1
|
He K, Yuan J, Lu H, Asada Y, Echigo S, Wu Q, Wang H. Evaluating the behavior and environmental risks of carbamazepine and its metabolites in soil aquifer treatment: Insights from deconjugation dynamics and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135788. [PMID: 39298951 DOI: 10.1016/j.jhazmat.2024.135788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
The presence of pharmaceuticals in the environment has been a growing concern. Recent studies highlight the ecological risks of pharmaceuticals, but most risk assessments focus on the parent drug, neglecting metabolites. This study examines the behavior and environmental risks of carbamazepine (CBZ) and its metabolites in soil aquifer treatment (SAT) for wastewater reclamation. Findings indicate that CBZ metabolites' total concentration exceeds that of CBZ. Notably, carbamazepine-N-glucuronide (CBZ-N-Glu) concentration decreased from 48.12 ng/L to undetectable levels during SAT, while CBZ concentration increased from 64.87 to 95 ng/L, suggesting possible deconjugation of CBZ-N-Glu. Batch and column experiments confirmed the hypothesis, showing a gradual disappearance of CBZ-Glu and a corresponding rise in CBZ concentration when CBZ-N-Glu was spiked into a recirculated SAT system. Quantitative structure-activity relationships (QSAR) analysis revealed that CBZ exhibits higher acute and chronic toxicity, with metabolites showing varying levels of developmental toxicity. The study also evaluates the persistence, mobility, and toxicity (PMT) characteristics of CBZ and its metabolites, highlighting CBZ-N-Glu's particularly adverse PMT characteristics compared to CBZ. In summary, the residual pharmaceuticals in the reclaimed water process should be evaluated systematically, considering both the parent compounds and their metabolites.
Collapse
Affiliation(s)
- Kai He
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory for Marine Civil Engineering, Zhuhai 519082, China; Research Center for Environmental Quality Management, Kyoto University, Nishikyo, Kyoto 615-8540, Japan.
| | - Jinlong Yuan
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory for Marine Civil Engineering, Zhuhai 519082, China
| | - Haoxian Lu
- Marine Biological Resources Bank, Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Yasuhiro Asada
- Research Center for Environmental Quality Management, Kyoto University, Nishikyo, Kyoto 615-8540, Japan
| | - Shinya Echigo
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
| | - Qianyuan Wu
- International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Rastogi A, Chaudhary S, Tiwari MK, Ghangrekar MM. Ibuprofen degradation by mixed bacterial consortia: Metabolic pathway and microbial community analysis. CHEMOSPHERE 2024; 359:142354. [PMID: 38759812 DOI: 10.1016/j.chemosphere.2024.142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/08/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Degradation of ibuprofen, one of the most consumed drugs globally, by a mixed bacterial consortium was investigated. A contaminated hospital soil was used to enrich a bacterial consortium possessing the ability to degrade 4 mg/L ibuprofen in 6 days, fed on 6 mM acetate as a supplementary carbon source. Maximum ibuprofen degradation achieved was 99.51%, and for optimum ibuprofen degradation modelled statistically, the initial ibuprofen concentration, and temperature were determined to be 0.515 mg/L and 35 °C, respectively. The bacterial community analyses demonstrated an enrichment of Pseudomonas, Achromobacter, Bacillus, and Enterococcus in the presence of ibuprofen, suggesting their probable association with the biodegradation process. The biodegradation pathway developed using open-source metabolite predictors, GLORYx and BioTransformer suggested multiple degradation routes. Hydroxylation and oxidation were found to be the major mechanisms in ibuprofen degradation. Mono-hydroxylated metabolites were identified as well as predicted by the bioinformatics-based packages. Oxidation, dehydrogenation, super-hydroxylation, and hydrolysis were some other identified mechanisms.
Collapse
Affiliation(s)
- A Rastogi
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| | - S Chaudhary
- Department of Biotechnology, College of Commerce, Arts and Science, Patna, 800020, India.
| | - M K Tiwari
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, 208016, India; School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
3
|
Impellitteri F, Yunko K, Calabrese G, Porretti M, Martyniuk V, Gnatyshyna L, Nava V, Potortì AG, Piccione G, Di Bella G, Stoliar O, Faggio C. Chlorpromazine's impact on Mytilus galloprovincialis: a multi-faceted investigation. CHEMOSPHERE 2024; 350:141079. [PMID: 38160957 DOI: 10.1016/j.chemosphere.2023.141079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The antipsychotic chlorpromazine (Cpz) has raised concern as a pharmaceutical effluent due to its wide medical applications. Moreover, its potent pro-oxidant properties and impact on the cell viability of the marine mollusc Mytilus galloprovincialis, even at low concentrations (ng/L), have been noted. Based on this evidence, in this study, we investigated the physiological effects of Cpz on M. galloprovincialis, to elucidate its fate within the organism, in terms of bioaccumulation, biotransformation, byssus changes and stress responses of the cellular thiolome. Histological and indicators of vitality analyses were also performed to better evaluate the influence of the drug on the morphology and cell viability of the digestive gland. To this end, two different concentrations of Cpz (Cpz I (12 ng/L or 37 pM) and Cpz II (12 μg/L or 37 nM)) were administered to mussels over 14 days. Cpz accumulation in the digestive gland significantly increased with water concentration (BCF of Cpz I and Cpz II). Biochemical analyses indicated lysosomal dysfunction, reflected in elevated total Cathepsin D activity and compromised lysosomal membrane stability. Stress-related and metal-buffering proteins (GST and metallothionein) responded to both Cpz concentrations. Cpz I induced phase I biotransformation activity (CYP450-dependent EROD), while Cpz II triggered caspase-3 activation, indicative of detoxification overload. Histological analysis revealed digestive gland atrophy, epithelial thinning, haemocyte infiltration, and brown cell presence. Byssus analysis showed significant alterations. In conclusion, our study underscores Cpz-induced physiological and histological changes in M. galloprovincialis, posing potential implications for mussel health and confirming the utilisation of this mussel as an indication of Cpz ecotoxicity.
Collapse
Affiliation(s)
- Federica Impellitteri
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Giovanna Calabrese
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Miriam Porretti
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Vincenzo Nava
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Angela Giorgia Potortì
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Giuseppe Piccione
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine; Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
4
|
Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023; 28:molecules28052097. [PMID: 36903343 PMCID: PMC10004696 DOI: 10.3390/molecules28052097] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023] Open
Abstract
The anti-inflammatory drug ibuprofen is considered to be an emerging contaminant because of its presence in different environments (from water bodies to soils) at concentrations with adverse effects on aquatic organisms due to cytotoxic and genotoxic damage, high oxidative cell stress, and detrimental effects on growth, reproduction, and behavior. Because of its high human consumption rate and low environmental degradation rate, ibuprofen represents an emerging environmental problem. Ibuprofen enters the environment from different sources and accumulates in natural environmental matrices. The problem of drugs, particularly ibuprofen, as contaminants is complicated because few strategies consider them or apply successful technologies to remove them in a controlled and efficient manner. In several countries, ibuprofen's entry into the environment is an unattended contamination problem. It is a concern for our environmental health system that requires more attention. Due to its physicochemical characteristics, ibuprofen degradation is difficult in the environment or by microorganisms. There are experimental studies that are currently focused on the problem of drugs as potential environmental contaminants. However, these studies are insufficient to address this ecological issue worldwide. This review focuses on deepening and updating the information concerning ibuprofen as a potential emerging environmental contaminant and the potential for using bacteria for its biodegradation as an alternative technology.
Collapse
|
5
|
Martyniuk V, Gylytė B, Matskiv T, Khoma V, Tulaidan H, Gnatyshyna L, Orlova-Hudim K, Manusadžianas L, Stoliar O. Stress responses of bivalve mollusc Unio tumidus from two areas to ibuprofen, microplastic and their mixture. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1369-1381. [PMID: 36208366 DOI: 10.1007/s10646-022-02594-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Even though bivalve molluscs are recognized as bioindicators of freshwater quality, their responses to multiple stressors are unpredictable. This study aims to elucidate the inter-population peculiarities of the effect in the sub-chronic environmentally relevant exposure to novel contaminants. The specimens of Unio tumidus from reference (Pr) and contaminated (Ct) areas were treated with ibuprofen (IBU, 0.8 µg L-1), microplastic (MP, 1.0 mg L-1, size 0.1-0.5 mm), or their combination (Mix) for 14 days. Untreated mussels (PrC- and CtC-groups) served as controls. The PrC-group had higher levels of antioxidants Mn-SOD, Cu,Zn-SOD, catalase, and cholinesterase (AChE) as well as lesser levels of oxidative lesions (TBARS and protein carbonyls) in digestive glands, indicating lower environmental impact than in the CtC-group. However, lysosomal stability was similar in both control groups. Among antioxidants, Mn-SOD activity was affected most prominently, increasing in all exposed Ct-groups. TBARS level was increased only in PrMP-group compared to responsive control. IBU and Mix enhanced protein carbonyl concentration in the Pr-groups, and decreased it in the Ct-groups. AChE was induced in the CtIBU- and PrMix-groups, and lysosomal integrity increased in the CtIBU and CtMix-groups. Discriminant analyses indicated lesser differences between Pr-groups, demonstrating lower cumulative stress compared to Ct-groups. Generally, the most remarkable response was revealed in the CtIBU-group, and distortion of individual effects was established in combined exposures. The qualification of stress-neutral and stress-positive populations was proposed for Pr- and Ct-populations correspondingly. Inter-site peculiarities must be taken into consideration when the environmental impact of MP and pharmaceuticals is evaluated.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Halyna Tulaidan
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
6
|
Martyniuk V, Khoma V, Matskiv T, Baranovsky V, Orlova-Hudim K, Gylytė B, Symchak R, Matciuk O, Gnatyshyna L, Manusadžianas L, Stoliar O. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109425. [PMID: 35914710 DOI: 10.1016/j.cbpc.2022.109425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
The vulnerability of bivalve mollusks to micropollutants is estimated mainly in single model exposures. However, chronic environmental stress and complex exposures can modulate their responses. To evaluate the impact of population-dependent adaptations on the ability to react to common micropollutants, we compared freshwater bivalves Unio tumidus from two distinct populations, pure (Pr) and contaminated (Ct), in their exposures to microplastics (MP, 1 mg L-1, size 0.1-0.5 mm), pharmaceutical ibuprofen (IBU, 0.8 μg L-1), or their combination (Mix) for 14 days. Control groups from both sites showed remarkable differences, with lower levels of total antioxidant capacity (TAC), metallothionein protein (MTSH), NADH and NAD+, cytochrome P450-related EROD, glutathione-S transferase (GST), and citrate synthase (CS) but higher levels of GSH, GSSG, caspase-3 and cathepsin D (CTD) in the Ct-control group. These data indicate a chronic stress impact in the Ct population. Under exposures, we found an almost common strategy in both populations for NAD+/NADH and MTSH suppression and CTD induction. Additionally, Mix exposure caused an increase in CS, and IBU did not change GSH in both populations. However, the expected response to IBU - the suppression of caspase-3 - was indicated only in PrIBU- and PrMix-mollusks. CTD efflux increased dramatically only in PrMP- and PrMix- groups, and suppression of EROD and GST was detected in the PrMix-group. According to discriminant analysis, exposed Pr-groups were highly differentiated from control, whereas Ct-control and exposed groups had common localization demonstrating high resistance to environmental stress. Thus, the same exposures resulted in different adverse outcome pathways depending on the population.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Vitaliy Baranovsky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | | | - Ruslan Symchak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Matciuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
7
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
8
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153591. [PMID: 35122849 DOI: 10.1016/j.scitotenv.2022.153591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Cravo A, Silva S, Rodrigues J, Cardoso VV, Benoliel MJ, Correia C, Coelho MR, Rosa MJ, Almeida CMM. Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge. ENVIRONMENTAL RESEARCH 2022; 208:112632. [PMID: 35074358 DOI: 10.1016/j.envres.2021.112632] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Twenty-four pharmaceutical active compounds (PhACs) were evaluated in the soft tissues of clams Ruditappes decussatus exposed along a 1.5-km dispersal gradient of the treated effluent from an urban wastewater treatment plant discharging in Ria Formosa, and compared with those in the marine waters and discharged effluents. The clams were exposed for 1 month, in June-July 2016, 2017 and 2018. PhACs were quantified by high performance liquid chromatography coupled to tandem mass spectrometry after the quick, easy, cheap, effective, rugged and safe (QuEChERS) method (clams) or solid-phase extraction (water samples). The most representative PhACs in the effluents and receiving waters (regardless of the tidal dilution effect) were diclofenac, carbamazepine and caffeine (on average ≤ 2 μg/L) and only caffeine exhibited significant inter-annual differences, with higher values in 2017. In turn, the most bioaccumulated PhACs in clams were caffeine (0.54-27 ng/g wet weight, significantly higher in 2016) and acetaminophen (0.37-3.7 ng/g wet weight, significant lower in 2016). A multivariate principal component analysis showed (i) PhAC bioaccumulation primarily depended on biotic factors (clams length and weight), (ii) PhAC physicochemical properties Log Kow, pKa and water solubility interplaying with water abiotic variables were more relevant for explaining data variability in water than the physical dilution/tidal mixing, (iii) this process, reflected by the salinity gradient, had a tertiary role in data variation, responsible for spatial discrimination of marine waters. This study provides a better understanding of PhACs bioaccumulation by clams Ruditapes decussatus in real environmental conditions, under the influence of urban treated effluent dispersal in Ria Formosa coastal lagoon, a major producer of bivalves, ultimately disentangling key factors of PhAC bioaccumulation.
Collapse
Affiliation(s)
- Alexandra Cravo
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Sofia Silva
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Rodrigues
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Vítor Vale Cardoso
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Maria João Benoliel
- Empresa Portuguesa Das Águas Livres, S.A., Direção de Controlo de Qualidade da Água, Av. Berlim 15, 1800-031, Lisboa, Portugal
| | - Cátia Correia
- Centro de Investigação Marinha e Ambiental (CIMA), FCT, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | - Maria João Rosa
- National Civil Engineering Laboratory (LNEC), Urban Water Unit, Water Quality and Treatment Laboratory, Av. Brasil 101, 1700-066, Lisboa, Portugal
| | - Cristina M M Almeida
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
10
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150369. [PMID: 34571231 DOI: 10.1016/j.scitotenv.2021.150369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Li Z, Cao Y, Qin H, Ma Y, Pan L, Sun J. Integration of chemical and biological methods: A case study of polycyclic aromatic hydrocarbons pollution monitoring in Shandong Peninsula, China. J Environ Sci (China) 2022; 111:24-37. [PMID: 34949353 DOI: 10.1016/j.jes.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as persistent toxic substances (PTS), have been widely monitored in coastal environment, including seawater and sediment. However, scientific monitoring methods, like ecological risk assessment and integrated biomarker response, still need massive researches to verify their availabilities. This study was performed in March, May, August and October of 2018 at eight sites, Yellow River estuary (S1), Guangli Port (S2), Xiaying (S3), Laizhou (S4), Inner Bay (S5), Outer Bay (S6), Hongdao (S7) and Hongshiya (S8) of Shandong Peninsula, China. The contents of 16 priority PAHs in local seawater and sediment were determined, by which ecological risk assessment risk quotient (RQ) for seawater and sediment quality guidelines (SQGs) were calculated to characterize the PAHs pollution. Meanwhile, multiple biomarkers in the digestive gland of clam Ruditapes philippinarum were measured to represent different biological endpoints, including ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), sulfotransferase (SULT), superoxide dismutase (SOD) and lipid peroxidation (LPO), by which integrated biomarker response (IBR) was calculated to provide a comprehensive assessment of environmental quality. Taken together, these results revealed the heaviest pollution at S2 as both PAHs concentrations and biomarkers responses reflected, and supported the integrated biomarker response as a useful tool for marine environmental monitoring, through its integration with SQGs.
Collapse
Affiliation(s)
- Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huawei Qin
- Shandong Marine Resources and Environment Research Institute, Yantai 264006, China
| | - Yuanqing Ma
- Shandong Marine Resources and Environment Research Institute, Yantai 264006, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
12
|
Dumas T, Courant F, Almunia C, Boccard J, Rosain D, Duporté G, Armengaud J, Fenet H, Gomez E. An integrated metabolomics and proteogenomics approach reveals molecular alterations following carbamazepine exposure in the male mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 286:131793. [PMID: 34364230 DOI: 10.1016/j.chemosphere.2021.131793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Carbamazepine is one of the most abundant pharmaceutical active compounds detected in aquatic systems. Based on laboratory exposures, carbamazepine has been proven to adversely affect aquatic organisms. However, the underlying molecular events remain poorly understood. This study aims to investigate the molecular mechanisms potentially associated with toxicological effects of carbamazepine on the mussel Mytilus galloprovincialis exposed for 3 days at realistic concentrations encountered in coastal environments (80 ng/L and 8 μg/L). An integrated metabolomics and proteogenomics approach, including data fusion strategy, was applied to gain more insight in molecular events and cellular processes triggered by carbamazepine exposure. Consistent metabolic and protein signatures revealed a metabolic rewiring and cellular stress at both concentrations (e.g. intensification of protein synthesis, transport and catabolism processes, disruption of lipid and amino acid metabolisms). These highlighted molecular signatures point to the induction of autophagy, closely related with carbamazepine mechanism of action, as well as a destabilization of the lysosomal membranes and an enzymatic overactivity of the peroxisomes. Induction of programmed cell death was highlighted by the modulation of apoptotic cognate proteins. The proposed integrative omics data analysis was shown to be highly relevant to identify the modulations of the two molecular levels, i.e. metabolites and proteins. Multi-omics approach is able to explain the resulting complex biological system, and document stronger toxicological pieces of evidence on pharmaceutical active compounds at environmental concentrations in sentinel organisms.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| | - Christine Almunia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
| | - David Rosain
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Geoffroy Duporté
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
13
|
Rastogi A, Tiwari MK, Ghangrekar MM. A review on environmental occurrence, toxicity and microbial degradation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113694. [PMID: 34537557 DOI: 10.1016/j.jenvman.2021.113694] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 02/05/2023]
Abstract
In recent years, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) have surfaced as a novel class of pollutants due to their incomplete degradation in wastewater treatment plants and their inherent ability to promote physiological predicaments in humans even at low doses. The occurrence of the most common NSAIDs (diclofenac, ibuprofen, naproxen, and ketoprofen) in river water, groundwater, finished water samples, WWTPs, and hospital wastewater effluents along with their toxicity effects were reviewed. The typical concentrations of NSAIDs in natural waters were mostly below 1 μg/L, the rivers receiving untreated wastewater discharge have often showed higher concentrations, highlighting the importance of effective wastewater treatment. The critical analysis of potential, pathways and mechanisms of microbial degradation of NSAIDs were also done. Although studies on algal and fungal strains were limited, several bacterial strains were known to degrade NSAIDs. This microbial ability is attributed to hydroxylation by cytochrome P450 because of the decrease in drug concentrations in fungal cultures of Phanerochaete sordida YK-624 on incubation with 1-aminobenzotriazole. Moreover, processes like decarboxylation, dehydrogenation, dechlorination, subsequent oxidation, demethylation, etc. also constitute the degradation pathways. A wide array of enzymes like dehydrogenase, oxidoreductase, dioxygenase, monooxygenase, decarboxylase, and many more are upregulated during the degradation process, which indicates the possibility of their involvement in microbial degradation. Specific hindrances in upscaling the process along with analytical research needs were also identified, and novel investigative approaches for future monitoring studies are proposed.
Collapse
Affiliation(s)
- Aishwarya Rastogi
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Manoj Kumar Tiwari
- School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
14
|
Carere M, Antoccia A, Buschini A, Frenzilli G, Marcon F, Andreoli C, Gorbi G, Suppa A, Montalbano S, Prota V, De Battistis F, Guidi P, Bernardeschi M, Palumbo M, Scarcelli V, Colasanti M, D'Ezio V, Persichini T, Scalici M, Sgura A, Spani F, Udroiu I, Valenzuela M, Lacchetti I, di Domenico K, Cristiano W, Marra V, Ingelido AM, Iacovella N, De Felip E, Massei R, Mancini L. An integrated approach for chemical water quality assessment of an urban river stretch through Effect-Based Methods and emerging pollutants analysis with a focus on genotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113549. [PMID: 34543968 DOI: 10.1016/j.jenvman.2021.113549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The impact of emerging chemical pollutants, on both status and functionality of aquatic ecosystems is worldwide recognized as a relevant issue of concern that should be assessed and managed by researchers, policymakers, and all relevant stakeholders. In Europe, the Reach Regulation has registered more than 100.000 chemical substances daily released in the environment. Furthermore, the effects related to the mixture of substances present in aquatic ecosystems may not be predictable on the basis of chemical analyses alone. This evidence, coupled with the dramatic effects of climate changes on water resources through water scarcity and flooding, makes urgent the application of innovative, fast and reliable monitoring methods. In this context, Effect-Based Methods (EBMs) have been applied in the urban stretch of the Tiber River (Central Italy) with the aim of understanding if detrimental pressures affect aquatic environmental health. In particular, different eco-genotoxicological assays have been used in order to detect genotoxic activity of chemicals present in the river, concurrently characterized by chemical analysis. Teratogenicity and embryo-toxicity have been studied in order to cover additional endpoints. The EBMs have highlighted the presence of diffuse chemical pollution and ecotoxicological effects in the three sampling stations, genotoxicological effects have been also detected through the use of different tests and organisms. The chemical analyses confirmed that in the aquatic ecosystems there is a diffuse presence, even at low concentrations, of emerging contaminants such as pharmaceuticals, not routinely monitored pesticides, personal care products, PFAS. The results of this study can help to identify an appropriate battery of EBMs for future studies and the application of more appropriate measures in order to monitor, mitigate or eliminate chemical contamination and remediate its adverse/detrimental effects on the ecosystem health.
Collapse
Affiliation(s)
- Mario Carere
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy.
| | - Antonio Antoccia
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Giada Frenzilli
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Francesca Marcon
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Cristina Andreoli
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Gessica Gorbi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Antonio Suppa
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Serena Montalbano
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze, 11/a, 43124, Parma, Italy
| | - Valentina Prota
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Francesca De Battistis
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Patrizia Guidi
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Margherita Bernardeschi
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Mara Palumbo
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Vittoria Scarcelli
- University of Pisa, Department of Clinical and Experimental Medicine, Unit of Applied Biology and Genetics, Via A. Volta 4, Pisa, Italy
| | - Marco Colasanti
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Veronica D'Ezio
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Tiziana Persichini
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Massimiliano Scalici
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Antonella Sgura
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Federica Spani
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Ion Udroiu
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Martina Valenzuela
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, I-00146, Roma, Italy
| | - Ines Lacchetti
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Kevin di Domenico
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Walter Cristiano
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Valentina Marra
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Anna Maria Ingelido
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Nicola Iacovella
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Elena De Felip
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| | - Riccardo Massei
- UFZ - Helmholtz Centre for Environmental Research, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318, Leipzig, Germany
| | - Laura Mancini
- Italian Institute of Health, Department: Environment and Health, Viale Regina Elena 299, Rome, Italy
| |
Collapse
|
15
|
Almeida Â, Soares AMVM, Esteves VI, Freitas R. Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103661. [PMID: 33878451 DOI: 10.1016/j.etap.2021.103661] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/23/2023]
Abstract
A vast literature has already demonstrated that pharmaceutical drugs exert negative impacts on aquatic organisms but data is sparse on the occurrence of these contaminants in marine aquatic environments and their biota, particularly in comparison with freshwater systems. In marine environments, bivalves are known as good bioindicator species for environmental pollution monitoring. This review summarizes the current knowledge on carbamazepine (CBZ) concentrations in the marine environment (seawater and bivalves) and the analytical methods involved in the drug determination. Carbamazepine was chosen based on its ubiquitous occurrence and proven negative impacts on the aquatic organisms. Overall, CBZ is distributed in the marine environment with concentrations up to ∼ 1 μg/L, revealing its stability and high persistence. Also, CBZ was found in some species of marine bivalves, with concentrations up to 13 ng/g dry weight (DW), however, a bioaccumulation factor could not be calculated due to the absence of CBZ determination in seawater samples for most of the studies. CAPSULE: Carbamazepine is found in seawater up to the low μg/L level, and in bivalve tissue up to a few ng/g DW, with SPE and LC as the techniques of choice for drug extraction and identification.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
Jaouani R, Dellali M, Mouneyrac C, Hassine SB, Ali MB, Hedfi A, Hassan MM, Beyrem H, Boufahja F. Assessment of carbamazepine acute toxicity in the cockle Cerastoderma edule through chemical, physiological and biochemical tools. BRAZ J BIOL 2021; 82:e247035. [PMID: 33978087 DOI: 10.1590/1519-6984.247035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 11/22/2022] Open
Abstract
The cockle Cerastoderma edule was exposed to four concentrations (5, 10, 20 and 70 μg L-1) of carbamazepine (CBZ). This anticonvulsant was found to alter the mussel behavior of by reducing its clearance rate (CR). Analysis of CBZ accumulation in tissues of C. edule was carried out using HPLC-UV after 48 or 96 hours of exposure. In addition, an overproduction of H2O2 by the bivalves was detected following exposure to CBZ but nitrite levels remained unchanged. Moreover, superoxide dismutase and catalase activities showed a significant increase in relation to their contact with CBZ. The activity of the biotransformation enzyme gluthatione-S-transferase did not change during exposure. Malondialdehyde (MDA) levels indicating cellular damage, increased when bivalves were exposed to 20 and 70 μg l-1 of carbamazepine for 96 h CBZ. The results also indicate that acetylcholinesterase activity (AChE) was inhibited in all CBZ concentrations during the 48 h exposure period. However, during the 96 h exposure period, AChE was only inhibited at the highest concentration. Further studies are needed now for more exploration of the toxicity of CBZ since it could be bioaccumulable throughout the food web and may affect non-target organisms.
Collapse
Affiliation(s)
- R Jaouani
- University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia.,Laboratory 'Sea, Molecules, Health', Catholic University of the West, Angers, France
| | - M Dellali
- University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - C Mouneyrac
- Laboratory 'Sea, Molecules, Health', Catholic University of the West, Angers, France
| | - S Ben Hassine
- University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - M Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - A Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - M M Hassan
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,Zoology Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - H Beyrem
- University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| | - F Boufahja
- University of Carthage, Laboratory of Biomonitoring of the Environment LR01 ES14, Faculty of Sciences of Bizerte, Zarzouna 7021, Tunisia
| |
Collapse
|
17
|
Piscopo R, Coppola F, Almeida Â, De Marchi L, Russo T, Esteves VI, Soares AMVM, Pretti C, Chiellini F, Polese G, Freitas R. Effects of temperature on caffeine and carbon nanotubes co-exposure in Ruditapes philippinarum. CHEMOSPHERE 2021; 271:129775. [PMID: 33736227 DOI: 10.1016/j.chemosphere.2021.129775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
In the marine environment, organisms are exposed to a high and increasing number of different contaminants that can interact among them. In addition, abiotic factors can change the dynamics between contaminants and organisms, thus increasing or even decreasing the toxic effect of a particular compound. In this study, the effects of caffeine (CAF) and functionalized multi-walled carbon nanotubes (f-MWCNTs) induced in the clam Ruditapes philippinarum were evaluated, acting alone and in combination (MIX), under two temperature levels (18 and 21 °C). To assess the impact of such compounds, their interaction and the possible influence of temperature, biochemical and histopathological markers were investigated. The effects of f-MWCNTs and caffeine appear to be clearly negative at the control temperature, with lower protein content in contaminated clams and a significant decrease in their metabolism when both pollutants were acting in combination. Also, at control temperature, clams exposed to pollutants showed increased antioxidant capacity, especially when caffeine was acting alone, although cellular damages were still observed at CAF and f-MWCNTs treatments. Increased biotransformation capacity at 18 °C and MIX treatment may explain lower caffeine concentration observed. At increased temperature differences among treatments were not so evident as at 18 °C, with a similar biological pattern among contaminated and control clams. Higher caffeine accumulation at MIX treatment under warming conditions may result from clams' inefficient biotransformation capacity when exposed to increased temperatures.
Collapse
Affiliation(s)
- Raffaele Piscopo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal; Department of Biology, University of Naples Federico II, 80126, Italy
| | - Francesca Coppola
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Ângela Almeida
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal
| | - Lucia De Marchi
- Department of Biology, University of Pisa, Via Derna 1, 56126, Pisa, Italy
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Valdemar I Esteves
- Department of Chemistry & CESAM, University of Aveiro, 3810-193, Portugal
| | | | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, 56126, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
18
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11384-11400. [PMID: 33123891 DOI: 10.1007/s11356-020-11320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to screen and quantify 23 pharmaceutical compounds (including illicit drugs), at two sampling points near the diffusers of the Guarujá submarine outfall, State of São Paulo, Brazil. Samples were collected in triplicate during the high (January 2018) and low (April 2018) seasons at two different water column depths (surface and bottom). A total of 10 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Caffeine (42.3-141.0 ng/L), diclofenac (3.6-85.7 ng/L), valsartan (4.7-14.3 ng/L), benzoylecgonine (0.3-1.7 ng/L), and cocaine (0.3-0.6 ng/L) were frequently detected (75% occurrence). Orphenadrine (0.6-3.0 ng/L) and atenolol (0.1-0.3 ng/L), and acetaminophen (1.2-1.4 ng/L) and losartan (0.7-3.4 ng/L), were detected in 50% and 25% of the samples, respectively. Only one sample (12.5%) detected the presence of carbamazepine (< 0.001-0.1 ng/L). Unexpectedly a lower frequency of occurrence and concentration of these compounds occurred during the summer season, suggesting that other factors, such as the oceanographic and hydrodynamic regimes of the study area, besides the population rise, should be taken into account. Caffeine presented concentrations above the surface water safety limits (0.01 μg/L). For almost all compounds, the observed concentrations indicate nonenvironmental risk for the aquatic biota, except for caffeine, diclofenac, and acetaminophen that showed low to moderate ecological risk for the three trophic levels tested.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia (FCT), Universidade Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536, Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
19
|
Zaoui M, Sellami B, Boufahja F, Faloda F, Nahdi S, Alrezaki A, Alwasel S, Harrath AH. Effects of ferroelectric oxides of barium strontium titanate (Ba 0.85Sr 0.15TiO 3) nanoparticles on Ruditapes decussatus assessed through chemical, physiological, and biochemical methods. CHEMOSPHERE 2021; 265:129078. [PMID: 33272670 DOI: 10.1016/j.chemosphere.2020.129078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Here, the effects of a newly designed ferroelectric oxide synthesized by solid reaction, barium strontium titanate [BST (85/15)] (Ba0.85Sr0.15TiO3), on the carpet shell clam Ruditapes decussatus were investigated. These clams were exposed to four concentrations of BST (85/15) nanoparticles (0.001, 0.01, 0.1, and 1 mg.L-1), and BST (85/15) was absorbed by R. decussatus in an exposure intensity-dependent manner. Measurements of clearance rate and biomarkers confirmed that the nanoparticles significantly affected the health of clams in an organ-dependent manner. Interestingly, BST (85/15) nanoparticles stimulated acetylcholinesterase (AChE) activity in the clams, suggesting their usefulness as antagonists of AChE inhibiting pollutants. These findings demonstrate the suitability of R. decussatus as a test organism to provide a framework for understanding the toxicological effects of these newly designed ferroelectrics. Moreover, concentrations of BST (85/15) < 0.1 mg.L-1 could be good alternatives to lead-based ferroelectric oxides and could be sustainable tools for use in electronic applications.
Collapse
Affiliation(s)
- M Zaoui
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - B Sellami
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - F Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021, Zarzouna, Tunisia
| | - F Faloda
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Nahdi
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - A Alrezaki
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Alwasel
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia
| | - A H Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
20
|
Almeida Â, Esteves VI, Soares AMVM, Freitas R. Effects of Carbamazepine in Bivalves: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:163-181. [PMID: 32926215 DOI: 10.1007/398_2020_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbamazepine (CBZ) is among the ten most frequent pharmaceuticals that occur in the aquatic systems, with known effects on inhabiting organisms, including bivalves. Bivalves are important species in coastal ecosystems, often exhibiting a dominant biomass within invertebrate communities. These organisms play a major role in the functioning of the ecosystem and particularly in food webs (as suspension-feeders) and represent a significant fraction of the fisheries resource. They also have strong interactions with the environment, water and sediment and are considered good bioindicator species. The present paper reviews the known literature on the impacts of CBZ in biological endpoints of marine bivalves exposed to environmentally and non-environmentally relevant concentrations, highlighting differences in terms of biological responses, associated with exposure period, concentrations tested, and species used. Overall, the literature available showed that CBZ induces individual and sub-individual effects in marine bivalves (adults and life stages) and the most common effect reported was the induction of oxidative stress.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Rosa Freitas
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
21
|
Świacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115891. [PMID: 33497943 DOI: 10.1016/j.envpol.2020.115891] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment, both in marine and freshwater reservoirs, is a major concern of global environmental protection. Among the drugs that are most commonly used, NSAIDs tend to dominate. Currently, being aware of the problem caused by drug contamination, it is extremely important to evaluate the scale and the full spectrum of its consequences, from short-term to long-term effects. The influence on non-target aquatic animals can take place at many levels, and the effects can be seen both in behaviour and physiology, but also in genetic alterations or reproduction disorders, affecting the development of entire populations. This review summarises all the advances made to estimate the impact of NSAIDs on aquatic animals. Multicellular animals from all trophic levels, inhabiting both inland waters, seas and oceans, have been considered. Particular attention has been paid to chronic studies, conducted at low, environmentally-relevant concentrations, to estimate the real effects of the present pollution. The number of such studies has indeed increased in recent years, allowing for a better insight into the possible consequences of pharmaceutical pollution. It should be stressed, however, that our knowledge is still limited to a few model species, while there are many groups of organisms completely unexplored regarding the effects of drugs. Therefore, the main aim of this paper was to summarise the current state of knowledge on the toxicity of NSAIDs in aquatic animals, also identifying important gaps and major issues requiring further analysis.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
22
|
Stara A, Pagano M, Capillo G, Fabrello J, Sandova M, Albano M, Zuskova E, Velisek J, Matozzo V, Faggio C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110980. [PMID: 32888623 DOI: 10.1016/j.ecoenv.2020.110980] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
Pesticides can enter aquatic environments potentially affecting non-target organisms. Unfortunately, the effects of such substances are still poorly understood. This study investigated the effects of the active neonicotinoid substance thiacloprid (TH) and the commercial product Calypso 480 SC (CA) (active compound 40.4% TH) on Mytilus galloprovincialis after short-term exposure to sublethal concentrations. Mussels were tested for seven days to 0, 1, 5 and 10 mg L-1 TH and 0, 10, 50 and 100 mg L-1 CA. For this purpose, several parameters, such as cell viability of haemocytes and digestive cells, biochemical haemolymph features, superoxide dismutase (SOD) and catalase (CAT) enzymatic activity of gills and digestive gland, as well as histology of such tissues were analysed. The sublethal concentrations of both substances lead to abatement or completely stopping the byssal fibres creation. Biochemical analysis of haemolymph showed significant changes (P < 0.01) in electrolytes ions (Cl-, K+, Na+, Ca2+, S-phosphor), lactate dehydrogenase (LDH) enzyme activity and glucose concentration following exposure to both substances. The TH-exposed mussels showed significant imbalance (P < 0.05) in CAT activity in digestive gland and gills. CA caused significant decrease (P < 0.05) in SOD activity in gills and in CAT activity in both tissues. Results of histological analyses showed severe damage in both digestive gland and gills in a time- and concentration-dependent manner. This study provides useful information about the acute toxicity of a neonicotinoid compound and a commercial insecticide on mussels. Nevertheless, considering that neonicotinoids are still widely used and that mussels are very important species for marine environment and human consumption, further researches are needed to better comprehend the potential risk posed by such compounds to aquatic non-target species.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gioele Capillo
- University of Messina, Department of Veterinary Sciences, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Jacopo Fabrello
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Marco Albano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Valerio Matozzo
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
23
|
Korekar G, Kumar A, Ugale C. Occurrence, fate, persistence and remediation of caffeine: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34715-34733. [PMID: 31811612 DOI: 10.1007/s11356-019-06998-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) have gained attention in recent years due to their continuous discharge in natural waters. Their persistence in the environment has impacted flora, fauna and human being worldwide. One of the most common PPCPs is caffeine (1, 3, 7-trimethylxanthine) which acts as a stimulant to the central nervous system in humans and is found in nature in about 60 plant species, especially in coffee, tea and cacao plants. Here we discuss the evidence with respect to caffeine occurrence, its persistence and remediation in light of increasing knowledge and the impact of caffeine on the environment. Daily intake of caffeine around the world is found to increase due to the frequent introduction of new caffeinated beverages as well as increased consumption of coffee, tea and carbonated soft drinks, which has led to increase in its concentration in water bodies including agricultural soil. The caffeine concentration in different water system, studied by various authors is also described. Diverse effects of the use of caffeine on several organisms including humans are also briefly presented. Therefore, urgent attention for the removal of caffeine and its derivatives is the need of the hour. Various methods described in literature for caffeine degradation/removal is also presented. Another widely used technique in environmental remediation is molecular imprinting (MIP); however, only few MIPs have been demonstrated for caffeine which is also discussed. Regular monitoring can be useful to control toxic effects of caffeine. Graphical abstract.
Collapse
Affiliation(s)
- Girish Korekar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440010, India
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra, 440010, India.
| | - Chetna Ugale
- Department of Botany, Indira Mahavidyalaya Kalamb, Dist. Yavatmal, Maharashtra, 445401, India
| |
Collapse
|
24
|
Aguirre-Martínez GV, Martín-Díaz ML. A multibiomarker approach to assess toxic effects of wastewater treatment plant effluents and activated defence mechanisms in marine (Ruditapes philippinarum) and fresh water (Corbicula fluminea) bivalve species. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:941-958. [PMID: 32350641 DOI: 10.1007/s10646-020-02216-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Since it has been demonstrated that urban effluents can have adverse effects on aquatic organisms, a multibiomarker study was used to evaluate the effects of wastewater treatment plant (WWTP) effluents discharged into the marine and freshwater environments on clams in Cádiz, Spain. One bioassay was performed in the Bay of Cádiz, exposing Ruditapes philippinarum (marine) to a reference site as well as two sites close to WWTP discharges for 14 days. A second bioassay was performed in the Guadalete River, exposing Corbicula fluminea (fresh water) to three sites for 21 days. The biomarkers analysed included defence mechanisms and various toxic effects. Results indicated that WWTP effluents activated defence mechanisms and induced toxic effects in clams exposed to both environments, thus indicating bioavailability of contaminants present in water. Elevated enzymatic activity was found in clams deployed in La Puntilla and El Trocadero compared to control clams and those exposed to the reference site, and 96% of clams deployed at G2 in the Guadalete River died before day 7. Clams exposed to G1 and G3 indicated significant differences in all biomarkers analysed with respect to control clams (p < 0.05). Both species were sensitive to contaminants present in studied sites. This is the first time that these species were used in cages to assess the environmental risk of wastewater effluent discharges in freshwater and marine column environments. The multibiomarker approach provided important ecotoxicological information and is useful for the assessment of the bioavailability and effect of contaminants from WWTP effluents on marine and fresh water invertebrates.
Collapse
Affiliation(s)
- G V Aguirre-Martínez
- Faculty of Marine and Environmental Sciences, Cadiz University, Campus Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain.
- Faculty of Health Science, Arturo Prat University, Casilla 121, 1110939, Iquique, Chile.
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, Puerto Real, 11510, Cádiz, Spain.
| | - M L Martín-Díaz
- Faculty of Marine and Environmental Sciences, Cadiz University, Campus Excelencia Internacional del Mar (CEIMAR), Polígono Río San Pedro s/n. P. Real, Cádiz, Spain
- Andalusian Center of Marine Science and Technology (CACYTMAR), Campus Universitario de Puerto Real, Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
25
|
Ehiguese FO, Alam MR, Pintado-Herrera MG, Araújo CVM, Martin-Diaz ML. Potential of environmental concentrations of the musks galaxolide and tonalide to induce oxidative stress and genotoxicity in the marine environment. MARINE ENVIRONMENTAL RESEARCH 2020; 160:105019. [PMID: 32907733 DOI: 10.1016/j.marenvres.2020.105019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic musk compounds have been identified in environmental matrices (water, sediment and air) and in biological tissues in the last decade, yet only minimal attention has been paid to their chronic toxicity in the marine environment. In the present research, the clams Ruditapes philippinarum were exposed to 0.005, 0.05, 0.5, 5 and 50 μg/L of the fragrances Galaxolide® (HHCB) and Tonalide® (AHTN) for 21 days. A battery of biomarkers related with xenobiotics biotransformation (EROD and GST), oxidative stress (GPx, GR and LPO) and genotoxicity (DNA damage) were measured in digestive gland tissues. HHCB and AHTN significantly (p < 0.05) induced EROD and GST enzymatic activities at environmental concentrations. Both fragrances also induced GPx activity. All concentrations of both compounds induced an increase of LPO and DNA damage on day 21. Although these substances have been reported as not acutely toxic, this study shows that they might induce oxidative stress and genotoxicity in marine organisms.
Collapse
Affiliation(s)
- Friday O Ehiguese
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Md Rushna Alam
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain; Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Marina G Pintado-Herrera
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510, Puerto Real, Cádiz, Spain
| | - M Laura Martin-Diaz
- Chemical Physics Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI.MAR), University of Cádiz, República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
26
|
Almeida Â, Solé M, Soares AMVM, Freitas R. Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114442. [PMID: 32259738 DOI: 10.1016/j.envpol.2020.114442] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs) have been found in the marine environment. Although there is a large body of evidence that pharmaceutical drugs exert negative impacts on aquatic organisms, especially in the freshwater compartment, only limited studies are available on bioconcentration and the effects of NSAIDs on marine organisms. Bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Therefore, this review summarizes current knowledge on the bioconcentration and the effects of three widely used NSAIDs, diclofenac, ibuprofen and paracetamol, in marine bivalves exposed under laboratory conditions. These pharmaceutical drugs were chosen based on their environmental occurrence both in frequency and concentration that may warrant their inclusion in the European Union Watch List. It has been highlighted that ambient concentrations may result in negative effects on wild bivalves after long-term exposures. Also, higher trophic level organisms may be more impacted due to food-chain transfer (e.g., humans are shellfish consumers). Overall, the three selected NSAIDs were reported to bioconcentrate in marine bivalves, with recognized effects at different life-stages. Immune responses were the main target of a long-term exposure to the drugs. The studies selected support the inclusion of diclofenac on the European Union Watch List and highlight the importance of extending research for ibuprofen and paracetamol due to their demonstrated negative effects on marine bivalves exposed to environmental realistic concentrations, under laboratory conditions.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
27
|
Exposure to Decreased pH and Caffeine Affects Hemocyte Parameters in the Mussel Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8040238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Combined effects of reduced pH, as predicted under climate change scenarios, and the most popular and widely used stimulant caffeine were assessed in hemocyte parameters of the mussel Mytilus galloprovincialis, being hemocytes involved in immune defense. Bivalves were exposed for one week to natural pH (8.1) and two reduced pH values (pH −0.4 units and pH −0.7 units). Exposure continued for additional two weeks, both in the absence and in the presence of environmentally relevant concentrations of caffeine (0.05 and 0.5 µg/L). Hemocyte parameters (total hemocyte count, hemocyte volume and diameter, neutral red uptake and hemocyte proliferation) were measured after 7 days of exposure to pH only, and after 14 (T1) and 21 (T2) days of exposure to the various pH*caffeine combinations. At all sampling times, pH significantly affected all the biological variables considered, whereas caffeine exhibited a significant influence at T2 only. Among the various hemocyte parameters, caffeine caused a significant increase in total hemocyte count at T2, and in hemocyte volume and diameter at both T1 and T2, when a significant interaction between pH and caffeine was also found. Overall, results demonstrated that hemocyte functionality was strongly influenced by the experimental conditions tested. Further studies are needed to assess combined effects of climate changes and emerging contaminants on bivalve immune system when challenged with environmental pathogens.
Collapse
|
28
|
Kloukinioti M, Politi A, Kalamaras G, Dailianis S. Feeding regimes modulate biomarkers responsiveness in mussels treated with diclofenac. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104919. [PMID: 32056798 DOI: 10.1016/j.marenvres.2020.104919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the role of the feeding regime on cellular (lysosomal membrane impairment), oxidative (superoxides and nitric oxides generation, as well as lipid peroxidation) and genotoxic (nuclear abnormalities) biomarkers measured in hemocytes of mussels Mytilus galloprovincialis treated with diclofenac (DCF). Specifically, unfed mussels, or mussels fed ad libitum with algal species Tisochrysis lutea or Tetraselmis suecica (Tiso/DCF- and Tetra/DCF- treated mussels, respectively) were exposed to DCF (20 μgL-1) for 4 days. The results showed that biomarkers' responsiveness against DCF, were more pronounced in unfed and Tetra/DCF-, rather than Tiso/DCF- treated mussel hemocytes, thus revealing food deprivation, changes in mussel feeding/filtration rate and digestion processes, as potent factors of mussels' immune efficiency and response against DCF. Those findings could provide valuable data for the optimization of mussels' feeding regime during laboratory studies, in order to assess reliably the effects of emerging contaminants on non-target sentinel organisms, such as mussels.
Collapse
Affiliation(s)
- Maria Kloukinioti
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Alexandra Politi
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Georgios Kalamaras
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece.
| |
Collapse
|
29
|
Anastopoulos I, Katsouromalli A, Pashalidis I. Oxidized biochar obtained from pine needles as a novel adsorbent to remove caffeine from aqueous solutions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Ellepola N, Ogas T, Turner DN, Gurung R, Maldonado-Torres S, Tello-Aburto R, Patidar PL, Rogelj S, Piyasena ME, Rubasinghege G. A toxicological study on photo-degradation products of environmental ibuprofen: Ecological and human health implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109892. [PMID: 31732272 PMCID: PMC6893141 DOI: 10.1016/j.ecoenv.2019.109892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Increasing quantities of pharmaceutical waste in the environment have disrupted the balance of ecosystems, and may have subsequent effects on human health. Although a handful of previous studies have shown the impacts of pharmaceutically active compounds on the environment, the toxicological effects of their degradation products remain largely unknown. In the current study, the photo-degradation products of environmental ibuprofen were assessed for both ecotoxicological and human health effects using a series of in vitro assays. Here, six of the major degradation products are synthesized with high purity (>98%) and characterized with 1HNMR, 13CNMR, FT-IR and HRMS. To evaluate human health effects, three gut microbiota species, Lactobacillus acidophilus, Enterococcus faecalis and Escherichia coli, and two human cell lines, HEK293T and HepG2, are exposed to various concentrations of ibuprofen and its degradation products. On L. acidophilus, the ibuprofen degradation product (±)-(2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol shows a greater toxic effect while ibuprofen enhances its growth at lower concentrations. At higher concentrations, ibuprofen shows at least a 2-fold higher toxicity compared to that of its degradation products. However, E. faecalis shows little or no effect upon exposure to these compounds. An induction of the SOS response in E. coli is observed but limited to only ibuprofen and 4-acetylbenzoic acid. In human cell line studies, survival of both HEK293T and HepG2 cell lines is profoundly impaired by the photo-degradation products of (±)- (2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, (±)-(2R,3S)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, and (±)-1-(4-(1-hydroxy-2methylpropyl)phenyl)ethan-1-one. In this work, the bioluminescence bacterium, Aliivibrio fischeri, is used as a model to assess environmental impact. Both ibuprofen and its degradation products inhibit the growth of this gram-negative bacteria with the primary compound showing the most significant impact. Overall, our results highlight that some of the degradation products of ibuprofen can be more toxic to human kidney cell line and liver cell line than the parent compound while ibuprofen can be more toxic to human gut microbiota and A. fischeri than ibuprofen degradation products.
Collapse
Affiliation(s)
- Nishanthi Ellepola
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Talysa Ogas
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Danielle N Turner
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Rubi Gurung
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Sabino Maldonado-Torres
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Rodolfo Tello-Aburto
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Praveen L Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Snezna Rogelj
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Menake E Piyasena
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA.
| |
Collapse
|
31
|
Quadra GR, Paranaíba JR, Vilas-Boas J, Roland F, Amado AM, Barros N, Dias RJP, Cardoso SJ. A global trend of caffeine consumption over time and related-environmental impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113343. [PMID: 31672373 DOI: 10.1016/j.envpol.2019.113343] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Caffeine is one of the most consumed substances, and it has been largely detected in aquatic ecosystems. We investigated the trends in caffeine consumption over three decades and its relationships with gross domestic product (GDP) and human development index (HDI) to understand global patterns and to identify potential hotspots of contamination. The total caffeine consumption is increasing mainly due to population growth. Moreover, caffeine consumption per capita is also increasing in some countries, such as Brazil, Italy, and Ethiopia. A high positive correlation between caffeine consumption per capita with HDI and GDP was found for coffee-importing countries in Europe, while a high negative correlation was found for coffee-exporting countries in Africa. The literature review showed that the highest caffeine concentrations coincide with countries that present an increasing caffeine consumption per capita. Also, approximately 35% of the caffeine concentrations reported in the literature were above the predicted no-effect concentration in the environment and, again, overlaps with countries with increasing per capita consumption. Despite the high degradation rate, caffeine consumption tends to increase in a near future, which may also increase the overall amount of caffeine that comes into the environment, possibly exceeding the thresholds of several species described as tolerant to the current environmental concentrations. Therefore, it is essential to prevent caffeine from reaching aquatic ecosystems, implementing sewage treatment systems, and improving their efficiency.
Collapse
Affiliation(s)
- Gabrielle R Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - José R Paranaíba
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Jéssica Vilas-Boas
- Laboratório de Protozoologia, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - André M Amado
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Nathan Barros
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Roberto Júnio P Dias
- Laboratório de Protozoologia, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil; Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Simone J Cardoso
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Ecologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil; Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
32
|
Anastopoulos I, Pashalidis I. Τhe application of oxidized carbon derived from Luffa cylindrica for caffeine removal. Equilibrium, thermodynamic, kinetic and mechanistic analysis. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Franzellitti S, Balbi T, Montagna M, Fabbri R, Valbonesi P, Fabbri E, Canesi L. Phenotypical and molecular changes induced by carbamazepine and propranolol on larval stages of Mytilus galloprovincialis. CHEMOSPHERE 2019; 234:962-970. [PMID: 31519105 DOI: 10.1016/j.chemosphere.2019.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/13/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
The possible impact of carbamazepine (CBZ) and propranolol (PROP), two widespread pharmaceuticals in the aquatic environment, were investigated on morphology and gene transcription of early larvae of Mytilus galloprovincialis. Pharmaceuticals were first tested in a wide concentration range (from 0.01 to 1000 μg/L) through the 48-hpf embryotoxicity assay. The results showed that both compounds significantly affected embryo development from environmental concentrations. Although similar EC50 were obtained, (≅ 1 μg/L) CBZ induced a progressive increase in embryo malformations, whereas PROP apparently showed greater impacts in terms of arrested development and embryo mortality at higher concentrations (>10 μg/L). Transcriptional analyses of 17 genes involved in different physiological functions in mussels and/or in their response to environmental contaminants, were performed at 24 and 48 h pf at two selected concentrations of CBZ and PROP (0.01 and 1 μg/L). Both compounds induced down-regulation of shell-specific and neuroendocrine related transcripts, while distinct effects were observed on antioxidant, lysosomal, and immune-related transcripts, also depending on the larval stage investigated. The results demonstrate that CBZ and PROP can affect development and gene transcription in mussel early larvae at environmental concentrations.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGEA), University of Bologna, Ravenna, Italy
| | - Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Paola Valbonesi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGEA), University of Bologna, Ravenna, Italy
| | - Elena Fabbri
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGEA), University of Bologna, Ravenna, Italy.
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| |
Collapse
|
34
|
Di Lorenzo T, Castaño-Sánchez A, Di Marzio WD, García-Doncel P, Nozal Martínez L, Galassi DMP, Iepure S. The role of freshwater copepods in the environmental risk assessment of caffeine and propranolol mixtures in the surface water bodies of Spain. CHEMOSPHERE 2019; 220:227-236. [PMID: 30583214 DOI: 10.1016/j.chemosphere.2018.12.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/21/2018] [Accepted: 12/16/2018] [Indexed: 05/20/2023]
Abstract
In this study we aimed at assessing: (i) the environmental risk posed by mixtures of caffeine and propranolol to the freshwater ecosystems of Spain; (ii) the sensitivity of freshwater copepod species to the two compounds; (iii) if the toxicity of caffeine and propranolol to freshwater copepods contributes to the environmental risk posed by the two compounds in the freshwater bodies of Spain. The environmental risk was computed as the ratio of MECs (i.e. the measured environmental concentrations) to PNECs (i.e. the respective predicted no-effect concentrations). The effects of caffeine and propranolol on the freshwater cyclopoid Diacyclops crassicaudis crassicaudis were tested both individually and in binary mixtures. Propranolol posed an environmental risk in some but not in all the surface water ecosystems of Spain investigated in this study, while caffeine posed an environmental risk to all the investigated freshwater bodies, both as single compound and in the mixture with propranolol. Propranolol was the most toxic compound to D. crassicaudis crassicaudis, while caffeine was non-toxic to this species. The CA model predicted the toxicity of the propranolol and caffeine mixture for this species. D. crassicaudis crassicaudis was much less sensitive than several other aquatic species to both compounds. The sensitivity of D. crassicaudis crassicaudis does not increase the environmental risk posed by the two compounds in the freshwater bodies of Spain, however, further testing is recommended since the effect of toxicants on freshwater copepods can be more pronounced under multiple stressors and temperature increasing due to climate change.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET-CNR), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence, Italy.
| | - Andrea Castaño-Sánchez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Walter Darío Di Marzio
- Programa de Investigación en Ecotoxicología, Departamento de Ciencias Básicas, Universidad Nacional de Luján - Comisión Nacional de Investigaciones Científicas y Técnicas CONICET, Argentina
| | - Patricia García-Doncel
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Leonor Nozal Martínez
- IMDEA Water Institute, Calle Punto Com 2, Edificio ZYE 2, Parque Científico Tecnológico de la Universidad de Alcalá, 28805, Alcalá de Henares, Spain
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Sanda Iepure
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, José Beltrán Martínez, 2, 46980, Paterna, Valencia, Spain; University of Gdańsk, Faculty of Biology, Department of Genetics and Biosystematics, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
35
|
Strubbia S, Lyons BP, Lee RJ. Spatial and temporal variation of three biomarkers in Mytilus edulis. MARINE POLLUTION BULLETIN 2019; 138:322-327. [PMID: 30660280 DOI: 10.1016/j.marpolbul.2018.09.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Environmental conditions and xenobiotic exposure can be sources of stress to living organisms. Biological markers are measurable indicator of changes which may happen at any biological level and which can be considered an early warning signal of some biological or environmental state or condition. A structured field study was undertaken to investigate the relationship between three biomarker assays and the spatial and temporal variation of each biomarker in samples of Mytilus edulis. The three biomarkers were the neutral red retention assay, micronucleus assay and comet assay, which indicate damage at different cellular/molecular levels. Three sites in Poole Harbour, an area on the South coast of the UK were sampled on six separate occasions at least three weeks apart. The results for the comet assay showed a significant difference between sites and between sampling dates whereas the results for the other two assays did not show a significant difference for either factor. There was no significant correlation between the results of any pair of the three biomarkers. The results of the micronucleus assay showed a significant correlation with water temperature. This temperature effect, as well as induced repair, may contribute to explain the lack of a strict correspondence between pollution gradients and biomarkers responses.
Collapse
Affiliation(s)
- S Strubbia
- Instituto Zooprofilattico Sperimentale Umbria e Marche (IZSUM), Italy.
| | - B P Lyons
- Cefas, Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - R J Lee
- Cefas, Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| |
Collapse
|
36
|
Oliveira MF, de Souza VM, da Silva MGC, Vieira MGA. Fixed-Bed Adsorption of Caffeine onto Thermally Modified Verde-lodo Bentonite. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03734] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Maria Fernanda Oliveira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, Campinas, São Paulo 13083-852, Brazil
| | - Victor M. de Souza
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, Campinas, São Paulo 13083-852, Brazil
| | - Meuris G. C. da Silva
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, Campinas, São Paulo 13083-852, Brazil
| | - Melissa G. A. Vieira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Avenue, 500, Campinas, São Paulo 13083-852, Brazil
| |
Collapse
|
37
|
Mezzelani M, Gorbi S, Regoli F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. MARINE ENVIRONMENTAL RESEARCH 2018; 140:41-60. [PMID: 29859717 DOI: 10.1016/j.marenvres.2018.05.001] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 05/17/2023]
Abstract
Pharmaceuticals are nowadays recognized as a threat for aquatic ecosystems. The growing consumption of these compounds and the enhancement of human health in the past two decades have been paralleled by the continuous input of such biologically active molecules in natural environments. Waste water treatment plants (WWTPs) have been identified as a major route for release of pharmaceuticals in aquatic bodies where concentrations ranging from ng/L to μg/L are ubiquitously detected. Since medicines principles are designed to be effective at very low concentrations, they have the potential to interfere with biochemical and physiological processes of aquatic species over their entire life cycle. Investigations on occurrence, bioaccumulation and effects in non target organisms are fragmentary, particularly for marine ecosystems, and related to only a limited number over the 4000 substances classified as pharmaceuticals: hence, there is a urgent need to prioritize the environmental sustainability of the most relevant compounds. The aim of this review is to summarize the main adverse effects documented for marine species exposed in both field and laboratory conditions to different classes of pharmaceuticals including non-steroidal anti-inflammatory drugs, psychiatric, cardiovascular, hypocholesterolaemic drugs, steroid hormones and antibiotics. Despite a great scientific advancement has been achieved, our knowledge is still limited on pharmaceuticals behavior in chemical mixtures, as well as their interactions with other environmental stressors. Complex ecotoxicological effects are increasingly documented and multidisciplinary, integrated approaches will be helpful to clarify the environmental hazard of these "emerged" pollutants in marine environment.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
38
|
Żur J, Piński A, Marchlewicz A, Hupert-Kocurek K, Wojcieszyńska D, Guzik U. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21498-21524. [PMID: 29923050 PMCID: PMC6063337 DOI: 10.1007/s11356-018-2517-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/07/2018] [Indexed: 05/26/2023]
Abstract
Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.
Collapse
Affiliation(s)
- Joanna Żur
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Artur Piński
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Katarzyna Hupert-Kocurek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
39
|
Lin Y, Liu Q, Meng F, Lin Y, Du Y. Integrated toxicity evaluation of metals in sediments of Jiaozhou Bay (China): Based on biomarkers responses in clam Ruditapes philippinarum exposed to sediment extracts. MARINE POLLUTION BULLETIN 2018; 131:180-190. [PMID: 29886935 DOI: 10.1016/j.marpolbul.2018.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
To evaluate the integrated toxicity of metals in sediments of Jiaozhou Bay, we exposed clam (Ruditapes philippinarum) to sediments extracts obtained using of sediment extraction with deionised water adjusted to pH 4 which simulated the weak acidity in the digestive juice of clams and tested the selected biomarkers responses in clams for exposure over 15 days. At the same time, the contents of metals in sediments were assessed with method of the mean sediment quality guideline quotient (SQG-Q). The integrated biomarker response version 2 (IBRv2) was used to assess the integrated toxicity induced by metals in sediment extracts based on biomarkers response in clams: the results demonstrated that site S7 located in the mouth of Nanxin'an River show higher IBRv2 values compared to the other sites. The IBRv2 values exhibited the good consistency with SQG-Q values.
Collapse
Affiliation(s)
- Yufei Lin
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China; National Marine Hazard Mitigation Service, Risk Management Department, Beijing 100194, PR China
| | - Qunqun Liu
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Fanping Meng
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.
| | - Yichen Lin
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Yantai 264003, PR China
| | - Yongxiang Du
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Rizhao Environmental Protection Bureau, Rizhao 276800, PR China
| |
Collapse
|
40
|
Fontes MK, Gusso-Choueri PK, Maranho LA, Abessa DMDS, Mazur WA, de Campos BG, Guimarães LL, de Toledo MS, Lebre D, Marques JR, Felicio AA, Cesar A, Almeida EA, Pereira CDS. A tiered approach to assess effects of diclofenac on the brown mussel Perna perna: A contribution to characterize the hazard. WATER RESEARCH 2018; 132:361-370. [PMID: 29353198 DOI: 10.1016/j.watres.2017.12.077] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/17/2023]
Abstract
Pharmaceutical discharges into the aquatic ecosystem are of environmental concern and sewage treatment plants (STPs) have been pointed out as the major source of these compounds to coastal zones, where oceanic disposal of sewage occurs through submarine outfalls. Diclofenac (DCF) is one of the most frequently detected pharmaceuticals in water, but little is known about the effects on marine organisms. In this study, we employed a tiered approach involving the determination of environmental concentrations of DCF in marine water and the adverse biological effects for fertilization, embryo-larval development and biomarker responses of the mussel Perna perna. Results indicate that effects in fertilization rate and embryo-larval development were found in the order of mg·L-1. However, low concentrations of DCF (ng·L-1) significantly decreased the lysosomal membrane stability and COX activity, as well as triggered DNA damage, oxidative stress and changes in antioxidant defenses. Our results point to an environmental hazard at coastal ecosystems and suggest the need for improvements in the treatment of domestic wastewater aiming to reduce DCF concentrations, as well as regulation on current environmental legislation and monitoring of aquatic ecosystems.
Collapse
Affiliation(s)
- Mayana Karoline Fontes
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Paloma Kachel Gusso-Choueri
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Luciane Alves Maranho
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Denis Moledo de Souza Abessa
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Wesley Almeida Mazur
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Bioquímica da Universidade Federal de São Paulo, Rua Botucatu, 862, 04023-901 São Paulo, Brazil
| | - Bruno Galvão de Campos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - Luciana Lopes Guimarães
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Bioquímica da Universidade Federal de São Paulo, Rua Botucatu, 862, 04023-901 São Paulo, Brazil
| | - Marcos Sergio de Toledo
- Departamento de Bioquímica da Universidade Federal de São Paulo, Rua Botucatu, 862, 04023-901 São Paulo, Brazil
| | - Daniel Lebre
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - Joyce Rodrigues Marques
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - Andreia Arantes Felicio
- Universidade Estadual Paulista Júlio de Mesquita Filho - Campus São José do Rio Preto, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Augusto Cesar
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Eduardo Alves Almeida
- Fundação Universidade Regional de Blumenau, Rua Antônio da Veiga 498, Itoupava Seca, 89030-103 Blumenau, Brazil
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil.
| |
Collapse
|
41
|
Díaz-Garduño B, Perales JA, Garrido-Pérez C, Martín-Díaz ML. Health status alterations in Ruditapes philippinarum after continuous secondary effluent exposure before and after additional tertiary treatment application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:720-729. [PMID: 29339341 DOI: 10.1016/j.envpol.2018.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/18/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
A mobile pilot plant was set up in a wastewater treatment plant (WWTP) in southwest Spain to address potential adverse effects of effluents as a whole contaminant, which are discharging into marine environments. Ruditapes philippinarum specimens were exposed to different effluent concentrations (50%, 25%, 12.5%, 6.25%, and 3.15%) during seven days. After effluent exposure, lysosomal membrane stability alterations (LMS), changes in the energy status storage (total lipids content (TLP) and in the mitochondrial electron transport (MET), inhibition of inflammatory mechanisms (cyclooxygenase activity (COX)), and neurotoxic effects (acetylcholinesterase (AChE) were determined in exposed organisms. Furthermore, potential toxic reduction in the effluent was analysed by the application of an additional microalgae tertiary treatment called photobiotreatment (PhtBio). Results after PhtBio confirmed the toxic effect reduction in exposed organisms. Neuroendocrine effects, alterations in energy budget and in lipid storage revealed alterations in clam's health status causing stress conditions after effluent exposure.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain.
| | - J A Perales
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI•MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510, Puerto Real, Cadiz, Spain
| |
Collapse
|
42
|
Passarelli MC, Riba I, Cesar A, DelValls TA. What is the best endpoint for assessing environmental risk associated with acidification caused by CO 2 enrichment using mussels? MARINE POLLUTION BULLETIN 2018; 128:379-389. [PMID: 29571386 DOI: 10.1016/j.marpolbul.2018.01.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Carbon capture and storage is a technology that has been widely determined to be one of the best choices for the short-term reduction of atmospheric CO2 emissions. The aim of this study was to analyze the effects of CO2 enrichment in the ocean on the mussel species Mytilus galloprovincialis using three different endpoints: mortality, embryo-larval development, and neutral red retention time assays (NRRT). Acute effects were found to be associated with a pH values of 6.0 while citotoxity effects and embryo-larval development were associated with a pH value of 7.0. The NRRT assay and embryo-larval development can be recommended as good endpoints for assessing the environmental risk associated with acidification by CO2 enrichment because they provide sensitive responses on the effects of changes in seawater pH on mussels in a short period of time. Moreover, this study may support policymakers in finding appropriate solutions for the conservation of marine ecosystems.
Collapse
Affiliation(s)
- M C Passarelli
- Department of Chemistry, Aquatic Systems Research Group, UNESCO/UNITWIN WiCop, International Campus of Excellence of the Sea (CEIMAR), Cádiz, Spain.
| | - I Riba
- Department of Chemistry, Aquatic Systems Research Group, UNESCO/UNITWIN WiCop, International Campus of Excellence of the Sea (CEIMAR), Cádiz, Spain
| | - A Cesar
- Department of Ocean Sciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo, Brazil
| | - T A DelValls
- Department of Chemistry, Aquatic Systems Research Group, UNESCO/UNITWIN WiCop, International Campus of Excellence of the Sea (CEIMAR), Cádiz, Spain; Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo, Brazil
| |
Collapse
|
43
|
Politakis N, Belavgeni A, Efthimiou I, Charalampous N, Kourkouta C, Dailianis S. The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:160-168. [PMID: 29045922 DOI: 10.1016/j.ecoenv.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of two expired commercial medicines, like Buscopan Plus and Mesulid, commonly classified as household medical wastes, on hemocytes of mussel Mytilus galloprovincialis. Mussel hemocytes' lysosomal membrane stability (in terms of neutral red retention assay), superoxide anions (O2·-) and nitric oxides (NO, in terms of nitrites) production, lipid peroxidation (in terms of malondialdehyde/MDA content) and the formation of nuclear abnormalities (using the micronucleus/MN assay) were assessed in hemocytes of mussels treated for 7 days with appropriate amounts of each drug (the concentrations of active substances were considered in each case, due to the absence of data related with the excipients) as well as in hemocytes of post-treated/recovered mussels (7 days post-treatment/recovery period). According to the results, treated mussels showed significantly decreased NRRT values, enhanced O2·-, NO and MDA levels, as well as high frequencies of nuclear abnormalities in both cases. Thοse effects showed a drastic reduction in almost all cases, after the post-treatment/recovery period. Moreover, the "stress on stress" method, commonly performed for estimating mussels' ability to survive in air, showed significantly reduced LT50 values in challenged mussels, compared to values observed in control mussels. The current findings revealed for the first time that both expired commercial drugs could affect mussels, probably via the formation of active substances bioactivated metabolites, as well as excipients, such as TiO2 and SiO2, at least in case of Buscopan plus. Although further research is needed, the current findings indicate the environmental impact of expired commercial drugs, thus revealing the need for the proper disposal of household medical wastes.
Collapse
Affiliation(s)
- Nektarios Politakis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Alexia Belavgeni
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Ioanna Efthimiou
- Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio, Greece
| | - Nikolina Charalampous
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Chara Kourkouta
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece.
| |
Collapse
|
44
|
Pusceddu FH, Choueri RB, Pereira CDS, Cortez FS, Santos DRA, Moreno BB, Santos AR, Rogero JR, Cesar A. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:274-283. [PMID: 28958726 DOI: 10.1016/j.envpol.2017.09.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/17/2017] [Accepted: 09/15/2017] [Indexed: 05/21/2023]
Abstract
The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g-1, respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g-1 for TCS and 15 ng g-1 for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g-1 for TCS and 0.15 ng g-1 for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms exposed to PPCP.
Collapse
Affiliation(s)
- F H Pusceddu
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil.
| | - R B Choueri
- Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - C D S Pereira
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil; Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - F S Cortez
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - D R A Santos
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil
| | - B B Moreno
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - A R Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - J R Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil
| | - A Cesar
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil; Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brazil
| |
Collapse
|
45
|
Cong M, Wu H, Cao T, Lv J, Wang Q, Ji C, Li C, Zhao J. Digital gene expression analysis in the gills of Ruditapes philippinarum exposed to short- and long-term exposures of ammonia nitrogen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:121-131. [PMID: 29179147 DOI: 10.1016/j.aquatox.2017.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Previous study revealed severe toxic effects of ammonia nitrogen on Ruditapes philippinarum including lysosomal instability, disturbed metabolic profiles, gill tissues with damaged structure, and variation of neurotransmitter concentrations. However, the underlying molecular mechanism was not fully understood yet. In the present study, digital gene expression technology (DGE) was applied to globally screen the key genes and pathways involved in the responses to short- and long-term exposures of ammonia nitrogen. Results of DGE analysis indicated that short-term duration of ammonia exposure affected pathways in Dorso-ventral axis formation, Notch signaling, thyroid hormone signaling and protein processing in endoplasmic reticulum. The long-term exposure led to DEGs significantly enriched in gap junction, immunity, signal and hormone transduction, as well as key substance metabolism pathways. Functional research of significantly changed DEGs suggested that the immunity of R. philippinarum was weakened heavily by toxic effects of ammonia nitrogen, as well as neuro-transduction and metabolism of important substances. Taken together, the present study provides a molecular support for the previous results of the detrimental toxicity of ammonia exposure in R. philippinarum, further work will be performed to investigate the specific genes and their certain functions involved in ammonia toxicity to molluscs.
Collapse
Affiliation(s)
- Ming Cong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Tengfei Cao
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiasen Lv
- Biology School of Yantai University, Yantai 264005, PR China
| | - Qing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
46
|
Destrieux D, Laurent F, Budzinski H, Pedelucq J, Vervier P, Gerino M. Drug residues in urban water: A database for ecotoxicological risk management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:927-941. [PMID: 28783905 DOI: 10.1016/j.scitotenv.2017.07.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/17/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Human-use drug residues (DR) are only partially eliminated by waste water treatment plants (WWTPs), so that residual amounts can reach natural waters and cause environmental hazards. In order to properly manage these hazards in the aquatic environment, a database is made available that integrates the concentration ranges for DR, which cause adverse effects for aquatic organisms, and the temporal variations of the ecotoxicological risks. To implement this database for the ecotoxicological risk assessment (ERA database), the required information for each DR is the predicted no effect concentrations (PNECs), along with the predicted environmental concentrations (PECs). The risk assessment is based on the ratio between the PNECs and the PECs. Adverse effect data or PNECs have been found in the publicly available literature for 45 substances. These ecotoxicity test data have been extracted from 125 different sources. This ERA database contains 1157 adverse effect data and 287 PNECs. The efficiency of this ERA database was tested with a data set coming from a simultaneous survey of WWTPs and the natural environment. In this data set, 26 DR were searched for in two WWTPs and in the river. On five sampling dates, concentrations measured in the river for 10 DR could pose environmental problems of which 7 were measured only downstream of WWTP outlets. From scientific literature and measurements, data implementation with unit homogenisation in a single database facilitates the actual ecotoxicological risk assessment, and may be useful for further risk coming from data arising from the future field survey. Moreover, the accumulation of a large ecotoxicity data set in a single database should not only improve knowledge of higher risk molecules but also supply an objective tool to help the rapid and efficient evaluation of the risk.
Collapse
Affiliation(s)
- Doriane Destrieux
- Acceptables Avenirs, 20 rue Hermés, 31520 Ramonville Saint-Agne, France.
| | - François Laurent
- National Institute of the Agronomic Research (INRA), Toulouse, France
| | - Hélène Budzinski
- Oceanic and Continental Environment and Paleoenvironment Laboratory (EPOC), Bordeaux, France
| | - Julie Pedelucq
- Oceanic and Continental Environment and Paleoenvironment Laboratory (EPOC), Bordeaux, France
| | - Philippe Vervier
- Acceptables Avenirs, 20 rue Hermés, 31520 Ramonville Saint-Agne, France
| | - Magali Gerino
- Functional Ecology and Environment Laboratory (EcoLab), Toulouse, France
| |
Collapse
|
47
|
Maranho LA, Fontes MK, Kamimura ASS, Nobre CR, Moreno BB, Pusceddu FH, Cortez FS, Lebre DT, Marques JR, Abessa DMS, Ribeiro DA, Pereira CDS. Exposure to crack cocaine causes adverse effects on marine mussels Perna perna. MARINE POLLUTION BULLETIN 2017; 123:410-414. [PMID: 28844457 DOI: 10.1016/j.marpolbul.2017.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Our study aimed to evaluate crack cocaine effects in different life stages of the marine mussel Perna perna. For this purpose, fertilization rate, embryo-larval development, lysosomal membrane stability and DNA strand breaks were assessed. Effect concentrations in gametes and in larval development were found after 1h (IC50=23.53mg·L-1) and 48h (IC50=16.31mg·L-1), respectively. The highest tested concentration showing no acute toxicity (NOEC) was 10mg·L-1, while the lowest observed effect concentration (LOEC) was 20mg·L-1. NOEC concerning embryo-larval development was 0.625mg·L-1, while the LOEC was 1.25mg·L-1. Cyto-genotoxic effects were evidenced in mussels exposed to crack cocaine concentrations ranging from 5 to 500μg·L-1. Our results report the first data on effects of an illicit drug to marine organisms and should encourage further ecotoxicological studies of these contaminants of emerging concern in coastal ecosystems.
Collapse
Affiliation(s)
- L A Maranho
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça, 144, 11070-102 Santos, Brazil
| | - M K Fontes
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça, 144, 11070-102 Santos, Brazil
| | - A S S Kamimura
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - C R Nobre
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - B B Moreno
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça, 144, 11070-102 Santos, Brazil
| | - F H Pusceddu
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - F S Cortez
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - D T Lebre
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - J R Marques
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - D M S Abessa
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista "Júlio de Mesquita Filho", Infante Dom Henrique, s/n, 11330-900 São Vicente, Brazil
| | - D A Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo, Av. Ana Costa 95, 11060-001 Santos, Brazil
| | - C D S Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Dr. Carvalho de Mendonça, 144, 11070-102 Santos, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil.
| |
Collapse
|
48
|
Savorelli F, Manfra L, Croppo M, Tornambè A, Palazzi D, Canepa S, Trentini PL, Cicero AM, Faggio C. Fitness Evaluation of Ruditapes philippinarum Exposed to Ni. Biol Trace Elem Res 2017; 177:384-393. [PMID: 27826804 DOI: 10.1007/s12011-016-0885-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
In this study, long-term effects of Ni, a widespread heavy metal in the aquatic ecosystems, have been determined on growth and lethality of the clam Ruditapes philippinarum, a known bioindicator of the marine environment. Three/four-month-old bivalves have been exposed to different concentrations of Ni dissolved in synthetic seawater. Growth and lethality as endpoints after 28 days of treatment have been observed. Obtained results are the following: EC25 = 3.97 ± 0.94 and 9.45 ± 1.59 mg/L and NOEC = 1.56 and 6.25 mg/L for growth and mortality, respectively. Moreover, this study can be considered a new tool for the evaluation of fitness of bivalve clam, together with other biological responses following to the biological impacts of metal pollution.
Collapse
Affiliation(s)
- F Savorelli
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - L Manfra
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy.
- Institute for the Coastal Marine Environment, National Research Council (CNR IAMC), Taranto, Italy.
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - M Croppo
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - A Tornambè
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - D Palazzi
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - S Canepa
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - P L Trentini
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - A M Cicero
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
49
|
Cong M, Wu H, Yang H, Zhao J, Lv J. Gill damage and neurotoxicity of ammonia nitrogen on the clam Ruditapes philippinarum. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:459-469. [PMID: 28238072 DOI: 10.1007/s10646-017-1777-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Ammonia nitrogen has been a potential menace to aquatic animals along the coastline of China. Presently, the toxicological effects of ammonia nitrogen were mainly concentrated on fishes, while little attention has been paid to molluscs. In this study, the clam Ruditapes philippinarum was used as the target animal to investigate the toxic effects of ammonia nitrogen. Our results showed that ammonia exposure could significantly reduce the integrity of lysosomes in a dose-dependent manner. Metabolite analysis revealed that exposure doses and duration time of ammonia nitrogen could affect the variation profiles of gill metabolites. In detail, branched chain amino acids, glutamate, choline and phosphocholine were significantly decreased after a one-day exposure. Inosine and phenylalanine were found significantly increased and ATP was decreased after a three-day exposure. The changes of metabolites implied that metabolisms of muscle element, neurotransmission and cell apoptosis of gill tissues would be affected by ammonia exposure. Such inferences were supported by the diminished muscle element, decreased concentrations of catecholamines and increased apoptosis rates, respectively. Therefore, we take advantage of metabolomics integrated with conventional biological assays to find out that ammonia exposure could cause lysosome instability, metabolic disturbance, aberrant gill structures and changes to neurotransmitters, and would result in mollusk gill dysfunction in feeding, respiration and immunity.
Collapse
Affiliation(s)
| | - Huifeng Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, P. R. China.
| | - Haiping Yang
- Institute of Oceanology & Marine Fisheries, Nantong, 226007, P. R. China
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, P. R. China.
| | - Jiasen Lv
- College of Life Sciences, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
50
|
Juhel G, Bayen S, Goh C, Lee WK, Kelly BC. Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:429-441. [PMID: 27415772 DOI: 10.1002/etc.3556] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 07/12/2016] [Indexed: 05/06/2023]
Abstract
The present study investigated the toxicity of several emerging contaminants: the pharmaceutical drug carbamazepine (CBZ), the plasticizer bisphenol A (BPA), and the herbicide atrazine (ATZ) in a marine bivalve. Green mussels (Perna viridis) were exposed to different concentrations of CBZ, BPA, and ATZ, either individually or as mixtures over a 7-d period, and a suite of molecular and cellular biomarkers were analyzed: biomarkers of immunotoxicity (total hemocyte count, phagocytosis, extracellular lysozyme), genotoxicity (Comet assay), neurotoxicity (inhibition of acetylcholinesterase [AChE]), endocrine disruption (vitellin-like proteins), and detoxification enzymes (cytochrome P4501A [CYP1A], 7-ethoxyresorufin O-deethylase [EROD], and glutathione-S-transferase [GST]). Results of the single-chemical exposure tests highlighted the relatively low toxicity of CBZ because most biomarker responses observed were recorded at concentrations well above environmental levels. Bisphenol A exposure at environmentally realistic concentrations resulted in clear immunomodulatory, genotoxic, and endocrine-disruptive effects. Similarly, 3 of the 10 biomarkers tested on green mussels (genotoxicity, inhibition of AchE, and EROD) responded after exposure to ATZ at environmentally relevant doses or below, and confirmed the potency of this herbicide to marine bivalves. Exposure tests using mixtures of CBZ, BPA, and ATZ also revealed that these 3 substances were generally acting in an additive manner on the selected biomarkers, at environmental doses, with some exceptions (antagonism and/or synergy) at low and high concentrations. The present study also confirms that most of the biomarkers used are suitable for biomonitoring studies with green mussels. Environ Toxicol Chem 2017;36:429-441. © 2016 SETAC.
Collapse
Affiliation(s)
- Guillaume Juhel
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Stephane Bayen
- Singapore-Delft Water Alliance, National University of Singapore, Singapore
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Canada
| | - Christine Goh
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Wei Kit Lee
- Singapore-Delft Water Alliance, National University of Singapore, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| |
Collapse
|