1
|
Hearon CM, Richards JC, Racine ML, Luckasen GJ, Larson DG, Dinenno FA. Augmentation of endothelium-dependent vasodilatory signalling improves functional sympatholysis in contracting muscle of older adults. J Physiol 2020; 598:2323-2336. [PMID: 32306393 DOI: 10.1113/jp279462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The ability of contracting skeletal muscle to attenuate sympathetic vasoconstriction (functional sympatholysis) is critical for maintaining blood flow during exercise-mediated sympathoexcitation. Functional sympatholysis and endothelial function are impaired with ageing, resulting in compromised blood flow and oxygen delivery to contracting skeletal muscle during exercise. In the present study, intra-arterial infusion of ACh or ATP to augment endothelium-dependent signalling during exercise attenuated α1 -adrenergic vasoconstriction in the contracting muscle of older adults. The vascular signalling mechanisms capable of functional sympatholysis are preserved in healthy ageing, and thus the age-related impairment in functional sympatholysis probably results from the loss of a functional signal (e.g. plasma [ATP]) as opposed to an intrinsic endothelial dysfunction. ABSTRACT The ability of contracting skeletal muscle to attenuate sympathetic α-adrenergic vasoconstriction ('functional sympatholysis') is impaired with age. In young adults, increasing endothelium-dependent vasodilatory signalling during mild exercise augments sympatholysis. In the present study, we tested the hypothesis that increasing endothelium-dependent signalling during exercise in older adults can improve sympatholysis. In 16 older individuals (Protocol 1, n = 8; Protocol 2, n = 8), we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (FVC) to local intra-arterial infusion of phenylephrine (PE; α1 -agonist) during (i) infusion of an endothelium-dependent vasodilator alone (Protocol 1: ACh or Protocol 2: low dose ATP); (ii) mild handgrip exercise (5% maximum voluntary contraction; MVC); (iii) moderate handgrip exercise (15% MVC); and (iv) mild or moderate handgrip exercise + infusion of ACh or ATP to augment endothelium-dependent signalling. PE caused robust vasoconstriction in resting skeletal muscle during control vasodilator infusions (ΔFVC: ACh: -31 ± 3 and ATP: -30 ± 4%). PE-mediated vasoconstriction was not attenuated by mild or moderate intensity exercise (ΔFVC: 5% MVC: -30 ± 9; 15% MVC: -33 ± 8%; P > 0.05 vs. control ACh and ATP), indicative of impaired sympatholysis, and ACh or ATP infusion during mild exercise did not impact this response. However, augmentation of endothelium-dependent signalling via infusion of ACh or ATP during moderate intensity exercise attenuated PE-mediated vasoconstriction (ΔFVC: -13 ± 1 and -19 ± 5%, respectively; P < 0.05 vs. all conditions). Our findings demonstrate that, given a sufficient stimulus, endothelium-dependent sympatholysis remains intact in older adults. Strategies aimed at activating such pathways represent a viable approach for improving sympatholysis and thus tissue blood flow and oxygen delivery in older adults.
Collapse
Affiliation(s)
- Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Mathew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Dennis G Larson
- Medical Center of the Rockies Foundation, University of Colorado Health System, Loveland, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.,Center for Cardiovascular Research, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Novielli-Kuntz NM, Lemaster KA, Frisbee JC, Jackson DN. Neuropeptide Y1 and alpha-1 adrenergic receptor-mediated decreases in functional vasodilation in gluteus maximus microvascular networks of prediabetic mice. Physiol Rep 2018; 6:e13755. [PMID: 29981203 PMCID: PMC6035337 DOI: 10.14814/phy2.13755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Prediabetes is associated with impaired contraction‐evoked dilation of skeletal muscle arterioles, which may be due to increased sympathetic activity accompanying this early stage of diabetes disease. Herein, we sought to determine whether blunted contraction‐evoked vasodilation resulted from enhanced sympathetic neuropeptide Y1 receptor (Y1R) and alpha‐1 adrenergic receptor (α1R) activation. Using intravital video microscopy, second‐, third‐, and fourth‐order (2A, 3A, and 4A) arteriolar diameters were measured before and following electrical field stimulation of the gluteus maximus muscle (GM) in prediabetic (PD, Pound Mouse) and control (CTRL, c57bl6, CTRL) mice. Baseline diameter was similar between groups; however, single tetanic contraction (100 Hz; 400 and 800 msec) and sustained rhythmic contraction (2 and 8 Hz, 30 sec) evoked rapid onset vasodilation and steady‐state vasodilatory responses that were blunted by 50% or greater in PD versus CTRL. Following Y1R and α1R blockade with sympathetic antagonists BIBP3226 and prazosin, contraction‐evoked arteriolar dilation in PD was restored to levels observed in CTRL. Furthermore, arteriolar vasoconstrictor responses to NPY (10−13–10−8 mol/L) and PE (10−9–10−5 mol/L) were greater in PD versus CTRL at higher concentrations, especially at 3A and 4A. These findings suggest that contraction‐evoked vasodilation in PD is blunted by Y1R and α1R receptor activation throughout skeletal muscle arteriolar networks.
Collapse
Affiliation(s)
| | - Kent A Lemaster
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Hodges GJ, Martin ZT, Del Pozzi AT. Neuropeptide Y not involved in cutaneous vascular control in young human females taking oral contraceptive hormones. Microvasc Res 2017; 113:9-15. [PMID: 28427990 DOI: 10.1016/j.mvr.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 11/27/2022]
Abstract
We previously reported that the cutaneous vasodilator response to local warming in males required noradrenaline (NA) and neuropeptide-Y (NPY). Animal work has shown no role for NPY in female vascular control. We investigated the contribution of NA and NPY in human female cutaneous vascular control. Nine female and nine male participants volunteered. To elucidate whether synthetic oestrogen and progesterone altered cutaneous vascular responses, females were tested in high-hormone (HH) and low-hormone (LH) phases of oral contraceptive pill (OCP). Skin blood flow was assessed by laser-Doppler flowmetry and expressed as cutaneous vascular conductance (CVC). Treatments were: control, combined yohimbine and propranolol (YP), BIBP-3226, and bretylium tosylate (BT). YP and BT increased basal CVC (p<0.05) relative to control sites in both HH and LH phases; though, BIBP-3226 had no effect in either phase (both p>0.05). Males basal CVC was increased at all treated sites compared to control sites (all p<0.05). YP and BT treated sites were higher in HH compared to LH (p<0.05). YP and BT treatment reduced the local warming-induced vasodilatation compared to control sites (p>0.05) in both HH and LH phases; whereas, BIBP-3226 treatment had no effect (p>0.05). In males, the vasodilatation achieved at all treated sites was reduced compared to the untreated control site (p<0.05). Data indicate that NA, not NPY, regulates basal skin blood flow and contributes to the vasodilator response to local warming in young females; however, both NA and NPY play a role in both basal and heat-induced cutaneous responses in males.
Collapse
Affiliation(s)
- Gary J Hodges
- Environmental Ergonomics Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Zachary T Martin
- Integrative Exercise Physiology Laboratory, School of Kinesiology, Ball State University, 2000 West University Avenue, Muncie, IN 47306, USA.
| | - Andrew T Del Pozzi
- Integrative Exercise Physiology Laboratory, School of Kinesiology, Ball State University, 2000 West University Avenue, Muncie, IN 47306, USA.
| |
Collapse
|
4
|
Johnson JM, Minson CT, Kellogg DL. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014; 4:33-89. [PMID: 24692134 DOI: 10.1002/cphy.c130015] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this review, we focus on significant developments in our understanding of the mechanisms that control the cutaneous vasculature in humans, with emphasis on the literature of the last half-century. To provide a background for subsequent sections, we review methods of measurement and techniques of importance in elucidating control mechanisms for studying skin blood flow. In addition, the anatomy of the skin relevant to its thermoregulatory function is outlined. The mechanisms by which sympathetic nerves mediate cutaneous active vasodilation during whole body heating and cutaneous vasoconstriction during whole body cooling are reviewed, including discussions of mechanisms involving cotransmission, NO, and other effectors. Current concepts for the mechanisms that effect local cutaneous vascular responses to local skin warming and cooling are examined, including the roles of temperature sensitive afferent neurons as well as NO and other mediators. Factors that can modulate control mechanisms of the cutaneous vasculature, such as gender, aging, and clinical conditions, are discussed, as are nonthermoregulatory reflex modifiers of thermoregulatory cutaneous vascular responses.
Collapse
Affiliation(s)
- John M Johnson
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | |
Collapse
|
5
|
Holwerda SW, Restaino RM, Fadel PJ. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise. Auton Neurosci 2014; 188:24-31. [PMID: 25467222 DOI: 10.1016/j.autneu.2014.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Abstract
Blood flow to active skeletal muscle increases markedly during dynamic exercise. However, despite the massive capacity of skeletal muscle vasculature to dilate, arterial blood pressure is well maintained. Sympathetic nerve activity is elevated with increased intensity of dynamic exercise, and is essential for redistribution of cardiac output to active skeletal muscle and maintenance of arterial blood pressure. In addition, aside from the sympathetic nervous system, evidence from human studies is now emerging that supports roles for non-adrenergic vasoconstrictor pathways that become active during exercise and contribute to vasoconstriction in active skeletal muscle. Neuropeptide Y and adenosine triphosphate are neurotransmitters that are co-released with norepinephrine from sympathetic nerve terminals capable of producing vasoconstriction. Likewise, plasma concentrations of arginine vasopressin, angiotensin II (Ang II) and endothelin-1 (ET-1) increase during dynamic exercise, particularly at higher intensities. Ang II and ET-1 have both been shown to be important vasoconstrictor pathways for restraint of blood flow in active skeletal muscle and the maintenance of arterial blood pressure during exercise. Indeed, although both adrenergic and non-adrenergic vasoconstriction can be attenuated in exercising muscle with greater intensity of exercise, with the higher volume of blood flow, the active skeletal muscle vasculature remains capable of contributing importantly to the maintenance of blood pressure. In this brief review we provide an update on skeletal muscle blood flow regulation during exercise with an emphasis on adrenergic and non-adrenergic vasoconstrictor pathways and their potential capacity to offset vasodilation and aid in the regulation of blood pressure.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Robert M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
6
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
7
|
Masliukov PM, Konovalov VV, Emanuilov AI, Nozdrachev AD. Development of neuropeptide Y-containing neurons in sympathetic ganglia of rats. Neuropeptides 2012; 46:345-52. [PMID: 22964363 DOI: 10.1016/j.npep.2012.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/22/2012] [Accepted: 08/02/2012] [Indexed: 12/27/2022]
Abstract
Expression of neuropeptide Y (NPY) in the sympathetic ganglia was investigated by immunohistochemistry and tract tracing. The distribution of NPY immunoreactivity (IR) was studied in the superior cervical ganglion (SCG), stellate ganglion (SG) and celiac ganglion (CG) from rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 24-month-old). We observed that the percentage of NPY-IR neuronal profiles increased during early postnatal development. In the SCG and SG, the percentage of NPY-IR profiles enlarged in the first month of life from 43±3.6% (SCG) and 46±3.8% (SG) until 64±4.1% (SCG) and 58±3.5% (SG). The percentage of NPY-IR profiles in the CG increased during the period between 20days (65±3.8%) and 30days (82±5.1%) of animals' life and did not change in further development. In newborn and 10-day-old rats, a large portion of NPY-IR neurons was also calbindin D28K (CB)-IR in all sympathetic ganglia. The proportion of CB-IR substantially decreased during next 10days in the SCG, SG and CG. NPY-IR was approximately present in a half of the postganglionic neurons innervating muscle vessels of the neck and forearm, and the percentage of labeled NPY-IR profiles did not change during the development. Only single Ki67-IR neurons were also NPY-IR in the SCG, SG and CG in newborns and not in older animals. No NPY+/caspase 3+IR neurons were observed. Finally, the process of morphological changes in the size and percentages of NPY-IR profiles is complete in rats by the first month of life.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department of Normal Physiology, Yaroslavl State Medical Academy, ul. Revolucionnaya, 5, Yaroslavl 150000, Russia.
| | | | | | | |
Collapse
|
8
|
Novielli NM, Al-Khazraji BK, Medeiros PJ, Goldman D, Jackson DN. Pre-diabetes augments neuropeptide Y1- and α1-receptor control of basal hindlimb vascular tone in young ZDF rats. PLoS One 2012; 7:e46659. [PMID: 23071607 PMCID: PMC3465334 DOI: 10.1371/journal.pone.0046659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Peripheral vascular disease in pre-diabetes may involve altered sympathetically-mediated vascular control. Thus, we investigated if pre-diabetes modifies baseline sympathetic Y(1)-receptor (Y(1)R) and α(1)-receptor (α(1)R) control of hindlimb blood flow (Q(fem)) and vascular conductance (VC). METHODS Q(fem) and VC were measured in pre-diabetic ZDF rats (PD) and lean controls (CTRL) under infusion of BIBP3226 (Y(1)R antagonist), prazosin (α(1)R antagonist) and BIBP3226+prazosin. Neuropeptide Y (NPY) concentration and Y(1)R and α(1)R expression were determined from hindlimb skeletal muscle samples. RESULTS Baseline Q(fem) and VC were similar between groups. Independent infusions of BIBP3226 and prazosin led to increases in Q(fem) and VC in CTRL and PD, where responses were greater in PD (p<0.05). The percent change in VC following both drugs was also greater in PD compared to CTRL (p<0.05). As well, Q(fem) and VC responses to combined blockade (BIBP3226+prazosin) were greater in PD compared to CTRL (p<0.05). Interestingly, an absence of synergistic effects was observed within groups, as the sum of the VC responses to independent drug infusions was similar to responses following combined blockade. Finally, white and red vastus skeletal muscle NPY concentration, Y(1)R expression and α(1)R expression were greater in PD compared to CTRL. CONCLUSIONS For the first time, we report heightened baseline Y(1)R and α(1)R sympathetic control of Q(fem) and VC in pre-diabetic ZDF rats. In support, our data suggest that augmented sympathetic ligand and receptor expression in pre-diabetes may contribute to vascular dysregulation.
Collapse
Affiliation(s)
- Nicole M. Novielli
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Baraa K. Al-Khazraji
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Philip J. Medeiros
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Biomedical Engineering Program, The University of Western Ontario, London, Ontario, Canada
| | - Dwayne N. Jackson
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
- Biomedical Engineering Program, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
|
10
|
Hodges GJ, Jackson DN, Mattar L, Johnson JM, Shoemaker JK. Neuropeptide Y and neurovascular control in skeletal muscle and skin. Am J Physiol Regul Integr Comp Physiol 2009; 297:R546-55. [PMID: 19571208 DOI: 10.1152/ajpregu.00157.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is a ubiquitous peptide with multiple effects on energy metabolism, reproduction, neurogenesis, and emotion. In addition, NPY is an important sympathetic neurotransmitter involved in neurovascular regulation. Although early studies suggested that the vasoactive effects of NPY were limited to periods of high stress, there is growing evidence for the involvement of NPY on baseline vasomotor tone and sympathetically evoked vasoconstriction in vivo in both skeletal muscle and the cutaneous circulation. In Sprague-Dawley rat skeletal muscle, Y(1)-receptor activation appears to play an important role in the regulation of basal vascular conductance, and this effect is similar in magnitude to the alpha(1)-receptor contribution. Furthermore, under baseline conditions, agonist and receptor-based mechanisms for Y(1)-receptor-dependent control of vascular conductance in skeletal muscle are greater in male than female rats. In skin, there is Y(1)-receptor-mediated vasoconstriction during whole body, but not local, cooling. As with the NPY system in muscle, this neural effect in skin differs between males and females and in addition, declines with aging. Intriguingly, skin vasodilation to local heating also requires NPY and is currently thought to be acting via a nitric oxide pathway. These studies are establishing further interest in the role of NPY as an important vasoactive agent in muscle and skin, adding to the complexity of neurovascular regulation in these tissues. In this review, we focus on the role of NPY on baseline vasomotor tone in skeletal muscle and skin and how NPY modulates vasomotor tone in response to stress, with the aim of compiling what is currently known, while highlighting some of the more pertinent questions yet to be answered.
Collapse
Affiliation(s)
- Gary J Hodges
- School of Kinesiology, University of Western Ontario, London, Ontario.
| | | | | | | | | |
Collapse
|
11
|
Salmanpour A, Brown LJ, Shoemaker JK. Detection and classification of raw action potential patterns in human Muscle Sympathetic Nerve Activity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:2928-31. [PMID: 19163319 DOI: 10.1109/iembs.2008.4649816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Muscle Sympathetic Nerve Activity (MSNA) consists of synchronous neural discharges separated by periods of neural silence dominated by heavy background noise. During measurement with electrodes, the raw MSNA signal is amplified, band-pass filtered, rectified and integrated. This integration process removes much neurophysiological information. In this paper a method for detecting a raw action potential (before the pre-amplifier) and filtered action potential (after the band-pass filter) is presented. This method is based on stationary wavelet transform (SWT) and a peak detection algorithm. Also, the detected action potentials were clustered using the k-means method and the cluster averages were calculated. The action potential detector and classification algorithm are evaluated using real MSNA recorded from three healthy subjects.
Collapse
Affiliation(s)
- Aryan Salmanpour
- Department of Electrical and Computer Engineering, and the Neurovascular Research Laboratory, the School of Kinesiology, the University of Western Ontario, ON, Canada.
| | | | | |
Collapse
|
12
|
Coney AM, Marshall JM. Contribution of alpha2-adrenoceptors and Y1 neuropeptide Y receptors to the blunting of sympathetic vasoconstriction induced by systemic hypoxia in the rat. J Physiol 2007; 582:1349-59. [PMID: 17510186 PMCID: PMC2075239 DOI: 10.1113/jphysiol.2007.132563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is evidence that sympathetically evoked vasoconstriction in skeletal muscle is blunted in systemic hypoxia, but the mechanisms underlying this phenomenon are not clear. In Saffan-anaesthetized Wistar rats, we have studied the role of α2-adrenoceptors and neuropeptide Y (NPY) Y1 receptors in mediating vasoconstriction evoked by direct stimulation of the lumbar sympathetic chain by different patterns of impulses in normoxia (N) and systemic hypoxia (H: breathing 8% O2). Patterns comprised 120 impulses delivered in bursts over a 1 min period at 40 or 20 Hz, or continuously at 2 Hz. Hypoxia attenuated the evoked increases in femoral vascular resistance (FVR) by all patterns, the response to 2 Hz being most affected (40 Hz bursts: N = 3.25 ± 0.75 arbitrary resistance units (RU); H = 1.14 ± 0.29 RU). Yohimbine (Yoh, α2-adrenoceptor antagonist) or BIBP 3226 (Y1-receptor antagonist) did not affect baseline FVR. In normoxia, Yoh attenuated the responses evoked by high frequency bursts and 2 Hz, whereas BIBP 3226 only attenuated the response to 40 Hz (40 Hz bursts: N + Yoh = 2.1 ± 0.59 RU; N + BIBP 3226 = 1.9 ± 0.4 RU). In hypoxia, Yoh did not further attenuate the evoked responses, but BIBP 3226 further attenuated the response to 40 Hz bursts. These results indicate that neither α2-adrenoceptors nor Y1 receptors contribute to basal vascular tone in skeletal muscle, but both contribute to constrictor responses evoked by high frequency bursts of sympathetic activity. We propose that in systemic hypoxia, the α2-mediated component represents about 50% of the sympathetically evoked constriction that is blunted, whereas the contribution made by Y1 receptors is resistant. Thus we suggest the importance of NPY in the regulation of FVR and blood pressure increases during challenges such as systemic hypoxia.
Collapse
Affiliation(s)
- Andrew M Coney
- Department of Physiology, The Medical School, Birmingham B15 2TT, UK.
| | | |
Collapse
|
13
|
Zhang Q, Liu Y, Brown L, Shoemaker JK. Challenges and opportunities in processing muscle sympathetic nerve activity with wavelet denoising techniques: detecting single action potentials in multiunit sympathetic nerve recordings in humans. Auton Neurosci 2007; 134:92-105. [PMID: 17412648 DOI: 10.1016/j.autneu.2007.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 02/23/2007] [Accepted: 02/27/2007] [Indexed: 11/23/2022]
Abstract
An important issue in analysis of muscle sympathetic nerve activity (MSNA), particularly those measures made in humans, is the problem that background noise of varying levels from recording to recording may interfere with accurate assessment of neural discharge patterns and overall activity. In this study, the utility of wavelet denoising approaches for processing MSNA signals was examined with emphasis on 1) determining whether this approach could improve the signal-to-noise (SNR) in the integrated neurogram, and 2) detecting intra-burst single action potential spikes. The utility of wavelet denoising was examined in simulated data and in original human data with three recordings of varying SNR (low, moderate and high) obtained from two healthy individuals. Only in the high SNR signal was the noise removed without concurrent loss of signal. Using a threshold-detecting algorithm individual depolarization spikes were detected in denoised recordings of high original SNR (>3:1) from four individuals and the interspike interval characteristics of these were quantified on a burst-by-burst basis. Compared with baseline (15+/-1 spikes/burst) a reflexive increase in spike count (29+/-4 spikes/burst) was observed during a held maximal inspiration (P<0.01) with concurrent reductions in inter-spike interval (P<0.01). The findings indicate that within multiunit bursts of sympathetic neural activity in the band-pass filtered neural signal, there are particular frequency components that appear to be shared between the signal and noise. This may limit the utility of wavelet denoising to enhance detection of neural bursts in the integrated neurogram of MSNA. However, opportunities exist with this approach to detect variations in action potential contributions within each burst of MSNA. This latter observation suggests that this denoising approach provides a new probe to explore MSNA discharge patterns.
Collapse
Affiliation(s)
- Qing Zhang
- Neurovascular Research Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | | | |
Collapse
|
14
|
Buckwalter JB, Hamann JJ, Clifford PS. Neuropeptide Y1receptor vasoconstriction in exercising canine skeletal muscles. J Appl Physiol (1985) 2005; 99:2115-20. [PMID: 16099895 DOI: 10.1152/japplphysiol.00427.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Existing evidence suggests that neuropeptide Y (NPY) acts as a neurotransmitter in vascular smooth muscle and is coreleased with norepinephrine from sympathetic nerves. We hypothesized that release of NPY stimulates NPY Y(1) receptors in the skeletal muscle vasculature to produce vasoconstriction during dynamic exercise. Eleven mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. In resting dogs (n = 4), a 2.5-mg bolus of BIBP-3226 (NPY Y(1) antagonist) infused into the femoral artery increased external iliac conductance by 150 +/- 82% (1.80 +/- 0.44 to 3.50 +/- 0.14 ml.min(-1).mmHg(-1); P < 0.05). A 10-mg bolus of BIBP-3226 infused into the femoral artery in dogs (n = 7) exercising on a treadmill at a moderate intensity (6 miles/h) increased external iliac conductance by 28 +/- 6% (6.00 +/- 0.49 to 7.64 +/- 0.61 ml.min(-1).mmHg(-1); P < 0.05), whereas the solvent vehicle did not (5.74 +/- 0.51 to 5.98 +/- 0.43 ml.min(-1).mmHg(-1); P > 0.05). During exercise, BIBP-3226 abolished the reduction in conductance produced by infusions of the NPY Y(1) agonist [Leu(31),Pro(34)]NPY (-19 +/- 3 vs. 0.5 +/- 1%). Infusions of BIBP-3226 (n = 7) after alpha-adrenergic receptor antagonism with prazosin and rauwolscine also increased external iliac conductance (6.82 +/- 0.43 to 8.22 +/- 0.48 ml.min(-1).mmHg(-1); P < 0.05). These data support the hypothesis that NPY Y(1) receptors produce vasoconstriction in exercising skeletal muscle. Furthermore, the NPY Y(1) receptor-mediated tone appears to be independent of alpha-adrenergic receptor-mediated vasoconstriction.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|
15
|
Jackson DN, Noble EG, Shoemaker JK. Y1- and alpha1-receptor control of basal hindlimb vascular tone. Am J Physiol Regul Integr Comp Physiol 2004; 287:R228-33. [PMID: 15044188 DOI: 10.1152/ajpregu.00723.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of endogenous Y(1)-receptor activation on skeletal muscle vasculature under baseline conditions is currently debated and no in vivo studies have been performed to address this issue. Therefore, this study was designed to address the effect of Y(1)-receptor and/or alpha(1)-adrenoceptor antagonism on basal hindlimb vascular conductance in male Sprague-Dawley rats in vivo. Left hindlimb vascular conductance, carotid artery mean arterial pressure, and heart rate were measured during low volume infusion of N(2)-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-d-arginine amide (BIBP3226; 100 microg/kg), prazosin (20 microg/kg), and combined blockade to the left hindlimb. Vascular conductance increased 1.5 +/- 0.5 microl.min(-1).mmHg(-1) with BIBP3226 infusion, 1.7 +/- 0.5 microl.min(-1).mmHg(-1) with prazosin infusion, and 4.8 +/- 1.0 microl.min(-1).mmHg(-1) with combined blockade (P < 0.05). Interestingly, systolic vascular conductance increased in all three conditions, but diastolic vascular conductance only increased in the two conditions where BIBP3226 was present. These data indicate that Y(1)-receptor activation plays an important role in the regulation of vascular conductance in the resting rat hindlimb. Furthermore, this effect was of the same magnitude as the alpha(1)-adrenoceptor contribution. The differential flow profiles following alpha(1) blockade with and without Y(1)-receptor blockade supports local differences in receptor distribution.
Collapse
Affiliation(s)
- Dwayne N Jackson
- Neurovascular Research Laboratory, School of Kinesiology, Rm. 3110, Thames Hall, Univ. of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
16
|
Wise RA. Interactions between medial prefrontal cortex and meso-limbic components of brain reward circuitry. PROGRESS IN BRAIN RESEARCH 2001; 126:255-62. [PMID: 11105651 DOI: 10.1016/s0079-6123(00)26018-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R A Wise
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Abstract
The sensory neuropeptides substance P (SP) and neurokinin A (NKA) are localized to sensory airway nerves, from which they can be released by a variety of stimuli, including allergen, ozone, or inflammatory mediators. Sensory nerves containing these peptides are relatively scarce in human airways, but it is becoming increasingly evident that inflammatory cells such as eosinophils, macrophages, lymphocytes, and dendritic cells can produce the tachykinins SP and NKA. Moreover, immune stimuli can boost the production and secretion of SP and NKA. SP and NKA have potent effects on bronchomotor tone, airway secretions, and bronchial circulation (vasodilation and microvascular leakage) and on inflammatory and immune cells. Following their release, tachykinins are degraded by neutral endopeptidase (NEP) and angiotensin-converting enzyme. The airway effects of the tachykinins are largely mediated by tachykinin NK1 and NK2 receptors. Tachykinins contract smooth muscle mainly by interaction with NK2 receptors, while the vascular and proinflammatory effects are mediated by the NK1 receptor. In view of their potent effects on the airways, tachykinins have been put forward as possible mediators of asthma, and tachykinin receptor antagonists are a potential new class of antiasthmatic medication.
Collapse
Affiliation(s)
- G F Joos
- Department of Respiratory Diseases, University Hospital Ghent, Belgium
| | | | | |
Collapse
|
18
|
Buijs RM, Hermes MH, Kalsbeek A. The suprachiasmatic nucleus-paraventricular nucleus interactions: a bridge to the neuroendocrine and autonomic nervous system. PROGRESS IN BRAIN RESEARCH 1999; 119:365-82. [PMID: 10074800 DOI: 10.1016/s0079-6123(08)61581-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasopressin (VP) is one of the principal neurotransmitters of the suprachiasmatic nucleus (SCN). By means of anatomical, physiological and electrophysiological techniques we have demonstrated that VP containing pathways from the SCN serve to affect neuroendocrine and 'autonomic' neurons in the paraventricular nucleus. By direct and indirect connections VP serves to inhibit corticosterone secretion, not only by affecting ACTH secretion but also by controlling the adrenal cortex via a neuronal route. Apart from controlling the pineal and adrenal, we also observed that the SCN is able to influence the heart. Subjecting rats or humans to light affects heart rate in a dose-dependent manner. These results suggest an important role for the SCN and VP in the SCN in the regulation of neuroendocrine and autonomic functions.
Collapse
Affiliation(s)
- R M Buijs
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
19
|
Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci 1998. [PMID: 9698337 DOI: 10.1523/jneurosci.18-16-06492.1998] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vivo microdialysis, radioimmunoassay, and HPLC with electrochemical or fluorometric detection were used to investigate the release of cholecystokinin (CCK), glutamate (Glu), and dopamine (DA) in nucleus accumbens septi (NAS) as a function of ipsilateral electrical stimulation of medial prefrontal cortex (mPFC). CCK was progressively elevated by mPFC stimulation at 50-200 Hz. Stimulation-induced CCK release was intensity-dependent at 250-700 microA. NAS Glu and DA levels were each elevated by stimulation at 25-400 Hz; the dopamine metabolites DOPAC and homovanillic acid were increased by stimulation at 100-400 Hz. When rats were trained to lever press for mPFC stimulation, the stimulation induced similar elevations of each of the three transmitters to those seen with experimenter-administered stimulation. Perfusion of 1 mM kynurenic acid (Kyn) into either the ventral tegmental area (VTA) or NAS blocked lever pressing for mPFC stimulation. VTA, but not NAS, perfusion of Kyn significantly attenuated the increases in NAS DA levels induced by mPFC stimulation. Kyn did not affect NAS CCK or Glu levels when perfused into either the VTA or NAS. The present results are consistent with histochemical evidence and provide the first in vivo evidence for the existence of a releasable pool of CCK in the NAS originating from the mPFC. Although dopamine is the transmitter most closely linked to reward function, it was CCK that showed frequency-dependent differences in release corresponding most closely to rewarding efficacy of the stimulation. Although not essential for the reward signal itself, coreleased CCK may modulate the impact of the glutamatergic action in this behavior.
Collapse
|
20
|
Varoqui H, Erickson JD. Vesicular neurotransmitter transporters. Potential sites for the regulation of synaptic function. Mol Neurobiol 1997; 15:165-91. [PMID: 9396009 DOI: 10.1007/bf02740633] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.
Collapse
Affiliation(s)
- H Varoqui
- Neuroscience Center, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
21
|
Buijs RM. The anatomical basis for the expression of circadian rhythms: the efferent projections of the suprachiasmatic nucleus. PROGRESS IN BRAIN RESEARCH 1996; 111:229-40. [PMID: 8990918 DOI: 10.1016/s0079-6123(08)60411-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R M Buijs
- Netherlands Institute for Brain Research, Amsterdam ZO, The Netherlands
| |
Collapse
|