1
|
Kushwaha K, Kabra U, Dubey R, Gupta J. Diabetic Nephropathy: Pathogenesis to Cure. Curr Drug Targets 2022; 23:1418-1429. [PMID: 35993461 DOI: 10.2174/1389450123666220820110801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disorder (ESRD). It is defined as the increase in urinary albumin excretion (UAE) when no other renal disease is present. DN is categorized into microalbuminuria and macroalbuminuria. Factors like high blood pressure, high blood sugar levels, genetics, oxidative stress, hemodynamic and metabolic changes affect DN. Hyperglycemia causes renal damage through activating protein kinase C (PKC), producing advanced end glycation products (AGEs) and reactive oxygen species (ROS). Growth factors, chemokines, cell adhesion molecules, inflammatory cytokines are found to be elevated in the renal tissues of the diabetic patient. Many different and new diagnostic methods and treatment options are available due to the increase in research efforts and progression in medical science. However, until now, no permanent cure is available. This article aims to explore the mechanism, diagnosis, and therapeutic strategies in current use for increasing the understanding of DN.
Collapse
Affiliation(s)
- Kriti Kushwaha
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Uma Kabra
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India.,Department of Medical Laboratory Sciences, School of Pharmaceutical Sciences, Lovely Professional University (LPU), Jalandhar - Delhi G.T. Road, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
2
|
Andrade DO, Aguiar FL, Mansor ALP, Valente FM, Souza DRS, Lopes VDS, Fernandes LB, Godoy MF, Yugar-Toledo JC, Cosenso-Martin LN, Vilela-Martin JF. Inflammatory cytokines are associated to lower glomerular filtration rate in patients with hypertensive crisis. Front Cardiovasc Med 2022; 9:969339. [PMID: 36247461 PMCID: PMC9559728 DOI: 10.3389/fcvm.2022.969339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionHypertension and kidney function are closely related. However, there are few studies on renal function during acute elevation of blood pressure (BP), denominated hypertensive crisis (HC).ObjectivesTo evaluate the relationship between renal function and inflammatory cytokines in HC, subdivided into hypertensive urgency (HUrg) and emergency (HEmerg).Materials and methodsThis cross-sectional study was carried out in 74 normotensive (NT) and 74 controlled hypertensive individuals (ContrHT) followed up in outpatient care. Additionally, 78 subjects with hypertensive emergency (HEmerg) and 50 in hypertensive urgency (HUrg), attended in emergency room, were also evaluated. Hypertensive crisis was classified into HEmerg, defined by systolic blood pressure (BP) ≥ 180 mmHg and/or diastolic BP ≥ 120 mmHg in presence of target-organ damage (TOD), and HypUrg, clinical situation with BP elevation without TOD. The glomerular filtration rate (eGFR) was estimated, and cytokine levels were measured. Statistical analysis was performed using the Kruskal-Wallis or Mann-Whitney test and Spearman’s correlation, with significant differences p-value < 0.05.ResultsThe median age was 53.5 years in the NT group (52 female), 61 years in the ContrHT group (52 female), and 62.5 years in the HC group (63 female) (p-value < 0.0001). The median BP was 118.5/75 mmHg for NT, 113.5/71 for ContrHT, and 198.5/120 mmHg for HC, respectively (p-value < 0.0001 among groups). BP and heart rate levels were significantly higher in the HC group compared to the NT and ContrHT groups (P < 0.001 for all). The eGFR was significantly lower in HC group compared to the NT and ContrHT groups. The cytokine levels were higher in the HEmerg and HUrg groups compared to ContrHT group (P < 0.0001, except for IL-1β in HUrg vs. ContrHT), without difference between the acute elevation of BP groups. Thus, all cytokines were significantly elevated in patients with HC compared to the control groups (NT and ContrHT). There was a negative correlation between eGFR and the cytokines (IL-1β, IL-6, IL-8, IL-10, and TNF-α) in the HC group.ConclusionElevated inflammatory cytokines are associated with reduced eGFR in individuals with HC compared to control groups, suggesting that the inflammatory process participates in the pathogenesis of acute elevations of BP.
Collapse
Affiliation(s)
- Days O. Andrade
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Franciana L. Aguiar
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Ana Luiza P. Mansor
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Flavia M. Valente
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Doroteia R. S. Souza
- Biochemistry and Molecular Biology Research Nucleus and Molecular Biology Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Valquiria da Silva Lopes
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Leticia B. Fernandes
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Moacir F. Godoy
- Transdisciplinary Nucleus for the Study of Chaos and Complexity, de Cardiology and Cardiovascular Surgery Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Juan C. Yugar-Toledo
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Luciana N. Cosenso-Martin
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
| | - Jose F. Vilela-Martin
- Hypertension Clinical and Medicine Department, State Medical School at São José do Rio Preto, São Paulo, Brazil
- *Correspondence: Jose F. Vilela-Martin,
| |
Collapse
|
3
|
Bildaci YD, Bulut H, Elcioglu OC, Gursu M, Kazancioglu R. Alteration of inflammation marker levels with alfa keto analogs in diabetic rats. Niger J Clin Pract 2022; 25:1452-1456. [DOI: 10.4103/njcp.njcp_1868_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Howard JE, Smith JNP, Fredman G, MacNamara KC. IL-18R-mediated HSC quiescence and MLKL-dependent cell death limit hematopoiesis during infection-induced shock. Stem Cell Reports 2021; 16:2887-2899. [PMID: 34798063 PMCID: PMC8693653 DOI: 10.1016/j.stemcr.2021.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Severe infection can dramatically alter blood production, but the mechanisms driving hematopoietic stem and progenitor cell (HSC/HSPC) loss have not been clearly defined. Using Ixodes ovatus Ehrlichia (IOE), a tick-borne pathogen that causes severe shock-like illness and bone marrow (BM) aplasia, type I and II interferons (IFNs) promoted loss of HSPCs via increased cell death and enforced quiescence. IFN-αβ were required for increased interleukin 18 (IL-18) expression during infection, correlating with ST-HSC loss. IL-18 deficiency prevented BM aplasia and increased HSC/HSPCs. IL-18R signaling was intrinsically required for ST-HSC quiescence, but not for HSPC cell death. To elucidate cell death mechanisms, MLKL- or gasdermin D-deficient mice were infected; whereas Mlkl−/− mice exhibited protected HSC/HSPCs, no such protection was observed in Gsdmd−/− mice during infection. MLKL deficiency intrinsically protected HSCs during infection and improved hematopoietic output upon recovery. These studies define MLKL and IL-18R signaling in HSC loss and suppressed hematopoietic function in shock-like infection. Type I and II IFNs regulate expression of IL-18 and IL-18R in shock-like infection IL-18 production contributes to HSC/HSPC loss during shock-like infection IL-18R signaling in ST-HSCs promotes infection-induced quiescence MLKL-deficient HSCs are protected during infection
Collapse
Affiliation(s)
- Jennifer E Howard
- The Department of Immunology and Infectious Disease, Albany Medical College, MC-151 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Julianne N P Smith
- The Department of Immunology and Infectious Disease, Albany Medical College, MC-151 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Katherine C MacNamara
- The Department of Immunology and Infectious Disease, Albany Medical College, MC-151 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
5
|
Bahrami A, Sathyapalan T, Sahebkar A. The Role of Interleukin-18 in the Development and Progression of Atherosclerosis. Curr Med Chem 2021; 28:1757-1774. [PMID: 32338205 DOI: 10.2174/0929867327666200427095830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis (AS), as a chronic inflammatory disorder of the cardiovascular system, is one of the leading causes of ischemic heart disease, stroke and peripheral vascular disease. There is growing evidence on the role of innate and adaptive immunity in the pathogenesis of atherosclerosis. Interleukin-18 is one of the novel proinflammatory cytokines involved in atherogenesis, atherosclerotic plaque instability and plaque rupture. In this review, we overview the findings of preclinical and clinical studies about the role and mechanism of action of IL-18 in the pathogenesis of AS, which could offer novel prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | |
Collapse
|
6
|
Donate-Correa J, Ferri CM, Sánchez-Quintana F, Pérez-Castro A, González-Luis A, Martín-Núñez E, Mora-Fernández C, Navarro-González JF. Inflammatory Cytokines in Diabetic Kidney Disease: Pathophysiologic and Therapeutic Implications. Front Med (Lausanne) 2021; 7:628289. [PMID: 33553221 PMCID: PMC7862763 DOI: 10.3389/fmed.2020.628289] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/24/2020] [Indexed: 12/29/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and a main contributing factor for cardiovascular morbidity and mortality in patients with diabetes mellitus. Strategies employed to delay the progression of this pathology focus on the control of traditional risk factors, such as hyperglycemia, and elevated blood pressure. Although the intimate mechanisms involved in the onset and progression of DKD remain incompletely understood, inflammation is currently recognized as one of the main underlying processes. Untangling the mechanisms involved in the appearing of a harmful inflammatory response in the diabetic patient is crucial for the development of new therapeutic strategies. In this review, we focus on the inflammation-related pathogenic mechanisms involved in DKD and in the therapeutic utility of new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Fátima Sánchez-Quintana
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Atteneri Pérez-Castro
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- Doctoral and Graduate School, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
7
|
Guo T, Jiang ZB, Tong ZY, Zhou Y, Chai XP, Xiao XZ. Shikonin Ameliorates LPS-Induced Cardiac Dysfunction by SIRT1-Dependent Inhibition of NLRP3 Inflammasome. Front Physiol 2020; 11:570441. [PMID: 33178042 PMCID: PMC7596688 DOI: 10.3389/fphys.2020.570441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Shikonin (SHI) is an anti-inflammatory agent extracted from natural herbs. It is still unknown whether SHI ameliorates lipopolysaccharide (LPS)-induced cardiac dysfunction. This study aims to explore the protective effects of SHI on LPS-induced myocardial injury and its mechanism. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of SHI. In the present study, we found that SHI treatment improved the survival rate and cardiac function and remarkably ameliorated the release of inflammatory cytokines and macrophage infiltration in heart tissue of LPS-treated mice. SHI also reduced lactate dehydrogenase (LDH) and cardiac troponin (cTn) release, cell inflammation, and apoptosis in LPS plus adenosine triphosphate (ATP)-treated H9c2 cells. In addition, SHI significantly upregulated silent information regulator 1 (SIRT1) expression and suppressed the upregulation of NOD-like receptor protein 3 (NLRP3), cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Meanwhile, we got the same results in LPS plus ATP-treated H9c2 cells in vitro. Further, SIRT1 inhibitor or siRNA partially blocked SHI-mediated upregulation of SIRT1 expression and downregulation of NLRP3, cleaved caspase-1, and caspase-1 activity in heart tissues induced by LPS. Therefore, we conclude that SHI ameliorates LPS-induced cardiac dysfunction by inhibiting SIRT1-dependent activation of NLRP3 inflammasomes and might be a promising therapeutic strategy for the treatment of LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Tao Guo
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhong-Biao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhong-Yi Tong
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xiang-Ping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, China
| | - Xian-Zhong Xiao
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
8
|
Asadipour M, Fazeli P, Zohouri M, Bemani P, Mohebbiniya M, Khansalar S, Fattahi MR, Kalantar K. IL-18 in Blood Serum of Hepatitis C Patients Might be of Predictive Value for Individual Outcomes. Infect Disord Drug Targets 2020; 21:389-393. [PMID: 32634083 DOI: 10.2174/1871526520666200707113401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Pro- inflammatory cytokines including Interleukin (IL)-18 have been shown to be involved in the clearance of Hepatitis C virus (HCV) infection. However, changes in the balance of pro- and anti-inflammatory cytokines production during the immune response, can elicit a variety of liver damages. Therefore, it is of interest to study IL-18 serum levels in hepatitis patients and its correlation with HCV infection. METHODS Twenty-nine newly diagnosed HCV+ patients with no history of antiviral therapy, and 17 healthy controls, were enrolled in our study. Biochemical markers of liver disease were evaluated by biochemistry assay kits. Serum concentrations of IL-18 were determined with the ELISA method before and after treatment with pangenotypic direct-acting antivirals (DAAs) treatment. RESULTS Our results showed statistically significant difference in serum levels of IL-18 in HCV+ patients (692.261 ± 48.76) compared to healthy controls (520.00 ± 44.73) (P=0.021). However, there was no significant difference in IL-18 serum levels between the treated group compared to untreated patients (P=0.74). No significant correlations were detected between the level of IL-18 and liver enzyme levels. CONCLUSION According to our study, IL-18 might be a disease marker associated with HCV infection; however, this conclusion requires further investigation.
Collapse
Affiliation(s)
- Morvarid Asadipour
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Fazeli
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Zohouri
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Bemani
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohebbiniya
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soolmaz Khansalar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Interleukin-18 levels and mouse Leydig cell apoptosis during lipopolysaccharide-induced acute inflammatory conditions. J Reprod Immunol 2020; 141:103167. [PMID: 32629316 DOI: 10.1016/j.jri.2020.103167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-18 is an inflammasome-mediated cytokine produced by germ cells, Leydig cells, and resident macrophages that is indispensable in the maintenance of homeostasis in the testis. We previously demonstrated that endogenous IL-18 induces testicular germ cell apoptosis during acute inflammation when plasma IL-18 levels are very high. However, the impact of acute inflammation and IL-18 on Leydig cells remained unclear. TM3 cells, a mouse Leydig cell line, and RAW264.7 cells, a mouse macrophage cell line, were stimulated with lipopolysaccharide (LPS) or recombinant IL-18 (rIL-18). We assessed the expression of inflammatory cytokines, caspase cleavage, and markers of apoptotic pathways. In Leydig cells, caspase 3 cleavage was increased and death-receptor-mediated apoptotic pathways were activated after LPS stimulation. However, LPS stimulation did not increase IL-18 expression in the Leydig cell line. When high-dose rIL-18 was administered to the Leydig cell line to mimic levels seem after inflammation, rIL-18 upregulated Tnf-α mRNA, Fadd mRNA, and Fas protein, promoted cleavage of caspase-8 and caspase-3, and induced apoptosis. Low-dose rIL-18 did not stimulate apoptosis. To determine if the high level of IL-18 seen in the testes after inflammation was derived from immune cells, we examined IL-18 protein expression in a macrophage cell line, RAW264.7. In contrast to the TM3 cells, IL-18 was significantly increased in RAW264.7 cells after LPS stimulation. These results suggest that high-dose IL-18 derived from macrophages is harmful to Leydig cells. Reducing the overexpression of IL-18 could be a new therapeutic approach to prevent Leydig cell apoptosis as a result of acute inflammation.
Collapse
|
10
|
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF. Inflammatory Targets in Diabetic Nephropathy. J Clin Med 2020; 9:458. [PMID: 32046074 PMCID: PMC7074396 DOI: 10.3390/jcm9020458] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most frequent complications in patients with diabetes mellitus is diabetic nephropathy (DN). At present, it constitutes the first cause of end stage renal disease, and the main cause of cardiovascular morbidity and mortality in these patients. Therefore, it is clear that new strategies are required to delay the development and the progression of this pathology. This new approach should look beyond the control of traditional risk factors such as hyperglycemia and hypertension. Currently, inflammation has been recognized as one of the underlying processes involved in the development and progression of kidney disease in the diabetic population. Understanding the cascade of signals and mechanisms that trigger this maladaptive immune response, which eventually leads to the development of DN, is crucial. This knowledge will allow the identification of new targets and facilitate the design of innovative therapeutic strategies. In this review, we focus on the pathogenesis of proinflammatory molecules and mechanisms related to the development and progression of DN, and discuss the potential utility of new strategies based on agents that target inflammation.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
| | | | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
| |
Collapse
|
11
|
Yaribeygi H, Atkin SL, Sahebkar A. Interleukin-18 and diabetic nephropathy: A review. J Cell Physiol 2019; 234:5674-5682. [PMID: 30417374 DOI: 10.1002/jcp.27427] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
The inflammatory response has an important role in the pathophysiology of diabetic nephropathy that is contributed to by inflammatory mediators such as interleukin-1 (IL-1), IL-6, IL-18, tumor necrosis factor-α, and macrophage chemotactic protein-1; however, the role of IL-18 seems to be more specific than other cytokines in the inflammatory process. IL-18 is expressed in renal tissue and is upregulated by several stimuli including hyperglycemia. The expression/urinary level of IL-18 is positively correlated with the progression of diabetic nephropathy and the urinary albumin excretion rate. In this review, we have focused on the molecular pathways modulating the relationship between IL-18 and diabetic nephropathy.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Saik OV, Nimaev VV, Usmonov DB, Demenkov PS, Ivanisenko TV, Lavrik IN, Ivanisenko VA. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with ANDSystem. BMC Med Genomics 2019; 12:47. [PMID: 30871556 PMCID: PMC6417156 DOI: 10.1186/s12920-019-0492-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Currently, more than 150 million people worldwide suffer from lymphedema. It is a chronic progressive disease characterized by high-protein edema of various parts of the body due to defects in lymphatic drainage. Molecular-genetic mechanisms of the disease are still poorly understood. Beginning of a clinical manifestation of primary lymphedema in middle age and the development of secondary lymphedema after treatment of breast cancer can be genetically determined. Disruption of endothelial cell apoptosis can be considered as one of the factors contributing to the development of lymphedema. However, a study of the relationship between genes associated with lymphedema and genes involved in endothelial apoptosis, in the associative gene network was not previously conducted. METHODS In the current work, we used well-known methods (ToppGene and Endeavour), as well as methods previously developed by us, to prioritize genes involved in endothelial apoptosis and to find potential participants of molecular-genetic mechanisms of lymphedema among them. Original methods of prioritization took into account the overrepresented Gene Ontology biological processes, the centrality of vertices in the associative gene network, describing the interactions of endothelial apoptosis genes with genes associated with lymphedema, and the association of the analyzed genes with diseases that are comorbid to lymphedema. RESULTS An assessment of the quality of prioritization was performed using criteria, which involved an analysis of the enrichment of the top-most priority genes by genes, which are known to have simultaneous interactions with lymphedema and endothelial cell apoptosis, as well as by genes differentially expressed in murine model of lymphedema. In particular, among genes involved in endothelial apoptosis, KDR, TNF, TEK, BMPR2, SERPINE1, IL10, CD40LG, CCL2, FASLG and ABL1 had the highest priority. The identified priority genes can be considered as candidates for genotyping in the studies involving the search for associations with lymphedema. CONCLUSIONS Analysis of interactions of these genes in the associative gene network of lymphedema can improve understanding of mechanisms of interaction between endothelial apoptosis and lymphangiogenesis, and shed light on the role of disturbance of these processes in the development of edema, chronic inflammation and connective tissue transformation during the progression of the disease.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Vadim V. Nimaev
- Laboratory of Surgical Lymphology and Lymphodetoxication, Research Institute of Clinical and Experimental Lymрhology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, st. Timakova 2, Novosibirsk, 630117 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Dilovarkhuja B. Usmonov
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
- Department of Neurosurgery, Ya. L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, st. Frunze 17, Novosibirsk, 630091 Russia
| | - Pavel S. Demenkov
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Timofey V. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| | - Inna N. Lavrik
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Medical Faculty, Pfalzer Platz 28, 39106 Magdeburg, Germany
| | - Vladimir A. Ivanisenko
- Laboratory of Computer-Assisted Proteomics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, st. Pirogova 1, Novosibirsk, 630090 Russia
| |
Collapse
|
13
|
Nawaz SS, Joy SS, Al Farsi Y, George TP, Siddiqui K. Potential role of serum fetuin-A in relation with pro-inflammatory, chemokine and adhesion molecules in diabetic kidney disease: a case-control study. Mol Biol Rep 2019; 46:1239-1246. [PMID: 30632070 DOI: 10.1007/s11033-019-04592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory cytokine, adipokine and adhesion molecules are known to play a key role in pathogenesis of diabetic kidney disease (DKD). In this study, our aim was to investigate the role of fetuin-A in relation with pro-inflammatory cytokines (IL-6, IL-18), adipokines (adiponectin, leptin), chemokine (MCP-1), and adhesion molecules (ICAM-1, VCAM-1) in control and DKD subjects. We recruited a total of 224 type 2 diabetic (T2D) subjects. The control subjects were T2D with a normal albumin excrete (albumin-to-creatinine ratio-ACR ≤ 30 mg/g creatinine) and estimated glomerular filtration rate (eGFR) ≥ 60 (ml/min/1.73 m2), while cases were T2D subjects with albumin excrete (ACR ≥ 30 mg/g creatinine) and eGFR ≤ 60 (ml/min/1.73 m2). FBS, HbA1c, lipid profile (TC, LDL, HDL, triglyceride), ALT, AST, GGT, serum creatinine, BMI, blood pressure was evaluated in all the study subjects. Randox evidence biochip analyzer was used for measuring inflammatory cytokines, adipokines, and adhesion molecules by chemiluminescent assay. Serum fetuin-A and IL-18 were measured by ELISA kits. Serum fetuin-A levels were significantly decreased in DKD cases compare to control group [456.8 (299.2-649.0) µg/ml versus 670.6 (573.0-726.1) µg/ml; p < 0.001)]. Serum fetuin-A levels correlates significantly with IL-6, IL-18, TNF-α, PAI-1, leptin, resistin and ACR (p < 0.001). This study concludes that serum fetuin-A and pro-inflammatory markers (IL-18, IL-6, IL-1α and TNF-α) might play an important role in the pathophysiology and inflammatory process of DKD.
Collapse
Affiliation(s)
- Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Kingdom of Saudi Arabia
| | - Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Kingdom of Saudi Arabia
| | - Yousuf Al Farsi
- University Diabetes Center, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Teena P George
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Kingdom of Saudi Arabia
| | - Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, P.O. Box 245, Riyadh, 11411, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Mao GH, Zhang ZH, Fei F, Ding YY, Zhang WJ, Chen H, Ali SS, Zhao T, Feng WW, Wu XY, Yang LQ. Effect of Grifola frondosa polysaccharide on anti-tumor activity in combination with 5-Fu in Heps-bearing mice. Int J Biol Macromol 2019; 121:930-935. [DOI: 10.1016/j.ijbiomac.2018.10.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 11/27/2022]
|
15
|
Zhou Y, Yuan J, Qi C, Shao X, Mou S, Ni Z. Calcium dobesilate may alleviate diabetes‑induced endothelial dysfunction and inflammation. Mol Med Rep 2017; 16:8635-8642. [PMID: 29039485 PMCID: PMC5779917 DOI: 10.3892/mmr.2017.7740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of end‑stage renal disease. However, the pathogenesis of DKD remains unclear, and no effective treatments for the disease are available. Thus, there is an urgent need to elucidate the pathogenic mechanisms of DKD and to develop more effective therapies for this disease. Human umbilical vein endothelial cells (HUVECs) were cultured using different D‑glucose concentrations to determine the effect of high glucose (HG) on the cells. Alternatively, HUVECs were incubated with 100 µmol/l calcium dobesilate (CaD) to detect its effects. The authors subsequently measured HUVEC proliferation via cell counting kit‑8 assays. In addition, HUVEC angiogenesis was investigated via migration assays and fluorescein isothiocyanate (FITC)‑labelled bovine serum albumin (BSA) permeability assays. The content or distribution of markers of endothelial dysfunction [vascular endothelial growth factor (VEGF), VEGF receptor (R) and endocan) or inflammation [intercellular adhesion molecule (ICAM)‑1, monocyte chemotactic protein (MCP)‑1 and pentraxin‑related protein (PTX3)] was evaluated via reverse transcription‑quantitative polymerase chain reaction and western blotting. HG treatment induced increased in VEGF, VEGFR, endocan, ICAM‑1, MCP‑1 and PTX3 mRNA and protein expression in HUVECs. HG treatment for 24 to 48 h increased cell proliferation in a time‑dependent manner, but the cell proliferation rate was decreased at 72 h of HG treatment. Conversely, CaD inhibited abnormal cell proliferation. HG treatment also significantly enhanced HVUEC migration compared to the control treatment. In contrast, CaD treatment partially inhibited HUVEC migration compared to HG exposure. HG‑treated HUVECs exhibited increased FITC‑BSA permeability compared to control cells cultured in medium alone; however, CaD application prevented the HG‑induced increase in FITC‑BSA permeability and suppressed HG‑induced overexpression of endothelial markers (VEGF, VEGFR‑2, endocan) and inflammation markers (ICAM‑1, MCP‑1, PTX3) in HUVECs. CaD has angioprotective properties and protects endothelial cells partly by ameliorating HG‑induced inflammation. The current results demonstrated the potential applicability of CaD to the treatment of diabetic nephropathy, particularly during the early stages of this disease.
Collapse
Affiliation(s)
- Yijun Zhou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jiangzi Yuan
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Chaojun Qi
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
16
|
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. J Diabetes Res 2017; 2017:8379327. [PMID: 28164134 PMCID: PMC5253173 DOI: 10.1155/2017/8379327] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure.
Collapse
Affiliation(s)
- Selim Fakhruddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Wael Alanazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Keith E. Jackson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| |
Collapse
|
17
|
Elneam AIA, Mansour NM, Zaki NA, Taher MA. Serum Interleukin-18 and Its Gene Haplotypes Profile as Predictors in Patients with Diabetic Nephropathy. Open Access Maced J Med Sci 2016; 4:324-328. [PMID: 27703550 PMCID: PMC5042610 DOI: 10.3889/oamjms.2016.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND: Diabetic nephropathy (DN) is known as an acute microvascular complexity as a subsequence progression in diabetes mellitus type 1 and 2. Many evidence pointed that the proinflammatory cytokine Interleukin (IL)-18 might be involved in the pathogenesis of DN. AIM: The current study aimed to evaluate the association of serum IL-18 and its promoter gene polymorphisms with diabetic nephropathy. METHODS: This study included 62 diabetic nephropathy patients (DN group) compared to 52 diabetes mellitus patients (DM group). The two groups were subjected to anthropometry assessment, molecular studies including SNP genotyping by RFLP and finally statistical analysis. RESULTS: The assessment of the serum IL-18 level and the frequencies of its allele and haplotype: -137G/C, -607C/A and -656G/T among the DN and DM subjects revealed that -137G allele has significant variation between DN and DM subjects (about 80.8%, P = 0.05) but, no significant variation in -607 or -656 alleles IL-18 gene promoter. CONCLUSION: These data confirm the impact of high serum IL-18 and the haplotype of the polymorphism located in the promoter region of the IL-18 gene with the DN.
Collapse
Affiliation(s)
- Ahmed I Abd Elneam
- Molecular Genetics and Enzymology Dept., Human Genetics Division, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki 12622, Cairo, Egypt (Affiliation ID 60014618)
| | - Nahla M Mansour
- Gut Microbiology and Immunology Group, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki 12622, Cairo, Egypt
| | - Nayel A Zaki
- Internal Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed A Taher
- Medical Biochemistry Department, Sohag Faculty of Medicine, Sohag University, Egypt
| |
Collapse
|
18
|
Mao GH, Ren Y, Li Q, Wu HY, Jin D, Zhao T, Xu CQ, Zhang DH, Jia QD, Bai YP, Yang LQ, Wu XY. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa. Int J Biol Macromol 2016; 82:607-13. [DOI: 10.1016/j.ijbiomac.2015.10.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
|
19
|
Zhang L, Zhang L, Li Y, Guo XF, Liu XS. Biotransformation effect of Bombyx Mori L. may play an important role in treating diabetic nephropathy. Chin J Integr Med 2015; 22:872-879. [DOI: 10.1007/s11655-015-2128-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Indexed: 10/22/2022]
|
20
|
Inoue T, Aoyama-Ishikawa M, Kamoshida S, Nishino S, Sasano M, Oka N, Yamashita H, Kai M, Nakao A, Kotani J, Usami M. Endogenous interleukin 18 regulates testicular germ cell apoptosis during endotoxemia. Reproduction 2015; 150:105-14. [PMID: 25934945 DOI: 10.1530/rep-14-0427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/01/2015] [Indexed: 01/26/2023]
Abstract
Orchitis (testicular swelling) often occurs during systemic inflammatory conditions, such as sepsis. Interleukin 18 (IL18) is a proinflammatory cytokine and is an apoptotic mediator during endotoxemia, but the role of IL18 in response to inflammation in the testes was unclear. WT and IL18 knockout (KO) mice were injected lipopolysaccharide (LPS) to induce endotoxemia and examined 12 and 48 h after LPS administration to model the acute and recovery phases of endotoxemia. Caspase activation was assessed using immunohistochemistry. Protein and mRNA expression were examined by western blot and quantitative real-time RT-PCR respectively. During the acute phase of endotoxemia, apoptosis (as indicated by caspase-3 cleavage) was increased in WT mice but not in IL18 KO mice. The death receptor-mediated and mitochondrial-mediated apoptotic pathways were both activated in the WT mice but not in the KO mice. During the recovery phase of endotoxemia, apoptosis was observed in the IL18 KO mice but not in the WT mice. Activation of the death-receptor mediated apoptotic pathway could be seen in the IL18 KO mice but not the WT mice. These results suggested that endogenous IL18 induces germ cell apoptosis via death receptor mediated- and mitochondrial-mediated pathways during the acute phase of endotoxemia and suppresses germ cell apoptosis via death-receptor mediated pathways during recovery from endotoxemia. Taken together, IL18 could be a new therapeutic target to prevent orchitis during endotoxemia.
Collapse
Affiliation(s)
- Taketo Inoue
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Michiko Aoyama-Ishikawa
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Shingo Kamoshida
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Satoshi Nishino
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Maki Sasano
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Nobuki Oka
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Hayato Yamashita
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Motoki Kai
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Atsunori Nakao
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Joji Kotani
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | - Makoto Usami
- Department of BiophysicsKobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, 654-0142 Hyogo, JapanOno Ladies Clinic538-3, Nishihonmachi, Ono, 675-1375 Hyogo, JapanDepartment of EmergencyDisaster and Critical Care Medicine, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| |
Collapse
|
21
|
Toth-Manikowski S, Atta MG. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. J Diabetes Res 2015; 2015:697010. [PMID: 26064987 PMCID: PMC4430644 DOI: 10.1155/2015/697010] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a worldwide epidemic that has led to a rise in diabetic kidney disease (DKD). Over the past two decades, there has been significant clarification of the various pathways implicated in the pathogenesis of DKD. Nonetheless, very little has changed in the way clinicians manage patients with this disorder. Indeed, treatment is primarily centered on controlling hyperglycemia and hypertension and inhibiting the renin-angiotensin system. The purpose of this review is to describe the current understanding of how the hemodynamic, metabolic, inflammatory, and alternative pathways are all entangled in pathogenesis of DKD and detail the various therapeutic targets that may one day play a role in quelling this epidemic.
Collapse
Affiliation(s)
- Stephanie Toth-Manikowski
- Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD 21287, USA
| | - Mohamed G. Atta
- Division of Nephrology, Johns Hopkins University, 1830 E. Monument Street, Suite 416, Baltimore, MD 21287, USA
| |
Collapse
|
22
|
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015; 2015:948417. [PMID: 25785280 PMCID: PMC4345080 DOI: 10.1155/2015/948417] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/17/2015] [Accepted: 01/31/2015] [Indexed: 12/12/2022] Open
Abstract
Probably, the most paradigmatic example of diabetic complication is diabetic nephropathy, which is the largest single cause of end-stage renal disease and a medical catastrophe of worldwide dimensions. Metabolic and hemodynamic alterations have been considered as the classical factors involved in the development of renal injury in patients with diabetes mellitus. However, the exact pathogenic mechanisms and the molecular events of diabetic nephropathy remain incompletely understood. Nowadays, there are convincing data that relate the diabetes inflammatory component with the development of renal disease. This review is focused on the inflammatory processes that develop diabetic nephropathy and on the new therapeutic approaches with anti-inflammatory effects for the treatment of chronic kidney disease in the setting of diabetic nephropathy.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Ernesto Martín-Núñez
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Mercedes Muros-de-Fuentes
- Clinical Biochemistry Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Carmen Mora-Fernández
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Juan F. Navarro-González
- Research Unit, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Nephrology Service, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
23
|
The pathological role of IL-18Rα in renal ischemia/reperfusion injury. J Transl Med 2015; 95:78-91. [PMID: 25329004 DOI: 10.1038/labinvest.2014.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022] Open
Abstract
Interleukin (IL)-18 is a proinflammatory cytokine produced by leukocytes and parenchymal cells (eg, tubular epithelial cells (TECs), mesangial cells, and podocytes). IL-18 receptor (IL-18R) is expressed on these cells in the kidney during ischemia/reperfusion injury (IRI), but its role in this injury is unknown. Fas/Fas ligand (FasL) is also involved in the pathogenesis of renal IRI via tubular apoptosis. In addition, IL-18 enhances the expression of FasL on TECs, but the mechanism underlying this enhancement is not known. Here we used IL-18Rα-deficient mice to explore the pathological role of IL-18Rα in renal IRI. We found that compared to wild-type (WT) mice with renal IRI as an acute kidney injury (AKI), the IL-18Rα-deficient mice demonstrated decreased renal function (as represented by blood urea nitrogen), tubular damage, an increased accumulation of leukocytes (CD4+ T cells, neutrophils, and macrophages), upregulated early AKI biomarkers (ie, urinary kidney injury molecule-1 levels), and increased mRNA expressions of proinflammatory cytokines (IL-1β, IL-12p40, and IL-18) and chemokines (intercellular adhesion molecule-1 and CCL2/monocyte chemoattractant protein-1). The mRNA expression of FasL in the kidney was increased in the IL-18Rα-deficient mice compared to the WT mice. The adoptive transfer of splenocytes by WT mice led to decreased renal IRI compared to the IL-18Rα-deficient mice. In vitro, the mRNA expression of FasL on TECs was promoted in the presence of recombinant IL-18. These data reveal that IL-18Rα has an anti-inflammatory effect in IRI-induced AKI. Above all, IL-18 enhanced the inflammatory mechanisms and the apoptosis of TECs through the Fas/FasL pathway by blocking IL-18Rα.
Collapse
|
24
|
García-García PM, Getino-Melián MA, Domínguez-Pimentel V, Navarro-González JF. Inflammation in diabetic kidney disease. World J Diabetes 2014; 5:431-443. [PMID: 25126391 PMCID: PMC4127580 DOI: 10.4239/wjd.v5.i4.431] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/24/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus entails significant health problems worldwide. The pathogenesis of diabetes is multifactorial, resulting from interactions of both genetic and environmental factors that trigger a complex network of pathophysiological events, with metabolic and hemodynamic alterations. In this context, inflammation has emerged as a key pathophysiology mechanism. New pathogenic pathways will provide targets for prevention or future treatments. This review will focus on the implications of inflammation in diabetes mellitus, with special attention to inflammatory cytokines.
Collapse
|
25
|
Shikata K, Makino H. Microinflammation in the pathogenesis of diabetic nephropathy. J Diabetes Investig 2014; 4:142-9. [PMID: 24843643 PMCID: PMC4019266 DOI: 10.1111/jdi.12050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy is the leading cause of end‐stage renal failure in developed countries. Furthermore, diabetic nephropathy is related to the risk of cardiovascular diseases and an increase in mortality of diabetic patients. Several factors are involved in the development of nephropathy, including glomerular hyperfiltration, oxidative stress, accumulation of advanced glycation end‐products, activation of protein kinase C, acceleration of the polyol pathway and over‐expression of transforming growth factor‐β. Recently, accumulated data have emphasized the critical roles of chronic low‐grade inflammation, ‘microinflammation’, in the pathogenesis of diabetic nephropathy, suggesting that microinflammation is a common mechanism in the development of diabetic vascular complications. Expression of cell adhesion molecules, chemokines and pro‐inflammatory cytokines are increased in the renal tissues of diabetic patients and animals. Deficiency of pro‐inflammatory molecules results in amelioration of renal injuries after induction of diabetes in mice. Plasma and urinary levels of cytokines, chemokines and cell adhesion molecules, are elevated and correlated with albuminuria. Several kinds of drugs that have anti‐inflammatory actions as their pleiotropic effects showed renoprotective effects on diabetic animals. Modulation of the inflammatory process prevents renal insufficiency in diabetic animal models, suggesting that microinflammation is one of the promising therapeutic targets for diabetic nephropathy, as well as for cardiovascular diseases.
Collapse
Affiliation(s)
- Kenichi Shikata
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan ; Department of Medicine and Clinical Science Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Science Okayama Japan
| | - Hirofumi Makino
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan ; Department of Medicine and Clinical Science Okayama University Graduate School of Medicine Dentistry, and Pharmaceutical Science Okayama Japan
| |
Collapse
|
26
|
Sun X, Gao RL, Xiong YK, Huang QC, Xu M. Antitumor and immunomodulatory effects of a water-soluble polysaccharide from Lilii Bulbus in mice. Carbohydr Polym 2014; 102:543-9. [DOI: 10.1016/j.carbpol.2013.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 12/18/2022]
|
27
|
Ali I, Nanchal R, Husnain F, Audi S, Konduri GG, Densmore JC, Medhora M, Jacobs ER. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide. Pulm Circ 2013; 3:578-88. [PMID: 24618542 DOI: 10.1086/674337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.
Collapse
Affiliation(s)
- Irshad Ali
- 1 Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The role of bone marrow mesenchymal stem cells in the treatment of acute liver failure. BIOMED RESEARCH INTERNATIONAL 2013; 2013:251846. [PMID: 24312909 PMCID: PMC3842049 DOI: 10.1155/2013/251846] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 12/30/2022]
Abstract
Objective. This study is to investigate the effects of bone marrow mesenchymal stem cell (BMSC) transplantation on acute liver failure (ALF). Methods. BMSCs were separated from rat bone marrow, cultured, and identified by flow cytometry. Rat model with ALF was established by injecting D-galactosamine and lipopolysaccharide. Rats were randomly divided into the control group and BMSC transplantation group. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured at 24 h, 120 h, and 168 h after BMSC transplantation. Apoptosis was detected by TUNEL assay. The expression of VEGF and AFP proteins was detected by immunofluorescence. Caspase-1 and IL-18 proteins and mRNA were detected by immunohistochemistry and RT-PCR. Results. Compared with the control group, levels of ALT, AST, caspase-1 and IL-18 proteins, and mRNA in the transplantation group were significantly lower at 120 h and 168 h after BMSCs transplantation. Apoptosis was inhibited by BMSCs transplantation. The VEGF protein levels were increased with the improvement of liver function, and the AFP protein levels were increased with the deterioration of the liver function after BMSCs transplantation. Conclusions. BMSCs transplantation can improve liver function and inhibit hepatocyte apoptosis as well as promote hepatocyte proliferation in rat model with ALF.
Collapse
|
29
|
Matsui F, Rhee A, Hile KL, Zhang H, Meldrum KK. IL-18 induces profibrotic renal tubular cell injury via STAT3 activation. Am J Physiol Renal Physiol 2013; 305:F1014-21. [PMID: 23904224 DOI: 10.1152/ajprenal.00620.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
IL-18 is an important mediator of obstruction-induced renal fibrosis and renal tubular epithelial cell (TEC) injury. IL-18's proinflammatory properties have been attributed, in part, to NF-κB activation and the stimulation of cytokine gene expression; however, STAT3 has increasingly been shown to mediate renal fibrotic injury. We therefore hypothesized that IL-18 mediates profibrotic TEC injury via STAT3 activation. Male C57BL6 wild-type mice and transgenic mice for human IL-18-binding protein were subjected to unilateral ureteral obstruction or sham operation. The kidneys were harvested 1 or 2 wk afterward and analyzed for active STAT3 (p-STAT3) expression (Western blotting, immunohistochemistry) and suppressor of cytokine signaling 3 (SOCS3) expression. In a separate arm, renal tubular cells (HK-2) were directly stimulated with IL-18 for 2 days with or without the STAT3 inhibitor S3I-201 (50 μM). Cell lysates were then analyzed for p-STAT3 and SOCS3 expression, profibrotic cellular changes (collagen and α-SMA expression), and tubular cell apoptosis. p-STAT3 and SOCS3 expression increased significantly in response to obstruction; however, a significant reduction in p-STAT3 and SOCS3 expression occurred following 1 wk, but not 2 wk, of obstruction in the presence of IL-18 neutralization. In vitro results similarly demonstrate increased p-STAT3, SOCS3, α-SMA, and collagen III expression, and increased collagen production and TEC apoptosis in response to IL-18 stimulation, but the response was significantly diminished in the presence of STAT3 inhibition. These results demonstrate that IL-18-induces profibrotic cellular changes and collagen production in TECs via STAT3 activation.
Collapse
Affiliation(s)
- Futoshi Matsui
- Pediatric Urology, Univ. of Florida, Gainesville, FL 32610
| | | | | | | | | |
Collapse
|
30
|
Abstract
Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins. We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.
Collapse
|
31
|
Sahebari M, Rezaieyazdi Z, Nakhjavani MJ, Hatef M, Mahmoudi M, Akhlaghi S. Correlation between serum concentrations of soluble Fas (CD95/Apo-1) and IL-18 in patients with systemic lupus erythematosus. Rheumatol Int 2012; 32:601-606. [DOI: 10.1007/s00296-010-1633-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 11/14/2010] [Indexed: 11/29/2022]
|
32
|
Abstract
Diabetic nephropathy (DN), the most common cause of end-stage renal disease (ESRD), is increasingly considered an inflammatory process characterized by leukocyte infiltration at every stage of renal involvement. Cytokines act as pleiotropic polypeptides that regulate inflammatory and immune responses, providing important signals in the pathologic and physiologic processes. Inflammation and activation of the immune system are closely involved in the pathogenesis of diabetes and its microvascular complications. Proinflammatory, Th1, Th2, and Th17 cytokines, as well as TGF-beta, all take part in the development and progression of DN. Gene polymorphism of cytokines and their receptors may have functional variations and can be applied to predict the susceptibility and progression to DN. Improved knowledge on recognizing cytokines as significant pathogenic mediators in DN leaves opens the possibility of new potential therapeutic agents for future clinical treatments.
Collapse
MESH Headings
- Biomarkers/analysis
- Cytokines/genetics
- Cytokines/immunology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Nephropathies/complications
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/immunology
- Diabetic Nephropathies/physiopathology
- Disease Progression
- Humans
- Inflammation/complications
- Inflammation/diagnosis
- Inflammation/immunology
- Inflammation/physiopathology
- Kidney/immunology
- Kidney/physiopathology
- Kidney Failure, Chronic/complications
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/immunology
- Kidney Failure, Chronic/physiopathology
- Neutrophil Infiltration/immunology
- Polymorphism, Genetic
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Th1-Th2 Balance
Collapse
Affiliation(s)
- Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | |
Collapse
|
33
|
Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7:327-40. [DOI: 10.1038/nrneph.2011.51] [Citation(s) in RCA: 797] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Zhang H, Hile KL, Asanuma H, Vanderbrink B, Franke EI, Campbell MT, Meldrum KK. IL-18 mediates proapoptotic signaling in renal tubular cells through a Fas ligand-dependent mechanism. Am J Physiol Renal Physiol 2011; 301:F171-8. [PMID: 21511702 DOI: 10.1152/ajprenal.00339.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal tubular cell apoptosis is a significant component of obstruction-induced renal injury, and it results in a progressive loss in renal parenchymal mass during renal obstruction. Although IL-18 is an important mediator of inflammatory renal disease and renal fibrosis, its role in obstruction-induced renal tubular cell apoptosis remains unclear. To study this, male C57BL6 wild-type mice and C57BL6 mice transgenic for human IL-18-binding protein (IL-18BP Tg) were subjected to renal obstruction vs. sham operation. The kidneys were harvested after 1 or 2 wk and analyzed for IL-18 production, apoptosis, caspase activity, and Fas/Fas Ligand (FasL) expression. HK-2 cells were similarly analyzed for apoptosis and proapoptotic signaling following 3 days of direct exposure to IL-18 vs. control media. Renal obstruction induced a significant increase in IL-18 production, renal tubular cell apoptosis, caspase activation, and FasL expression. IL-18 neutralization, on the other hand, significantly reduced obstruction-induced apoptosis, caspase-8 and caspase-3 activity, and FasL expression. In vitro experiments similarly demonstrate that IL-18 stimulation induces apoptosis, FasL expression, and increases active caspase-8 and caspase-3 expression in a dose-dependent fashion. siRNA knockdown of FasL gene expression, however, significantly reduced IL-18-induced apoptosis. This study reveals that IL-18 is a significant mediator of obstruction-induced tubular cell apoptosis, and it demonstrates that IL-18 stimulates proapoptotic signaling through a FasL-dependent mechanism.
Collapse
Affiliation(s)
- Hongji Zhang
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N. Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 2011; 15:543-62. [PMID: 20405319 DOI: 10.1007/s10741-010-9168-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased circulating and intracardiac levels of proinflammatory cytokines have been associated with chronic heart failure. Following an initial insult, the increased production of proinflammatory cytokines, including TNF-α, IL-6, IL-1, and IL-18, jeopardizes the surrounding tissue through propagation of the inflammatory response and direct effects on the cardiac myocyte structure and function. Cardiac myocyte hypertrophy, contractile dysfunction, cardiac myocyte apoptosis, and extracellular matrix remodeling contribute enormously to the development and progression of chronic heart failure. Despite the identification of efficacious pharmacological regimens and introduction of mechanical interventions, chronic heart failure remains among the leading causes of mortality worldwide. To introduce novel therapeutic strategies that modulate the inflammatory response in the context of the failing heart, it is of prime importance to determine the contributions of TNF-α, IL-6, IL-1, and IL-18 in mediating cardiac adaptive and maladaptive responses, as well as delineating their downstream intracellular signaling pathways and their potential therapeutic implications.
Collapse
Affiliation(s)
- Mona Hedayat
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
36
|
Paez J, Montaño R, Benatuil L, Iacomini J, Cardier JE. High Efficiency and Long-Term Foreign Gene Expression in Cultured Liver Sinusoidal Endothelial Cells by Retroviral Transduction. ACTA ACUST UNITED AC 2009; 13:279-85. [PMID: 16990184 DOI: 10.1080/10623320600904088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The liver sinusoidal endothelial cells (LSECs) constitute a very specialized endothelium. Due to their multiple functions and privileged location in the liver, these cells constitute an excellent target for gene therapy. In this work, the authors investigate the efficiency of retroviral gene transduction as a method for in vitro gene delivery into murine LSECs. Gene transduction into murine LSECs was performed using the PCMMP-eGFP/pIK-MLVgp retrovirus pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-g), containing eGFP as a reporter gene. Retroviral transduction resulted in a high efficiency of gene transfer (99%) and stable expression of eGFP in LSECs. The retroviral transduction protocol did not affect the morphology or expression of endothelial cell markers or the biological functions of LSECs. The authors have developed conditions for high-efficiency and stable retroviral gene transduction of LSECs. These results raise the possibility of liver gene therapy using LSECs as vehicle for the delivery of therapeutic proteins by means of retroviral vectors.
Collapse
Affiliation(s)
- Jesus Paez
- Laboratorio de Patología Celular y Molecular, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
37
|
Rege TA, Stewart J, Dranka B, Benveniste EN, Silverstein RL, Gladson CL. Thrombospondin-1-induced apoptosis of brain microvascular endothelial cells can be mediated by TNF-R1. J Cell Physiol 2008; 218:94-103. [PMID: 18726995 DOI: 10.1002/jcp.21570] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thrombospondin-1 (TSP-1) treatment of dermal microvascular endothelial cells (MvEC) has been shown to upregulate Fas ligand (FasL) and to induce apoptosis by a mechanism that requires caspase-8 activity. We have examined the potential anti-angiogenic effects of TSP-1 on primary human brain MvEC. The addition of TSP-1 to primary human brain MvEC cultured as monolayers on type 1 collagen, induced cell death and apoptosis (evidenced by caspase-3 cleavage) in a dose- (5-30 nM) and time-dependent (maximal at 17 h) manner. TSP-1 treatment for 17 h induced caspase-3 cleavage that required caspase-8 activity and the tumor necrosis factor receptor 1 (TNF-R1). We did not find a requirement for Fas, or the tumor necrosis-related apoptosis-inducing ligand receptors (TRAIL-R) 1 and 2. We confirmed the findings using caspase inhibitors, blocking antibodies and small interfering RNA (siRNA). Further analysis indicated that the TSP-1 induction of caspase-3 cleavage of primary human brain MvEC adherent to collagen required the synthesis of new message and protein, and that TSP-1 induced the expression of TNFalpha mRNA and protein. Consistent with these findings, when the primary human brain MvEC were propagated on collagen gels mAb anti-TNF-R1 reversed the inhibitory effect, in part, of TSP-1 on tube formation and branching. These data identify a novel mechanism whereby TSP-1 can inhibit angiogenesis-through induction of apoptosis in a process mediated by TNF-R1.
Collapse
Affiliation(s)
- Tanya A Rege
- Division of Neuropathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
IL-18, originally termed as interferon gamma (IFN-gamma) inducing factor, is a proinflammatory cytokine that belongs to the IL-1 cytokine superfamily. IL-18 plays an important role in immune, infectious, and inflammatory diseases due to its induction of IFN-gamma. However, accumulated evidence has demonstrated that other effects of IL-18 are independent of IFN-gamma. Here, we reviewed the current literatures regarding the role of IL-18 in the heart and cardiovascular system. Infiltrated neutrophils, resident macrophages, endothelial cells, smooth muscle cells, and cardiomyocytes in the heart are able to produce IL-18 in response to injury. IL-18 is produced as a biologically inactive precursor (pro-IL-18) that is activated by caspase 1 (the IL-1beta converting enzyme). Elevated IL-18 levels have been observed in cardiac tissue and circulation after myocardial I/R and sepsis. The possible cellular and molecular mechanisms concerning IL-18-induced myocardial injury include induction of inflammation, increased apoptosis, a cardiac hypertrophy effect, modulation of mitogen activated protein kinase activation, and changes in intracellular calcium. Finally, we briefly reviewed the therapeutic strategies for inhibiting IL-18's biological activity to protect cardiac tissue from injury.
Collapse
|
39
|
Serum IL-18 levels in patients with type 1 diabetes: Relations to metabolic control and microvascular complications. Cytokine 2008; 42:217-221. [DOI: 10.1016/j.cyto.2008.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/24/2008] [Accepted: 02/12/2008] [Indexed: 11/21/2022]
|
40
|
Bouzgarrou N, Hassen E, Schvoerer E, Stoll-Keller F, Bahri O, Gabbouj S, Cheikh I, Maamouri N, Mammi N, Saffar H, Trabelsi A, Triki H, Chouchane L. Association of interleukin-18 polymorphisms and plasma level with the outcome of chronic HCV infection. J Med Virol 2008; 80:607-14. [PMID: 18297714 DOI: 10.1002/jmv.21079] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) infection is the main cause of chronic liver disease throughout the world, and may progress to cirrhosis and hepatocellular carcinoma (HCC). Immunological factors, especially cytokines and some host genetic variations, rather than direct HCV action, seem to play an important role in the pathogenesis of HCV infection. Elevated levels of interleukin-18 (IL-18) were described previously for chronically (HCV)-infected patients. This study is aimed at investigating IL-18 promoter polymorphisms (-607C/A and -137G/C) in HCV-infected patients with different disease severities (chronic hepatitis C, liver cirrhosis and HCC) and establishing an association between these polymorphisms and IL-18 plasma concentration with the outcome of chronic HCV infection. The carriage of at least one C allele at position -607 (CC + CA) was associated with a higher risk of cirrhosis and HCC (P = 0.032). Compared with controls, HCV-infected patients had significantly higher levels of IL-18 (P = 0.0001) that correlate with disease severity (P = 0.01, P = 0.001, P = 0.0006, respectively). In conclusion, we supposed a possible implication of IL-18 promoter polymorphisms in the pathogenesis of chronic HCV infection.
Collapse
Affiliation(s)
- N Bouzgarrou
- Laboratory of Molecular Immuno-oncology, Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19:433-42. [PMID: 18256353 DOI: 10.1681/asn.2007091048] [Citation(s) in RCA: 658] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytokines act as pleiotropic polypeptides regulating inflammatory and immune responses through actions on cells. They provide important signals in the pathophysiology of a range of diseases, including diabetes mellitus. Chronic low-grade inflammation and activation of the innate immune system are closely involved in the pathogenesis of diabetes and its microvascular complications. Inflammatory cytokines, mainly IL-1, IL-6, and IL-18, as well as TNF-alpha, are involved in the development and progression of diabetic nephropathy. In this context, cytokine genetics is of special interest to combinatorial polymorphisms among cytokine genes, their functional variations, and general susceptibility to diabetic nephropathy. Finally, the recognition of these molecules as significant pathogenic mediators in diabetic nephropathy leaves open the possibility of new potential therapeutic targets.
Collapse
Affiliation(s)
- Juan F Navarro-González
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain.
| | | |
Collapse
|
42
|
Yuan BS, Zhu RM, Braddock M, Zhang XH, Shi W, Zheng MH. Interleukin-18: a pro-inflammatory cytokine that plays an important role in acute pancreatitis. Expert Opin Ther Targets 2007; 11:1261-71. [PMID: 17907957 DOI: 10.1517/14728222.11.10.1261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A large body of clinical and experimental evidence suggests that cytokines play a key role in the pathogenesis of local and systemic complications of acute pancreatitis. IL-18 is a pro-inflammatory cytokine that plays a key role in many human diseases, including acute pancreatitis. This review focuses on the present understanding in IL-18 and its potential role in acute pancreatitis. IL-18 levels reflect the severity of acute pancreatitis and display a significant negative correlation with the concentrations of antioxidative damage factors, serum selenium and glutathione peroxidases (GPx). The relationship between IL-18 and other pro-inflammatory cytokines shows that IL-18 is one of the key mediators of inflammation in the pathogenesis of acute pancreatitis. Elevation of serum IL-18 levels may mediate acute pancreatitis associated liver injury. The use of IL-18 antagonists as direct routes to block IL-18 activity and P2X7 receptor antagonists and interleukin-1beta-converting enzyme (ICE) inhibitors as indirect routes to block IL-18 activity suggest that specific therapeutic inhibition of IL-18 is a promising therapeutic approach for acute pancreatitis.
Collapse
Affiliation(s)
- Bo-Si Yuan
- Department of Gastroenterology, Clinical School of Nanjing, Southern Medical University, Jinling Hospital, Nanjing, Jiangsu Province, China.
| | | | | | | | | | | |
Collapse
|
43
|
Yang J, Jin G, Liu X, Liu S. Therapeutic Effect of pEgr-IL18-B7.2 Gene Radiotherapy in B16 Melanoma-Bearing Mice. Hum Gene Ther 2007; 18:323-32. [PMID: 17411412 DOI: 10.1089/hum.2006.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To evaluate the antitumor role of genes B7.2 and IL18, the radiation-inducible dual-gene coexpression plasmid pEgr-IL18-B7.2 was constructed and its effects on tumor were detected both in vitro and in vivo. After the introduction of pEgr-IL18-B7.2 into B16 melanoma cells, followed by X-ray irradiation, higher expression levels of B7.2 and IL18 compared with control were found both by flow cytometry and enzyme-linked immunosorbent assay. It was shown that even low-dose irradiation was able to induce their expression, which could be tightly regulated either by giving cells different doses of radiation or the same dose at different time points. pEgr-IL18-B7.2 was then packaged with liposome and injected into melanoma tumor-bearing mice. The tumors received 5 Gy of local X-ray irradiation every other day for a total of five treatments. B16 tumor growth slowed significantly when treated with pEgr-IL18-B7.2 plus X-radiation versus either treatment separately. Both 1 and 3 days after the last irradiation the group of mice with combined gene and radiation therapy showed significantly higher tumor necrosis factor (TNF)-alpha secretion in peritoneal macrophages, upregulated splenic cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, and higher interferon (IFN)-gamma secretion than those in either individual treatment group or the control group. The stimulation of host anticancer immunity by increased secretion of IL-18 and upregulated immunogenicity of the tumor cells by increased expression of B7.2 on their surface, in addition to the direct effect of local X-irradiation on the tumor cells, may contribute to the novel effect of the combined therapy.
Collapse
Affiliation(s)
- Jianzheng Yang
- Immunobiology Laboratory, MH Radiobiology Research Unit, School of Public Health, Jilin University, Changchun, Jilin 130021, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Vidal-Vanaclocha F, Mendoza L, Telleria N, Salado C, Valcárcel M, Gallot N, Carrascal T, Egilegor E, Beaskoetxea J, Dinarello CA. Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev 2007; 25:417-34. [PMID: 17001512 DOI: 10.1007/s10555-006-9013-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-18 (IL-18, interferon [IFN]-gamma-inducing factor) is a proinflammatory cytokine converted to a biologically active molecule by interleukin (IL)-1beta converting enzyme (caspase-1). A wide range of normal and cancer cell types can produce and respond to IL-18 through a specific receptor (IL-18R) belonging to the toll-like receptor family. The activity of IL-18 is regulated by IL-18-binding protein (IL-18bp), a secreted protein possessing the ability to neutralize IL-18 and whose blood level is affected by renal function and is induced by IFNgamma. IL-18 plays a central role in inflammation and immune response, contributing to the pathogenesis and pathophysiology of infectious and inflammatory diseases. Because immune-stimulating effects of IL-18 have antineoplastic properties, IL-18 has been proposed as a novel adjuvant therapy against cancer. However, IL-18 increases in the blood of the majority of cancer patients and has been associated with disease progression and, in some cancer types, with metastatic recurrence risk and poor clinical outcome and survival. Under experimental conditions, cancer cells can also escape immune recognition, increase their adherence to the microvascular wall and even induce production of angiogenic and tumor growth-stimulating factors via IL-18-dependent mechanism. This is particularly visible in melanoma cells. Thus, the role of IL-18 in cancer progression and metastasis remains controversial. This review examines the clinical correlations and biological effects of IL-18 during cancer development and highlights recent experimental insights into prometastatic and proangiogenic effects of IL-18 and the use of IL-18bp against cancer progression.
Collapse
Affiliation(s)
- Fernando Vidal-Vanaclocha
- Department of Cell Biology and Histology, Basque Country University School of Medicine and Dentistry, Leioa, Bizkaia 48940, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Otsuki M, Kusumoto K, Murakami Y, Kanayama M, Takeuchi S, Takahashi S. Expression of interleukin-18 receptor mRNA in the mouse endometrium. J Reprod Dev 2006; 53:59-68. [PMID: 17062984 DOI: 10.1262/jrd.18036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-18 (IL-18) is a proinflammatory cytokine involved in chronic inflammation, autoimmune diseases, and a variety of cancers, and is expressed in mouse uteri. Our previous study suggested that IL-18 acts as a paracrine factor, regulating endometrial function. To elucidate the physiological roles of IL-18 in the mouse endometrium, the expression of the IL-18 receptor (IL-18R) alpha subunit was analyzed. IL-18Ralpha mRNA was expressed in several mouse organs in addition to the endometrium. In situ hybridization analysis using a biotin-labeled mouse IL-18Ralpha riboprobe demonstrated that IL-18Ralpha mRNA expression was detected in glandular epithelial cells, stromal cells around uterine glands, and myometrial cells in the mouse uterus, suggesting that these cells are targets for IL-18. The uterine IL-18Ralpha mRNA expression level changed with the estrous cycle. The uterine IL-18Ralpha mRNA levels of estrous mice were higher than those of diestrous mice. In addition, the IL-18Ralpha mRNA levels in uteri at 3 and 14 days after ovariectomy were higher than those at diestrus and decreased following treatment with estradiol-17beta or progesterone. These findings suggest that IL-18Ralpha gene expression is regulated by estrogen and progesterone and that the uterine IL-18 system is involved in the regulation of uterine functions in a paracrine manner.
Collapse
Affiliation(s)
- Mariko Otsuki
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Kitaura H, Tatamiya M, Nagata N, Fujimura Y, Eguchi T, Yoshida N, Nakayama K. IL-18 induces apoptosis of adherent bone marrow cells in TNF-alpha mediated osteoclast formation in synergy with IL-12. Immunol Lett 2006; 107:22-31. [PMID: 16875741 DOI: 10.1016/j.imlet.2006.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/13/2006] [Accepted: 06/18/2006] [Indexed: 01/16/2023]
Abstract
It has recently been reported that TNF-alpha has the ability to accelerate osteoclastogenesis. We previously reported that the proinflammatory cytokine IL-12 induced apoptosis in TNF-alpha-mediated osteoclastogenesis in mouse bone marrow culture through an interaction of Fas and Fas ligand (FasL). In this study, the effect of IL-18 was investigated, which is also a proinflammatory cytokine, on TNF-alpha-mediated osteoclastogenesis. When mouse bone marrow cells were cultured with both TNF-alpha and IL-18, the number of adherent cells in the culture decreased. Apoptotic effects, indicated by nuclear, cellular and DNA fragmentation, were observed in the adherent cells. The apoptosis was inhibited by an anti-FasL antibody. Apoptosis of the adherent bone marrow cells might be caused by Fas-FasL interactions. Furthermore, IL-18 and IL-12 synergistically induced apoptosis of adherent bone marrow cells in the presence of TNF-alpha, and up-regulated FasL transcription in non-adherent cells. The results suggested that FasL synergistically up-regulated by IL-12 and IL-18 increased apoptosis of the adherent cells.
Collapse
Affiliation(s)
- Hideki Kitaura
- Department of Developmental and Reconstructive Medicine, Division of Orthodontic and Biomedical Engineering, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tschoeke SK, Oberholzer A, Moldawer LL. Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit Care Med 2006; 34:1225-33. [PMID: 16540967 DOI: 10.1097/01.ccm.0000208356.05575.16] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Severe inflammation and sepsis remain a serious clinical challenge worldwide. Despite modern supportive medicine and an improved understanding of the underlying pathophysiology, mortality rates remain high in patients suffering from this severe inflammatory process. The often excess production of pro- and anti-inflammatory cytokines frequently found in the circulation of septic patients has stimulated the search for reliable inflammatory mediators that can be used for the diagnosis and prediction of clinical outcome. Interleukin (IL)-18, formerly termed interferon-gamma inducing factor, is a pro-inflammatory and Th1 cytokine suggested to play a significant role in the pathogenesis of this disease. This review focuses on our current understanding of the pro-inflammatory cytokine, IL-18, and its potentially unique role in sepsis. METHODS Bibliographic search of the most recent literature (1995-2005) relating to IL-18 and its role in inflammatory diseases, with emphasis on its pathophysiological importance in sepsis. In addition, a summary of the author's own experimental data from this particular field of research set in the context of current knowledge regarding IL-18. RESULTS AND CONCLUSIONS Several studies have shown elevated plasma IL-18 concentrations to be associated with poor clinical outcome in severe inflammatory and septic conditions. Moreover, a significant increase in IL-18 concentrations has been shown to discriminate between Gram-positive and Gram-negative related sepsis, and, thus, may potentially augment existing diagnostic tools. Biological neutralization of IL-18 via caspase-1 intervention or through the administration of IL-18-binding protein has been promulgated as a promising therapeutic approach, but additional studies are required to evaluate its full potential in acute inflammatory diseases.
Collapse
Affiliation(s)
- Sven K Tschoeke
- Department of Trauma and Reconstructive Surgery, Charité--University Hospitals Berlin, Campus Benjamin Franklin, Germany
| | | | | |
Collapse
|
48
|
Kusumoto K, Murakami Y, Otsuki M, Kanayama M, Takeuchi S, Takahashi S. Interleukin-18 (IL-18) mRNA expression and localization of IL-18 mRNA-expressing cells in the mouse uterus. Zoolog Sci 2006; 22:1003-10. [PMID: 16219981 DOI: 10.2108/zsj.22.1003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interleukin-18 (IL-18) belongs to the interleukin-1 family and was identified as an interferon-gamma inducing factor. We investigated IL-18 mRNA-expressing cells in the mouse uterus. By RNase protection assay, IL-18 mRNA and alpha subunit of IL-18 receptor mRNA were detected in the uterus. In the uterus, IL-18 mRNA levels increased during sexual maturation. In situ hybridization analysis demonstrated IL-18 mRNA-expressing cells in the mouse uterus of different ages. At 21 days of age, IL-18 mRNA-expressing cells were detected in the luminal epithelial cells and stromal cells although the IL-18 mRNA signal was weak. At 42 days of age, IL-18 mRNA signal was mainly detected in the stromal cells located near the myometrium, and in some of the luminal and glandular epithelial cells. In the uterus of 63-day-old adult mice, a strong hybridization signal for IL-18 mRNA was detected at estrus, but was weak at diestrus. IL-18 mRNA was mainly detected in the glandular epithelial cells and stromal cells. The effect of estradiol-17beta (E(2)) on IL-18 mRNA-expressing cells in the uterus was examined in ovariectomized mice. In oil-treated mice IL-18 mRNA signal was localized in luminal epithelial cells and stromal cells, while in E(2)-treated mice IL-18 mRNA signal was localized in stromal cells alone. These results suggest that the mouse uterus has an IL-18 system, and IL-18 exerts a physiological role within the uterus in a paracrine manner, and that IL-18 gene expression is regulated by estrogen.
Collapse
Affiliation(s)
- Kenji Kusumoto
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Ueda T, Takeyama Y, Yasuda T, Matsumura N, Sawa H, Nakajima T, Ajiki T, Fujino Y, Suzuki Y, Kuroda Y. Significant elevation of serum interleukin-18 levels in patients with acute pancreatitis. J Gastroenterol 2006; 41:158-165. [PMID: 16568375 DOI: 10.1007/s00535-005-1735-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 09/30/2005] [Indexed: 02/07/2023]
Abstract
BACKGROUND We have reported that peripheral lymphocyte reduction due to apoptosis is linked to the development of subsequent infectious complications in patients with severe acute pancreatitis and that Th1 (helper T cell type 1)/Th2 (helper T cell type 2) balance tends to cause Th1 suppression in experimental severe acute pancreatitis. It has been reported that interleukin (IL)-18 is a cytokine produced from Kupffer cells and activated macrophages, and that IL-18 acts on Th1 cells and in combination with IL-12 strongly induces production of interferon-gamma. However, the role of IL-18 in acute pancreatitis has not yet been fully understood. METHODS Serum IL-18 concentrations were determined by an enzyme-linked immunosorbent assay in 43 patients with acute pancreatitis at the time of admission. The relationships with etiology, pancreatic necrosis, severity, blood biochemical parameters on admission, infection, and organ dysfunction during the clinical course and prognosis were analyzed. RESULTS Serum IL-18 levels in patients with acute pancreatitis (656+/- 11pg/ml) were significantly higher than those in healthy volunteers (126+/- pg/ml). Serum IL-18 levels were significantly positively correlated with the Ranson score and Japanese severity score. Among the blood biochemical parameters on admission, base excess and total protein were significantly negatively correlated with serum IL-18 levels. Moreover, the CD4/CD8 rate of lymphocytes, serum IL-6 levels, and serum IL-8 levels were significantly positively correlated with serum IL-18 levels. On day 7 after admission, the CD4/CD8 rate of lymphocytes and the rate of CD4-positive lymphocytes were significantly positively correlated with serum IL-18 levels. Furthermore, serum IL-18 levels in patients with hepatic dysfunction (980+/- 25pg/ml) were significantly higher than those without hepatic dysfunction (464+/- 8pg/ml). Serum IL-18 levels were not related to infection or prognosis. Elevation of serum IL-18 levels continued during 4 weeks after admission. CONCLUSIONS These results suggest that serum IL-18 levels are significantly elevated and are correlated with severity in patients with acute pancreatitis and that IL-18 may be closely related to helper T cell response and hepatic dysfunction in this disease.
Collapse
Affiliation(s)
- Takashi Ueda
- Department of Gastroenterological Surgery, Kobe University Graduate School of Medical Sciences, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Su L, Zhao J, Zhao BX, Miao JY, Yin DL, Zhang SL. Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:247-53. [PMID: 16473419 DOI: 10.1016/j.bbamcr.2006.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 12/01/2005] [Accepted: 01/05/2006] [Indexed: 01/01/2023]
Abstract
Previously, we found that 5-25 microg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin beta4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 microg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin beta4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 microg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.
Collapse
Affiliation(s)
- Le Su
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | |
Collapse
|