1
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Rapacka-Zdonczyk A, Wozniak A, Kruszewska B, Waleron K, Grinholc M. Can Gram-Negative Bacteria Develop Resistance to Antimicrobial Blue Light Treatment? Int J Mol Sci 2021; 22:ijms222111579. [PMID: 34769009 PMCID: PMC8583887 DOI: 10.3390/ijms222111579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial blue light (aBL) treatment is considered low risk for the development of bacterial resistance and tolerance due to its multitarget mode of action. The aim of the current study was to demonstrate whether tolerance development occurs in Gram-negative bacteria. We evaluated the potential of tolerance/resistance development in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and demonstrated that representative Gram-negative bacteria may develop tolerance to aBL. The observed adaption was a stable feature. Assays involving E. coli K-12 tolC-, tolA-, umuD-, and recA-deficient mutants revealed some possible mechanisms for aBL tolerance development.
Collapse
Affiliation(s)
- Aleksandra Rapacka-Zdonczyk
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (B.K.); (K.W.)
- Correspondence:
| | - Agata Wozniak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Beata Kruszewska
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (B.K.); (K.W.)
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, The Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland; (B.K.); (K.W.)
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; (A.W.); (M.G.)
| |
Collapse
|
3
|
Hamblin MR, Huang YY, Heiskanen V. Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light? Photochem Photobiol 2019; 95:126-139. [PMID: 29882348 PMCID: PMC6286699 DOI: 10.1111/php.12951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress toward wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light-emitting diodes (LEDs) are being explored. The almost complete lack of side effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review covers some of these studies and a recent number of papers that have applied PBM to so-called "model organisms." These models include flies (Drosophila), worms (Caenorhabditis elegans), fish (zebrafish) and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biologic effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light."
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | | |
Collapse
|
4
|
Moghaddam TK, Zhang J, Du G. UvrA expression of Lactococcus lactis NZ9000 improve multiple stresses tolerance and fermentation of lactic acid against salt stress. Journal of Food Science and Technology 2017; 54:639-649. [PMID: 28298677 DOI: 10.1007/s13197-017-2493-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022]
Abstract
Lactococcus lactis is subjected to several stressful conditions during industrial fermentation including oxidation, heating and cooling, acid, high osmolarity/dehydration and starvation. DNA lesion is a major cause of genetic instability in L. lactis that usually occurs at a low frequency, but it is greatly enhanced by environmental stresses. DNA damages produced by these environmental stresses are thought to induce DNA double-strand breaks, leading to illegitimate recombination. Nucleotide excision repair (NER) protein UvrA suppresses multiple stresses-induced illegitimate recombination. UvrA protein can survive a coincident condition of environmental harsh conditions, multiple stress factors supposedly encountered in the host and inducing UvrA in L. lactis. In this study the expression of UvrA and growth performance and viability of control strain L. lactisVector and recombinant strain L. lactisUvrA under multiple stress conditions were determined. The recombinants strain had 30.70 and 52.67% higher growth performances when subjected to acidic and osmotic stresses conditions. In addition, the L. lactisUvrA strain showed 1.85-, 1.65-, and 2.40-fold higher biomass, lactate production, and lactate productivity, compared with the corresponding values for L. lactisVector strain during the osmotic stress. Results demonstrated NER system is involved in adaptation to various stress conditions and suggested that cells with a compromised UvrA as DNA repair system have an enhanced protection behavior in L. lactis NZ9000 against DNA damage.
Collapse
Affiliation(s)
- Taher Khakpour Moghaddam
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 People's Republic of China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 People's Republic of China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122 People's Republic of China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122 People's Republic of China
| |
Collapse
|
5
|
Portantiolo Lettnin A, Teixeira Santos Figueiredo Salgado M, Gonsalez Cruz C, Manoel Rodrigues da Silva-Júnior F, Cunha Gonzalez V, de Souza Votto AP, Santos Trindade G, de Moraes Vaz Batista Filgueira D. Protective effect of infrared-A radiation against damage induced by UVB radiation in the melan-a cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:125-32. [DOI: 10.1016/j.jphotobiol.2016.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
6
|
Elucidating bacterial regrowth: Effect of disinfection conditions in dark storage of solar treated secondary effluent. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
|
8
|
Karu TI. Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life 2010; 62:607-10. [PMID: 20681024 DOI: 10.1002/iub.359] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This article reviews the current knowledge in photobiology and photomedicine about the influence of monochromatic, quasimonochromatic, and bread-band radiation of red-to-near infrared (IR-A) part on solar spectrum upon mammalian cells and human skin. The role of cytochrome c oxidase as the photoacceptor and photosignal transducer is underlined and its photosensitivity at certain circumstances is discussed. The role of ATP as a critical signaling molecule is discussed.
Collapse
Affiliation(s)
- Tiina I Karu
- Laboratory of Laser Biology and Medicine, Institute of Laser and Information Technologies, Russian Academy of Sciences, Troitsk, Moscow Region, Russian Federation.
| |
Collapse
|
9
|
Wang Y, Huang F, Pan D, Li B, Chen D, Lin W, Chen X, Li R, Lin Z. Ultraviolet-light-induced bactericidal mechanism on ZnO single crystals. Chem Commun (Camb) 2009:6783-5. [DOI: 10.1039/b912137d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
|
11
|
Voss P, Hajimiragha H, Engels M, Ruhwiedel C, Calles C, Schroeder P, Grune T. Irradiation of GAPDH: a model for environmentally induced protein damage. Biol Chem 2007; 388:583-92. [PMID: 17552905 DOI: 10.1515/bc.2007.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Environmental factors, including sunlight, are able to induce severe oxidative protein damage. The modified proteins are either repaired, degraded or escape from degradation and aggregate. In the present study we tested the effect of different sunlight components such as UV-A, UV-B, and infrared radiation on protein oxidation in vitro. We chose glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a model enzyme and analyzed the irradiation-induced enzyme activity loss, fragmentation and aggregation, and quantified various oxidative amino acid modifications. Since gamma-irradiation was used in numerous studies before, we used it for comparative purposes. Infrared radiation was unable to damage GAPDH in the dose range tested (0-1000 J/cm(2)). UV-A led to a decrease in free thiol content, which was connected with a loss in enzyme activity, while only at very high doses could moderate protein aggregation and fragmentation be observed. UV-B (0-2 J/cm(2)) and gamma-irradiation (0-500 Gy) led to a dose-dependent increase in protein modification. Interestingly, UV-B acted on specific amino acids, such as arginine, proline, and tyrosine, whereas gamma-irradiation acted more randomly. The possibility of using the amino acid oxidation pattern as a biomarker of the source of damage is discussed.
Collapse
Affiliation(s)
- Peter Voss
- Research Institute for Environmental Medicine, Molecular Aging Research, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI. Absorption measurements of a cell monolayer relevant to phototherapy: Reduction of cytochrome c oxidase under near IR radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:98-106. [PMID: 16125966 DOI: 10.1016/j.jphotobiol.2005.07.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Phototherapy uses monochromatic light in the optical region of 600-1000 nm to treat in a non-destructive and non-thermal fashion various soft-tissue and neurological conditions. This kind of treatment is based on the ability of light red-to-near IR to alter cellular metabolism as a result of its being absorbed by cytochrome c oxidase. To further investigate the involvement of cytochrome c oxidase as a photoacceptor in the alteration of the cellular metabolism, we have aimed our study at, first, recording the absorption spectra of HeLa-cell monolayers in various oxygenation conditions (using fast multichannel recording), secondly, investigating the changes caused in these absorption spectra by radiation at 830 nm (the radiation wavelength often used in phototherapy), and thirdly, comparing between the absorption and action spectra recorded. The absorption measurements have revealed that the 710- to 790-nm spectral region is characteristic of a relatively reduced photoacceptor, while the 650- to 680-nm one characterizes a relatively oxidized photoacceptor. The ratio between the peak intensities at 760 and 665 nm is used to characterize the redox status of cytochrome c oxidase. By this criterion, the irradiation of the cellular monolayers with light at lambda=830 nm (D=6.3 x 10(3)J/m(2)) causes the reduction of the photoacceptor. A similarity is established between the peak positions at 616, 665, 760, 813, and 830 nm in the absorption spectra of the cellular monolayers and the action spectra of the long-term cellular responses (increase in the DNA synthesis rate and cell adhesion to a matrix).
Collapse
Affiliation(s)
- Tiina I Karu
- Institute of Laser and Information Technologies of Russian Academy of Sciences, Troitsk, Pionerskaya Street 2, Moscow Region 142190, Russian Federation.
| | | | | | | |
Collapse
|
13
|
Abstract
Light emitted from a wide variety of microorganisms was considered previously as a waste product. However, it is becoming apparent that it might be involved in microbial communication. This paper presents information on such a novel mode of communication in different microorganisms.
Collapse
Affiliation(s)
- Maxim V Trushin
- Kazan Institute of Biochemistry and Biophysics, Lobachevskiy str. 2/31, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
14
|
Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R. Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 2003; 278:40917-22. [PMID: 12851407 DOI: 10.1074/jbc.m303034200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low energy visible light (LEVL) irradiation has been shown to exert some beneficial effects on various cell cultures. For example, it increases the fertilizing capability of sperm cells, promotes cell proliferation, induces sprouting of neurons, and more. To learn about the mechanism of photobiostimulation, we studied the relationship between increased intracellular calcium ([Ca2+]i) and reactive oxygen species production following LEVL illumination of cardiomyocytes. We found that visible light causes the production of O2. and H2O2 and that exogenously added H2O2 (12 microm) can mimic the effect of LEVL (3.6 J/cm2) to induce a slow and transient increase in [Ca2+]i. This [Ca2+]i elevation can be reduced by verapamil, a voltage-dependent calcium channel inhibitor. The kinetics of [Ca2+]i elevation and morphologic damage following light or addition of H2O2 were found to be dose-dependent. For example, LEVL, 3.6 J/cm2, which induced a transient increase in [Ca2+]i, did not cause any cell damage, whereas visible light at 12 J/cm2 induced a linear increase in [Ca2+]i and damaged the cells. The linear increase in [Ca2+]i resulting from high energy doses of light could be attenuated into a non-linear small rise in [Ca2+]i by the presence of extracellular catalase during illumination. We suggest that the different kinetics of [Ca2+]i elevation following various light irradiation or H2O2 treatment represents correspondingly different adaptation levels to oxidative stress. The adaptive response of the cells to LEVL represented by the transient increase in [Ca2+]i can explain LEVL beneficial effects.
Collapse
Affiliation(s)
- Ronit Lavi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kohli R, Gupta PK. Irradiance dependence of the He-Ne laser-induced protection against UVC radiation in E. coli strains. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2003; 69:161-7. [PMID: 12695030 DOI: 10.1016/s1011-1344(03)00018-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
He-Ne laser pre-irradiation-induced protection against UVC damage was investigated in wild-type E. coli K12 strain AB1157 and its isogenic DNA repair mutant strains. At a dose of 7 kJ/m(2), pre-irradiation was observed to induce protection in recA proficient strains (AB1157 and uvrA(-) AB1886) at both the irradiances investigated (2 and 100 W/m(2)). However, at the same dose (7 kJ/m(2)), while no protection was observed at 100 W/m(2) in the recA(-) strain, some protection appeared to be there at 2 W/m(2). Mechanistic studies carried out on these strains at the two irradiances suggest that, whereas the protection observed at 100 W/m(2) is mediated by singlet oxygen, that observed at 2 W/m(2) is not. Further, the fact that protection at 100 W/m(2) was observed only in recA proficient strains suggests that it may arise due to the induction of DNA repair processes controlled by the recA gene. The latter may arise due to the oxidative stress produced by singlet oxygen generated by He-Ne laser irradiation. In contrast, the protection observed at 2 W/m(2) appears to be independent of the DNA repair proficiency of the strain.
Collapse
Affiliation(s)
- Roma Kohli
- Biomedical Application Section, Centre For Advanced Technology, Indore 452013, India
| | | |
Collapse
|
16
|
Kohli R, Bose B, Gupta PK. Induction of phr gene expression in E. coli strain KY706/pPL-1 by He-Ne laser (632.8 nm) irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2001; 60:136-42. [PMID: 11470570 DOI: 10.1016/s1011-1344(01)00139-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have observed that He-Ne laser irradiation of E. coli strain KY706/pPL-1 leads to induction of photolyase gene, phr. The magnitude of induction was found to depend on the He-Ne laser fluence, fluence rate and post-irradiation incubation period in the nutrient medium. The optimum values for fluence and fluence rate were 7x10(3) J/m(2) and 100 W/m(2), respectively, and the induction of phr gene was observed to saturate beyond an incubation period of approximately 2 h. Experiments carried out with singlet oxygen quenchers and with D(2)O suggest that the effect is mediated via singlet oxygen. Photoreactivation studies carried out after UVC exposure of both the He-Ne laser-exposed as well as unexposed cells showed a larger surviving fraction in the He-Ne laser pre-irradiated cells. This can be attributed to He-Ne laser irradiation-induced induction of phr expression. However, since even without photoreactivating light He-Ne laser pre-irradiated cells show higher survival against UVC radiation it appears that He-Ne laser irradiation induces both light-dependent as well as dark DNA repair processes.
Collapse
Affiliation(s)
- R Kohli
- Laser Programme, Centre for Advanced Technology, 452013, Indore, India
| | | | | |
Collapse
|