaminated TAP medium plate of
Chlamydomonas. We present our work on the isolation and physiological and biochemical characterizations of LMJ. Methods: Several microbiological tests were conducted to characterize LMJ, including its sensitivity to four antibiotics. We amplified and sequenced partially the 16S rRNA gene of LMJ. We tested if LMJ can utilize cyclic alkanes, aromatic hydrocarbons, poly-hydroxyalkanoates, and fresh and combusted car motor oil as the sole carbon source on Tris-Phosphate (TP) agar medium plates for growth. Results: LMJ is a gram-negative rod, oxidase-positive, mesophilic, non-enteric, pigmented, salt-sensitive bacterium. LMJ can ferment glucose, is starch hydrolysis-negative, and is very sensitive to penicillin and chloramphenicol. Preliminary spectrophotometric analyses indicate LMJ produces pyomelanin. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of LMJ showed that it matched to that of an uncultured bacterium clone LIB091_C05_1243. The nearest genus relative of LMJ is an
Acidovorax sp. strain. LMJ was able to use alkane hydrocarbons, fresh and combusted car motor oil, poly-hydroxybutyrate, phenanthrene, naphthalene, benzoic acid and phenyl acetate as the sole carbon source for growth on TP-agar medium plates. Conclusions: LMJ has 99.14% sequence identity with the
Acidovorax sp. strain A16OP12 whose genome has not been sequenced yet. LMJ’s ability to use chemicals that are common environmental pollutants makes it a promising candidate for further investigation for its use in bioremediation and, provides us with an incentive to sequence its genome.
Collapse
Affiliation(s)
- Mautusi Mitra
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Kevin Manoap-Anh-Khoa Nguyen
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA.,Department of Mechanical Engineering, Kennesaw State University, Marietta, Georgia, 30060, USA
| | - Taylor Wayland Box
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Jesse Scott Gilpin
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Seth Ryan Hamby
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| | - Taylor Lynne Berry
- Carrollton High School, Carrollton, Georgia, 30117, USA.,Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, Georgia, 30597, USA
| | - Erin Harper Duckett
- Department of Biology, University of West Georgia, Carrollton, Georgia, 30118, USA
| |
Collapse
|
23
|
An iron (II) dependent oxygenase performs the last missing step of plant lysine catabolism. Nat Commun 2020; 11:2931. [PMID: 32523014 PMCID: PMC7286885 DOI: 10.1038/s41467-020-16815-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/21/2020] [Indexed: 11/08/2022] Open
Abstract
Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes. Hydroxyglutarate synthase (HglS) converts 2-oxoadipate to D-2- hydroxyglutarate during lysine catabolism in bacteria. Here the authors use structural and biochemical approaches to show that HglS acts via successive decarboxylation and intramolecular hydroxylation and that homologous enzymes catalyze the final step of lysine catabolism in plants.
Collapse
|
24
|
Feng AN, Huang CW, Lin CH, Chang YL, Ni MY, Lee HJ. Role of the N-terminus in human 4-hydroxyphenylpyruvate dioxygenase activity. J Biochem 2020; 167:315-322. [PMID: 31722428 DOI: 10.1093/jb/mvz092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/22/2019] [Indexed: 11/14/2022] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a key enzyme in tyrosine catabolism, catalysing the oxidation of 4-hydroxyphenylpyruvate to homogentisate. Genetic deficiency of this enzyme causes type III tyrosinaemia. The enzyme comprises two barrel-shaped domains formed by the N- and C-termini, with the active site located in the C-terminus. This study investigated the role of the N-terminus, located at the domain interface, in HPPD activity. We observed that the kcat/Km decreased ∼8-fold compared with wild type upon removal of the 12 N-terminal residues (ΔR13). Interestingly, the wild-type level of activity was retained in a mutant missing the 17 N-terminal residues, with a kcat/Km 11-fold higher than that of the ΔR13 mutant; however, the structural stability of this mutant was lower than that of wild type. A 2-fold decrease in catalytic efficiency was observed for the K10A and E12A mutants, indicating synergism between these residues in the enzyme catalytic function. A molecular dynamics simulation showed large RMS fluctuations in ΔR13 suggesting that conformational flexibility at the domain interface leads to lower activity in this mutant. These results demonstrate that the N-terminus maintains the stability of the domain interface to allow for catalysis at the active site of HPPD.
Collapse
Affiliation(s)
- An-Ning Feng
- Department of Cardiology, Cheng Hsin General Hospital, No. 45, Cheng Hsin St. Pai-Tou, Taipei 11220, Taiwan
| | - Chih-Wei Huang
- Department of Pharmacy Practice, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu, Taipei 11490, Taiwan.,School of Pharmacy, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Chi-Huei Lin
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Meng-Yuan Ni
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minchuan East Rd., Neihu, Taipei 11490, Taiwan
| |
Collapse
|
25
|
Liu B, Peng Q, Sheng M, Ni H, Xiao X, Tao Q, He Q, He J. Isolation and Characterization of a Topramezone-Resistant 4-Hydroxyphenylpyruvate Dioxygenase from Sphingobium sp. TPM-19. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1022-1029. [PMID: 31884791 DOI: 10.1021/acs.jafc.9b06871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Topramezone is a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor. Due to its broad-spectrum, high efficiency, and low toxicity, topramezone is a candidate herbicide for the construction of genetically modified (GM) herbicide-resistant crops. In the present study, we screened a topramezone-resistant isolate Sphingobium sp. TPM-19 and cloned a topramezone-resistant HPPD gene (SphppD) from this isolate. SpHPPD shared the highest similarity (53%) with an HPPD from Vibrio vulnificus CMCP6. SpHPPD was synthesized in Escherichia coli BL21(DE3) and purified to homogeneity using Co2+-affinity chromatography. SpHPPD was found to be a monomer. The Km and kcat of SpHPPD for 4-hydroxyphenylpyruvate (4-HPP) were 82.8 μM and 15.0 s-1, respectively. SpHPPD showed high resistance to topramezone with half maximal inhibitory concentration (IC50) and Ki values of 5.2 and 2.5 μM, respectively. Additionally, SpHPPD also showed high resistance to isoxaflutole (DKN) (IC50: 8.7 μM; Ki: 6.0 μM) and mesotrione (IC50: 4.2 μM; Ki: 1.3 μM) and moderate resistance to tembotrione (IC50: 2.5 μM; Ki: 1.0 μM). The introduction of the SphppD gene into Arabidopsis thaliana enhanced obvious resistance against topramezone. In conclusion, this study provides a novel topramezone-resistant HPPD gene for the genetic engineering of GM herbicide-resistant crops.
Collapse
Affiliation(s)
- Bin Liu
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Qian Peng
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Mengyao Sheng
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Haiyan Ni
- College of Life Science , Jiangxi Normal University , Nanchang 330022 , Jiangxi , China
| | - Xiang Xiao
- DBN Biotech Center, Beijing DBN Technology Group Co., Ltd. , Beijing 100193 , P. R. China
| | - Qing Tao
- DBN Biotech Center, Beijing DBN Technology Group Co., Ltd. , Beijing 100193 , P. R. China
| | - Qin He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| | - Jian He
- Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , Jiangsu , P. R. China
| |
Collapse
|
26
|
The Role of Melanin in Fungal Pathogenesis for Animal Hosts. Curr Top Microbiol Immunol 2019; 422:1-30. [PMID: 31278515 DOI: 10.1007/82_2019_173] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.
Collapse
|
27
|
Lin HY, Chen X, Chen JN, Wang DW, Wu FX, Lin SY, Zhan CG, Wu JW, Yang WC, Yang GF. Crystal Structure of 4-Hydroxyphenylpyruvate Dioxygenase in Complex with Substrate Reveals a New Starting Point for Herbicide Discovery. RESEARCH 2019; 2019:2602414. [PMID: 31549053 PMCID: PMC6750108 DOI: 10.34133/2019/2602414] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a promising target for drug and pesticide discovery. The unknown binding mode of substrate is still a big challenge for the understanding of enzymatic reaction mechanism and novel HPPD inhibitor design. Herein, we determined the first crystal structure of Arabidopsis thaliana HPPD (AtHPPD) in complex with its natural substrate (HPPA) at a resolution of 2.80 Å. Then, combination of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations confirmed that HPPA takes keto rather than enol form inside the HPPD active pocket. Subsequent site-directed mutagenesis and kinetic analysis further showed that residues (Phe424, Asn423, Glu394, Gln307, Asn282, and Ser267) played important roles in substrate binding and catalytic cycle. Structural comparison between HPPA-AtHPPD and holo-AtHPPD revealed that Gln293 underwent a remarkable rotation upon the HPPA binding and formed H-bond network of Ser267-Asn282-Gln307-Gln293, resulting in the transformation of HPPD from an inactive state to active state. Finally, taking the conformation change of Gln293 as a target, we proposed a new strategy of blocking the transformation of HPPD from inactive state to active state to design a novel inhibitor with Ki value of 24.10 nM towards AtHPPD. The inhibitor has entered into industry development as the first selective herbicide used for the weed control in sorghum field. The crystal structure of AtHPPD in complex with the inhibitor (2.40 Å) confirmed the rationality of the design strategy. We believe that the present work provides a new starting point for the understanding of enzymatic reaction mechanism and the design of next generation HPPD inhibitors.
Collapse
Affiliation(s)
- Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, China.,MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xi Chen
- College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jia-Nan Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, China
| | - Da-Wei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, China
| | - Feng-Xu Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, China
| | - Song-Yun Lin
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Jia-Wei Wu
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30071, China
| |
Collapse
|
28
|
Schindler CEM, Hollenbach E, Mietzner T, Schleifer K, Zacharias M. Free energy calculations elucidate substrate binding, gating mechanism, and tolerance-promoting mutations in herbicide target 4-hydroxyphenylpyruvate dioxygenase. Protein Sci 2019; 28:1048-1058. [PMID: 30945368 PMCID: PMC6511742 DOI: 10.1002/pro.3612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the second reaction in the tyrosine catabolism and is linked to the production of cofactors plastoquinone and tocopherol in plants. This important biological role has put HPPD in the focus of current herbicide design efforts including the development of herbicide-tolerant mutants. However, the molecular mechanisms of substrate binding and herbicide tolerance have yet to be elucidated. In this work, we performed molecular dynamics simulations and free energy calculations to characterize active site gating by the C-terminal helix H11 in HPPD. We compared gating equilibria in Arabidopsis thaliana (At) and Zea mays (Zm) wild-type proteins retrieving the experimentally observed preferred orientations from the simulations. We investigated the influence of substrate and product binding on the open-closed transition and discovered a ligand-mediated conformational switch in H11 that mediates rapid substrate access followed by active site closing and efficient product release through H11 opening. We further studied H11 gating in At mutant HPPD, and found large differences with correlation to experimentally measured herbicide tolerance. The computational findings were then used to design a new At mutant HPPD protein that showed increased tolerance to six commercially available HPPD inhibitors in biochemical in vitro experiments. Our results underline the importance of protein flexibility and conformational transitions in substrate recognition and enzyme inhibition by herbicides.
Collapse
Affiliation(s)
- Christina E. M. Schindler
- Physics Department T38Technical University of MunichGarchingGermany
- Center for Integrated Protein Science MunichMunichGermany
| | - Eva Hollenbach
- BASF SE, Global Research Crop ProtectionAgricultural Centre LimburgerhofLimburgerhofGermany
| | - Thomas Mietzner
- BASF SE, Global Research Crop Protection, Molecular ModelingLudwigshafenGermany
| | | | - Martin Zacharias
- Physics Department T38Technical University of MunichGarchingGermany
- Center for Integrated Protein Science MunichMunichGermany
| |
Collapse
|
29
|
Balanco JMF, Sussmann RAC, Verdaguer IB, Gabriel HB, Kimura EA, Katzin AM. Tocopherol biosynthesis in Leishmania ( L.) amazonensis promastigotes. FEBS Open Bio 2019; 9:743-754. [PMID: 30984548 PMCID: PMC6443866 DOI: 10.1002/2211-5463.12613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/17/2019] [Accepted: 02/12/2019] [Indexed: 01/25/2023] Open
Abstract
Leishmaniasis is a neglected disease caused by a trypanosomatid protozoan of the genus Leishmania. Most drugs used to treat leishmaniasis are highly toxic, and the emergence of drug‐resistant strains has been observed. Therefore, new therapeutic targets against leishmaniasis are required. Several isoprenoid compounds, including dolichols or ubiquinones, have been shown to be important for cell viability and proliferation in various trypanosomatid species. Here, we detected the biosynthesis of tocopherol in Leishmania (L.) amazonensis promastigotes in vitro through metabolic labelling with [1‐(n)‐3H]‐phytol. Subsequently, we confirmed the presence of vitamin E in the parasite by gas chromatography–mass spectrometry. Treatment with usnic acid or nitisinone, inhibitors of precursors of vitamin E synthesis, inhibited growth of the parasite in a concentration‐dependent manner. This study provides the first evidence of tocopherol biosynthesis in a trypanosomatid and suggests that inhibitors of the enzyme 4‐hydroxyphenylpyruvate dioxygenase may be suitable for use as antileishmanial compounds. Database The amino acid sequence of a conserved hypothetical protein [Leishmania mexicana MHOM/GT/2001/U1103] has been deposited in GenBank (CBZ28005.1)
Collapse
Affiliation(s)
- José Mário F Balanco
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Ignasi B Verdaguer
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Heloisa B Gabriel
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Emilia A Kimura
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| | - Alejandro M Katzin
- Department of Parasitology Institute of Biomedical Sciences University of São Paulo Brazil
| |
Collapse
|
30
|
Lin H, Yang J, Wang D, Hao G, Dong J, Wang Y, Yang W, Wu J, Zhan C, Yang G. Molecular insights into the mechanism of 4‐hydroxyphenylpyruvate dioxygenase inhibition: enzyme kinetics, X‐ray crystallography and computational simulations. FEBS J 2019; 286:975-990. [DOI: 10.1111/febs.14747] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Hong‐Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
| | - Jing‐Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
| | - Da‐Wei Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
| | - Ge‐Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
| | - Jiang‐Qing Dong
- MOE Key Laboratory of Protein Sciences Tsinghua‐Peking Center for Life Sciences School of Life Sciences Tsinghua University Beijing China
| | - Yu‐Xia Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
| | - Wen‐Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
| | - Jia‐Wei Wu
- MOE Key Laboratory of Protein Sciences Tsinghua‐Peking Center for Life Sciences School of Life Sciences Tsinghua University Beijing China
| | - Chang‐Guo Zhan
- Department of Pharmaceutical Sciences College of Pharmacy University of Kentucky Lexington KY USA
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| |
Collapse
|
31
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
32
|
4-Hydroxyphenylpyruvate Dioxygenase Thermolability Is Responsible for Temperature-Dependent Melanogenesis in Aeromonas salmonicida subsp. salmonicida. Appl Environ Microbiol 2019; 85:AEM.01926-18. [PMID: 30341077 DOI: 10.1128/aem.01926-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is a major pathogen affecting fisheries worldwide and is a well-known pigmented member of the Aeromonas genus. This subspecies produces melanin at ≤22°C. However, melanogenesis decreases as the culture temperature increases and is completely suppressed at 30°C to 35°C, while bacterial growth is unaffected. The mechanism and biological significance of this temperature-dependent melanogenesis remain unclear. Heterologous expression of an A. salmonicida subsp. salmonicida 4-hydroxyphenylpyruvate dioxygenase (HppD), the most critical enzyme in the homogentisic acid (HGA)-melanin synthesis pathway, results in thermosensitive pigmentation in Escherichia coli, suggesting that HppD plays a key role in this process. In this study, we demonstrated that the thermolability of HppD is responsible for the temperature-dependent melanization of A. salmonicida subsp. salmonicida Substitutions of three residues, S18T, P103Q, and L119P, in A. salmonicida subsp. salmonicida HppD increased the thermostability of this enzyme and resulted in temperature-independent melanogenesis. Moreover, the replacement of the corresponding residues in HppD from Aeromonas media strain WS, which forms pigment independent of temperature, with those of A. salmonicida subsp. salmonicida HppD resulted in thermosensitive melanogenesis. A structural analysis suggested that mutations at these sites, especially at position P103, strengthen the secondary structure of HppD and greatly improve its thermal stability. Additionally, we found that the HppD sequences of all A. salmonicida subsp. salmonicida isolates were identical and that two of the three residues were clearly distinct from those of other Aeromonas strains.IMPORTANCE Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a bacterial septicemia of cold-water fish of the Salmonidae family. Although other Aeromonas species can produce melanin, A. salmonicida subsp. salmonicida is the only member of this genus that has been reported to exhibit temperature-dependent melanization. Here, we demonstrated that thermosensitive melanogenesis in A. salmonicida subsp. salmonicida strains is due to the thermolability of 4-hydroxyphenylpyruvate dioxygenase (HppD). Additionally, we confirmed that this thermolabile HppD exhibited higher activity at low temperatures than its mesophilic homologues, suggesting this as an adaptive strategy of this enzyme to the psychrophilic lifestyle of A. salmonicida subsp. salmonicida The strictly conserved hppD sequences among A. salmonicida subsp. salmonicida isolates and the specific possession of P103 and L119 residues could be used as a reference for the identification of A. salmonicida subsp. salmonicida isolates.
Collapse
|
33
|
Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 2018; 35:792-837. [PMID: 29932179 PMCID: PMC6093783 DOI: 10.1039/c7np00067g] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.
Collapse
Affiliation(s)
- Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - Xueting Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Ndikuryayo F, Moosavi B, Yang WC, Yang GF. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8523-8537. [PMID: 28903556 DOI: 10.1021/acs.jafc.7b03851] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of new herbicides is receiving considerable attention to control weed biotypes resistant to current herbicides. Consequently, new enzymes are always desired as targets for herbicide discovery. 4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an enzyme engaged in photosynthetic activity and catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) into homogentisic acid (HGA). HPPD inhibitors constitute a promising area of discovery and development of innovative herbicides with some advantages, including excellent crop selectivity, low application rates, and broad-spectrum weed control. HPPD inhibitors have been investigated for agrochemical interests, and some of them have already been commercialized as herbicides. In this review, we mainly focus on the chemical biology of HPPD, discovery of new potential inhibitors, and strategies for engineering transgenic crops resistant to current HPPD-inhibiting herbicides. The conclusion raises some relevant gaps for future research directions.
Collapse
Affiliation(s)
- Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071, P. R. China
| |
Collapse
|
35
|
Zeng Z, Cai X, Wang P, Guo Y, Liu X, Li B, Wang X. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913. Front Microbiol 2017; 8:1822. [PMID: 28983293 PMCID: PMC5613676 DOI: 10.3389/fmicb.2017.01822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023] Open
Abstract
Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, The South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
36
|
Santucci A, Bernardini G, Braconi D, Petricci E, Manetti F. 4-Hydroxyphenylpyruvate Dioxygenase and Its Inhibition in Plants and Animals: Small Molecules as Herbicides and Agents for the Treatment of Human Inherited Diseases. J Med Chem 2017; 60:4101-4125. [PMID: 28128559 DOI: 10.1021/acs.jmedchem.6b01395] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review mainly focuses on the physiological function of 4-hydroxyphenylpyruvate dioxygenase (HPPD), as well as on the development and application of HPPD inhibitors of several structural classes. Among them, one illustrative example is represented by compounds belonging to the class of triketone compounds. They were discovered by serendipitous observations on weed growth and were developed as bleaching herbicides. Informed reasoning on nitisinone (NTBC, 14), a triketone that failed to reach the final steps of the herbicidal design and development process, allowed it to become a curative agent for type I tyrosinemia (T1T) and to enter clinical trials for alkaptonuria. These results boosted the research of new compounds able to interfere with HPPD activity to be used for the treatment of the tyrosine metabolism-related diseases.
Collapse
Affiliation(s)
- Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Elena Petricci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena , via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
37
|
Peek J, Roman J, Moran GR, Christendat D. Structurally diverse dehydroshikimate dehydratase variants participate in microbial quinate catabolism. Mol Microbiol 2016; 103:39-54. [DOI: 10.1111/mmi.13542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- James Peek
- Department of Cell and Systems BiologyUniversity of Toronto25 Willcocks StreetToronto, Ontario CanadaM5S 3B2
| | - Joseph Roman
- Department of Chemistry and BiochemistryUniversity of Wisconsin‐Milwaukee3210 North Cramer StreetMilwaukee WI53211‐3209 USA
| | - Graham R. Moran
- Department of Chemistry and BiochemistryUniversity of Wisconsin‐Milwaukee3210 North Cramer StreetMilwaukee WI53211‐3209 USA
| | - Dinesh Christendat
- Department of Cell and Systems BiologyUniversity of Toronto25 Willcocks StreetToronto, Ontario CanadaM5S 3B2
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoToronto, Ontario CanadaM5S 3B2
| |
Collapse
|
38
|
Song Y, Li J, Shin HD, Liu L, Du G, Chen J. Biotechnological production of alpha-keto acids: Current status and perspectives. BIORESOURCE TECHNOLOGY 2016; 219:716-724. [PMID: 27575335 DOI: 10.1016/j.biortech.2016.08.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Peck SC, van der Donk WA. Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. J Biol Inorg Chem 2016; 22:381-394. [PMID: 27783267 DOI: 10.1007/s00775-016-1399-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
This review discusses the current mechanistic understanding of a group of mononuclear non-heme iron-dependent enzymes that catalyze four-electron oxidation of their organic substrates without the use of any cofactors or cosubstrates. One set of enzymes acts on α-ketoacid-containing substrates, coupling decarboxylation to oxygen activation. This group includes 4-hydroxyphenylpyruvate dioxygenase, 4-hydroxymandelate synthase, and CloR involved in clorobiocin biosynthesis. A second set of enzymes acts on substrates containing a thiol group that coordinates to the iron. This group is comprised of isopenicillin N synthase, thiol dioxygenases, and enzymes involved in the biosynthesis of ergothioneine and ovothiol. The final group of enzymes includes HEPD and MPnS that both carry out the oxidative cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate but generate different products. Commonalities amongst many of these enzymes are discussed and include the initial substrate oxidation by a ferric-superoxo-intermediate and a second oxidation by a ferryl species.
Collapse
Affiliation(s)
- Spencer C Peck
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
40
|
Lakk-Bogáth D, Csonka R, Speier G, Réglier M, Simaan AJ, Naubron JV, Giorgi M, Lázár K, Kaizer J. Formation, Characterization, and Reactivity of a Nonheme Oxoiron(IV) Complex Derived from the Chiral Pentadentate Ligand asN4Py. Inorg Chem 2016; 55:10090-10093. [PMID: 27690396 DOI: 10.1021/acs.inorgchem.6b01089] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chiral pentadentate low-spin (S = 1) oxoiron(IV) complex [FeIV(O)(asN4Py)]2+ (2) was synthesized and spectroscopically characterized. Its formation kinetics, reactivity, and (enantio)selectivity in an oxygen-atom-transfer reaction was investigated in detail and compared to a similar pentadentate ligand-containing system.
Collapse
Affiliation(s)
- Dóra Lakk-Bogáth
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| | - Róbert Csonka
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| | - Gábor Speier
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| | - Marius Réglier
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313 , 13397 Marseille, France
| | - A Jalila Simaan
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313 , 13397 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole FR1739 , 13397 Marseille, France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, Spectropole FR1739 , 13397 Marseille, France
| | - Károly Lázár
- Research Centre for Energy, Hungarian Academy of Sciences , H-1525 Budapest, Hungary
| | - József Kaizer
- Department of Chemistry, University of Pannonia , 8201 Veszprém, Hungary
| |
Collapse
|
41
|
The different catalytic roles of the metal-binding ligands in human 4-hydroxyphenylpyruvate dioxygenase. Biochem J 2016; 473:1179-89. [PMID: 26936969 DOI: 10.1042/bcj20160146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a non-haem iron(II)-dependent oxygenase that catalyses the conversion of 4-hydroxyphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2-His-1-Glu facial triad co-ordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10-fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies. The present study revealed the vital role of the ligand Glu(349) in enzyme function. Replacing this residue with alanine resulted in loss of activity. The E349G variant retained 5% activity for the coupled reaction, suggesting that co-ordinating water may be able to support activation of the trans-bound dioxygen upon substrate binding. The reaction catalysed by the H183A variant was fully uncoupled. H183A variant catalytic activity resulted in protein cleavage between Ile(267) and Ala(268) and the production of an N-terminal fragment. The H266A variant was able to produce 4-hydroxyphenylacetate (HPA), demonstrating that decarboxylation had occurred but that there was no subsequent product formation. Structural modelling of the variant enzyme with bound dioxygen revealed the rearrangement of the co-ordination environment and the dynamic behaviour of bound dioxygen in the H266A and H183A variants respectively. These models suggest that the residues regulate the geometry of the reactive oxygen intermediate during the oxidation reaction. The mutagenesis and structural simulation studies demonstrate the critical and unique role of each ligand in the function of HPPD, and which correlates with their respective co-ordination position.
Collapse
|
42
|
Rocaboy-Faquet E, Barthelmebs L, Calas-Blanchard C, Noguer T. A novel amperometric biosensor for ß-triketone herbicides based on hydroxyphenylpyruvate dioxygenase inhibition: A case study for sulcotrione. Talanta 2015; 146:510-6. [PMID: 26695298 DOI: 10.1016/j.talanta.2015.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 11/28/2022]
Abstract
An amperometric biosensor was designed for the determination of sulcotrione, a β-triketone herbicide, based on inhibition of hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme allowing the oxidation of hydroxyphenylpyruvate (HPP) in homogentisic acid (HGA). HPPD was produced by cloning the hppd gene from Arabidopsis thaliana in E. coli, followed by overexpression and purification by nickel-histidine affinity. The electrochemical detection of HPPD activity was based on the electrochemical oxidation of HGA at +0.1 V vs. Ag/AgCl, using a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate-modified screen-printed electrode. Assays were performed at 25°C in 0.1 M phosphate buffer pH 8 containing 0.1M KCl. The purified HPPD was shown to display a maximum velocity of 0.51 µM(HGA) min(-1), and an apparent K(M) of 22.6 µM for HPP. HPPD inhibition assays in presence of sulcotrione confirmed a competitive inhibition of HPPD, the calculated inhibition constant K(I) was 1.11.10(-8) M. The dynamic range for sulcotrione extended from 5.10(-10) M to 5.10(-6) M and the limit of detection (LOD), estimated as the concentration inducing 20% of inhibition, was 1.4.10(-10) M.
Collapse
Affiliation(s)
- Emilie Rocaboy-Faquet
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Lise Barthelmebs
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Carole Calas-Blanchard
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Thierry Noguer
- Laboratoire BAE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan cedex 9, France.
| |
Collapse
|
43
|
Shah DD, Moran GR. 4-Hydroxyphenylpyruvate Dioxygenase and Hydroxymandelate Synthase: 2-Oxo Acid-Dependent Oxygenases of Importance to Agriculture and Medicine. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite a separate evolutionary lineage, 4-hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are appropriately grouped with the 2-oxo acid-dependent oxygenase (2OADO) family of enzymes. HPPD and HMS accomplish highly similar overall chemistry to that observed in the majority of 2OADOs but require only two substrates rather than three. 2OADOs typically use the 2-oxo acid of 2-oxoglutarate (2OG) as a source of electrons to reduce and activate dioxygen in order to oxidize a third specific substrate. HPPD and HMS use instead the pyruvate substituent of 4-hydroxyphenylpyruvate to activate dioxygen and then proceed to also hydroxylate this substrate, each yielding a distinctly different aromatic product. HPPD catalyses the second and committed step of tyrosine catabolism, a pathway common to nearly all aerobes. Plants require the HPPD reaction to biosynthesize plastoquinones and therefore HPPD inhibitors can have potent herbicidal activity. The ubiquity of the HPPD reaction, however, has meant that HPPD-specific molecules developed as herbicides have other uses in different forms of life. In humans herbicidal HPPD inhibitors can be used therapeutically to alleviate specific inborn defects and also to retard the progress of certain bacterial and fungal infections. This review is intended as a concise overview of the contextual and catalytic chemistries of HPPD and HMS.
Collapse
Affiliation(s)
- Dhara D. Shah
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee 3210 N. Cramer St Milwaukee WI 53211-3209 USA
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee 3210 N. Cramer St Milwaukee WI 53211-3209 USA
| |
Collapse
|
44
|
Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS. PLoS One 2015; 10:e0120923. [PMID: 25793756 PMCID: PMC4368426 DOI: 10.1371/journal.pone.0120923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
The pigmentation of many Aeromonas species has been thought to be due to the production of a L-DOPA (L-3,4-dihydroxyphenylalanine) based melanin. However, in this study we found that although L-DOPA synthesis occurs in the high-melanin-yielding Aeromonas media strain WS, it plays a minor, if any, role in pigmentation. Instead, the pigmentation of A. media strain WS is due to the production of pyomelanin through HGA (homogentisate). Gene products of phhA (encodes phenylalanine hydroxylase), tyrB and aspC (both encode aromatic amino acid aminotransferase), and hppD (encodes 4-hydroxyphenylpyruvate dioxygenase) constitute a linear pathway of converting phenylalanine to HGA and disruption of any one of these genes impairs or blocks pigmentation of A. media strain WS. This HGA biosynthesis pathway is widely distributed in Aeromonas, but HGA is only detectable in the cultures of pigmented Aeromonas species. Heterologous expression of HppD from both pigmented and non-pigmented Aeromonas species in E. coli leads to the production of pyomelanin and thus pigmentation, suggesting that most Aeromonas species have the critical enzymes to produce pyomelanin through HGA. Taken together, we have identified a widely conserved biosynthesis pathway of HGA based pyomelanin in Aeromonas that may be responsible for pigmentation of many Aeromonas species.
Collapse
|
45
|
Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Nat Prod Rep 2015; 32:1207-35. [DOI: 10.1039/c5np00025d] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylglycine-type amino acids occur in a wide variety of peptide natural products. Herein structures and properties of these peptides as well as the biosynthetic origin and incorporation of phenylglycines are discussed.
Collapse
Affiliation(s)
| | - Clara Brieke
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | - Max J. Cryle
- Max Planck Institute for Medical Research
- Department of Biomolecular Mechanisms
- 69120 Heidelberg
- Germany
| | | |
Collapse
|
46
|
Wójcik A, Broclawik E, Siegbahn PEM, Lundberg M, Moran G, Borowski T. Role of Substrate Positioning in the Catalytic Reaction of 4-Hydroxyphenylpyruvate Dioxygenase—A QM/MM Study. J Am Chem Soc 2014; 136:14472-85. [DOI: 10.1021/ja506378u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anna Wójcik
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland
- Department
of Computational Biophysics and Bioinformatics, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Ewa Broclawik
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland
| | - Per E. M. Siegbahn
- Department
of Organic Chemistry, Stockholm University, S-106 91, Stockholm, Sweden
| | - Marcus Lundberg
- Ångstrom
Laboratory, Department of Chemistry, Uppsala University, Box 518, SE-751 20 Uppsala, Sweden
| | - Graham Moran
- Department
of Chemistry and Biochemistry, University of Wisconsin—Milwaukee, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3209, United States
| | - Tomasz Borowski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland
| |
Collapse
|
47
|
Structural and functional characterization of 4-hydroxyphenylpyruvate dioxygenase from the thermoacidophilic archaeon Picrophilus torridus. Extremophiles 2014; 18:641-51. [PMID: 24794033 DOI: 10.1007/s00792-014-0645-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (Hpd, EC 1.13.11.27) catalyzes the conversion of 4-hydroxyphenylpyruvate into homogentisate in the second step of oxidative tyrosine catabolism. This pathway is known from bacteria and eukaryotes, but so far no archaeal Hpd has been described. Here, we report the biochemical characterization of an Hpd from the extremophilic archaeon Picrophilus torridus (Pt_Hpd), together with its three-dimensional structure at a resolution of 2.6 Å. Two pH optima were observed at 50 °C: pH 4.0 (close to native conditions) and pH 7.0. The enzyme showed only moderate thermostability and was inactivated with a half-life of ~1.5 h even under optimal reaction conditions. At the ideal physiological growth conditions of P. torridus, Pt_Hpd was inactive after 1 h, showing that the enzyme is protected in vivo from denaturation and/or is only partially adapted to the harsh environmental conditions in the cytosol of P. torridus. The influence of different additives on the activity was investigated. Pt_Hpd exhibited a turnover number k(cat) of 9.9 ± 0.6 s(-1) and a substrate binding affinity K(m) of 142 ± 23 µM. In addition, substrate inhibition with a binding affinity K(i) of 1.9 ± 0.3 mM was observed. Pt_Hpd is compared with isoenzymes from other species and the putative bacterial origin of the gene is discussed.
Collapse
|
48
|
4-Hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase: exemplars of the α-keto acid dependent oxygenases. Arch Biochem Biophys 2013; 544:58-68. [PMID: 24211436 DOI: 10.1016/j.abb.2013.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are outliers within the α-keto acid dependent oxygenase (αKAO) family. HPPD and HMS catalyze the chemistry of the majority of enzymes within the αKAO family but are clearly mechanistically convergent, having a grossly different structural topology. Some of the unique characteristics of HPPD and HMS have elucidated select parts of the catalytic cycle that are obscured in other family members. Moreover, the inhibitory chemistry of HPPD is a phenomenon with ever-expanding relevance across all kingdoms of life. This review is a synopsis of the literature pertaining to HPPD and HMS. It is not intended as an exhaustive compilation of all observations made for these enzymes but rather a condensed narrative that connects those studies that have advanced the understanding of the chemistry of both enzymes.
Collapse
|
49
|
Biodegradation of the allelopathic chemical m-tyrosine by Bacillus aquimaris SSC5 involves the homogentisate central pathway. PLoS One 2013; 8:e75928. [PMID: 24098407 PMCID: PMC3788032 DOI: 10.1371/journal.pone.0075928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/23/2013] [Indexed: 11/30/2022] Open
Abstract
m-Tyrosine is an amino acid analogue, exuded from the roots of fescue grasses, which acts as a potent allelopathic and a broad spectrum herbicidal chemical. Although the production and toxic effects of m-tyrosine are known, its microbial degradation has not been documented yet. A soil microcosm study showed efficient degradation of m-tyrosine by the inhabitant microorganisms. A bacterial strain designated SSC5, that was able to utilize m-tyrosine as the sole source of carbon, nitrogen, and energy, was isolated from the soil microcosm and was characterized as Bacillus aquimaris. Analytical methods such as HPLC, GC-MS, and 1H-NMR performed on the resting cell samples identified the formation of 3-hydroxyphenylpyruvate (3-OH-PPA), 3-hydroxyphenylacetate (3-OH-PhAc), and homogentisate (HMG) as major intermediates in the m-tyrosine degradation pathway. Enzymatic assays carried out on cell-free lysates of m-tyrosine-induced cells confirmed transamination reaction as the first step of m-tyrosine degradation. The intermediate 3-OH-PhAc thus obtained was further funneled into the HMG central pathway as revealed by a hydroxylase enzyme assay. Subsequent degradation of HMG occurred by ring cleavage catalyzed by the enzyme homogentisate 1, 2-dioxygenase. This study has significant implications in terms of understanding the environmental fate of m-tyrosine as well as regulation of its phytotoxic effect by soil microorganisms.
Collapse
|
50
|
Lin JF, Sheih YL, Chang TC, Chang NY, Chang CW, Shen CP, Lee HJ. The interactions in the carboxyl terminus of human 4-hydroxyphenylpyruvate dioxygenase are critical to mediate the conformation of the final helix and the tail to shield the active site for catalysis. PLoS One 2013; 8:e69733. [PMID: 23950902 PMCID: PMC3739788 DOI: 10.1371/journal.pone.0069733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/12/2013] [Indexed: 11/18/2022] Open
Abstract
4-Hydroxylphenylpyruvate dioxygenase (4-HPPD) is an important enzyme for tyrosine catabolism, which catalyzes the conversion of 4-hydroxylphenylpyruvate (4-HPP) to homogentisate. In the present study, human 4-HPPD was cloned and expressed in E. coli. The kinetic parameters for 4-HPP conversion were: k cat=2.2 ± 0.1 s(-1); and K m=0.08 ± 0.02 mM. Sequence alignments show that human 4-HPPD possesses an extended C-terminus compared to other 4-HPPD enzymes. Successive truncation of the disordered tail which follows the final α-helix resulted in no changes in the K m value for 4-HPP substrate but the k cat values were significantly reduced. The results suggest that this disordered C-terminal tail plays an important role in catalysis. For inspection the effect of terminal truncation on protein structure, mutant models were built. These models suggest that the different conformation of E254, R378 and Q375 in the final helix might be the cause of the activity loss. In the structure E254 interacts with R378, the end residue in the final helix; mutation of either one of these residues causes a ca. 95% reductions in k cat values. Q375 provides bifurcate interactions to fix the tail and the final helix in position. The model of the Q375N mutant shows that a solvent accessible channel opens to the putative substrate binding site, suggesting this is responsible for the complete loss of activity. These results highlight the critical role of Q375 in orientating the tail and ensuring the conformation of the terminal α-helix to maintain the integrity of the active site for catalysis.
Collapse
Affiliation(s)
- Jang-Foung Lin
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Yung-Lin Sheih
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Ni-Yuan Chang
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Chiung-Wen Chang
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Chia-Pei Shen
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Neihu, Taipei, Taiwan
- * E-mail:
| |
Collapse
|