1
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
2
|
Gussakovsky D, Anderson G, Spicer V, Krokhin OV. Peptide separation selectivity in proteomics LC-MS experiments: Comparison of formic and mixed formic/heptafluorobutyric acids ion-pairing modifiers. J Sep Sci 2020; 43:3830-3839. [PMID: 32818315 DOI: 10.1002/jssc.202000578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Separation selectivity and detection sensitivity of reversed-phase high-performance liquid chromatography with tandem mass spectrometry analyses were compared for formic (0.1%) and formic/heptafluorobutyric (0.1%/0.005%) acid based eluents using a proteomic data set of ∼12 000 paired peptides. The addition of a small amount of hydrophobic heptafluorobutyric acid ion-pairing modifier increased peptide retention by up to 10% acetonitrile depending on peptide charge, size, and hydrophobicity. Retention increase was greatest for peptides that were short, highly charged, and hydrophilic. There was an ∼3.75-fold reduction in MS signal observed across the whole population of peptides following the addition of heptafluorobutyric acid. This resulted in ∼36% and ∼21% reduction of detected proteins and unique peptides for the whole cell lysate digests, respectively. We also confirmed that the separation selectivity of the formic/heptafluorobutyric acid system was very similar to the commonly used conditions of 0.1% trifluoroacetic acid, and developed a new version of the Sequence-Specific Retention calculator model for the formic/heptafluorobutyric acid system showing the same ∼0.98 R2 -value accuracy as the Sequence-Specific Retention calculator formic acid model. In silico simulation of peptide distribution in separation space showed that the addition of 0.005% heptafluorobutyric acid to the 0.1% formic acid system increased potential proteome coverage by ∼11% of detectable species (tryptic peptides ≥ four amino acids).
Collapse
Affiliation(s)
- Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoff Anderson
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vic Spicer
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, Manitoba, Canada.,Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Min CW, Park J, Bae JW, Agrawal GK, Rakwal R, Kim Y, Yang P, Kim ST, Gupta R. In-Depth Investigation of Low-Abundance Proteins in Matured and Filling Stages Seeds of Glycine max Employing a Combination of Protamine Sulfate Precipitation and TMT-Based Quantitative Proteomic Analysis. Cells 2020; 9:E1517. [PMID: 32580392 PMCID: PMC7349688 DOI: 10.3390/cells9061517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the significant technical advancements in mass spectrometry-based proteomics and bioinformatics resources, dynamic resolution of soybean seed proteome is still limited because of the high abundance of seed storage proteins (SSPs). These SSPs occupy a large proportion of the total seed protein and hinder the identification of low-abundance proteins. Here, we report a TMT-based quantitative proteome analysis of matured and filling stages seeds of high-protein (Saedanbaek) and low-protein (Daewon) soybean cultivars by application of a two-way pre-fractionation both at the levels of proteins (by PS) and peptides (by basic pH reverse phase chromatography). Interestingly, this approach led to the identification of more than 5900 proteins which is the highest number of proteins reported to date from soybean seeds. Comparative protein profiles of Saedanbaek and Daewon led to the identification of 2200 and 924 differential proteins in mature and filling stages seeds, respectively. Functional annotation of the differential proteins revealed enrichment of proteins related to major metabolism including amino acid, major carbohydrate, and lipid metabolism. In parallel, analysis of free amino acids and fatty acids in the filling stages showed higher contents of all the amino acids in the Saedanbaek while the fatty acids contents were found to be higher in the Daewon. Taken together, these results provide new insights into proteome changes during filling stages in soybean seeds. Moreover, results reported here also provide a framework for systemic and large-scale dissection of seed proteome for the seeds rich in SSPs by two-way pre-fractionation combined with TMT-based quantitative proteome analysis.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Joonho Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 03080, Korea; (J.P.); (Y.K.)
| | - Jin Woo Bae
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea;
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; (G.K.A.); (R.R.)
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu 44600, Nepal; (G.K.A.); (R.R.)
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj 44300, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1Tennodai, Tsukuba 3058574, Japan
| | - Youngsoo Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 03080, Korea; (J.P.); (Y.K.)
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea;
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Duncan MW, Hunsucker SW. Proteomics as a Tool for Clinically Relevant Biomarker Discovery and Validation. Exp Biol Med (Maywood) 2016; 230:808-17. [PMID: 16339745 DOI: 10.1177/153537020523001105] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The excitement associated with clinical applications of proteomics was initially focused on its potential to serve as a vehicle for both biomarker discovery and drug discovery and routine clinical sample analysis. Some approaches were thought to be able to “identify” mass spectral characteristics that distinguished between control and disease samples, and thereafter it was believed that the same tool could be employed to screen samples in a high-throughput clinical setting. However, this has been difficult to achieve, and the early promise is yet to be fully realized. While we see an important place for mass spectrometry in drug and biomarker discovery, we believe that alternative strategies will prove more fruitful for routine analysis. Here we discuss the power and versatility of 2D gels and mass spectrometry in the discovery phase of biomarker work but argue that it is better to rely on immunochemical methods for high-throughput validation and routine assay applications.
Collapse
Affiliation(s)
- Mark W Duncan
- Department of Pediatrics, Section of Pulmonary Medicine, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA.
| | | |
Collapse
|
5
|
Abstract
AbstractLung cancer is one of the most common cancers in terms of both incidence and mortality.The major reasons for the increasing number of deaths from lung cancer are late detection and lack of effective therapies. To improve our understanding of lung cancer biology, there is urgent need for blood-based, non-invasive molecular tests to assist in its detection in a cost-effective manner at an early stage when curative interventions are still possible. Recent advances in proteomic technology have provided extensive, high throughput analytical tools for identification, characterization and functional studies of proteomes. Changes in protein expression patterns in response to stimuli can serve as indicators or biomarkers of biological and pathological processes as well as physiological and pharmacological responses to drug treatment, thus aiding in early diagnosis and prognosis of disease. However, only a few biomarkers have been approved by the FDA to date for screening and diagnostic purposes. This review provides a brief overview of currently available proteomic techniques, their applications and limitations and the current state of knowledge about important serum biomarkers in lung cancer and their potential value as prognostic and diagnostic tools.
Collapse
|
6
|
Larkin SET, Zeidan B, Taylor MG, Bickers B, Al-Ruwaili J, Aukim-Hastie C, Townsend PA. Proteomics in prostate cancer biomarker discovery. Expert Rev Proteomics 2014; 7:93-102. [DOI: 10.1586/epr.09.89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Matsumoto I, Alexander-Kaufman K, Iwazaki T, Kashem MA, Matsuda-Matsumoto H. CNS proteomes in alcohol and drug abuse and dependence. Expert Rev Proteomics 2014; 4:539-52. [PMID: 17705711 DOI: 10.1586/14789450.4.4.539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drugs of abuse, including alcohol, can induce dependency formation and/or brain damage in brain regions important for cognition. 'High-throughput' approaches, such as cDNA microarray and proteomics, allow the analysis of global expression profiles of genes and proteins. These technologies have recently been applied to human brain tissue from patients with psychiatric illnesses, including substance abuse/dependence and appropriate animal models to help understand the causes and secondary effects of these complex disorders. Although these types of studies have been limited in number and by proteomics techniques that are still in their infancy, several interesting hypotheses have been proposed. Focusing on CNS proteomics, we aim to review and update current knowledge in this rapidly advancing area.
Collapse
Affiliation(s)
- Izuru Matsumoto
- University of Sydney, Discipline of Pathology, NSW, Australia.
| | | | | | | | | |
Collapse
|
8
|
Matsumoto H, Matsumoto I. Alcoholism: protein expression profiles in a human hippocampal model. Expert Rev Proteomics 2014; 5:321-31. [DOI: 10.1586/14789450.5.2.321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Cristoni S, Bernardi LR. Bioinformatics in mass spectrometry data analysis for proteomics studies. Expert Rev Proteomics 2014; 1:469-83. [PMID: 15966842 DOI: 10.1586/14789450.1.4.469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mass spectrometry is a technique widely employed for the identification and characterization of proteins. The role of bioinformatics is fundamental for the elaboration of mass spectrometry data due to the amount of data that this technique can produce. To process data efficiently, new software packages and algorithms are continuously being developed to improve protein identification and characterization in terms of high-throughput and statistical accuracy. However, many limitations exist concerning bioinformatics spectral data elaboration. This review aims to critically cover the recent and future developments of new bioinformatics approaches in mass spectrometry data analysis for proteomics studies.
Collapse
Affiliation(s)
- Simone Cristoni
- Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy.
| | | |
Collapse
|
10
|
Hallgren O, Malmström J, Malmström L, Andersson-Sjöland A, Wildt M, Tufvesson E, Juhasz P, Marko-Varga G, Westergren-Thorsson G. Splicosomal and serine and arginine-rich splicing factors as targets for TGF-β. FIBROGENESIS & TISSUE REPAIR 2012; 5:6. [PMID: 22541002 PMCID: PMC3472233 DOI: 10.1186/1755-1536-5-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/28/2012] [Indexed: 11/29/2022]
Abstract
Background Transforming growth factor-β1 (TGF-β1) is a potent regulator of cell growth and differentiation. TGF-β1 has been shown to be a key player in tissue remodeling processes in a number of disease states by inducing expression of extracellular matrix proteins. In this study a quantitative proteomic analysis was undertaken to investigate if TGF-β1 contributes to tissue remodeling by mediating mRNA splicing and production of alternative isoforms of proteins. Methodology/Principal findings The expression of proteins involved in mRNA splicing from TGF-β1-stimulated lung fibroblasts was compared to non-stimulated cells by employing isotope coded affinity tag (ICATTM) reagent labeling and tandem mass spectrometry. A total of 1733 proteins were identified and quantified with a relative standard deviation of 11% +/− 8 from enriched nuclear fractions. Seventy-six of these proteins were associated with mRNA splicing, including 22 proteins involved in splice site selection. In addition, TGF-β1 was observed to alter the relative expression of splicing proteins that may be important for alternative splicing of fibronectin. Specifically, TGF-β1 significantly induced expression of SRp20, and reduced the expression of SRp30C, which has been suggested to be a prerequisite for generation of alternatively spliced fibronectin. The induction of SRp20 was further confirmed by western blot and immunofluorescence. Conclusions The results show that TGF-β1 induces the expression of proteins involved in mRNA splicing and RNA processing in human lung fibroblasts. This may have an impact on the production of alternative isoforms of matrix proteins and can therefore be an important factor in tissue remodeling and disease progression.
Collapse
Affiliation(s)
- Oskar Hallgren
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Oh JH, Pan S, Zhang J, Gao J. MSQ: a tool for quantification of proteomics data generated by a liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry based targeted quantitative proteomics platform. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:403-408. [PMID: 20069694 DOI: 10.1002/rcm.4407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mass spectrometry (MS)-based quantitative proteomics has become a critical component of biological and clinical research for identification of biomarkers that can be used for early detection of diseases. In particular, MS-based targeted quantitative proteomics has been recently developed for the detection and validation of biomarker candidates in complex biological samples. In such approaches, synthetic reference peptides that are the stable isotope labeled version of proteotypic peptides of proteins to be quantitated are used as internal standards enabling specific identification and absolute quantification of targeted peptides. The quantification of targeted peptides is achieved using the intensity ratio of a native peptide to the corresponding reference peptide whose spike-in amount is known. However, a manual calculation of the ratios can be time-consuming and labor-intensive, especially when the number of peptides to be tested is large. To establish a liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (LC/MALDI TOF/TOF)-based targeted quantitative proteomics pipeline, we have developed a software named Mass Spectrometry based Quantification (MSQ). This software can be used to automate the quantification and identification of targeted peptides/proteins by the MALDI TOF/TOF platform. MSQ was applied to the detection of a selected group of targeted peptides in pooled human cerebrospinal spinal fluid (CSF) from patients with Alzheimer's disease (AD) in comparison with age-matched control (OC). The results for the automated quantification and identification of targeted peptides/proteins in CSF were in good agreement with results calculated manually.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
13
|
Koomen J, Hawke D, Kobayashi R. Developing an Understanding of Proteomics: An Introduction to Biological Mass Spectrometry. Cancer Invest 2009. [DOI: 10.1081/cnv-46344] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Weiner JH, Li L. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1698-713. [PMID: 17904518 DOI: 10.1016/j.bbamem.2007.07.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
The envelope of Escherichia coli is a complex organelle composed of the outer membrane, periplasm-peptidoglycan layer and cytoplasmic membrane. Each compartment has a unique complement of proteins, the proteome. Determining the proteome of the envelope is essential for developing an in silico bacterial model, for determining cellular responses to environmental alterations, for determining the function of proteins encoded by genes of unknown function and for development and testing of new experimental technologies such as mass spectrometric methods for identifying and quantifying hydrophobic proteins. The availability of complete genomic information has led several groups to develop computer algorithms to predict the proteome of each part of the envelope by searching the genome for leader sequences, beta-sheet motifs and stretches of alpha-helical hydrophobic amino acids. In addition, published experimental data has been mined directly and by machine learning approaches. In this review we examine the somewhat confusing available literature and relate published experimental data to the most recent gene annotation of E. coli to describe the predicted and experimental proteome of each compartment. The problem of characterizing integral versus membrane-associated proteins is discussed. The E. coli envelope proteome provides an excellent test bed for developing mass spectrometric techniques for identifying hydrophobic proteins that have generally been refractory to analysis. We describe the gel based and solution based proteome analysis approaches along with protein cleavage and proteolysis methods that investigators are taking to tackle this difficult problem.
Collapse
Affiliation(s)
- Joel H Weiner
- Membrane Protein Research Group and The Institute for Biomolecular Design, University of Alberta, Canada.
| | | |
Collapse
|
15
|
Chen R, Brentnall TA, Aebersold R. Applications of Stable Isotope Tagging Based Quantitative Proteomics in Cancer Research. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Pan S, Rush J, Peskind ER, Galasko D, Chung K, Quinn J, Jankovic J, Leverenz JB, Zabetian C, Pan C, Wang Y, Oh JH, Gao J, Zhang J, Montine T, Zhang J. Application of Targeted Quantitative Proteomics Analysis in Human Cerebrospinal Fluid Using a Liquid Chromatography Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Tandem Mass Spectrometer (LC MALDI TOF/TOF) Platform. J Proteome Res 2008; 7:720-30. [DOI: 10.1021/pr700630x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sheng Pan
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - John Rush
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Elaine R. Peskind
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Douglas Galasko
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Kathryn Chung
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Joseph Quinn
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Joseph Jankovic
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - James B. Leverenz
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Cyrus Zabetian
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Catherine Pan
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Yan Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Jung Hun Oh
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Jean Gao
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Jianpeng Zhang
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Thomas Montine
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, Washington 98195, Cell Signaling Technology, Inc., Danvers, Massachusetts 01915, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington 98195, Department of Neurosciences, University of California, San Diego, California 92093, Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, Department of Neurology, Baylor College of Medicine, Houston, Texas 77030,
| |
Collapse
|
17
|
Chen Y, Low TY, Choong LY, Ray RS, Tan YL, Toy W, Lin Q, Ang BK, Wong CH, Lim S, Li B, Hew CL, Sze NSK, Druker BJ, Lim YP. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells. Proteomics 2007; 7:2384-97. [PMID: 17570516 DOI: 10.1002/pmic.200600968] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
With the completion of the human genome project, analysis of enriched phosphotyrosyl proteins from epidermal growth factor (EGF)-induced phosphotyrosine proteome permits the identification of novel downstream substrates of the EGF receptor (EGFR). Using cICAT-based LC-MS/MS method, we identified and relatively quantified the tyrosine phosphorylation levels of 21 proteins between control and EGF-treated A431 human cervical cancer cells. Of these, Endofin, DCBLD2, and KIAA0582 were validated to be novel tyrosine-phosphorylation targets of EGF signaling and Iressa, a highly selective inhibitor of EGFR. In addition, EGFR activity was shown to be necessary for EGF-induced localization of Endofin, an FYVE domain-containing protein regulated by phosphoinositol lipid and engaged in endosome-mediated receptor modulation. Although several groups have conducted phosphoproteomics of EGF signaling in recent years, our study is the first to identify and validate Endofin, DCBLD2, and KIAA0582 as part of a complex EGF phosphotyrosine signaling network. These novel data will provide new insights into the complex EGF signaling and may have implications on target-directed cancer therapeutics.
Collapse
Affiliation(s)
- Yunhao Chen
- Oncology Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Proteomic studies have generated numerous datasets of potential diagnostic, prognostic, and therapeutic significance in human cancer. Two key technologies underpinning these studies in cancer tissue are two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Although surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF)-MS is the mainstay for serum or plasma analysis, other methods including isotope-coded affinity tag technology, reverse-phase protein arrays, and antibody microarrays are emerging as alternative proteomic technologies. Because there is little overlap between studies conducted with these approaches, confirmation of these advanced technologies remains an elusive goal. This problem is further exacerbated by lack of uniform patient inclusion and exclusion criteria, low patient numbers, poor supporting clinical data, absence of standardized sample preparation, and limited analytical reproducibility (in particular of 2D-PAGE). Despite these problems, there is little doubt that the proteomic approach has the potential to identify novel diagnostic biomarkers in cancer. In therapeutic proteomics, the challenge is significant due to the complexity systems under investigation (i.e., cells generate over 10(5) different polypeptides). However, the most significant contribution of therapeutic proteomics research is expected to derive not from single experiments, but from the synthesis and comparison of large datasets obtained under different conditions (e.g., normal, inflammation, cancer) and in different tissues and organs. Thus, standardized processes for storing and retrieving data obtained with different technologies by different research groups will have to be developed. Shifting the emphasis of cancer proteomics from technology development and data generation to careful study design, data organization, formatting, and mining is crucial to answer clinical questions in cancer research.
Collapse
Affiliation(s)
- M A Reymond
- Department of Surgery, University of Magdeburg, Germany
| | | |
Collapse
|
19
|
Masselon C, Pasa-Tolić L, Tolić N, Anderson GA, Bogdanov B, Vilkov AN, Shen Y, Zhao R, Qian WJ, Lipton MS, Camp DG, Smith RD. Targeted comparative proteomics by liquid chromatography-tandem Fourier ion cyclotron resonance mass spectrometry. Anal Chem 2007; 77:400-6. [PMID: 15649034 PMCID: PMC1850942 DOI: 10.1021/ac049043e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In proteomics, effective methods are needed for identifying the relatively limited subset of proteins displaying significant changes in abundance between two samples. One way to accomplish this task is to target for identification by MS/MS only the "interesting" proteins based on the abundance ratio of isotopically labeled pairs of peptides. We have developed the software and hardware tools for online LC-FTICR MS/MS studies in which a set of initially unidentified peptides from a proteome analysis can be selected for identification based on their distinctive changes in abundance following a "perturbation". We report here the validation of this method using a mixture of standard proteins combined in different ratios after isotopic labeling. We also demonstrate the application of this method to the identification of Shewanella oneidensis peptides/proteins exhibiting differential abundance in suboxic versus aerobic cell cultures.
Collapse
Affiliation(s)
- Christophe Masselon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MSIN K8-98, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Faupel M, Bonenfant D, Schindler P, Bertrand E, Mueller D, Stoeckli M, Bitsch F, Rohner T, Staab D, Van Oostrum J. Biophotonics applied to proteomics. Subcell Biochem 2007; 43:323-338. [PMID: 17953401 DOI: 10.1007/978-1-4020-5943-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Since the completion of the human genome sequencing, our understanding of gene and protein function and their involvement in physiopathological states has increased dramatically, partly due to technological developments in photonics. Photonics is a very active area where new developments occur on a weekly basis, while established tools are adapted to fulfill the needs of other disciplines like genomics and proteomics. Biophotonics emerged at the interface of photonics and biology as a very straightforward and efficient approach to observe and manipulate living systems. In this chapter, we review the current applications of photonics and imaging to proteomics from 2D gels analysis to molecular imaging.
Collapse
Affiliation(s)
- Michel Faupel
- Novartis Institutes for BioMedical Research, Genome and Protein Sciences Systems Biology, Basel, Switzeland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kurono S, Kurono T, Komori N, Niwayama S, Matsumoto H. Quantitative proteome analysis using D-labeled N-ethylmaleimide and 13C-labeled iodoacetanilide by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Bioorg Med Chem 2006; 14:8197-209. [PMID: 17049249 PMCID: PMC1876768 DOI: 10.1016/j.bmc.2006.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 11/16/2022]
Abstract
A new methodology for quantitative analysis of proteins is described, applying stable-isotope labeling by small organic molecules combined with one- or two-dimensional electrophoresis and MALDI-TOF-MS, also allowing concurrent protein identification by peptide mass fingerprinting. Our method eliminates fundamental problems in other existing isotope-tagging methods requiring liquid chromatography and MS/MS, such as isotope effects, fragmentation, and solubility. It is also anticipated to be more practical and accessible than those LC-dependent methods.
Collapse
|
22
|
Wittmann-Liebold B, Graack HR, Pohl T. Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 2006; 6:4688-703. [PMID: 16933336 DOI: 10.1002/pmic.200500874] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The proteome analysis by 2-DE is one of the most potent methods of analyzing the complete proteome of cells, cell lines, organs and tissues in proteomics studies. It allows a fast overview of changes in cell processes by analysis of the entire protein extracts in any biological and medical research projects. New instrumentation and advanced technologies provide proteomics studies in a wide variety of biological and biomedical questions. Proteomics work is being applied to study antibiotics-resistant strains and human tissues of various brain, lung, and heart diseases. It cumulated in the identification of antigens for the design of new vaccines. These advances in proteomics have been possible through the development of advanced high-resolution 2-DE systems allowing resolution of up to 10 000 protein spots of entire cell lysates in combination with protein identification by new highly sensitive mass spectrometric techniques. The present technological achievements are suited for a high throughput screening of different cell situations. Proteomics may be used to investigate the health effects of radiation and electromagnetic field to clarify possible dangerous alterations in human beings.
Collapse
|
23
|
Mukhopadhyay A, He Z, Alm EJ, Arkin AP, Baidoo EE, Borglin SC, Chen W, Hazen TC, He Q, Holman HY, Huang K, Huang R, Joyner DC, Katz N, Keller M, Oeller P, Redding A, Sun J, Wall J, Wei J, Yang Z, Yen HC, Zhou J, Keasling JD. Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 2006; 188:4068-78. [PMID: 16707698 PMCID: PMC1482918 DOI: 10.1128/jb.01921-05] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.
Collapse
Affiliation(s)
- Aindrila Mukhopadhyay
- Virtual Institute of Microbial Stress and Survival, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pawlik TM, Hawke DH, Liu Y, Krishnamurthy S, Fritsche H, Hunt KK, Kuerer HM. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer 2006; 6:68. [PMID: 16542425 PMCID: PMC1431555 DOI: 10.1186/1471-2407-6-68] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 03/16/2006] [Indexed: 12/25/2022] Open
Abstract
Background Isotope-coded affinity tag (ICAT) tandem mass spectrometry (MS) allows for qualitative and quantitative analysis of paired protein samples. We sought to determine whether ICAT technology could quantify and identify differential expression of tumor-specific proteins in nipple aspirate fluid (NAF) from the tumor-bearing and contralateral disease-free breasts of patients with unilateral early-stage breast cancer. Methods Paired NAF samples from 18 women with stage I or II unilateral invasive breast carcinoma and 4 healthy volunteers were analyzed using ICAT labeling, sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE), liquid chromatography, and MS. Proteins were identified by sequence database analysis. Western blot analysis of NAF from an independent sample set from 12 women (8 with early-stage breast cancer and 4 healthy volunteers) was also performed. Results 353 peptides were identified from tandem mass spectra and matched to peptide sequences in the National Center for Biotechnology Information database. Equal numbers of peptides were up- versus down-regulated. Alpha2HS-glycoprotein [Heavy:Light (H:L) ratio 0.63] was underexpressed in NAF from tumor-bearing breasts, while lipophilin B (H:L ratio 1.42), beta-globin (H:L ratio 1.98), hemopexin (H:L ratio 1.73), and vitamin D-binding protein precursor (H:L ratio 1.82) were overexpressed. Western blot analysis of pooled samples of NAF from healthy volunteers versus NAF from women with breast cancer confirmed the overexpression of vitamin D-binding protein in tumor-bearing breasts. Conclusion ICAT tandem MS was able to identify and quantify differences in specific protein expression between NAF samples from tumor-bearing and disease-free breasts. Proteomic screening techniques using ICAT and NAF may be used to find markers for diagnosis of breast cancer.
Collapse
Affiliation(s)
- Timothy M Pawlik
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - David H Hawke
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Yanna Liu
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Herbert Fritsche
- Department of Laboratory Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Henry M Kuerer
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
25
|
Hattan SJ, Marchese J, Khainovski N, Martin S, Juhasz P. Comparative study of [Three] LC-MALDI workflows for the analysis of complex proteomic samples. J Proteome Res 2006; 4:1931-41. [PMID: 16335937 DOI: 10.1021/pr050099e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large-scale proteomic analyses frequently rely on high-resolution peptide separation of digested protein mixtures in multiple dimensions to achieve accuracy in sample detection and sensitivity in dynamic range of coverage. This study was undertaken to demonstrate the feasibility of MALDI MS/MS with off-line coupling to HPLC for the analysis of whole cell lysates of wild-type yeast by three different workflows: SCX-RPHPLC-MS/MS, high-pH SAX-RPHPLC-MS/MS and RP (protein)-SCX-RPHPLC-MS/MS. The purpose of these experiments was to demonstrate the effect of a workflow on the end results in terms of the number of proteins detected, the average peptide coverage of proteins, and the number of redundant peptide sequencing attempts. Using 60 microg of yeast lysate, minor differences were seen in the number of proteins detected by each method (800-1200). The most significant differences were observed in redundancy of MS/MS acquisitions.
Collapse
Affiliation(s)
- Stephen J Hattan
- Applied Biosystems, 500 Old Connecticut Path, Framingham, Massachusetts 01701, USA.
| | | | | | | | | |
Collapse
|
26
|
Deepalakshmi PD. Top-down approach of completely sequencing a 4.9 kDa recombinant peptide using quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3747-54. [PMID: 17120269 DOI: 10.1002/rcm.2797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A recombinant peptide (near the C-terminal region of head involution defective protein) of 4.9 kDa has been completely sequenced and characterized using medium-resolution mass spectrometry (QTOF). The observed difference in the experimental mass and the theoretical mass is due to beta-mercaptoethanol adduct formation on the cysteine residue. The fragmentation pattern is correlated with the primary structure of the protein. Top-down sequencing of the peptide was extended to small proteins like barstar of mass 10.3 kDa.
Collapse
|
27
|
ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis (Edinb) 2005; 86:445-60. [PMID: 16376151 DOI: 10.1016/j.tube.2005.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/19/2005] [Accepted: 10/13/2005] [Indexed: 11/15/2022]
Abstract
The non-replicating persistence (NRP) phenotype of Mycobacterium tuberculosis (NRP-TB) is assumed to be responsible for the maintenance of latent infection and the requirement of a long treatment duration for active tuberculosis. Isotope coded affinity tag-based proteomic analysis was used for the determination of the relative expression of large numbers of M. tuberculosis proteins during oxygen self-depletion under controlled conditions in a multi-chambered fermentor. Expression of the alpha-crystallin homolog protein, acr, was monitored and quantified to confirm entry into NRP. Relative expression of 586 and 628 proteins was determined in log phase vs. early stage NRP (NRP-1) and log phase vs. later stage NRP (NRP-2), respectively. Relative to expression in log phase and using an abundance ratio of +/-2.0 as a cutoff, 6.5% and 20.4% of proteins were found to be upregulated in NRP-1 and NRP-2, respectively while 20.3% and 13.4% were downregulated, respectively. Functional profiling revealed that 42.1%/39.8% of upregulated proteins and 41.2%/45.2% of downregulated proteins in NRP-1/NRP-2, respectively, were involved in small molecule metabolism. Among those proteins the highest proportions of 37.5% in NRP-1 were involved with degradation and of 45.1% in NRP-2 with energy metabolism. These results suggest distinct protein expression profiles in NRP-1 and NRP-2.
Collapse
|
28
|
Millea KM, Krull IS, Cohen SA, Gebler JC, Berger SJ. Integration of Multidimensional Chromatographic Protein Separations with a Combined “Top-Down” and “Bottom-Up” Proteomic Strategy. J Proteome Res 2005; 5:135-46. [PMID: 16396504 DOI: 10.1021/pr050278w] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we present a combined top-down/bottom-up proteomic analysis workflow for the characterization of proteomic samples. This workflow combines protein fractionation (multidimensional chromatographic separation) with parallel online ESI-TOF-MS intact protein analysis, and fraction collection. Collected fractions were digested and protein identifications were produced using MALDI Q-TOF-MS analysis. These identifications were then linked with corresponding ESI-TOF-MS intact protein mass data to permit full protein characterization. This methodology was applied to an E. coli cytosolic protein fraction, and enabled the identification and characterization of proteins exhibiting co-translational processing, post-translational modification, and proteolytic processing events. The approach also provided the ability to distinguish between closely related protein isoforms. The summary of results from this study indicated that roughly one-third of all detected components generated corresponding data from both top-down and bottom-up analyses, and that significant and novel information can be derived from this application of the hybrid analytical methodology.
Collapse
Affiliation(s)
- Kevin M Millea
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 2005; 68:567-79. [PMID: 16041571 DOI: 10.1007/s00253-005-0081-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 06/23/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Through metabolic engineering, scientists seek to modify the metabolic pathways of living organisms to facilitate optimized, efficient production of target biomolecules. During the past decade, we have seen notable improvements in biotechnology, many of which have been based on metabolically engineered microorganisms. Recent developments in the fields of functional genomics, transcriptomics, proteomics, and metabolomics have changed metabolic engineering strategies from the local pathway level to the whole system level. This article focuses on recent advances in the field of metabolic engineering, which have been powered by the combined approaches of the various "omics" that allow us to understand the microbial metabolism at a global scale and to develop more effectively redesigned metabolic pathways for the enhanced production of target bioproducts.
Collapse
Affiliation(s)
- S J Park
- Corporate R&D, LG Chem, Ltd./Research Park, Yuseong-gu, Daejeon, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ji C, Li L. Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS. J Proteome Res 2005; 4:734-42. [PMID: 15952720 DOI: 10.1021/pr049784w] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.
Collapse
Affiliation(s)
- Chengjie Ji
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | |
Collapse
|
31
|
|
32
|
Blonder J, Hale ML, Chan KC, Yu LR, Lucas DA, Conrads TP, Zhou M, Popoff MR, Issaq HJ, Stiles BG, Veenstra TD. Quantitative Profiling of the Detergent-Resistant Membrane Proteome of Iota-b Toxin Induced Vero Cells. J Proteome Res 2005; 4:523-31. [PMID: 15822930 DOI: 10.1021/pr049790s] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-mediated 18O/16O differential labeling of proteome samples often suffers from incomplete exchange of the carboxy-terminus oxygen atoms, resulting in ambiguity in the measurable abundance differences. In this study, an 18O/16O labeling strategy was optimized for and applied to the solution-based comparative analysis of the detergent-resistant membrane proteome (DRMP) of untreated and Iota-b (Ib)-induced Vero cells. Solubilization and tryptic digestion of the DRMP was conducted in a buffer containing 60% methanol. Unfortunately, the activity of trypsin is attenuated at this methanol concentration hampering the ability to obtain complete oxygen atom turnover. Therefore, the incorporation of the 18O atoms was decoupled from the protein digestion step by carrying out the trypsin-mediated heavy atom incorporation in a buffer containing 20% methanol; a concentration at which trypsin activity is enhanced compared to purely aqueous conditions. After isotopic labeling, the samples were combined, fractionated by strong cation exchange and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. In total, over 1400 unique peptides, corresponding to almost 600 proteins, were identified and quantitated, including all known caveolar and lipid raft marker proteins. The quantitative profiling of Ib-induced DRMP from Vero cells revealed several proteins with altered expression levels suggesting their possible role in Ib binding/uptake.
Collapse
Affiliation(s)
- Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, P.O. Box B, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R. Cold Adaptation of the Antarctic Archaeon, Methanococcoides burtonii Assessed by Proteomics Using ICAT. J Proteome Res 2005; 4:473-80. [PMID: 15822924 DOI: 10.1021/pr049760p] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using isotope coded affinity tag (ICAT) chromatography and liquid chromatography-mass spectrometry, 163 proteins were identified from the cold-adapted archaeon, Methanococcoides burtonii. 14 proteins were differentially expressed during growth at 4 degrees C and 23 degrees C. Knowledge of protein abundance, protein identity and gene arrangement was used to determine mechanisms of cold adaptation. Growth temperature was found to affect proteins involved in energy generation and biosynthesis linked to methanogenesis, membrane transport, transcription and protein folding, as well as affecting the expression of two hypothetical proteins. Pooling the data from this ICAT study with data from a previous two-dimensional gel electrophoresis study highlighted consistencies and differences between the two methods, and led us to conclude that the two approaches were generally complementary. This is the first report of ICAT applied to Archaea, or for the study of cold adaptation in any organism.
Collapse
Affiliation(s)
- Amber Goodchild
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia
| | | | | | | | | |
Collapse
|
34
|
Kolkman A, Dirksen EHC, Slijper M, Heck AJR. Double Standards in Quantitative Proteomics. Mol Cell Proteomics 2005; 4:255-66. [PMID: 15632418 DOI: 10.1074/mcp.m400121-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative protein expression profiling is a crucial part of proteomics and requires methods that are able to efficiently provide accurate and reproducible differential expression values for proteins in two or more biological samples. In this report we evaluate in a direct comparative assessment two state-of-the-art quantitative proteomic approaches, namely difference in gel electrophoresis (DiGE) and metabolic stable isotope labeling. Therefore, Saccharomyces cerevisiae was grown under well defined experimental conditions in chemostats under two single nutrient-limited growth conditions using (14)N- or (15)N-labeled ammonium sulfate as the single nitrogen source. Following lysis and protein extraction from the two yeast samples, the proteins were fluorescently labeled using different fluorescent CyDyes. Subsequently, the yeast samples were mixed, and the proteins were separated by two-dimensional gel electrophoresis. Following in-gel digestion, the resulting peptides were analyzed by mass spectrometry using a MALDI-TOF mass spectrometer. Relative ratios in protein expression between these two yeast samples were determined using both DiGE and metabolic stable isotope labeling. Focusing on a small, albeit representative, set of proteins covering the whole gel range, including some protein isoforms and ranging from low to high abundance, we observe that the correlation between these two methods of quantification is good with the differential ratios determined following the equation R(Met.Lab.) = 0.98R(DiGE) with r(2) = 0.89. Although the correlation between DiGE and metabolic stable isotope labeling is exceptionally good, we do observe and discuss (dis)advantages of both methods as well as in relation to other (quantitative) approaches.
Collapse
Affiliation(s)
- Annemieke Kolkman
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
35
|
Qu J, Straubinger RM. Improved sensitivity for quantification of proteins using triply charged cleavable isotope-coded affinity tag peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2857-64. [PMID: 16155978 DOI: 10.1002/rcm.2138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Isotope-coded affinity tag (ICAT) methods, in conjunction with capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS), represent a promising approach for accurate protein quantification. However, sensitivity remains a challenge for the quantification of low-copy proteins in complex biological matrices. Here we investigated the electrospray ionization (ESI) and collision-activated dissociation (CAD) behavior of peptides derivatized with the cleavable ICAT (cICAT) reagent. For cICAT-peptides that were either synthesized or obtained by digestion of model proteins, the cICAT moiety showed a tendency toward protonation under positive ESI, producing relatively intense triply charged cICAT-peptide ions ([IP+3H]3+). [IP+3H]3+ exhibited significantly higher CAD reactivity than did the doubly charged cICAT-peptide ([IP+2H]2+), and produced a greater abundance of fragments at lower collision energies. Fragmentation spectra of [IP+3H]3+ showed variable intensities of doubly charged y and b ions, and the amount of sequence information obtained was dependent on the position of the cICAT-labeled cysteine residue in the peptide sequence. However, the absolute abundances of major fragments of [IP+3H]3+ were much higher than for [IP+2H]2+. Although the efficiency of identification of cICAT-peptides was compromised by their charge distribution toward the triply charged state and by the unique CAD behavior of the [IP+3H]3+ ions, it was found that the triply charged ions provided higher sensitivity than [IP+2H]2+ for quantification using multiple reaction monitoring (MRM). ESI and CAD conditions for MRM of [IP+3H]3+ were optimized, and, for all cICAT-peptides studied, MRM using [IP+3H]3+ as precursors showed 2- to 8-fold higher sensitivity than obtained using [IP+2H]2+, without compromising quantitative accuracy. Using this approach, the time course of tyrosine aminotransferase induction by methylprednisolone was monitored in rat livers. A remarkably better signal-to-noise ratio was observed by using [IP+3H]3+ for quantification compared to [IP+2H]2+.
Collapse
Affiliation(s)
- Jun Qu
- The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-1200, USA.
| | | |
Collapse
|
36
|
Abstract
Mass spectrometry provides key tools for the analysis of proteins. New types of mass spectrometers that provide enhanced capability to discover protein identities and perform improved proteomic experiments are discussed. Handling the complex mixtures of peptides and proteins generated from protein complexes and whole cells requires multidimensional separations; several forms of separation are discussed. Applications of mass spectrometry-based approaches for contemporary proteomic analyses are described.
Collapse
Affiliation(s)
- John R Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
37
|
Newton RP, Brenton AG, Smith CJ, Dudley E. Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. PHYTOCHEMISTRY 2004; 65:1449-1485. [PMID: 15276445 DOI: 10.1016/j.phytochem.2004.04.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2004] [Revised: 04/06/2004] [Indexed: 05/24/2023]
Abstract
The genome of several species has now been elucidated; these genomes indicate the proteomic potential of the cell. While identification of genomes has been, and continues to be, a technically and intellectually demanding process, the identification of the proteome contains inherently greater difficulties. The proteome of each living cell is dynamic, altering in response to the individual cell's metabolic state and reception of intracellular and extracellular signal molecules, and many of the proteins which are expressed will be post-translationally altered. Thus if the purpose of the proteome analysis is to aid the understanding of protein function and interaction, then it is identification of the proteins in their final state which is required: for this mass spectrometric identification of individual proteins, indicating site and nature of modifications, is essential. Here we review the principles of the methodologies involved in such analyses, give some indication of current achievements in plant proteomics, and indicate imminent and prospective technical developments.
Collapse
Affiliation(s)
- Russell P Newton
- School of Biological Sciences, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
38
|
Kumar GK, Klein JB. Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol (1985) 2004; 96:1178-86; discussion 1170-2. [PMID: 14766768 DOI: 10.1152/japplphysiol.00818.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular responses to hypoxia are complex and characterized by alterations in the expression of a number of genes, including stress-related genes and corresponding proteins that are necessary to maintain homeostasis. The purpose of this article is to review previous and recent studies that have examined the changes in the expression and posttranslational modification of proteins in response to chronic sustained and intermittent forms of hypoxia. A large number of studies focused on the analysis of either the single protein or a subset of related proteins using one-dimensional gel electrophoresis to separate a complex set of proteins from solubilized tissues or cell extracts, followed by immunostaining of proteins using antibodies that are specific to either native or posttranslationally modified forms. On the other hand, only a limited number of studies have examined the global perturbations on protein expression by hypoxia using proteomics approach involving two-dimensional electrophoresis coupled with mass spectrometry. Results derived from specific protein analysis of a variety of tissues and cells showed that hypoxia, depending on the duration and severity of the stimulus, affects the level and the state of posttranslational modification of a subset of proteins that are associated with energy metabolism, stress response, cell injury, development, and apoptosis. Some of these earlier findings are further corroborated by recent studies that utilize a global proteomics approach, and, more importantly, results from these proteomics investigations on the effects of hypoxia provide new protein targets for further functional analysis. The anticipated new information stems from the analysis of expression, and posttranslational modification of these novel protein targets, along with gene expression profiles, offers exciting new opportunities to further define the mechanisms of cellular responses to hypoxia and to control more effectively the clinical consequences of prolonged or periodic lack of oxygen.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | |
Collapse
|
39
|
Masuda M, Toriumi C, Santa T, Imai K. Fluorogenic Derivatization Reagents Suitable for Isolation and Identification of Cysteine-Containing Proteins Utilizing High-Performance Liquid Chromatography−Tandem Mass Spectrometry. Anal Chem 2004; 76:728-35. [PMID: 14750869 DOI: 10.1021/ac034840i] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorogenic derivatization reagents with a positive charge, 4-(dimethylaminoethylaminosulfonyl)-7-chloro-2,1,3-benzoxadiazole (DAABD-Cl) and 7-chloro-2,1,3-benzoxadiazole-4-sulfonylaminoethyltrimethylammonium chloride (TAABD-Cl), are proposed for use in proteomics studies. Following derivatization of protein mixtures with these reagents, a series of standard processes of isolation, digestion, and identification of the proteins were performed utilizing high-performance liquid chromatography-fluorescence detection and tandem mass spectrometry with the probability-based protein identification algorithm. Both DAABD and TAABD derivatives were detected fluorometrically at the femtomole level and showed more than 100-fold improvement in sensitivity compared to the underivatized original compounds with an electrospray ionization ion trap mass spectrometer analysis. The modification of the MASCOT database search system memorized with the fragment information of a DAABD-attached Cys residue allowed the identification of the proteolytic peptide fragments of the derivatized bovine serum albumin (BSA) with an estimated 38% sequence coverage of BSA. Utilizing DAABD-Cl as a derivatization reagent, identification of several proteins was also possible in a soluble extract of Caenorhabditis elegans (10 microg of protein). Consequently, for identification of proteins in the complex matrixes of proteins, DAABD-Cl could be a more appropriate reagent than ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate as reported previously.
Collapse
Affiliation(s)
- Mayumi Masuda
- Laboratory of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
The field of proteomics is taking on increased significance as the relevance of investigating and understanding protein expression in disease and drug development is appreciated. Recent advances in proteomics have been driven by the availability of numerous annotated whole-genome sequences and a broad range of technological and bioinformatic developments that underscore the complexity of the proteome. This review briefly addresses some of the various technologies that comprise Expression Proteomics and Functional Proteomics, citing examples where these emerging approaches have been applied to pharmacology, toxicology, and the development of drugs.
Collapse
Affiliation(s)
- Frank A Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 1345 W 16th Street, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
41
|
Ong ES, Len SM, Lee ACH, Chui P, Chooi KF. Proteomic analysis of mouse liver for the evaluation of effects of Scutellariae radix by liquid chromatography with tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2004; 18:2522-2530. [PMID: 15468106 DOI: 10.1002/rcm.1654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Scutellariae radix or Scutellaria baicalensis is a medicinal plant that contains major flavonoids such as baicalein, baicalin, wogonin and wogonosides. The present work describes the development of an approach using proteomic analysis of mouse liver to study the effects of prolonged exposure to substances present in chemically standardized Scutellariae radix extracts. Histopathological examination of the mouse liver was compared with the proteome data. The botanical extracts were prepared using pressurized liquid extraction (PLE). A method without isotope labeling was developed, using proteolytic digestion with one- and two-dimensional liquid chromatography with tandem mass spectrometry, and was used to characterize the extent of differential protein expression in mouse liver in response to external factors such as extracts from Scutellariae radix. From the histopathological examination and proteome data, significant changes in the mouse livers were not observed for the low-dose group. The Scutellariae radix extracts at high dose were observed to cause damage at the bile duct and expression change of a number of proteins including some involved in catabolism of triglyceride-rich particles, carbohydrate metabolism, regulators of cell signaling processes, and enzymes involved in biotransformation. Thus, proteomic analysis of liver samples from mice treated with botanical extracts is a promising approach to provide information on any potential toxicity effects of the extracts. The present method also provides another means for comparing proteomes in biological samples such as liver lysates from mice subjected to different treatments.
Collapse
Affiliation(s)
- Eng Shi Ong
- Centre for Analytical Science, Health Sciences Authority, 11 Outram Road, Singapore 169078, Republic of Singapore.
| | | | | | | | | |
Collapse
|
42
|
Ferguson PL, Smith RD. Proteome analysis by mass spectrometry. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:399-424. [PMID: 12574065 DOI: 10.1146/annurev.biophys.32.110601.141854] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The coupling of high-performance mass spectrometry instrumentation with highly efficient chromatographic and electrophoretic separations has enabled rapid qualitative and quantitative analysis of thousands of proteins from minute samples of biological materials. Here, we review recent progress in the development and application of mass spectrometry-based techniques for the qualitative and quantitative analysis of global proteome samples derived from whole cells, tissues, or organisms. Techniques such as multidimensional peptide and protein separations coupled with mass spectrometry, accurate mass measurement of peptides from global proteome digests, and mass spectrometric characterization of intact proteins hold great promise for characterization of highly complex protein mixtures. Advances in chemical tagging and isotope labeling techniques have enabled quantitative analysis of proteomes, and highly specific isolation strategies have been developed aimed at selective analysis of posttranslationally modified proteins.
Collapse
Affiliation(s)
- P Lee Ferguson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
43
|
Strittmatter EF, Ferguson PL, Tang K, Smith RD. Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:980-991. [PMID: 12954166 DOI: 10.1016/s1044-0305(03)00146-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe the application of capillary liquid chromatography (LC) time-of-flight (TOF) mass spectrometric instrumentation for the rapid characterization of microbial proteomes. Previously (Lipton et al., Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11049) the peptides from a series of growth conditions of Deinococcus radiodurans have been characterized using capillary LC MS/MS and accurate mass measurements which are captured as an accurate mass and time (AMT) tag database. Using this AMT tag database, detected peptides can be assigned using measurements obtained on a TOF due to the additional use of elution time data as a constraint. When peptide matches are obtained using AMT tags (i.e., using both constraints) unique matches of a mass spectral peak occurs 88% of the time. Not only are AMT tag matches unique in most cases, the coverage of the proteome is high; approximately 3500 unique peptide AMT tags are found on average per capillary LC run. From the results of the AMT tag database search, approximately 900 ORFs detected using LC-TOFMS, with approximately 500 ORFs covered by at least two AMT tags. These results indicate that AMT database searches with modest mass and elution time criteria can provide proteomic information for approximately one thousand proteins in a single run of <3 h. The advantage of this method over using MS/MS based techniques is the large number of identifications that occur in a single experiment as well as the basis for improved quantitation. For MS/MS experiments, the number of peptide identifications is severely restricted because of the time required to dissociate the peptides individually. These results demonstrate the utility of the AMT tag approach using capillary LC-TOF MS instruments, and also show that AMT tags developed using other instrumentation can be effectively utilized.
Collapse
Affiliation(s)
- Eric F Strittmatter
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
44
|
Heller M, Mattou H, Menzel C, Yao X. Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2003; 14:704-718. [PMID: 12837592 DOI: 10.1016/s1044-0305(03)00207-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Quantitative or comparative proteome analysis was initially performed with 2-dimensional gel electrophoresis with the inherent disadvantages of being biased towards certain proteins and being labor intensive. Alternative mass spectrometry-based approaches in conjunction with gel-free protein/peptide separation have been developed in recent years using various stable isotope labeling techniques. Common to all these techniques is the incorporation, biosynthetically or chemically, of a labeling moiety having either a natural isotope distribution of hydrogen, carbon, oxygen, or nitrogen (light form) or being enriched with heavy isotopes like deuterium, (13)C, (18)O, or (15)N, respectively. By mixing equal amounts of a control sample possessing for instance the light form of the label with a heavy-labeled case sample, differentially labeled peptides are detected by mass spectrometric methods and their intensities serve as a means for direct relative protein quantification. While each of the different labeling methods has its advantages and disadvantages, the endoprotease (16)O-to-(18)O catalyzed oxygen exchange at the C-terminal carboxylic acid is extremely promising because of the specificity assured by the enzymatic reaction and the labeling of essentially every protease-derived peptide. We show here that this methodology is applicable to complex biological samples such as a subfraction of human plasma. Furthermore, despite the relatively small mass difference of 4 Da between the two labeled forms, corresponding to the exchange of two oxygen atoms by two (18)O isotopes, it is possible to quantify differentially labeled proteins on an ion trap mass spectrometer with a mass resolution of about 2000 in automated data dependent LC-MS/MS acquisition mode. Post column sample deposition on a MALDI target parallel to on-line ESI-MS/MS enables the analysis of the same compounds by means of ESI- and MALDI-MS/MS. This has the potential to increase the confidence in the quantification results as well as to increase the sequence coverage of potentially interesting proteins by complementary peptide ionization techniques. Additionally the paired y-ion signals in tandem mass spectra of (16)O/(18)O-labeled peptide pairs provide a means to confirm automatic protein identification results or even to assist de novo sequencing of yet unknown proteins.
Collapse
|
45
|
Romijn EP, Krijgsveld J, Heck AJR. Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics. J Chromatogr A 2003; 1000:589-608. [PMID: 12877191 DOI: 10.1016/s0021-9673(03)00178-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Conventional proteomics makes use of two-dimensional gel electrophoresis followed by mass spectrometric analysis of typtic fragments derived from in-gel digestion of proteins. Although being a very strong technique capable of separating and visualizing hundreds of proteins, 2D-gel electrophoresis has some well-documented disadvantages as well. More recently, liquid chromatographic-(tandem) mass spectrometric techniques have been developed to overcome some of the shortcomings of 2D-gel electrophoresis. In this review we have described several recent applications of liquid chromatography-(tandem) mass spectrometry in the field of proteomics and especially in the field of membrane proteomics, quantitative proteomics and in the analysis of post-translational modifications.
Collapse
Affiliation(s)
- Edwin P Romijn
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | |
Collapse
|
46
|
Stable isotopic labeling and mass spectrometry as a means to determine differences in protein expression. Trends Analyt Chem 2003. [DOI: 10.1016/s0165-9936(03)00505-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2003; 2:299-314. [PMID: 12766231 DOI: 10.1074/mcp.m300021-mcp200] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to identify and compare the protein content of very low quantity samples of high complexity, a protocol has been established that combines the differential profiling strength of a new cleavable 13C isotope-coded affinity tag (cICAT) reagent with the high sequence coverage provided by multidimensional liquid chromatography and two modes of tandem mass spectrometry. Major objectives during protocol optimization were to minimize sample losses and establish a robust procedure that employs volatile buffer systems that are highly compatible with mass spectrometry. Cleavable ICAT-labeled tryptic peptides were separated from nonlabeled peptides by avidin affinity chromatography. Subsequently, peptide samples were analyzed by nanoflow liquid chromatography electrospray ionization tandem mass spectrometry and liquid chromatography matrix-assisted laser desorption/ionization tandem mass spectrometry. The use of two ionization/instrumental configurations led to complementary peptide identifications that increased the confidence of protein assignments. Examples that illustrate the power of this strategy are taken from two different projects: i) immunoaffinity purified complexes containing the prion protein from the murine brain, and ii) human tracheal epithelium gland secretions. In these studies, a large number of novel proteins were identified using stringent match criteria, in addition to many that had been identified in previous experiments. In the latter case, the ICAT method produced significant new information on changes that occur in protein expression levels in a patient suffering from cystic fibrosis.
Collapse
Affiliation(s)
- Kirk C Hansen
- Department of Pharmaceutical Chemistry, Mass Spectrometry Facility, University of California San Francisco, San Francisco, California 94143-0446, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AKA, Hamon C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 2003; 75:1895-904. [PMID: 12713048 DOI: 10.1021/ac0262560] [Citation(s) in RCA: 1799] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.
Collapse
Affiliation(s)
- Andrew Thompson
- Proteome Sciences, Coveham House, Downside Bridge Road, Cobham, Surrey, KT11 3EP, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R. The study of macromolecular complexes by quantitative proteomics. Nat Genet 2003; 33:349-55. [PMID: 12590263 DOI: 10.1038/ng1101] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/19/2003] [Indexed: 11/08/2022]
Abstract
We describe a generic strategy for determining the specific composition, changes in the composition, and changes in the abundance of protein complexes. It is based on the use of isotope-coded affinity tag (ICAT) reagents and mass spectrometry to compare the relative abundances of tryptic peptides derived from suitable pairs of purified or partially purified protein complexes. In a first application, the genuine protein components of a large RNA polymerase II (Pol II) preinitiation complex (PIC) were distinguished from a background of co-purifying proteins by comparing the relative abundances of peptides derived from a control sample and the specific complex that was purified from nuclear extracts by a single-step promoter DNA affinity procedure. In a second application, peptides derived from immunopurified STE12 protein complexes isolated from yeast cells in different states were used to detect quantitative changes in the abundance of the complexes, and to detect dynamic changes in the composition of the samples. The use of quantitative mass spectrometry to guide identification of specific complex components in partially purified samples, and to detect quantitative changes in the abundance and composition of protein complexes, provides the researcher with powerful new tools for the comprehensive analysis of macromolecular complexes.
Collapse
Affiliation(s)
- Jeffrey A Ranish
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103-8904, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Griffin TJ, Lock CM, Li XJ, Patel A, Chervetsova I, Lee H, Wright ME, Ranish JA, Chen SS, Aebersold R. Abundance ratio-dependent proteomic analysis by mass spectrometry. Anal Chem 2003; 75:867-74. [PMID: 12622378 DOI: 10.1021/ac026127j] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of quantitative proteomics is to determine the identity and relative quantity of each protein present in two or more complex protein samples. Here we describe a novel approach to quantitative proteomics. It is based on a highly accurate algorithm for the automated quantification of chromatographically fractionated, isotope-coded affinity-tagged peptides and MALDI quadrupole time-of-flight tandem mass spectrometry for their identification. The method is capable of detecting and selectively identifying those proteins within a complex mixture that show a difference in relative abundance. We demonstrate the effectiveness and the versatility of this approach in the analysis of a standard protein mixture, protein expression profiling in a human prostate cancer cell line model, and identification of the specific components of the multiprotein transcriptional machinery in S. cerevisiae.
Collapse
Affiliation(s)
- Timothy J Griffin
- Institute for Systems Biology, 1441 North 34th Street, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|