1
|
Montesdeoca N, Mohr JM, Kruss S, Karges J. Shift of cell-death mechanisms in primary human neutrophils with a ruthenium photosensitizer. J Biol Inorg Chem 2025; 30:53-60. [PMID: 39673631 PMCID: PMC11914334 DOI: 10.1007/s00775-024-02088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Primary human neutrophils are the most abundant human white blood cells and are central for innate immunity. They act as early responders at inflammation sites, guided by chemotactic gradients to find infection or inflammation sites. Neutrophils can undergo both apoptosis as well as NETosis. NETosis is a form of neutrophil cell death that releases chromatin-based extracellular traps (NETs) to capture and neutralize pathogens. Understanding or controlling the balance between these cell-death mechanisms is crucial. In this study, the chemical synthesis and biologic assessment of a ruthenium complex as a light-activated photosensitizer that creates reactive oxygen species (ROS) in primary human neutrophils is reported. The ruthenium complex remains non-toxic in the dark. However, upon exposure to blue light at 450 nm, it exhibits potent cytotoxic effects in both cancerous and non-cancerous cell lines. Interestingly, the metal complex shifts the cell-death mechanism of primary human neutrophils from NETosis to apoptosis. Cells irradiated directly by the light source immediately undergo apoptosis, whereas those further away from the light source perform NETosis at a slower rate. This indicates that high ROS levels trigger apoptosis and lower ROS levels NETosis. The ability to control the type of cell death undergone in primary human neutrophils could have implications in managing acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Jennifer M Mohr
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sebastian Kruss
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
2
|
Korbelik M, Heger M, Girotti AW. Participation of lipids in the tumor response to photodynamic therapy and its exploitation for therapeutic gain. J Lipid Res 2025; 66:100729. [PMID: 39675508 PMCID: PMC11911859 DOI: 10.1016/j.jlr.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Hydroperoxides of unsaturated membrane lipids (LOOHs) are the most abundant non-radical intermediates generated by photodynamic therapy (PDT) of soft tissues such as tumors and have far longer average lifetimes than singlet oxygen or oxygen radicals formed during initial photodynamic action. LOOH-initiated post-irradiation damage to remaining membrane lipids (chain peroxidation) or to membrane-associated proteins remains largely unrecognized. Such after-light processes could occur during clinical oncological PDT, but this is not well-perceived by practitioners of this therapy. In general, the pivotal influence of lipids in tumor responses to PDT needs to be better appreciated. Of related importance is the fact that most malignant tumors have dramatically different lipid metabolism compared with healthy tissues, and this too is often ignored. The response of tumors to PDT appears especially vulnerable to manipulations within the tumor lipid microenvironment. This can be exploited for therapeutic gain with PDT, as exemplified here by the combined treatment with the antitumor lipid edelfosine.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
4
|
Dąbrowska A, Mastalerz J, Wilczyński B, Osiecka B, Choromańska A. Determinants of Photodynamic Therapy Resistance in Cancer Cells. Int J Mol Sci 2024; 25:12069. [PMID: 39596137 PMCID: PMC11594179 DOI: 10.3390/ijms252212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as a promising therapeutic approach owing to its non-invasive nature and minimal toxicity. PDT involves the administration of a photosensitizing agent (PS), which, upon light activation, induces a photodynamic reaction (PDR), leading to targeted cell destruction. However, developing resistance to PDT poses a significant challenge to its effectiveness. Various factors, including properties and administration of PSs, mediate this resistance. Despite the widespread use of substances like 5-aminolevulinic acid (5-ALA) and protoporphyrin, their efficacy is limited due to restricted tumor penetration and a lack of tumor targeting. To address these limitations, nano-delivery techniques and newer PSs like Aza-BODIPY and its derivatives, which offer enhanced tissue penetration, are being explored. In this paper, we provide an overview of resistance mechanisms in PDT and discuss novel methods, substances, and technologies to overcome resistance to improve clinical outcomes in tumor treatment.
Collapse
Affiliation(s)
- Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Jakub Mastalerz
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (A.D.); (J.M.); (B.W.)
| | - Beata Osiecka
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, T. Marcinkowskiego 1, 50-368 Wroclaw, Poland;
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Oskroba A, Bartusik-Aebisher D, Myśliwiec A, Dynarowicz K, Cieślar G, Kawczyk-Krupka A, Aebisher D. Photodynamic Therapy and Cardiovascular Diseases. Int J Mol Sci 2024; 25:2974. [PMID: 38474220 DOI: 10.3390/ijms25052974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.
Collapse
Affiliation(s)
- Aleksander Oskroba
- Science Club, Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-959 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 St., 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 St., 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
6
|
Zaharieva MM, Foka P, Karamichali E, Kroumov AD, Philipov S, Ilieva Y, Kim TC, Podlesniy P, Manasiev Y, Kussovski V, Georgopoulou U, Najdenski HM. Photodynamic Inactivation of Bovine Coronavirus with the Photosensitizer Toluidine Blue O. Viruses 2023; 16:48. [PMID: 38257748 PMCID: PMC10818719 DOI: 10.3390/v16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) belong to the group of enveloped positive-sense single-strand RNA viruses and are causative agents of respiratory, gastro-intestinal, and central nervous systems diseases in many host species, i.e., birds, mammals, and humans. Beta-CoVs revealed a great potential to cross the barrier between species by causing three epidemics/pandemics among humans in the 21st century. Considering the urgent need for powerful antiviral agents for decontamination, prevention, and treatment of BCoV infections, we turned our attention to the possibility of photodynamic inactivation with photosensitizers in combination with light irradiation. In the present study, we evaluated, for the first time, the antiviral activity of toluidine blue O (TBO) against Beta-coronavirus 1 (BCoV) in comparison to methylene blue (MB). First, we determined the in vitro cytotoxicity of MB and TBO on the Madin-Darby bovine kidney (MDBK) cell line with ISO10993-5/Annex C. Thereafter, BCoV was propagated in MDBK cells, and the virus titer was measured with digital droplet PCR, TCID50 assay and plaque assay. The antiviral activity of non-toxic concentrations of TBO was estimated using the direct inactivation approach. All effects were calculated in MAPLE 15® mathematical software by developing programs for non-linear modeling and response surface analysis. The median inhibitory concentration (IC50) of TBO after 72 h of incubation in MDBK cells was 0.85 µM. The antiviral activity of TBO after the direct inactivation of BCoV (MOI = 1) was significantly stronger than that of MB. The median effective concentration (EC50) of TBO was 0.005 µM. The cytopathic effect decreased in a concentration-dependent manner, from 0.0025 to 0.01 µM, and disappeared fully at concentrations between 0.02 and 0.3 µM of TBO. The number of virus particles also decreased, depending on the concentration applied, as proven by ddPCR analysis. In conclusion, TBO exhibits significant potential for direct inactivation of BCoV in vitro, with a very high selectivity index, and should be subjected to further investigation, aiming at its application in veterinary and/or human medical practice.
Collapse
Affiliation(s)
- Maya Margaritova Zaharieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Pelagia Foka
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Eirini Karamichali
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Alexander Dimitrov Kroumov
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Stanislav Philipov
- Chair Human Anatomy, Histology, General and Clinical Pathology and Forensic Medicine, Faculty of Medicine, Hospital Lozenetz, Sofia University “St. Kliment Ohridski”, 2 Kozyak Str., 1407 Sofia, Bulgaria;
| | - Yana Ilieva
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Tanya Chan Kim
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Petar Podlesniy
- Institute of Biomedical Research of Barcelona, CSIC, Rosselló, 161, 7ª Planta, 08036 Barcelona, Spain;
| | - Yordan Manasiev
- Evgeni Budevski Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vesselin Kussovski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| | - Urania Georgopoulou
- Department of Microbiology, Laboratory of Molecular Virology, Hellenic Institute Pasteur, Vasilissis Sofias 127, 11521 Athens, Greece; (P.F.); (E.K.)
| | - Hristo Miladinov Najdenski
- Department of Infectious Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1000 Sofia, Bulgaria; (M.M.Z.); (A.D.K.); (Y.I.); (T.C.K.); (V.K.)
| |
Collapse
|
7
|
Parihar A, Dube A. Structural alterations in cell organelles induced by photodynamic treatment with chlorin p 6 -histamine conjugate in human oral carcinoma cells probed by 3D fluorescence microscopy. LUMINESCENCE 2023; 38:1175-1184. [PMID: 35698308 DOI: 10.1002/bio.4307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022]
Abstract
We have explored the intracellular cell organelle's structural alterations after photodynamic treatment with chlorin p6 -histamine conjugate (Cp6 -his) in human oral cancer cells. Herein, the cells were treated with Cp6 -his (10 μm) and counterstained with organelle-specific fluorescence probes to find the site of intracellular localization using confocal microscopy. For photodynamic therapy (PDT), the cells were exposed to ~30 kJ/m2 red light (660 ± 20 nm) to induce ~90% cytotoxicity. We used the three-dimensional (3D) image reconstruction approach to analyze the photodynamic damage to cell organelles. The result showed that Cp6 -his localized mainly in the endoplasmic reticulum (ER) and lysosomes but not in mitochondria and Golgi apparatus (GA). The 3D model revealed that in necrotic cells, PDT led to extensive fragmentation of ER and fragmentation and swelling of GA as well. Results suggest that the indirect damage to GA occurred due to loss of connection between ER and GA. Moreover, in damaged cells with no sign of necrosis, the perinuclear ER appeared condensed and surrounded by several small clumps at the peripheral region of the cell, and the GA was observed to form a single condensed structure. Since these structural changes were associated with apoptotic cell death, it is suggested that the necrotic and apoptotic death induced by PDT with Cp6 -his is determined by the severity of damage to ER and indirect damage to GA. The results suggest that the indirect damage to cell organelle apart from the sites of photosensitizer localization and the severity of damage at the organelle level contribute significantly to the mode of cell death in PDT.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India
| | - Alok Dube
- Laser Biomedical Applications Division, Raja Ramanna Center for Advanced Technology Indore, Madhya Pradesh, India
| |
Collapse
|
8
|
Mušković M, Pokrajac R, Malatesti N. Combination of Two Photosensitisers in Anticancer, Antimicrobial and Upconversion Photodynamic Therapy. Pharmaceuticals (Basel) 2023; 16:613. [PMID: 37111370 PMCID: PMC10143496 DOI: 10.3390/ph16040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.
Collapse
Affiliation(s)
| | | | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.M.); (R.P.)
| |
Collapse
|
9
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
10
|
Hetman M, Barg E. Pediatric Population with Down Syndrome: Obesity and the Risk of Cardiovascular Disease and Their Assessment Using Omics Techniques-Review. Biomedicines 2022; 10:biomedicines10123219. [PMID: 36551975 PMCID: PMC9775395 DOI: 10.3390/biomedicines10123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
People with Down syndrome (PWDS) are more at risk for developing obesity, oxidative stress disorders, metabolic disorders, and lipid and carbohydrate profile disorders than the general population. The presence of an additional copy of genes on chromosome 21 (i.e., the superoxide dismutase 1 gene (SOD1) and gene coding for the cystathionine β-synthase (CBS) enzyme) raises the risk for cardiovascular disease (CVD). As a result of disorders in metabolic processes and biochemical pathways, theoretically protective factors (low homocysteine level, high SOD1 level) do not fulfil their original functions. Overexpression of the CBS gene leads to the accumulation of homocysteine-a CVD risk factor. An excessive amount of protective SOD1, in the case of a lack of compensatory increase in the activity of catalase and peroxidase, leads to intensifying free radical processes. The occurrence of metabolic disorders and the amplified effect of oxidative stress carries higher risk of exposure of people with DS to CVD. At present, classic predispositions are known, but it is necessary to identify early risk factors in order to be able to employ CVD and obesity prophylaxis. Detailed determination of the metabolic and lipid profile may provide insight into the molecular mechanisms underlying CVD.
Collapse
|
11
|
Regulation of spermatogenic cell apoptosis by the pro-apoptotic proteins in the testicular tissues of mammalian and avian species. Anim Reprod Sci 2022; 247:107158. [DOI: 10.1016/j.anireprosci.2022.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
|
12
|
Wang J, Li W, Liu X, Xin J. Reactive Oxygen Species-Enhanced Low-Dose Chemo-Photodynamic Therapy for Gastric Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A photosensitizer can react with oxygen or a substrate based on energy or electron transfer processes in order to generate free radicals, singlet oxygen (SOG), or other reactive oxygen species (ROS). SOG can damage cellular components and eventually cause cell death. However, SOG generation
requires sufficient oxygen. Therefore, the effect of photodynamic therapy (PDT) via SOG may be decreased in oxygen-deficient tumor tissues, including gastric cancer. Here, we synthesized a nanosized cationic liposome integrated with a photosensitizer and low-dose chemotherapeutic drug related
to ROS to improve the ROS-mediated PDT effect and lower the risk of drug resistance and side effects induced by chemotherapy. The cationic liposome was used as a drug carrier to increase the efficiency of drug delivery, prolong drug circulation time, and achieve the simultaneous delivery of
the photosensitizer and chemotherapeutic drug. The low-dose chemotherapeutic agent related to ROS was adopted for increasing the permeability of the mitochondrial membrane and inducing the entry of high levels of the photosensitizer into the cell so as to generate toxic ROS. Generally, the
ROS-mediated enhanced effect could quickly induce long-lasting apoptosis. This integrated nanosized cationic liposome system is a potential agent for gastric cancer therapy and is based on enhanced ROS-mediated synergistic therapy.
Collapse
|
13
|
Low-Energy Electron Generation for Biomolecular Damage Inquiry: Instrumentation and Methods. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Technological advancement has produced a variety of instruments and methods to generate electron beams that have greatly assisted in the extensive theoretical and experimental efforts devoted to investigating the effect of secondary electrons with energies approximately less than 100 eV, which are referred as low-energy electrons (LEEs). In the past two decades, LEE studies have focused on biomolecular systems, which mainly consist of DNA and proteins and their constituents as primary cellular targets of ionizing radiation. These studies have revealed that compared to other reactive species produced by high-energy radiation, LEEs have distinctive pathways and considerable efficiency in inducing lethal DNA lesions. The present work aims to briefly discuss the current state of LEE production technology and to motivate further studies and improvements of LEE generation techniques in relation to biological electron-driven processes associated with such medical applications as radiation therapy and cancer treatment.
Collapse
|
14
|
Cheng X, Wei Y, Jiang X, Wang C, Liu M, Yan J, Zhang L, Zhou Y. Insight into the Prospects for Tumor Therapy Based on Photodynamic Immunotherapy. Pharmaceuticals (Basel) 2022; 15:1359. [PMID: 36355531 PMCID: PMC9693017 DOI: 10.3390/ph15111359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2024] Open
Abstract
Malignancy is one of the common diseases with high mortality worldwide and the most important obstacle to improving the overall life expectancy of the population in the 21st century. Currently, single or combined treatments, including surgery, chemotherapy, and radiotherapy, are still the mainstream regimens for tumor treatment, but they all present significant side effects on normal tissues and organs, such as organ hypofunction, energy metabolism disorders, and various concurrent diseases. Based on this, theranostic measures for the highly selective killing of tumor cells have always been a hot area in cancer-related fields, among which photodynamic therapy (PDT) is expected to be an ideal candidate for practical clinical application due to its precise targeting and excellent safety performance, so-called PDT refers to a therapeutic method mainly composed of photosensitizers (PSs), laser light, and reactive oxygen species (ROS). Photoimmunotherapy (PIT), a combination of PDT and immunotherapy, can induce systemic antitumor immune responses and inhibit continuing growth and distant metastasis of residual tumor cells, demonstrating a promising application prospect. This article reviews the types of immune responses that occur in the host after PDT treatment, including innate and adaptive immunity. To further help PIT-related drugs improve their pharmacokinetic properties and bioavailability, we highlight the potential improvement of photodynamic immunotherapy from three aspects: immunostimulatory agents, tumor-associated antigens (TAAs) as well as different immune cells. Finally, we focus on recent advances in various strategies and shed light on their corresponding mechanisms of immune activation and possible clinical applications such as cancer vaccines. Having discovered the inherent potential of PDT and the mechanisms that PDT triggers host immune responses, a variety of immunotherapeutic strategies have been investigated in parallel with approaches to improve PDT efficiency. However, it remains to be further elucidated under what conditions the immune effect induced by PDT can achieve tumor immunosuppression and to what extent PDT-induced antitumor immunity will lead to complete tumor rejection. Currently, PIT presents several outstanding intractable challenges, such as the aggregation ability of PSs locally in tumors, deep tissue penetration ability of laser light, immune escape, and biological toxicity, and it is hoped that these issues raised will help to point out the direction of preclinical research on PIT and accelerate its transition to clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Chunli Wang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Jiaxin Yan
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Pathology Department, Jiaozuo Second People’s Hospital, Jiaozuo 454001, China
| |
Collapse
|
15
|
Ma S, Wang F, Dong J, Wang N, Tao S, Du J, Hu S. Inhibition of hypoxia-inducible factor 1 by acriflavine renders glioblastoma sensitive for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112537. [PMID: 35939916 DOI: 10.1016/j.jphotobiol.2022.112537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND photodynamics therapy (PDT) induces tumor cell death through oxidative stress and is closely associated with the expression of hypoxia inducible factor-1a (HIF1a), which activates multiple downstream survival signaling pathways. Therefore, the purpose of this study was to investigate the expression levels of HIF1a proteins in PDT-treated GBM cells and to determine whether inhibition of HIF1a reduces survival signals to enhance the efficacy of PDT. RESULTS PDT combined with Acriflavine (ACF, PA) decreased the expression of HIF1a and regulated the downstream expression of GLUT-1, GLUT-3, HK2 and other gluconeogenic pathway proteins. PA group significantly suppressed tumor growth to improve the efficacy of PDT. METHODS We first performed the correlation of HIF1a, GLUT-1, GLUT-3, and HK2, and quantified the expression of HIF1a on tumor grades and IDH mutation classification by TCGA and CGGA databases. Then, we used immunohistochemistry method to detect four gene expression levels in human GBM tissues. Besides, we examined the effects of different treatments on the proliferation, migration and invasion ability of GBM cell lines by CCK8, wound healing and transwell assays. ACF, a HIF1a/HIF1β dimerization inhibitor, was used to evaluate its adjuvant effect on the efficacy of PDT. CONCLUSION HIF1a is activated in GBM cell lines and contributes to the survival of tumor cells after PDT in vitro and in vivo. PA group inhibited HIF1a expression and improved PDT efficacy in the treatment of recalcitrant GBM.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450053, China; Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China; TranslationalMedicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China; TranslationalMedicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150086, China
| | - Nan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shengzhong Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450053, China.
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| | - Shaoshan Hu
- Department of Neurosurgery, Emergency Medicine Center, Zhejiang Provincial People's Hospital Affiliated to Hangzhou Medical College, Hangzhou, China; Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
16
|
Comparative analysis of Radachlorin accumulation, localization, and photobleaching in three cell lines by means of holographic and fluorescence microscopy. Photodiagnosis Photodyn Ther 2022; 39:102973. [PMID: 35738552 DOI: 10.1016/j.pdpdt.2022.102973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
In this paper we compare the response of cells of established lines of different origin: HeLa, A549 and 3T3 to photodynamic treatment with Radachlorin photosensitizer. The analysis was performed on different aspects of the treatment procedure including photosensitizer accumulation, localization and photobleaching in cells and post-treatment dynamics of changes in cellular morphology at different treatment doses. It was shown that in the three cell lines Radachlorin accumulated in lysosomes to much greater extent than in mitochondria. The cells' response to treatment was analyzed by identification of their death pathways and evaluation of average phase shift dynamics using digital holographic microscopy. The analysis performed on the three cell lines allowed us to evaluate treatment doses specific for each pathway in each line. Among the three lines HeLa cells were found to be the most susceptible to treatment while 3T3 cells the most resistant. The comparison of these results with the data on Radachlorin accumulation, localization and photobleaching rates showed that the observed higher sensitivity of HeLa cells to photodynamic treatment correlated with higher photosensitizer uptake and more intensive photobleaching while lower sensitivity of 3T3 cells correlated with lower uptake and less intensive photobleaching.
Collapse
|
17
|
Foglietta F, Panzanelli P, Serpe L, Canaparo R. Exploiting Shock Waves to Trigger the Anticancer Sonodynamic Activity of 5-Aminolevulinc Acid-Derived Protoporphyrin IX on In Vitro 2D and 3D Cancer Models. Biomedicines 2022; 10:615. [PMID: 35327417 PMCID: PMC8944964 DOI: 10.3390/biomedicines10030615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Sonodynamic therapy (SDT) is a noninvasive method for cancer treatment based on selective activation of a sonosensitiser by ultrasound (US), which results in the generation of reactive oxygen species (ROS) and cancer cell death. SDT uses a similar approach to photodynamic therapy (PDT), but can overcome the main drawback of PDT, i.e., poor tissue penetration of light. This research work investigated the anticancer effect of SDT on various two- (2D) and three-dimensional (3D) in vitro tumour models, using PDT as a reference treatment. Sonodynamic experiments were performed with pulsed US, specifically with shock waves (SW) and the prodrug 5-aminolevulinic acid (Ala), which is converted-at the mitochondrial level-into the sonosensitiser protoporphyrin IX (PPIX). SW-mediated PPIX sonodynamic activation resulted in a significant decrease in cell proliferation, especially on human fibrosarcoma (HT-1080) cells, where PPIX accumulation was higher compared to human melanoma (A2058) and neuroblastoma (SH-SY5 Y) cells. Moreover, SW-mediated SDT showed significant ROS generation, cell line-dependent in its amount, probably due to differences in Ala-induced PPIX synthesis. In all cancer cell lines, apoptosis was highlighted as the main cancer cell death pathway determined by SW-mediated SDT, along with significant cytochrome c release, and a consequent increase in DNA damage. The efficacy of SDT with SW and Ala in halting cancer cell proliferation was also confirmed in 3D cancer spheroids. The present study suggests that SW-mediated SDT is a valuable approach to slow down tumour proliferation, thus opening an innovative scenario in cancer treatment.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (F.F.); (R.C.)
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Torino, Italy;
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (F.F.); (R.C.)
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (F.F.); (R.C.)
| |
Collapse
|
18
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Sobhani N, Samadani AA. Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically. J Egypt Natl Canc Inst 2021; 33:34. [PMID: 34778919 DOI: 10.1186/s43046-021-00093-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Tumor eradication is one of the most important challengeable categories in oncological studies. In this account, besides the molecular genetics methods including cell therapy, gene therapy, immunotherapy, and general cancer therapy procedures like surgery, radiotherapy, and chemotherapy, photodynamic adjuvant therapy is of great importance. Photodynamic therapy (PDT) as a relatively noninvasive therapeutic method utilizes the irradiation of an appropriate wavelength which is absorbed by a photosensitizing agent in the presence of oxygen. In this procedure, a series of events lead to the direct death of malignant cells such as damage to the microvasculature and also the induction of a local inflammatory function. PDT has participated with other treatment modalities especially in the early stage of malignant tumors and has resulted in decreasing morbidity besides improving survival rate and quality of life. High spatial resolution of PDT has attracted considerable attention in the field of image-guided photodynamic therapy combined with chemotherapy of multidrug resistance cancers. Although PDT outcomes vary across the different tumor types, minimal natural tissue toxicity, minor systemic effects, significant reduction in long-term disease, lack of innate or acquired resistance mechanisms, and excellent cosmetic effects, as well as limb function, make it a valuable treatment option for combination therapies. SHORT CONCLUSION In this review article, we tried to discuss the potential of PDT in the treatment of some dermatologic and solid tumors, particularly all its important mechanisms.
Collapse
Affiliation(s)
- Nafiseh Sobhani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Akbar Samadani
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran. .,Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
20
|
Czarnecka-Czapczyńska M, Aebisher D, Oleś P, Sosna B, Krupka-Olek M, Dynarowicz K, Latos W, Cieślar G, Kawczyk-Krupka A. The role of photodynamic therapy in breast cancer - A review of in vitro research. Biomed Pharmacother 2021; 144:112342. [PMID: 34678730 DOI: 10.1016/j.biopha.2021.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the most common cancer affecting women and the incidence of occurrence is increasing. Currently, there are many methods of detecting and treating breast cancer. Some treatments have a number of side effects. Photodynamic therapy (PDT) is a minimally invasive method of treatment which uses monochromatic light of low to medium energy to excite previously applied photosensitizers (PS) for ROS production. The purpose of this article is to present a general overview of the use of PDT in in vitro studies of various cancer cell lines. A literature search for articles corresponding to the topic of this review was performed using the PubMed and Scopus databases using the following keywords: 'photodynamic therapy', 'breast cancer', and 'photosensitizer(s).' Much of the reviewed literature is based on evaluations of the cytotoxic potential of various PSs, particularly against the MCF-7 cell line, and enhancement of PDT potential with nanotechnology. Research on photodynamic effects in vitro may be helpful in the pre-clinical search for optimal methods for in vivo clinical treatment.
Collapse
Affiliation(s)
- Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Magdalena Krupka-Olek
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | | | - Wojciech Latos
- Specialist Hospital No. 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland.
| |
Collapse
|
21
|
Synthesis and Characterization of Polyvinylpyrrolidone-Modified ZnO Quantum Dots and Their In Vitro Photodynamic Tumor Suppressive Action. Int J Mol Sci 2021; 22:ijms22158106. [PMID: 34360872 PMCID: PMC8347431 DOI: 10.3390/ijms22158106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.
Collapse
|
22
|
Bienia A, Wiecheć-Cudak O, Murzyn AA, Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer. Pharmaceutics 2021; 13:1147. [PMID: 34452108 PMCID: PMC8399393 DOI: 10.3390/pharmaceutics13081147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death in humans. Despite the progress in cancer treatment, and an increase in the effectiveness of diagnostic methods, cancer is still highly lethal and very difficult to treat in many cases. Combination therapy, in the context of cancer treatment, seems to be a promising option that may allow minimizing treatment side effects and may have a significant impact on the cure. It may also increase the effectiveness of anti-cancer therapies. Moreover, combination treatment can significantly increase delivery of drugs to cancerous tissues. Photodynamic therapy and hyperthermia seem to be ideal examples that prove the effectiveness of combination therapy. These two kinds of therapy can kill cancer cells through different mechanisms and activate various signaling pathways. Both PDT and hyperthermia play significant roles in the perfusion of a tumor and the network of blood vessels wrapped around it. The main goal of combination therapy is to combine separate mechanisms of action that will make cancer cells more sensitive to a given therapeutic agent. Such an approach in treatment may contribute toward increasing its effectiveness, optimizing the cancer treatment process in the future.
Collapse
Affiliation(s)
| | | | | | - Martyna Krzykawska-Serda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (A.B.); (O.W.-C.); (A.A.M.)
| |
Collapse
|
23
|
Sunitinib with photoirradiation-mediated reactive oxygen species generation induces apoptosis of renal cell carcinoma cells. Photodiagnosis Photodyn Ther 2021; 35:102427. [PMID: 34216806 DOI: 10.1016/j.pdpdt.2021.102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Photodynamic therapy is a clinically approved, minimally invasive,therapeutic procedure used for the treatment of several cancers. In recent years, sunitinib, one of the tyrosine kinase inhibitors, has also attracted attention as a novel photosensitizer. However, there is currently no data available on the combined cytotoxic effects of sunitinib and photoirradiation on renal cell carcinoma including how the treatment induced cellular toxicity. METHODS In the present study, we used sunitinib as a photosensitizer and evaluated the effects of sunitinib and photodynamic therapy treatment on renal cancer cell lines, including the induction of cell death. RESULTS Our study showed that treatment with sunitinib and photoirradiation at 8 mW/cm2 for 30 min resulted in the production intracellular reactive oxygen species (ROS), which is indicated by the increase in mRNA expression levels of PAI-1, NF-κβ, and Caspase-3. An increase in rate of apoptotic reaction and increase in the expression level of apoptotic marker were also observed when cells undergo treatment with sunitinib and photoirradiation. CONCLUSIONS Our findings suggest that combining photodynamic therapy with sunitinib represents a minimally invasive therapeutic procedure with cancer selectivity for renal cell carcinoma.
Collapse
|
24
|
Tung FI, Chen LC, Wang YC, Chen MH, Shueng PW, Liu TY. Using a Hybrid Radioenhancer to Discover Tumor Cell-targeted Treatment for Osteosarcoma: An In Vitro Study. Curr Med Chem 2021; 28:3877-3889. [PMID: 33213306 DOI: 10.2174/0929867327666201118155216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
Osteosarcoma is insensitive to radiation. High-dose radiation is often used as a treatment but causes side effects in patients. Hence, it is important to develop tumor cell-- targeted radiotherapy that could improve radiotherapy efficiency on tumor cells and reduce the toxic effect on normal cells during radiation treatment. In this study, we developed an innovative method for treating osteosarcoma by using a novel radiation-enhancer (i.e., carboxymethyl-hexanoyl chitosan-coated self-assembled Au@Fe3O4 nanoparticles; CSAF NPs). CSAF NPs were employed together with 5-aminolevulinic acid (5- ALA) to achieve tumor cell-targeted radiotherapy. In this study, osteosarcoma cells (MG63) and normal cells (MC3T3-E1) were used for an in vitro investigation, in which reactive oxygen species (ROS) assay, cell viability assay, clonogenic assay, and western blot were used to confirm the treatment efficiency. The ROS assay showed that the combination of CSAF NPs and 5-ALA enhanced radiation-induced ROS production in tumor cells (MG63); however, this was not observed in normal cells (MC3T3-E1). The cell viability ratio of normal cells to tumor cells after treatment with CSAF NPs and 5-ALA reached 2.79. Moreover, the clonogenic assay showed that the radiosensitivity of MG63 cells was increased by the combination use of CSAF NPs and 5-ALA. This was supported by performing a western blot that confirmed the expression of cytochrome c (a marker of cell mitochondria damage) and caspase-3 (a marker of cell apoptosis). The results provide an essential basis for developing tumor-cell targeted radiotherapy by means of low-- dose radiation.
Collapse
Affiliation(s)
- Fu-I Tung
- Department of Orthopaedic Surgery, Taipei City Hospital, Taipei, Taiwan, China
| | - Li-Chin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, China
| | - Yu-Chi Wang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, China
| | - Ming-Hong Chen
- Department of Neurosurgery, Taipei Municipal Wanfang Hospital, Taipei, Taiwan, China
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, China
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, China
| |
Collapse
|
25
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 291] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
26
|
Kik K, Bukowska B, Krokosz A, Sicińska P. Oxidative Properties of Polystyrene Nanoparticles with Different Diameters in Human Peripheral Blood Mononuclear Cells (In Vitro Study). Int J Mol Sci 2021; 22:ijms22094406. [PMID: 33922469 PMCID: PMC8122768 DOI: 10.3390/ijms22094406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
With the ongoing commercialization, human exposure to plastic nanoparticles will dramatically increase, and evaluation of their potential toxicity is essential. There is an ongoing discussion on the human health effects induced by plastic particles. For this reason, in our work, we assessed the effect of polystyrene nanoparticles (PS-NPs) of various diameters (29, 44 and 72 nm) on selected parameters of oxidative stress and the viability of human peripheral blood mononuclear cells (PBMCs) in the in vitro system. Cells were incubated with PS-NPs for 24 h in the concentration range of 0.001 to 100 µg/mL and then labeled: formation of reactive oxygen species (ROS) (including hydroxyl radical), protein and lipid oxidation and cell viability. We showed that PS-NPs disturbed the redox balance in PBMCs. They increased ROS levels and induced lipid and protein oxidation, and, finally, the tested nanoparticles induced a decrease in PBMCs viability. The earliest changes in the PBMCs were observed in cells incubated with the smallest PS-NPs, at a concentration of 0.01 μg/mL. A comparison of the action of the studied nanoparticles showed that PS-NPs (29 nm) exhibited a stronger oxidative potential in PBMCs. We concluded that the toxicity and oxidative properties of the PS-NPs examined depended to significant degree on their diameter.
Collapse
|
27
|
Redox-responsive hyaluronic acid-based nanoparticles for targeted photodynamic therapy/chemotherapy against breast cancer. J Colloid Interface Sci 2021; 598:213-228. [PMID: 33901847 DOI: 10.1016/j.jcis.2021.04.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Specific cellular uptake and sufficient drug release in tumor tissues are important for effective cancer therapy. Hyaluronic acid (HA), a skeleton material, could specifically bind to cluster determinant 44 (CD44) receptors highly expressed on the surface of tumor cells to realize active targeting. Cystamine (cys) is sensitive highly reductive environment inside tumor cells and was used as a connecting arm to connect docosahexaenoic acid (DHA) and chlorin e6 (Ce6) to the HA skeleton to obtain redox-sensitive polymer HA-cys-DHA/Ce6 (CHD). Nanoparticles were fabricated and loaded with chemotherapeutic drug docetaxel (DTX) by physical encapsulation. The prepared nanoparticles had significantly increased uptake by MCF-7 cells that overexpressed CD44 receptors, and DTX was effectively released at high reducing condition. Compared with mono-photodynamic therapy (PDT) or mono-chemotherapy, the prepared nanoparticles exhibited superior anti-tumor effect by inhibiting microtubule depolymerization, blocking cell cycle and generating reactive oxygen species (ROS). In vivo anti-tumor experiments proved that DTX/CHD nanoparticles had the best antitumor response versus DTX and CHD nanoparticles under near-infrared (NIR) irradiation. These studies revealed that redox-responsive DTX-loaded CHD nanoparticles held great potential for the treatment of breast cancer.
Collapse
|
28
|
Tumor-selective new piperazine-fragmented silicon phthalocyanines initiate cell death in breast cancer cell lines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 216:112143. [PMID: 33550219 DOI: 10.1016/j.jphotobiol.2021.112143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
A new silicon phthalocyanine with piperazine-furan ring and its quaternized form were synthesized. All compounds were analyzed by spectroscopic techniques (FT-IR, 1H-NMR, MS, and UV-vis), and the absorbance characteristics of silicon phthalocyanines were evaluated with the expected strong typical absorption bands in the far-red spectrum. The cytotoxic effects of these phthalocyanines induced by photodynamic therapy (PDT) were determined in a dose-dependent manner. Following cytotoxicity analysis, flow cytometric research of cell death was performed. The formation of reactive oxygen species (ROS) was determined by confocal microscopy. High levels of cytotoxicity and decreased viable cell population have been detected in cancer cells after treatment. In addition, ROS formation was observed in PDT treated cancer cells. However, low levels of cell death and ROS formation were observed in non-tumorigenic cells. According to western blot data, PDT-mediated treatment was found to provide different expression patterns of the cleaved PARP1 protein. The presented study demonstrates that PDT-mediated treatment of newly synthesized phthalocyanines has significant anti-cancer effects on breast cancer cells and may induce different cell death pathways.
Collapse
|
29
|
Mugas ML, Calvo G, Marioni J, Céspedes M, Martinez F, Sáenz D, Di Venosa G, Cabrera JL, Montoya SN, Casas A. Photodynamic therapy of tumour cells mediated by the natural anthraquinone parietin and blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112089. [PMID: 33271387 DOI: 10.1016/j.jphotobiol.2020.112089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a treatment for superficial tumours involving the administration of a photosensitiser followed by irradiation. The potential of the natural anthraquinone parietin (PTN) in PDT is still relatively unexploited. In the present work, PTN isolated from the lichen Teoloschistes nodulifer (Nyl.) Hillman (Telochistaceae) was evaluated as a potential photosensitiser on tumour cells employing UVA-Vis and blue light. Blue light of 2 J/cm2 induced 50% death of K562 leukaemic cells treated 1 h with 30 μM PTN (Protocol a). Higher light doses (8 J/cm2) were needed to achieve the same percentage of cell death employing lower PTN concentrations (3 μM) and higher exposure times (24 h) (Protocol b). Cell cycle analysis after both protocols of PTN-PDT revealed a high percentage of sub-G1 cells. PTN was found to be taken up by K562 cells mainly by passive diffusion. Other tumour cells such as ovary cancer IGROV-1 and LM2 mammary carcinoma, as well as the normal keratinocytes HaCaT, were also photosensitised with PTN-PDT. We conclude that PTN is a promising photosensitiser for PDT of superficial malignancies and purging of leukaemic cells, when illuminated with blue light. Thus, this light wavelength is proposed to replace the Vis-UVA lamps generally employed for the photosensitisation of anthraquinones.
Collapse
Affiliation(s)
- María Laura Mugas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina
| | - Gustavo Calvo
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Juliana Marioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina
| | - Mariela Céspedes
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Florencia Martinez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Daniel Sáenz
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - Gabriela Di Venosa
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina
| | - José L Cabrera
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Susana Núñez Montoya
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV). Córdoba, Argentina
| | - Adriana Casas
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
30
|
Oliveira P, Lopes T, Tedesco A, Rahal P, Calmon M. Effect of berberine associated with photodynamic therapy in cell lines. Photodiagnosis Photodyn Ther 2020; 32:102045. [DOI: 10.1016/j.pdpdt.2020.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
|
31
|
Gao H, Shi X, Chen Q, Che B, Yin H, Li Y. Deep proteome profiling of SW837 cells treated by photodynamic therapy (PDT) reveals the underlying mechanisms of metronomic and acute PDTs. Photodiagnosis Photodyn Ther 2020; 31:101809. [PMID: 32437970 DOI: 10.1016/j.pdpdt.2020.101809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022]
Abstract
AIM Metronomic photodynamic therapy (mPDT) with a longer irradiation time and lower energy compared with acute (or classic) photodynamic therapy (aPDT) is a more effective treatment than aPDT for tumor cells, especially colorectal cancer. However, the underlying mechanisms of the superior effects of mPDT are unknown. METHODS we used SWATH-MS (sequential window acquisition of all theoretical mass spectra) to identify differentially expressed proteins (DEPs) specific to aPDT (conventional fluence rate, 20 mW/cm2, 4 min 10 s), mPDT (metronomic fluence rate, 0.4 mW/cm2, 3.5 h), and control groups of SW837 cells. The photosensitizer used in both PDT methods was aminolevulinic acid which were incubated with the cells before irradiation. RESULTS A total of 6805 proteins were identified in the three groups of SW837 cells. aPDT induced 333 DEPs and mPDT induced 1716 DEPs compared with the control. We identified 185 common DEPs in the two PDT groups, 148 different DEPs in the aPDT group, and 1531 different DEPs in the mPDT group. Most of the 185 common DEPs were involved in the extracellular component, participated in the processes of vesicle transport and secretion, binding, and hydrolase/catalytic activity. They were also involved in PI3K-Akt, cGMP-PKG, RAS, and aAMP signaling pathways. In addition, the 1531 different DEPs in the mPDT group participated in similar processes and molecular functions, but in a more complex manner than those in the aPDT group. CONCLUSION our proteome data suggest that mPDT has a complex tumor destruction mechanism with more involved proteins compared with aPDT, which may explain the better tumor killing effect of mPDT.
Collapse
Affiliation(s)
- Hao Gao
- Department of Colorectal Surgery, Tianjin People's Hospital Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Xiafei Shi
- Laboratory of Laser Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Qianqian Chen
- Laboratory of Laser Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Bochen Che
- Laboratory of Laser Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Huijuan Yin
- Laboratory of Laser Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Yingxin Li
- Laboratory of Laser Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, 236 Baidi Road, Nankai District, Tianjin 300192, China
| |
Collapse
|
32
|
Zhu JX, Zhu WT, Hu JH, Yang W, Liu P, Liu QH, Bai YX, Xie R. Curcumin-Loaded Poly(L-lactide-co-glycolide) Microbubble-Mediated Sono-photodynamic Therapy in Liver Cancer Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2030-2043. [PMID: 32475714 DOI: 10.1016/j.ultrasmedbio.2020.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 03/07/2020] [Accepted: 03/27/2020] [Indexed: 05/08/2023]
Abstract
Sono-photodynamic therapy (SPDT) activates the same photo-/sonosensitizer and exerts more marked antitumor effects than sonodynamic therapy or photodynamic therapy. We aimed to explore the utilization of curcumin (CUR)-loaded poly(L-lactide-co-glycolide) microbubble (MB)-mediated SPDT (CUR-PLGA-MB-SPDT) in HepG2 liver cancer cells. The cytotoxicity and intracellular accumulation of CUR were determined. We used 40 µM CUR as the photo-/sonosensitizer for 3 h. In a comparison of CUR-SDT or CUR-PDT, HepG2 cell viability decreased and apoptotic rate increased in CUR-SPDT. The CUR-PLGA MBs had round spheres with smooth surfaces and an average size of 3.7 µm. In CUR-PLGA MBs, drug entrapment efficiency and drug-loading capacity were 74.29 ± 2.60% and 17.14 ± 0.60%, respectively. CUR-loaded PLGA MBs (CUR-PLGA MBs) had good biocompatibility with normal L02 cells and were almost non-cytotoxic to HepG2 cells. Among CUR-SDT, CUR-PDT, CUR-SPDT or CUR-PLGA-MB-SDT, the cell CUR-PLGA-MB-SPDT had the lowest viability. Transmission electron microscopy revealed pyroptosis and apoptosis in the CUR-PLGA-MB-SPDT group; the potential mechanism was related to the mitochondrial membrane potential loss and increased production of intracellular reactive oxygen species. These findings suggested that CUR-PLGA-MB-SPDT may be a promising treatment for liver cancer.
Collapse
Affiliation(s)
- Jiu-Xin Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen-Ting Zhu
- Harbin Medical University Cancer Hospital, Harbin, China; Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia-He Hu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Yang
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Ping Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Qing-Hao Liu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu-Xian Bai
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Rui Xie
- Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
33
|
Krejcir R, Briza T, Sterba M, Simoncik O, Muller P, Coates PJ, Martasek P, Vojtesek B, Zatloukalova P. Anticancer pentamethinium salt is a potent photosensitizer inducing mitochondrial disintegration and apoptosis upon red light illumination. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111939. [PMID: 32640366 DOI: 10.1016/j.jphotobiol.2020.111939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022]
Abstract
Despite progress in the development and application of novel therapeutic agents, cancer remains a major cause of death worldwide. Therefore, there is a need for new approaches to increase therapeutic options and efficiency. The metabolism of cancer cells differs from that of non-malignant cells and their mitochondria show altered activities that can be utilized as a target for drug development. Salt 1 is a low-molecular weight heterocyclic compound of the polymethine class that accumulates in the mitochondria of cancer cells and selectively disrupts their metabolism. Salt 1 leads to a non-apoptotic form of cell death in vitro that is associated with an autophagic cellular response and eventual metabolic collapse, and inhibits human tumor xenograft growth in vivo without apparent toxicity for normal cells. As a pentamethinium compound, salt 1 exhibits intrinsic fluorescence and is a candidate for photosensitization after excitation by appropriate wavelengths of light. Herein, we report that salt 1 is a potent photosensitizer, which generates a photodynamic effect and provides enhanced cytotoxicity compared to salt 1 without light exposure. Importantly, photosensitization is optimally induced by red light, which is used clinically for photosensitization and penetrates further into tissues than lower wavelengths. Cancer cells treated with non-cytotoxic doses of salt 1 and subsequently exposed to 630 nm light show severely damaged mitochondria, manifested by reduced mitochondrial membrane potential and disintegration of the mitochondrial tubular network. As a consequence, cancer cells lose their proliferative potential and die via apoptosis in the presence of light. These findings indicate that salt 1 is a promising photosensitizer with potential to be combined with 630 nm light to strengthen its efficacy in cancer therapy.
Collapse
Affiliation(s)
- Radovan Krejcir
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomas Briza
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Martin Sterba
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Oliver Simoncik
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Pavel Martasek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague, Kateřinská 32, 121 08 Prague 2, Czech Republic; General University Hospital, U nemocnice 2, 128 08 Prague 2, Czech Republic
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic.
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic.
| |
Collapse
|
34
|
Crous A, Abrahamse H. Effective Gold Nanoparticle-Antibody-Mediated Drug Delivery for Photodynamic Therapy of Lung Cancer Stem Cells. Int J Mol Sci 2020; 21:3742. [PMID: 32466428 PMCID: PMC7311980 DOI: 10.3390/ijms21113742] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a leading contributor to lung cancer mortality rates. CSCs are responsible for tumor growth and recurrence through inhibition of drug-induced cell death, decreasing the effect of traditional cancer therapy and photodynamic therapy (PDT). PDT can be improved to successfully treat lung cancer by using gold nanoparticles (AuNPs), due to their size and shape, which have been shown to facilitate drug delivery and retention, along with the targeted antibody (Ab) mediated selection of CSCs. In this study, a nanobioconjugate (NBC) was constructed, using a photosensitizer (PS) (AlPcS4Cl), AuNPs and Abs. The NBC was characterized, using spectroscopy techniques. Photodynamic effects of the NBC on lung CSCs was evaluated, using biochemical assays 24 h post-irradiation, in order to establish its anticancer effect. Results showed successful conjugation of the nanocomposite. Localization of the NBC was seen to be in integral organelles involved in cell homeostasis. Biochemical responses of lung CSCs treated using AlPcS4Cl -AuNP and AlPcS4Cl-AuNP-Ab showed significant cell toxicity and cell death, compared to free AlPcS4Cl. The PDT effects were enhanced when using the NBC, showing significant lung CSC destruction to the point of eradication.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
35
|
de Melo MT, Piva HL, Tedesco AC. Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110638. [PMID: 32204072 DOI: 10.1016/j.msec.2020.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB). The delivery of drugs through nanomedicines combined with less invasive alternative therapies represents an important hope for the future of these incurable brain tumors. Whey protein nanocarriers represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. They have been extensively studied to find new alternatives for capacity to encapsulate different drugs and no need for cross-linkers. In this study, we report for the first time the incorporation and administration of Aluminum phthalocyanine chloride (AlClPc)-loaded whey protein drug delivery system (AlClPc-PDDS) for the treatment of glioblastoma brain cancer. This system was designed and optimized (with the use of the spray drying technique) to obtain the required particle size (in the range of 100 to 300 nm), zeta potential and drug loading. Our results suggest that we have developed a drug delivery system from a low-cost raw material and preparation method that is capable of incorporating hydrophobic drugs which, in combination with irradiation, cause photodamage to neoplasic cells, working as an effective adjuvant treatment for malignant glioma.
Collapse
Affiliation(s)
- Maryanne Trafani de Melo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
36
|
Wunderlich ALM, Azevedo SCSF, Yamada LA, Bataglini C, Previate C, Campanholi KSS, Pereira PCS, Caetano W, Kaplum V, Nakamura CV, Nakanishi ABS, Comar JF, Pedrosa MMD, Godoi VAF. Chlorophyll treatment combined with photostimulation increases glycolysis and decreases oxidative stress in the liver of type 1 diabetic rats. ACTA ACUST UNITED AC 2019; 53:e8389. [PMID: 31859908 PMCID: PMC6915880 DOI: 10.1590/1414-431x20198389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) promotes cell death, and it has been successfully employed as a treatment resource for neuropathic complications of diabetes mellitus (T1DM) and hepatocellular carcinoma. The liver is the major organ involved in the regulation of energy homeostasis, and in pathological conditions such as T1DM, changes in liver metabolic pathways result in hyperglycemia, which is associated with multiple organic dysfunctions. In this context, it has been suggested that chlorophyll-a and its derivatives have anti-diabetic actions, such as reducing hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, but these effects have not yet been proven. Thus, the biological action of PDT with chlorophyll-a on hepatic parameters related to energy metabolism and oxidative stress in T1DM Wistar rats was investigated. Evaluation of the acute effects of this pigment was performed by incubation of isolated hepatocytes with chlorophyll-a and the chronic effects were evaluated by oral treatment with chlorophyll-based extract, with post-analysis of the intact liver by in situ perfusion. In both experimental protocols, chlorophyll-a decreased hepatic glucose release and glycogenolysis rate and stimulated the glycolytic pathway in DM/PDT. In addition, there was a reduction in hepatic oxidative stress, noticeable by decreased lipoperoxidation, reactive oxygen species, and carbonylated proteins in livers of chlorophyll-treated T1DM rats. These are indicators of the potential capacity of chlorophyll-a in improving the status of the diabetic liver.
Collapse
Affiliation(s)
- A L M Wunderlich
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - S C S F Azevedo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - L A Yamada
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C Bataglini
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C Previate
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - K S S Campanholi
- Programa de Pós-Graduação em Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - P C S Pereira
- Programa de Pós-Graduação em Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - W Caetano
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - V Kaplum
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C V Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A B S Nakanishi
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J F Comar
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M M D Pedrosa
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - V A F Godoi
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
37
|
Schneckenburger H. Förster resonance energy transfer-what can we learn and how can we use it? Methods Appl Fluoresc 2019; 8:013001. [PMID: 31715588 DOI: 10.1088/2050-6120/ab56e1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present manuscript gives a short overview on Förster Resonance Energy Transfer (FRET) of molecular interactions in the nanometre range. First, its principle is described and a short historical overview is given. Subsequently some principal methods and applications of FRET sensing and imaging are described (with some emphasis on fluorescence lifetime imaging, FLIM), and finally two innovative FRET techniques are presented in more detail. Applications are focused on measurements of living cells.
Collapse
|
38
|
Udartseva OO, Zhidkova OV, Ezdakova MI, Ogneva IV, Andreeva ER, Buravkova LB, Gollnick SO. Low-dose photodynamic therapy promotes angiogenic potential and increases immunogenicity of human mesenchymal stromal cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111596. [DOI: 10.1016/j.jphotobiol.2019.111596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
|
39
|
Photosensitizer Activation Drives Apoptosis by Interorganellar Ca 2+ Transfer and Superoxide Production in Bystander Cancer Cells. Cells 2019; 8:cells8101175. [PMID: 31569545 PMCID: PMC6829494 DOI: 10.3390/cells8101175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
In cells, photosensitizer (PS) activation by visible light irradiation triggers reactive oxygen species (ROS) formation, followed by a cascade of cellular responses involving calcium (Ca2+) and other second messengers, resulting in cell demise. Cytotoxic effects spread to nearby cells not exposed to light by poorly characterized so-called "bystander effects". To elucidate the mechanisms involved in bystander cell death, we used both genetically encoded biosensors and fluorescent dyes. In particular, we monitored the kinetics of interorganellar Ca2+ transfer and the production of mitochondrial superoxide anion (O2-∙) and hydrogen peroxide (H2O2) in irradiated and bystander B16-F10 mouse melanoma cancer cells. We determined that focal PS photoactivation in a single cell triggers Ca2+ release from the endoplasmic reticulum (ER) also in the surrounding nonexposed cells, paralleled by mitochondrial Ca2+ uptake. Efficient Ca2+ efflux from the ER was required to promote mitochondrial O2-∙ production in these bystander cells. Our results support a key role for ER-mitochondria communication in the induction of ROS-mediated apoptosis in both direct and indirect photodynamical cancer cell killing.
Collapse
|
40
|
Inglut CT, Baglo Y, Liang BJ, Cheema Y, Stabile J, Woodworth GF, Huang HC. Systematic Evaluation of Light-Activatable Biohybrids for Anti-Glioma Photodynamic Therapy. J Clin Med 2019; 8:E1269. [PMID: 31438568 PMCID: PMC6780262 DOI: 10.3390/jcm8091269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
Photosensitizing biomolecules (PSBM) represent a new generation of light-absorbing compounds with improved optical and physicochemical properties for biomedical applications. Despite numerous advances in lipid-, polymer-, and protein-based PSBMs, their effective use requires a fundamental understanding of how macromolecular structure influences the physicochemical and biological properties of the photosensitizer. Here, we prepared and characterized three well-defined PSBMs based on a clinically used photosensitizer, benzoporphyrin derivative (BPD). The PSBMs include 16:0 lysophosphocholine-BPD (16:0 Lyso PC-BPD), distearoyl-phosphoethanolamine-polyethylene-glycol-BPD (DSPE-PEG-BPD), and anti-EGFR cetuximab-BPD (Cet-BPD). In two glioma cell lines, DSPE-PEG-BPD exhibited the highest singlet oxygen yield but was the least phototoxic due to low cellular uptake. The 16:0 Lyso PC-BPD was most efficient in promoting cellular uptake but redirected BPD's subcellular localization from mitochondria to lysosomes. At 24 h after incubation, proteolyzed Cet-BPD was localized to mitochondria and effectively disrupted the mitochondrial membrane potential upon light activation. Our results revealed the variable trafficking and end effects of PSBMs, providing valuable insights into methods of PSBM evaluation, as well as strategies to select PSBMs based on subcellular targets and cytotoxic mechanisms. We demonstrated that biologically informed combinations of PSBMs to target lysosomes and mitochondria, concurrently, may lead to enhanced therapeutic effects against gliomas.
Collapse
Affiliation(s)
- Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yahya Cheema
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jillian Stabile
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Crous A, Dhilip Kumar SS, Abrahamse H. Effect of dose responses of hydrophilic aluminium (III) phthalocyanine chloride tetrasulphonate based photosensitizer on lung cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 194:96-106. [PMID: 30953915 DOI: 10.1016/j.jphotobiol.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is a promising approach for the treatment of different types of cancer and has been brought into focus for its synergy, compatibility, repeatability, relatively inexpensive cost and it's typically more efficacious nature. Photosensitizers (PSs) play a major role in PDT and are the core of this specific therapy. Al (III) Phthalocyanine Chloride Tetra sulfonic Acid (AlPcS4Cl) PS is an aromatic macrocyclic metal-based compound that is synthetically derived. It aids in deep tissue penetration due to its far red light activation wavelength, low photo bleaching, increased quantum yields and stability. Lung cancer is a leading cause of cancer related deaths worldwide accounting for approximately 1 in 5 of all cancer-related deaths. In this study, we explored the photochemical properties of AlPcS4Cl, its uptake into lung cancer, the intracellular localization and photodynamic action on lung cancer (A549 cells). Results indicated that AlPcS4Cl is a stable PS that localizes in intracellular organelles including the mitochondrion and lysosomes. PDT using AlPcS4Cl indicated an increase in cell death and decrease in cell proliferation and viability. AlPcS4Cl showed to be effective in treating lung cancer in vitro, however the resulting PDT efficacy will finally depend on the biological features such as tumour vasculature and tumour specific accumulation when used as a clinical application. It is noted that PDT can be considered as an adjunct therapy until standard protocols for various tumour types along with a relevant PS has been validated.
Collapse
Affiliation(s)
- Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa
| | - Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
42
|
Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 2019; 10:2625-2643. [PMID: 31080554 PMCID: PMC6499000 DOI: 10.18632/oncotarget.26780] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has seen long standing interest as a therapy for resistant cancers, but the main Achilles’ heel for its successful clinical exploitation is the use of poorly penetrating visible light. This limitation could be overcome by using radioluminescent nanoparticles, which can be excited during radiation therapy (RT) with penetrating X-rays. When infused in tumors, X-ray activated-nanoscintillators act as internal light sources and excite nearby photosensitizers. Recent studies demonstrated that it is realistic to achieve low dose PDT with current nanoscintillators. However, as the origin of enhanced RT efficacy with nanoscintillators may have varying origins, we aimed to answer the basic question: Is a combination of low-dose PDT beneficial to the RT efficacy in clinically relevant models of cancer? Pancreatic cancer (PanCa) remains a lethal disease for which RT is part of the palliative care and for which PDT demonstrated promising results in clinical trial. We thus evaluated the combination of low-dose PDT and RT delivered in absence of nanoscintillators on various heterocellular spheroid models that recapitulate the clinical heterogeneity of PanCa. Although therapeutic effects emerged at different timepoints in each model, the RT/PDT combination uniformly achieved favorable outcomes. With RT providing stunted tumor growth while PDT drove adjuvant apoptotic and necrotic cell death, the combination produced significantly smaller and less viable PanCa spheroids. In conclusion, the beneficial RT/PDT treatment outcomes encourage the further development of nanoscinitillators for X-ray-activated PDT. Assessment of such combination treatments should encompass multiparametric and temporally-spaced assessment of treatment effects in preclinical cancer models.
Collapse
|
43
|
Effect of curcumin-nanoemulsion associated with photodynamic therapy in breast adenocarcinoma cell line. Bioorg Med Chem 2019; 27:1882-1890. [PMID: 30926313 DOI: 10.1016/j.bmc.2019.03.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
Abstract
Curcumin, a natural compound has several antineoplastic activities and is a promising natural photosensitizer used in photodynamic therapy. However, its low solubility in physiological medium limit the clinical use of curcumin. This study aimed to analyze the action of curcumin-nanoemulsion, a new and well-designed Drug Delivery System (DDS+) molecule, used as a photosensitizing agent in photodynamic therapy in an in vitro breast cancer model, MCF-7 cells. The empty nanoemulsion fulfils all necessary requirements to be an excellent DDS. Furthermore, the use of curcumin-nanoemulsion in photodynamic therapy resulted in a high phototoxic effect after activation at 440 nm, decreasing to <10% viable tumor cells after two irradiations and increasing the reactive oxygen species (ROS) production. The use of curcumin-nanoemulsion associated with photodynamic therapy resulted in an increase in the levels of caspase 3/7 activity for the studied MCF-7 cell model, indicating that this therapy triggers a cascade of events that lead to cell death, such as cellular apoptosis. In conclusion, curcumin-nanoemulsion proved to be efficient as a photosensitizing agent, had phototoxic effects, significantly decreased the proliferation of MCF-7 cells and stimulating the ROS production in combination with photodynamic therapy, so, this formulation has a great potential for use in treatment of breast cancer.
Collapse
|
44
|
Wu DP, Ding CH, Bai LR, Zhou Y, Yang SM, Zhang F, Huang JL. Decreased phototoxicity of photodynamic therapy by Cx32/Cx26-composed GJIC: A "Good Samaritan" effect. Lasers Surg Med 2019; 51:301-308. [PMID: 30615224 DOI: 10.1002/lsm.23044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) has been widely used to treat malignant tumors. Our previous studies indicated that connexin (Cx) 32- and Cx26-composed gap junctional intercellular communication (GJIC) could improve the phototoxicity of PDT. However, the role of heterotypic Cx32/Cx26-formed GJIC in PDT phototoxicity is still unknown. Thus, the present study was aimed to investigate the effect of Cx32/Cx26-formed GJIC on PDT efficacy. METHODS CCK8 assay was used to detect cell survival after PDT. Western blot assay was utilized to detect Cx32/Cx26 expression. "Parachute" dye-coupling assay was performed to measure the function of GJ channels. The intracellular Ca2+ concentrations were determined using flow cytometer. ELISA assay was performed to detect the intracellular levels of PGE2 and cAMP. RESULTS The present study demonstrates there is a Cx32/Cx26-formed GJIC-dependent reduction of phototoxicity when cells were exposure to low concentration of Photofrin. Such a protective action is missing at low cell density due to the lack of GJ coupling. Under high-cell density condition, where there is opportunity for the cells to contact each other and form GJ, suppressing Cx32/Cx26-formed GJIC by either inhibiting the expression of Cx32/Cx26 or pretreating with GJ channel inhibitor augments PDT phototoxicity after cells were treated with at 2.5 µg/ml Photofrin. The above results suggest that at low Photofrin concentration, the presence of Cx32/Cx26-formed GJIC may decrease the phototoxicity of PDT, leading to the insensitivity of malignant cells to PDT treatment. The GJIC-mediated PDT insensitivity was associated with Ca2+ and prostaglandin E2 (PGE2 ) signaling pathways. CONCLUSION The present study provides a cautionary note that for tumors expressing Cx32/Cx26, the presence of Cx32/Cx26-composed GJIC may cause the resistance of tumor cells to PDT. Oppositely, treatment strategies designed to downregulate the expression of Cx32/Cx26 or restrain the function of Cx32/Cx26-mediated GJIC may increase the sensitivity of malignant cell to PDT. Lasers Surg. Med. 51:301-308, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi City 214062, Jiangsu Province, P. R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, P. R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou City 221004, Jiangsu Province, P. R. China
| |
Collapse
|
45
|
Kolářová H, Huf M, Maceček J, Nevřelová P, Tomečka M, Bajgar R, Mosinger J, Strnad M. The Cellular Uptake of Sensitizers Bound to Cyclodextrin Carriers. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Photodynamic therapy of cancer uses the interaction of sensitizers and light to destroy cancer cells. In this study we tested the cellular uptake of meso-tetrakis(4-sulfonatophenyl)porphine (TPPS4) and its complex PdTPPS4 in the presence or absence of 2–hydroxypropyl-cyclodextrins (hpCDs) on G361 human melanoma cells. Self-fluorescence in G361 cells were measured by Perkin-Elmer LS50B luminometer equipped with well plate reader accessory. Morphological changes in cells have been evaluated using inversion fluorescent microscope Olympus IX 70 and image analysis. The uptake of the sensitizer PdTPPS4 at the given time interval from 1 to 48 hours is markedly higher than the uptake of TPPS4. The highest uptake was found for sensitizer PdTPPS4 in combination with hpβCD. TPPS4 and PdTPPS4 especially in the supramolecular complex with nontoxic cyclodextrin carriers represent efficient sensitizers for photodynamic therapy in vitro on G361 cells.
Collapse
|
46
|
Kato T, Jin CS, Lee D, Ujiie H, Fujino K, Hu HP, Wada H, Wu L, Chen J, Weersink RA, kanno H, Hatanaka Y, Hatanaka KC, Kaga K, Matsui Y, Matsuno Y, De Perrot M, Wilson BC, Zheng G, Yasufuku K. Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. Int J Oncol 2018; 53:2034-2046. [PMID: 30226590 PMCID: PMC6192720 DOI: 10.3892/ijo.2018.4555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/01/2018] [Indexed: 11/07/2022] Open
Abstract
Photodynamic therapy (PDT) following lung-sparing extended pleurectomy for malignant pleural mesothelioma (MPM) has been investigated as a potential means to kill residual microscopic cells. High expression levels of folate receptor 1 (FOLR1) have been reported in MPM; therefore, targeting FOLR1 has been considered a novel potential strategy. The present study developed FOLR1‑targeting porphyrin-lipid nanoparticles (folate-porphysomes, FP) for the treatment of PDT. Furthermore, inhibition of activated epidermal growth factor (EGFR)-associated survival pathways enhance PDT efficacy. In the present study, these approaches were combined; FP-based PDT was used together with an EGFR-tyrosine kinase inhibitor (EGFR-TKI). The frequency of FOLR1 and EGFR expression in MPM was analyzed using tissue microarrays. Confocal microscopy and a cell viability assay were performed to confirm the specificity of FOLR1‑targeting cellular uptake and photocytotoxicity in vitro. In vivo fluorescence activation and therapeutic efficacy were subsequently examined. The effects of EGFR-TKI were also assessed in vitro. The in vivo combined antitumor effect of EGFR-TKI and FP-PDT was then evaluated. The results revealed that FOLR1 and EGFR were expressed in 79 and 89% of MPM samples, respectively. In addition, intracellular uptake of FP corresponded well with FOLR1 expression. When MPM cells were incubated with FP and then irradiated at 671 nm, there was significant in vitro cell death, which was inhibited in the presence of free folic acid, thus suggesting the specificity of FPs. FOLR1 targeting resulted in disassembly of the porphysomes and subsequent fluorescence activation in intrathoracic disseminated MPM tumors, as demonstrated by ex vivo tissue imaging. FP-PDT resulted in significant cellular damage and apoptosis in vivo. Furthermore, the combination of pretreatment with EGFR-TKI and FP-PDT induced a marked improvement of treatment responses. In conclusion, FP-based PDT induced selective destruction of MPM cells based on FOLR1 targeting, and pretreatment with EGFR-TKI further enhanced the therapeutic response.
Collapse
Affiliation(s)
- Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Cheng s. Jin
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kosuke Fujino
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hsin-Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Licun Wu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Juan Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
| | - Rober a. Weersink
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Hiromi kanno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Kanako c. Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Marc De Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian c. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Gang Zheng
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- DLVR Therapeutics Inc. and University Health Network, Toronto, ON M5G 0A3, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
47
|
Ni K, Lan G, Veroneau SS, Duan X, Song Y, Lin W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat Commun 2018; 9:4321. [PMID: 30333489 PMCID: PMC6193046 DOI: 10.1038/s41467-018-06655-7] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022] Open
Abstract
Selective delivery of photosensitizers to mitochondria of cancer cells can enhance the efficacy of photodynamic therapy (PDT). Though cationic Ru-based photosensitizers accumulate in mitochondria, they require excitation with less penetrating short-wavelength photons, limiting their application in PDT. We recently discovered X-ray based cancer therapy by nanoscale metal-organic frameworks (nMOFs) via enhancing radiotherapy (RT) and enabling radiodynamic therapy (RDT). Herein we report Hf-DBB-Ru as a mitochondria-targeted nMOF for RT-RDT. Constructed from Ru-based photosensitizers, the cationic framework exhibits strong mitochondria-targeting property. Upon X-ray irradiation, Hf-DBB-Ru efficiently generates hydroxyl radicals from the Hf6 SBUs and singlet oxygen from the DBB-Ru photosensitizers to lead to RT-RDT effects. Mitochondria-targeted RT-RDT depolarizes the mitochondrial membrane to initiate apoptosis of cancer cells, leading to significant regression of colorectal tumors in mouse models. Our work establishes an effective strategy to selectively target mitochondria with cationic nMOFs for enhanced cancer therapy via RT-RDT with low doses of deeply penetrating X-rays.
Collapse
Affiliation(s)
- Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Samuel S Veroneau
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Song
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
48
|
Hoorelbeke D, Decrock E, Van Haver V, De Bock M, Leybaert L. Calcium, a pivotal player in photodynamic therapy? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1805-1814. [PMID: 30076858 DOI: 10.1016/j.bbamcr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.
Collapse
Affiliation(s)
| | - Elke Decrock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Valérie Van Haver
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Marijke De Bock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Luc Leybaert
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium.
| |
Collapse
|
49
|
Peng W, de Bruijn HS, Farrell E, Sioud M, Mashayekhi V, Oliveira S, van Dam GM, Roodenburg JLN, Witjes MJH, Robinson DJ. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFR-targeted photoimmunotherapy in human head and neck cancer cell lines. Lasers Surg Med 2018; 50:513-522. [PMID: 29777587 DOI: 10.1002/lsm.22930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of targeted photoimmunotherapy (PIT) in vitro on cell lines with various expression levels of epidermal growth factor receptor (EGFR) using an anti-EGFR targeted conjugate composed of Cetuximab and IR700DX, phthalocyanine dye. MATERIALS AND METHODS Relative EGFR density and cell binding assay was conducted in three human head & neck cancer cell lines (scc-U2, scc-U8, and OSC19) and one reference cell line A431. After incubation with the conjugate for 1 or 24 hours, cellular uptake and localization were investigated by confocal laser scanning microscopy and quantified by image analysis. Cell survival was determined using the MTS assay and alamarBlue assay after PIT with a 690 nm laser to a dose of 7 J.cm-2 (at 5 mW.cm-2 ). The mode of cell death was examined with flow cytometry using apoptosis/necrosis staining by Annexin V/propidium iodide, together with immunoblots of anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL. RESULTS A431 cells had the highest EGFR density followed by OSC19, and then scc-U2 and scc-U8. The conjugates were localized both on the surface and in the cytosol of the cells after 1- and 24-hour incubation. After 24-hour incubation the granular pattern was more pronounced and in a similar pattern of a lysosomal probe, suggesting that the uptake of conjugates by cells was via receptor-mediated endocytosis. The results obtained from the quantitative imaging analysis correlate with the level of EGFR expression. Targeted PIT killed scc-U8 and A431 cells efficiently; while scc-U2 and OSC19 were less sensitive to this treatment, despite having similar EGFR density, uptake and localization pattern. Scc-U2 cells showed less apoptotic cell dealth than in A431 after 24-hour targeted PIT. Immunoblots showed significantly higher expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in scc-U2 cell lines compared to scc-U8. CONCLUSION Our study suggests that the effectiveness of EGFR targeted PIT is not only dependent upon EGFR density. Intrinsic biological properties of tumor cell lines also play a role in determining the efficacy of targeted PIT. We have shown that in scc-U2 cells this difference may be caused by differences in the apoptopic pathway. Lasers Surg. Med. 50:513-522, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Otorhinolaryngology and Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henriette S de Bruijn
- Department of Otorhinolaryngology and Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Vida Mashayekhi
- Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Sabrina Oliveira
- Cell Biology, Science Faculty, Department of Biology, Utrecht University, Utrecht, The Netherlands.,Pharmaceutics, Science Faculty, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Go M van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan L N Roodenburg
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dominic J Robinson
- Department of Otorhinolaryngology and Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Xin J, Wang S, Zhang L, Xin B, He Y, Wang J, Wang S, Shen L, Zhang Z, Yao C. Comparison of the synergistic anticancer activity of AlPcS4 photodynamic therapy in combination with different low‑dose chemotherapeutic agents on gastric cancer cells. Oncol Rep 2018; 40:165-178. [PMID: 29767247 PMCID: PMC6059740 DOI: 10.3892/or.2018.6438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Limited cellular delivery and internalization efficiency of Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) induce poor penetration ability in cells and a slight photodynamic therapy (PDT) effect on gastric cancer. The combination treatment of AlPcS4/PDT with low-dose chemotherapeutic agents may provide a promising treatment strategy to increase the weak delivery efficiency of AlPcS4, reducing the dose of chemical agents without reducing efficacy, and improving apoptosis-inducing abilities, thereby increasing the antitumor effects and decreasing the noxious side effects on gastric cancer. We investigated and compared the synergistic antitumor growth effect on gastric cancer cells by combining AlPcS4/PDT treatment with different low-dose chemotherapeutic agents, namely, 5-fluorouracil (5-FU), doxorubicin (DOX), cisplatin (CDDP), mitomycin C (MMC), and vincristine (VCR). The inhibitory effect was increased in treatments that combined AlPcS4/PDT with all the aforementioned low-dose chemotherapeutic agents, to a different extent. An evident synergistic effect was obtained in the combination treatment of AlPcS4/PDT with low-dose 5-FU, DOX, and MMC by increasing AlPcS4 intracellular uptake ability, improving apoptosis-inducing abilities, and prolonging apoptosis-inducing time. The low-dose chemotherapeutic agents prolonged the apoptosis-inducing period of AlPcS4/PDT, and AlPcS4/PDT quickly improved apoptosis-inducing abilities of chemotherapy even at low doses. Generally, the combination treatment of AlPcS4/PDT with low-dose chemotherapeutic agents had significant antitumor growth effects in addition to a low dark-cytotoxicity effect on gastric cancer, thereby representing an effective and feasible therapy method for gastric cancer.
Collapse
Affiliation(s)
- Jing Xin
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Senhao Wang
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Luwei Zhang
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Bo Xin
- Xi'an Fanyi University, School of Innovation and Entrepreneurship, Xi'an, Shaanxi 710105, P.R. China
| | - Yulu He
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Jing Wang
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Sijia Wang
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Lijian Shen
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Zhenxi Zhang
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| | - Cuiping Yao
- Institute of Biomedical Analytical Technology and Instrumentation, Xi'an Jiaotong University, School of Life Sciences and Technology, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|