1
|
Fu R, Guo Y, Zhao L, Cheng X, Qin X, Xu W, Zhang Y, Shi R, Zhang Z, Xu S. Buyang huanwu decoction alleviates stroke-induced immunosuppression in MCAO mice by reducing splenic T cell apoptosis triggered by AIM2 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118474. [PMID: 38906338 DOI: 10.1016/j.jep.2024.118474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke is a serious disabling and fatal disease that places a heavy burden on the world. Stroke induces a state of systemic immunosuppression that is strongly associated with an increased risk of infection and severe outcomes. Buyang Huanwu Decoction (BYHWD) is an ancient Chinese traditional formula with a good clinical and experimental basis. However, the role of BYHWD on post-stroke immunomodulation, especially immunosuppression, is unclear. AIM OF THE STUDY The aim of this study was to investigate the pharmacological mechanism of BYHWD to alleviate ischemic stroke by analyzing splenic T cells apoptosis triggered by the AIM2 inflammasome activation cascade. MATERIALS AND METHODS An ischemic stroke model in C57BL/6 J mice was constructed using the MCAO method. The mNSS test and the hanging wire test were conducted to evaluate neurological impairment in mice. Histopathological damage was visualized by Nissl staining and HE staining. The protective effects of BYHWD on the spleen were determined by splenic index and spleen HE staining. The inhibition of AIM2 inflammasome cascade by BYHWD were explored through immunofluorescence (IF), flow cytometry, enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Flow cytometry was used to assess the apoptosis of splenic T cells. RESULTS BYHWD significantly reduced infarct size, improved neurological function scores, and alleviated histopathological damage in middle cerebral artery occlusion (MCAO) mice. At the same time, BYHWD salvaged spleen atrophy. BYHWD significantly ameliorated apoptosis of splenic T lymphocytes. Key proteins and factors in the AIM2/IL-1β/FasL/Fas axis are effectively inhibited from expression after BYHWD treatment. CONCLUSION It is the first study to demonstrate that BYHWD can improve stroke-induced immunosuppression by down-regulating Fas-dependent splenic T-cell apoptosis triggered by peripheral AIM2 inflammasome-driven signaling cascade.
Collapse
Affiliation(s)
- Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xueqi Cheng
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoli Qin
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Shi
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhijing Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
2
|
Pilz M, Cavelius P, Qoura F, Awad D, Brück T. Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnol Adv 2023; 67:108210. [PMID: 37460047 DOI: 10.1016/j.biotechadv.2023.108210] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.
Collapse
Affiliation(s)
- Melania Pilz
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Philipp Cavelius
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Farah Qoura
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| | - Thomas Brück
- Werner Siemens-Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), 85748 Garching, Germany.
| |
Collapse
|
3
|
Kong L, Wu X, Cheng Y, Liu S, Liu K, Li C. The prediction effects of thyroid function in the severity of Guillain-Barré syndrome. Neurol Sci 2022; 43:5017-5028. [DOI: 10.1007/s10072-022-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
4
|
Activation-induced cell death in CAR-T cell therapy. Hum Cell 2022; 35:441-447. [PMID: 35032297 DOI: 10.1007/s13577-022-00670-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/05/2022] [Indexed: 01/30/2023]
Abstract
Engineered T cells expressing chimeric antigen receptors (CARs) with tumor specificity have shown remarkable therapeutic effects on hematologic malignancies. However, CAR-T cells are less effective on solid tumors mainly due to the weak persistence of CAR-T cells, which might be caused by T cell death. Significant activation-induced cell death (AICD) of CAR-T cells was triggered by repeated antigen stimulation. AICD of T cell is characterized by the upregulation of death receptors and low persistence of T cells. Understanding the mechanism of AICD is crucial to improve the anti-tumor effect of CAR-T cells against solid tumors. Many approaches have been applied in CAR-T cell modification to enhance their anti-apoptosis ability. In this review, we summarized the molecular mechanisms of AICD in CAR-T cells and the progresses of anti-AICD in CAR-T cells therapy.
Collapse
|
5
|
Jiang C, Zhao ML, Ramos L, Dobaczewska K, Herbert R, Hobbie K, Mikulski Z, Verkoczy L, Diaz M. The Role of IgM Antibodies in T Cell Lymphoma Protection in a Novel Model Resembling Anaplastic Large Cell Lymphoma. THE JOURNAL OF IMMUNOLOGY 2021; 206:2468-2477. [PMID: 33883189 DOI: 10.4049/jimmunol.2001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
MRL/lpr mice typically succumb to immune complex-mediated nephritis within the first year of life. However, MRL/lpr mice that only secrete IgM Abs because of activation-induced deaminase deficiency (AID-/-MRL/lpr mice) experienced a dramatic increase in survival. Further crossing of these mice to those incapable of making secretory IgM (μS mice) generated mice lacking any secreted Abs but with normal B cell receptors. Both strains revealed no kidney pathology, yet Ab-deficient mice still experienced high mortality. In this article, we report Ab-deficient MRL/lpr mice progressed to high-grade T cell lymphoma that can be reversed with injection of autoreactive IgM Abs or following adoptive transfer of IgM-secreting MRL/lpr B cells. Anti-nuclear Abs, particularly anti-dsDNA IgM Abs, exhibited tumor-killing activities against a murine T cell lymphoma cell line. Passive transfers of autoreactive IgM Abs into p53-deficient mice increased survival by delaying onset of T cell lymphoma. The lymphoma originated from a double-negative aberrant T cell population seen in MRL/lpr mice and most closely resembled human anaplastic large cell lymphoma. Combined, these results strongly implicate autoreactive IgM Abs in protection against T cell lymphoma.
Collapse
Affiliation(s)
- Chuancang Jiang
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Ming-Lang Zhao
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Luis Ramos
- San Diego Biomedical Research Institute, San Diego, CA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | - Ronald Herbert
- Cellular and Molecular Pathology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Kristen Hobbie
- Integrated Laboratory Systems, Research Triangle Park, NC
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA
| | | | - Marilyn Diaz
- Somatic Hypermutation Group, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC .,San Diego Biomedical Research Institute, San Diego, CA
| |
Collapse
|
6
|
Roth S, Cao J, Singh V, Tiedt S, Hundeshagen G, Li T, Boehme JD, Chauhan D, Zhu J, Ricci A, Gorka O, Asare Y, Yang J, Lopez MS, Rehberg M, Bruder D, Zhang S, Groß O, Dichgans M, Hornung V, Liesz A. Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade. Immunity 2021; 54:648-659.e8. [PMID: 33667383 DOI: 10.1016/j.immuni.2021.02.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023]
Abstract
Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1β (IL-1β) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.
Collapse
Affiliation(s)
- Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Vikramjeet Singh
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gabriel Hundeshagen
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Julia D Boehme
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
| | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jie Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Jun Yang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Mary S Lopez
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Markus Rehberg
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dunja Bruder
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Olaf Groß
- Institute of Neuropathology, Medical Center, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Freiburg, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Ghare SS, Chilton PM, Rao AV, Joshi-Barve S, Peyrani P, Reyes Vega A, McClain CJ, Bryant K, Cook RL, Freiberg M, Barve S. Epigenetic Mechanisms Underlying HIV-Infection Induced Susceptibility of CD4+ T Cells to Enhanced Activation-Induced FasL Expression and Cell Death. J Acquir Immune Defic Syndr 2021; 86:128-137. [PMID: 33093334 PMCID: PMC8384352 DOI: 10.1097/qai.0000000000002526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic immune activation and CD4 T cell depletion are significant pathogenic features of HIV infection. Expression of Fas ligand (FasL), a key mediator of activation-induced cell death in T cells, is elevated in people living with HIV-1 infection (PLWH). However, the epigenetic mechanisms underlying the enhanced induction of FasL expression in CD4 T lymphocytes in PLWH are not completely elucidated. Hence, the current work examined the effect of HIV infection on FasL promoter-associated histone modifications and transcriptional regulation in CD4 T lymphocytes in PLWH. METHOD Flow cytometric analysis was performed to examine the Fas-FasL expression on total CD4 T cells and naïve/memory CD4 T cell subsets. Epigenetic FasL promoter histone modifications were investigated by chromatin immunoprecipitation-quantitative real-time polymerase chain reaction analysis using freshly isolated total CD4 T lymphocytes from HIV-1 infected and noninfected individuals. RESULTS All naïve/memory CD4 T cell subsets from PLWH showed markedly greater frequency of FasL expression. Notably, examination of functional outcome of FasL/Fas co-expression demonstrated the preferential susceptibility of Tcm and Tem subsets to activation-induced apoptosis. Importantly, these CD4 T cells collectively demonstrated a distinct FasL promoter histone profile involving a coordinated cross-talk between histone H3 modifications leading to enhanced FasL gene expression. Specifically, levels of transcriptionally permissive histone H3K4-trimethylation (H3K4Me3) and histone H3K9-acetylation (H3K9Ac) were increased, with a concomitant decrease in the repressive H3K9-trimethylation (H3K9Me3). CONCLUSION The present work demonstrates that epigenetic mechanisms involving promoter-histone modifications regulate transcriptional competence and FasL expression in CD4 T cells from PLWH and render them susceptible to activation-induced cell death.
Collapse
Affiliation(s)
- Smita S. Ghare
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Paula M. Chilton
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Aakarsha V. Rao
- Department of Medicine, University of Louisville, Louisville, KY
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Paula Peyrani
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Andrea Reyes Vega
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| | - Kendall Bryant
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD
| | - Robert L. Cook
- Department of Epidemiology and Biostatistics, University of Florida, Gainesville, FL
| | - Mathew Freiberg
- Department of Medicine, Vanderbilt University Medical Center
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY
- University of Louisville Alcohol Research Center (ULARC), University of Louisville, Louisville, KY
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
| |
Collapse
|
8
|
Bas N, Kayar NA, Baba ZF, Avunduk MC, Haliloğlu S, Alptekin NÖ. Systemic treatment with alpha-tocopherol and/or sodium selenite decreases the progression of experimental periodontitis. Clin Oral Investig 2020; 25:2677-2688. [PMID: 32986166 DOI: 10.1007/s00784-020-03579-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/10/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the effects of sodium selenite (Se) and/or α-tocopherol (αT) applications on the alveolar bone loss (ABL), the number of gingival collagen fibers, inducible nitric oxide synthase (iNOS)+ and CD95+ cell numbers, and serum cytokine concentrations in experimental periodontitis in rats. MATERIALS AND METHODS Forty Sprague Dawley rats were divided into four groups of ten as follows: group A: Se group, group B: αT group, group C: Se and αT combined group, and group D: control group (intraperitoneal (IP) saline injection applied). Using the image analysis method in the connective tissue under the connective epithelium, the numbers of iNOS, CD95 positive cells, and collagen fibers were counted. ELISA kits were used to test the concentrations of serum interleukin (IL)-1β, IL-6, and IL-4. RESULTS The combination of Se and αT (group C) suppressed ABL compared with the control group (group D) (P < 0.05). In group A (Se), the number of iNOS+ cells was smaller than in group D (P < 0.05). CONCLUSION Se has been concluded to inhibit inflammation of the gum due to iNOS. Se and αT can have a remarkable important role in preventing alveolar bone loss, and particularly in combination. CLINICAL RELEVANCE Se and/or αT application may be useful in preventing the destruction of periodontal tissue and treatment of periodontal disease.
Collapse
Affiliation(s)
- Nurgül Bas
- Kayseri Nimet Bayraktar Oral and Dental Health Center, Republic of Turkey Ministry of Health, Kayseri, Turkey
| | - Nezahat Arzu Kayar
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, 07058, Antalya, Turkey.
| | - Z Füsun Baba
- Patology Laboratory, Acıbadem International Hospital, İstanbul, Turkey
| | - Mustafa Cihat Avunduk
- Department of Pathology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Seyfullah Haliloğlu
- Department of Biochemistry, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Nilgün Özlem Alptekin
- Department of Periodontology, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|
9
|
Klatt C, Krüger I, Zey S, Krott KJ, Spelleken M, Gowert NS, Oberhuber A, Pfaff L, Lückstädt W, Jurk K, Schaller M, Al-Hasani H, Schrader J, Massberg S, Stark K, Schelzig H, Kelm M, Elvers M. Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis. J Clin Invest 2018; 128:3906-3925. [PMID: 29952767 DOI: 10.1172/jci92077] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/21/2018] [Indexed: 12/16/2022] Open
Abstract
Red blood cells (RBCs) influence rheology, and release ADP, ATP, and nitric oxide, suggesting a role for RBCs in hemostasis and thrombosis. Here, we provide evidence for a significant contribution of RBCs to thrombus formation. Anemic mice showed enhanced occlusion times upon injury of the carotid artery. A small population of RBCs was located to platelet thrombi and enhanced platelet activation by a direct cell contact via the FasL/FasR (CD95) pathway known to induce apoptosis. Activation of platelets in the presence of RBCs led to platelet FasL exposure that activated FasR on RBCs responsible for externalization of phosphatidylserine (PS) on the RBC membrane. Inhibition or genetic deletion of either FasL or FasR resulted in reduced PS exposure of RBCs and platelets, decreased thrombin generation, and reduced thrombus formation in vitro and protection against arterial thrombosis in vivo. Direct cell contacts between platelets and RBCs via FasL/FasR were shown after ligation of the inferior vena cava (IVC) and in surgical specimens of patients after thrombectomy. In a flow restriction model of the IVC, reduced thrombus formation was observed in FasL-/- mice. Taken together, our data reveal a significant contribution of RBCs to thrombosis by the FasL/FasR pathway.
Collapse
Affiliation(s)
- Christoph Klatt
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Saskia Zey
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Kim-Jürgen Krott
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Martina Spelleken
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Nina Sarah Gowert
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Alexander Oberhuber
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Lena Pfaff
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität, Munich, Germany
| | - Wiebke Lückstädt
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany and Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, University Düsseldorf, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz-Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität, Munich, Germany
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig Maximilians-Universität, Munich, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany and Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, University Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Düsseldorf, Germany
| |
Collapse
|
10
|
Sui BD, Hu CH, Zheng CX, Shuai Y, He XN, Gao PP, Zhao P, Li M, Zhang XY, He T, Xuan K, Jin Y. Recipient Glycemic Micro-environments Govern Therapeutic Effects of Mesenchymal Stem Cell Infusion on Osteopenia. Theranostics 2017; 7:1225-1244. [PMID: 28435461 PMCID: PMC5399589 DOI: 10.7150/thno.18181] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/24/2016] [Indexed: 12/22/2022] Open
Abstract
Therapeutic effects of mesenchymal stem cell (MSC) infusion have been revealed in various human disorders, but impacts of diseased micro-environments are only beginning to be noticed. Donor diabetic hyperglycemia is reported to impair therapeutic efficacy of stem cells. However, whether recipient diabetic condition also affects MSC-mediated therapy is unknown. We and others have previously shown that MSC infusion could cure osteopenia, particularly in ovariectomized (OVX) mice. Here, we discovered impaired MSC therapeutic effects on osteopenia in recipient type 1 diabetes (T1D). Through intensive glycemic control by daily insulin treatments, therapeutic effects of MSCs on osteopenia were maintained. Interestingly, by only transiently restoration of recipient euglycemia using single insulin injection, MSC infusion could also rescue T1D-induced osteopenia. Conversely, under recipient hyperglycemia induced by glucose injection in OVX mice, MSC-mediated therapeutic effects on osteopenia were diminished. Mechanistically, recipient hyperglycemic micro-environments reduce anti-inflammatory capacity of MSCs in osteoporotic therapy through suppressing MSC interaction with T cells via the Adenosine monophosphate-activated protein kinase (AMPK) pathway. We further revealed in diabetic micro-environments, double infusion of MSCs ameliorated osteopenia by anti-inflammation, attributed to the first transplanted MSCs which normalized the recipient glucose homeostasis. Collectively, our findings uncover a previously unrecognized role of recipient glycemic conditions controlling MSC-mediated therapy, and unravel that fulfillment of potent therapeutic effects of MSCs requires tight control of recipient micro-environments.
Collapse
|
11
|
A Potential of sFasL in Preventing Gland Injury in Sjogren's Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5981432. [PMID: 28326325 PMCID: PMC5343225 DOI: 10.1155/2017/5981432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022]
Abstract
Fas and its ligand FasL, members of tumor necrosis factor receptor superfamily, have been implicated in the process of cell apoptosis. FasL consists of two forms, membrane FasL (mFasL) and soluble FasL (sFasL). sFasL can be produced by mFasL cleaved by matrix metalloproteinases (MMP) and also reveals a role for binding to Fas which is expressed on cell surface. Although Fas/FasL axis has been implicated in a variety of diseases, its role in Sjogren's syndrome still remains ill defined. In this study, we investigated the potential of sFasL in the pathogenesis of Sjogren's syndrome (SS). We found that the serum levels of sFasL in SS patients were significantly lower than healthy subjects. Moreover, serum levels of sFasL in patients with mild disease activity were higher than patients with severe disease activity. There is a positive correlation of the serum level of sFasL with uptake index of parotid gland in our expectation. In addition, liver injury involvement in SS patients showed decreased level of sFasL. Furthermore, we here also observed that the protective cytokine IL-10 expression was positively correlated with sFasL expression. Thus, our results here suggest a potential of sFasL in maintaining gland organ homeostasis.
Collapse
|
12
|
Schröder B, Saftig P. Intramembrane proteolysis within lysosomes. Ageing Res Rev 2016; 32:51-64. [PMID: 27143694 DOI: 10.1016/j.arr.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 11/26/2022]
Abstract
Regulated intramembrane proteolysis is of pivotal importance in a diverse set of developmental and physiological processes. Altered intramembrane substrate turnover may be associated with neurodegeneration, cancer and impaired immune function. In this review we will focus on the intramembrane proteases which have been localized in the lysosomal membrane. Members of the γ-secretase complex and γ-secretase activity are found in the lysosomal membrane and are discussed to contribute to intracellular amyloid β production. Mutant or deficient γ-secretase may cause disturbed lysosomal function. The signal peptide peptidase-like (SPPL) protease 2a is a lysosomal membrane component and cleaves CD74, the invariant chain of the MHC II complex, as well as FasL, TNF, ITM2B and TMEM106, type II transmembrane proteins involved in the regulation of immunity and neurodegeneration. Therefore, it can be concluded, that not only proteolysis within the lysosomal lumen but also within lysosomal membranes regulates important cellular functions and contributes essentially to proteostasis of membrane proteins what may become increasingly compromised in the aged individual.
Collapse
|
13
|
Otsuki T, Miura Y, Nishimura Y, Hyodoh F, Takata A, Kusaka M, Katsuyama H, Tomita M, Ueki A, Kishimoto T. Alterations of Fas and Fas-Related Molecules in Patients with Silicosis. Exp Biol Med (Maywood) 2016; 231:522-33. [PMID: 16636300 DOI: 10.1177/153537020623100506] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Persons with silicosis have not only respiratory disorders but also autoimmune diseases. To clarify the mechanisms involved in the dysregulation of autoimmunity found in patients with silicosis, we have been focusing on Fas and Fas-related molecules in the Fas-mediated apoptotic pathway, because Fas is one of the most important molecules regulating autoimmunity involving T cells. Our findings showed that patients with silicosis exhibited elevated serum soluble Fas levels, an increased relative expression of the soluble fas and dcr3 genes in peripheral blood mononuclear cells, high levels of other variant messages of the fas transcript, relatively decreased expression of genes encoding several physiological inhibitors (such as survivin and toso), and dominancy of lower-membrane Fas expressers in lymphocytes, which transcribe soluble fas dominantly, compared with soluble fas transcription in healthy donors. These findings are consistent with known features regarding immunological factors, such as serum immunogulobulin G levels and the titer of anti-nuclear autoantibodies in silicosis. In addition, anti-caspase 8 autoantibody and anti-Fas autoantibody were detected in serum specimens from patients with silicosis, and a functional assay showed that anti-Fas antibody stimulated Fas-mediated apoptosis. We hypothesize that there are two subpopulations of silicosis lymphocytes. One is a long-term surviving fraction that includes self-recognizing clones showing lower levels of membrane Fas and inhibition of Fas/Fas ligand binding in extracellular spaces. The other subpopulation exhibits apoptosis caused by silica and silicates, is recruited from bone marrow, shows higher levels of membrane Fas, and is sensitive to anti-Fas autoantibody. Further investigation should be performed to confirm the effects of silica and silicates on the human immune system.
Collapse
Affiliation(s)
- Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama 7010192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ghare SS, Donde H, Chen WY, Barker DF, Gobejishvilli L, McClain CJ, Barve SS, Joshi-Barve S. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine. Toxicol In Vitro 2016; 35:66-76. [PMID: 27238871 PMCID: PMC4938746 DOI: 10.1016/j.tiv.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Hridgandh Donde
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Leila Gobejishvilli
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
15
|
Sánchez MF, Levi V, Weidemann T, Carrer DC. Agonist mobility on supported lipid bilayers affects Fas mediated death response. FEBS Lett 2015; 589:3527-33. [PMID: 26484594 DOI: 10.1016/j.febslet.2015.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 11/29/2022]
Abstract
Extrinsic apoptosis is initiated by recognition and clustering of the single-pass transmembrane proteins Fas ligand and Fas expressed at the surface of closely apposed lymphocytes and target cells, respectively. Since Fas-mediated death response was mainly studied with soluble antibodies, the mobility constraints for receptor activation by a membrane embedded agonist is not well understood. We explored this influence by stimulating apoptosis on functionalized supported lipid bilayers, where we quantified agonist mobility by z-scan fluorescence correlation spectroscopy. Using different lipid compositions, we show that the apoptotic response correlates with increased lateral mobility of the agonist in the lipid bilayer.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba, Friuli 2434, CC389, 5000 Córdoba, Argentina
| | - Valeria Levi
- Departamento de Química Biológica-IQUIBICEN, Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Thomas Weidemann
- Max Planck Institute of Biochemistry, Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba, Friuli 2434, CC389, 5000 Córdoba, Argentina.
| |
Collapse
|
16
|
Grygorczuk S, Osada J, Moniuszko A, Świerzbińska R, Kondrusik M, Zajkowska J, Dunaj J, Dąbrowska M, Pancewicz S. Increased expression of Fas receptor and Fas ligand in the culture of the peripheral blood mononuclear cells stimulated with Borrelia burgdorferi sensu lato. Ticks Tick Borne Dis 2014; 6:189-97. [PMID: 25541498 DOI: 10.1016/j.ttbdis.2014.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Apoptosis of the lymphocytes plays an essential role in the regulation of inflammatory/immune responses and its abnormalities may contribute to a chronic infection, persistent inflammation and autoimmunity. Its role in the pathogenesis of the late Lyme borreliosis manifestations has not been studied so far. We have measured Th lymphocyte apoptosis rate, membrane expression of pro-apoptotic Fas receptor, and supernatant concentrations of selected soluble pro- and anti-apoptotic mediators in cultures of peripheral blood mononuclear cells from 16 patients with disseminated Lyme borreliosis (6 with osteoarticular symptoms, 7 with neuroborreliosis and 3 with acrodermatitis chronica atrophicans) and 8 healthy controls. The cultures stimulated for 48h with live Borrelia burgdorferi sensu stricto, B. garinii or B. afzelii spirochetes. Fraction of the apoptotic Th (CD3+CD4+) lymphocytes and expression of Fas in this cell population was measured cytometrically and concentrations of soluble Fas, soluble Fas ligand, IL-10, IL-12 and TGF-β in culture supernatant with ELISA assays. The expression of IL-10, soluble and membrane Fas and soluble Fas ligand was increased under stimulation and higher in the presence of B. burgdorferi sensu stricto than the other species. Apoptosis rate was not affected. There was no difference between Lyme borreliosis patients and controls. IL-10 concentration correlated negatively with the membrane Fas expression and apoptosis under stimulation with B. afzelii and B. garinii. Expression of Fas/FasL system is up-regulated under stimulation with B. burgdorferi, but without corresponding increase in lymphocyte apoptosis. Variable responses observed with different B. burgdorferi species may reflect differences in the pathogenesis of the infection in vivo.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland.
| | - Joanna Osada
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Waszyngtona 15A, 15-269 Białystok, Poland
| | - Anna Moniuszko
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Renata Świerzbińska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Maciej Kondrusik
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Joanna Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Justyna Dunaj
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland
| | - Milena Dąbrowska
- Department of Hematologic Diagnostics, Medical University in Białystok, ul. Waszyngtona 15A, 15-269 Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, ul. Żurawia 14, 15-540 Białystok, Poland
| |
Collapse
|
17
|
Ghare SS, Joshi-Barve S, Moghe A, Patil M, Barker DF, Gobejishvili L, Brock GN, Cave M, McClain CJ, Barve SS. Coordinated histone H3 methylation and acetylation regulate physiologic and pathologic fas ligand gene expression in human CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:412-21. [PMID: 24899502 PMCID: PMC5096587 DOI: 10.4049/jimmunol.1400055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation-induced Fas ligand (FasL) mRNA expression in CD4+ T cells is mainly controlled at transcriptional initiation. To elucidate the epigenetic mechanisms regulating physiologic and pathologic FasL transcription, TCR stimulation-responsive promoter histone modifications in normal and alcohol-exposed primary human CD4+ T cells were examined. TCR stimulation of normal and alcohol-exposed cells led to discernible changes in promoter histone H3 lysine trimethylation, as documented by an increase in the levels of transcriptionally permissive histone 3 lysine 4 trimethylation and a concomitant decrease in the repressive histone 3 lysine 9 trimethylation. Moreover, acetylation of histone 3 lysine 9 (H3K9), a critical feature of the active promoter state that is opposed by histone 3 lysine 9 trimethylation, was significantly increased and was essentially mediated by the p300-histone acetyltransferase. Notably, the degree of these coordinated histone modifications and subsequent recruitment of transcription factors and RNA polymerase II were significantly enhanced in alcohol-exposed CD4+ T cells and were commensurate with the pathologic increase in the levels of FasL mRNA. The clinical relevance of these findings is further supported by CD4+ T cells obtained from individuals with a history of heavy alcohol consumption, which demonstrate significantly greater p300-dependent H3K9 acetylation and FasL expression. Overall, these data show that, in human CD4+ T cells, TCR stimulation induces a distinct promoter histone profile involving a coordinated cross-talk between histone 3 lysine 4 and H3K9 methylation and acetylation that dictates the transcriptional activation of FasL under physiologic, as well as pathologic, conditions of alcohol exposure.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Akshata Moghe
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Madhuvanti Patil
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Leila Gobejishvili
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Guy N Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202
| | - Matthew Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
18
|
Li-Weber M. Molecular mechanisms and anti-cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines). Int J Cancer 2014; 137:1791-9. [PMID: 24895251 DOI: 10.1002/ijc.29013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
Rocaglamides (= flavaglines) are potent natural anti-cancer phytochemicals that inhibit cancer growth at nanomolar concentrations by the following mechanisms: (1) inhibition of translation initiation via inhibition of phosphorylation of the mRNA cap-binding eukaryotic translation initiation factor eIF4E and stabilization of RNA-binding of the translation initiation factor eIF4A in the eIF4F complex; (2) blocking cell cycle progression by activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway; (3) inactivation of the heat shock factor 1 (HSF1) leading to up-regulation of thioredoxin-interacting protein (TXNIP) and consequent reduction of glucose uptake and (4) induction of apoptosis through activation of the MAPK p38 and JNK and inhibition of the Ras-CRaf-MEK-ERK signaling pathway. Besides the anti-cancer activities, rocaglamides are also shown to protect primary cells from chemotherapy-induced cell death and alleviate inflammation- and drug-induced injury in neuronal tissues. This review will focus on the recently discovered molecular mechanisms of the actions of rocaglamides and highlights the benefits of using rocaglamides in cancer treatment.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
19
|
Qin X, Liu X, Shan B, Shi L, Sharma S, Wu J, Lin Y. Inhibition of eIF5A results in aberrant uterine natural killer cell function and embryo loss in mice. Am J Reprod Immunol 2014; 71:229-40. [PMID: 24382123 PMCID: PMC4030494 DOI: 10.1111/aji.12194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023] Open
Abstract
PROBLEM The role of eukaryotic initiation factor 5A (eIF5A) in feto-maternal immunotolerance is poorly understood. METHODS OF STUDY The effects of N1-guanyl-1,7-diaminoheptane (GC7), an inhibitor of eIF5A, on the proportion and function of natural killer (NK) cell subsets were investigated using flow cytometry, immunofluorescence, CCK8 assay, TUNEL assay, DNA fragmentation analysis, mitochondrial membrane potential assay, and Western blotting. RESULTS Inhibition of eIF5A by GC7 increased embryo loss and reduced the percentage of NK cells in the uterus and spleen. GC7 treatment caused inhibition of NK cell proliferation in a time- and dose-dependent manner. GC7 also induced apoptosis of NK cells. GC7 treatment increased the protein levels of FasL, bax, p53, and cleaved caspase-3. Moreover, GC7 caused loss of mitochondrial membrane potential in NK cells. CONCLUSION Inhibition of eIF5A results in aberrant NK cell function and increased embryo loss.
Collapse
Affiliation(s)
- Xiaoli Qin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaorui Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Bin Shan
- Medical Sciences, Washington State University Spokane, Spokane, WA, USA
| | - Lijuan Shi
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
20
|
Wei S, Moon HG, Zheng Y, Liang X, An CH, Jin Y. Flotillin-2 modulates fas signaling mediated apoptosis after hyperoxia in lung epithelial cells. PLoS One 2013; 8:e77519. [PMID: 24204853 PMCID: PMC3799625 DOI: 10.1371/journal.pone.0077519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022] Open
Abstract
Lipid rafts are subdomains of the cell membrane with distinct protein composition and high concentrations of cholesterol and glycosphingolipids. Raft proteins are thought to mediate diverse cellular processes including signal transduction. However, its cellular mechanisms remain unclear. Caveolin-1 (cav-1, marker protein of caveolae) has been thought as a switchboard between extracellular matrix (ECM) stimuli and intracellular signals. Flotillin-2/reggie-1(Flot-2) is another ubiquitously expressed raft protein which defines non-caveolar raft microdomains (planar raft). Its cellular function is largely uncharacterized. Our novel studies demonstrated that Flot-2, in conjunction with cav-1, played important functions on controlling cell death via regulating Fas pathways. Using Beas2B epithelial cells, we found that in contrast to cav-1, Flot-2 conferred cytoprotection via preventing Fas mediated death-inducing signaling complex (DISC) formation, subsequently suppressed caspase-8 mediated extrinsic apoptosis. Moreover, Flot-2 reduced the mitochondria mediated intrinsic apoptosis by regulating the Bcl-2 family and suppressing cytochrome C release from mitochondria to cytosol. Flot-2 further modulated the common apoptosis pathway and inhibited caspase-3 activation via up-regulating the members in the inhibitor of apoptosis (IAP) family. Last, Flot-2 interacted with cav-1 and limited its expression. Taken together, we found that Flot-2 protected cells from Fas induced apoptosis and counterbalanced the pro-apoptotic effects of cav-1. Thus, Flot-2 played crucial functions in cellular homeostasis and cell survival, suggesting a differential role of individual raft proteins.
Collapse
Affiliation(s)
- Shuquan Wei
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hyung-Geun Moon
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yijie Zheng
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chang Hyeok An
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Jin
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
PARK GABIN, KIM YEONGSEOK, LEE HYUNKYUNG, CHO DAEHO, KIM DAEJIN, HUR DAEYOUNG. CD80 (B7.1) and CD86 (B7.2) induce EBV-transformed B cell apoptosis through the Fas/FasL pathway. Int J Oncol 2013; 43:1531-40. [DOI: 10.3892/ijo.2013.2091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/16/2013] [Indexed: 11/06/2022] Open
|
22
|
Kamiński MM, Röth D, Sass S, Sauer SW, Krammer PH, Gülow K. Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1041-52. [PMID: 22429591 DOI: 10.1016/j.bbamcr.2012.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/20/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) are indispensible for T cell activation-induced expression of interleukin 2 (IL-2) and CD95 ligand (CD95L, FasL/Apo-1L) genes, and in turn, for CD95L-mediated activation-induced cell death (AICD). Here, we show that manganese superoxide dismutase (MnSOD/SOD2), a major mitochondrial antioxidative enzyme, constitutes an important control switch in the process of activation-induced oxidative signal generation in T cells. Analysis of the kinetics of T cell receptor (TCR)-triggered ROS production revealed a temporal association between higher MnSOD abundance/activity and a shut-down phase of oxidative signal generation. Transient or inducible MnSOD overexpression abrogated T cell activation-triggered mitochondrial ROS production as well as NF-κB- and AP-1-mediated transcription. Consequently, lowered expression of IL-2 and CD95L genes resulted in decreased IL-2 secretion and CD95L-dependent AICD. Moreover, upregulation of the mitochondrial MnSOD level is dependent on oxidation-sensitive transcription and not on the increase of mitochondrial mass. Thus, MnSOD-mediated negative feedback regulation of activation-induced mitochondrial ROS generation exemplifies a process of retrograde mitochondria-to-nucleus communication. Our finding underlines the critical role for MnSOD and mitochondria in the regulation of human T cell activation.
Collapse
Affiliation(s)
- Marcin Mikołaj Kamiński
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DFKZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Goren A, Gilert A, Meyron-Holtz E, Melamed D, Machluf M. Alginate encapsulated cells secreting Fas-ligand reduce lymphoma carcinogenicity. Cancer Sci 2012; 103:116-24. [PMID: 22017300 PMCID: PMC11164141 DOI: 10.1111/j.1349-7006.2011.02124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fas ligand (CD95L/APO-1) is considered as a potent anti-tumor agent due to its mediated cell death properties. We have designed a polymeric microencapsulation system, which encapsulates soluble FasL secreting cells. The encapsulated cells continuously release soluble FasL (sFasL) at the tumor site, while the device protects the encapsulated cells from the host immune system. The potential and efficacy of this system are demonstrated in vitro and in vivo for tumor inhibition. Polymeric microcapsules composed of Alginate Poly-l-lysine were optimized to encapsulate L5 secreting sFasL cells. The expression and anti-tumor activities of the sFasL were confirmed in vitro and tumor inhibition was studied in vivo in SCID mice bearing subcutaneous lymphoma tumors. In vitro, sFasL secreted by the encapsulated L5-sFasL cells was biologically active, inhibited proliferation and induced apoptotic cell death in Fas sensitive tumor cells. Mice injected with encapsulated L5-sFasL cells on the day of tumor injection or 10 days after tumor injection showed significant reduction in tumor volume, of 87% and 95%, respectively. Our findings show that encapsulated cells expressing sFasL can be used as a local device and efficiently suppress malignant Fas sensitive tumors with no side effects.
Collapse
Affiliation(s)
- Amit Goren
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
24
|
H1, a derivative of Tetrandrine, exerts anti-MDR activity by initiating intrinsic apoptosis pathway and inhibiting the activation of Erk1/2 and Akt1/2. Biochem Pharmacol 2011; 82:1593-603. [DOI: 10.1016/j.bcp.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/09/2023]
|
25
|
Braun FK, Al-Yacoub N, Plötz M, Möbs M, Sterry W, Eberle J. Nonsteroidal anti-inflammatory drugs induce apoptosis in cutaneous T-cell lymphoma cells and enhance their sensitivity for TNF-related apoptosis-inducing ligand. J Invest Dermatol 2011; 132:429-39. [PMID: 22011910 DOI: 10.1038/jid.2011.316] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cutaneous T-cell lymphomas (CTCL) form a heterogeneous group of non-Hodgkin's lymphomas of the skin. In previous studies, we had characterized CTCL cells as resistant to the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which correlated to pronounced expression of the caspase-8/-10 inhibitor c-FLIP. For identification of proapoptotic strategies in CTCL cells and for overcoming their death ligand resistance, we investigated the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) such as acetylsalicylic acid, sodium salicylate, and diclofenac (DF). These drugs strongly enhanced apoptosis, as well as decreased CTCL cell proliferation and vitality, and DF furthermore sensitized for TRAIL-induced apoptosis. Full activation of the caspase cascade (caspase-3, -8, -9) and decreased mitochondrial membrane potential were characteristic for NSAID treatment, whereas cytochrome c release was seen only for DF. Downregulation of Mcl-1 and enhanced surface expression of TRAIL were seen in response to NSAIDs. Most characteristic for apoptosis induction was the downregulation of c-FLIP. In agreement with the critical role of c-FLIP for apoptosis deficiency of CTCL cells, its overexpression decreased NSAID-mediated apoptosis and its downregulation by small hairpin RNA-enhanced apoptosis. The study provides a rationale for the use of NSAIDs as a new therapeutic option for CTCL patients. Supporting this concept, ex vivo lymphoma cells of CTCL patients also revealed significant sensitivity for NSAID treatment.
Collapse
Affiliation(s)
- Frank K Braun
- Department of Dermatology and Allergy, Skin Cancer Center Charité (HTCC), Charité-University Medical Center Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND Graft-versus-host disease (GVHD) is an important complication occurring after hematopoietic stem-cell transplantation (HSCT). Animal model studies have shown the involvement of the Fas (APO-1/CD95)/Fas-Ligand pathway in GVHD pathogenesis, but its association with cutaneous GVHD in human remains to be established. METHODS In the present study, Fas involvement in skin damage was assessed using a human skin explant model of GVHD. Fas and FasL expression were measured by immunohistochemistry and blockade of Fas pathway was investigated using an antagonistic anti-human Fas monoclonal antibody. In addition, levels of soluble Fas (sFas) were determined in the serum of patients receiving allogeneic HSCT with and without GVHD. RESULTS The results showed that Fas up-regulation in the epithelium of human skin explants correlated with graft-versus-host reaction (GVHR) in the skin explant model (P<0.001). Decreased GVHR grades were observed by using a Fas blocking monoclonal antibody. Levels of sFas were increased post-HSCT (P<0.001) but rather than being associated with the severity of GVHD, sFas levels differed with the conditioning treatments the patients received before the HSCT. CONCLUSIONS Higher GVHR grades were associated with increased Fas expression in the epithelium of the skin explants. In addition, by blocking Fas-mediated apoptosis, the GVHR grades were decreased. Our study thus shows the involvement of Fas in cutaneous GVHD damage, and supports the potential use of Fas as a therapeutic target.
Collapse
|
27
|
Fathi M, Amirghofran Z, Shahriari M. Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia. Med Oncol 2011; 29:2046-52. [PMID: 21528407 DOI: 10.1007/s12032-011-9965-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 04/18/2011] [Indexed: 01/17/2023]
Abstract
The soluble forms of Fas and its ligand (sFas and sFasL) correlate with disease progression in various malignancies. We compared serum levels of sFas and sFasL in children with acute lymphoblastic leukemia and healthy children to determine the prognostic significance of these molecules. Serum levels of sFas and sFasL were measured with an enzyme-linked immunosorbent assay in 48 patients with newly diagnosed childhood acute lymphoblastic leukemia and 38 healthy children. Cut-off values of sFas and sFasL levels were based on their levels in controls. Clinical and laboratory characteristics were recorded on admission. The mean serum concentration of sFas was 243 ± 40 pg/mL in patients and 238 ± 29 pg/mL in controls. Serum levels of sFasL were 4.33 ± 0.25 ng/mL in patients and 4.27 ± 0.11 ng/mL in controls. Neither difference was significant. Based on the cut-off value, 12.5% of the patients were positive for sFas, and 16.6% were positive for sFasL. Survival was significantly longer in sFasL-positive patients (394 ± 69.6 vs. 254 ± 24.3 days) and the duration of complete remission was also longer (380 ± 65.0 vs. 246 ± 26.0 days) than in sFasL-negative patients (P < 0.02), indicating the important role of this molecule in the response to therapy. Higher sFas levels were associated with hepatosplenomegaly (P < 0.047). In conclusion, sFasL positivity was associated with a favorable outcome in ALL patients.
Collapse
Affiliation(s)
- Mina Fathi
- Department of Immunology, Shiraz Medical School, Medicinal and Natural Products Chemistry Research Center and Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, 71345-1798 Shiraz, Iran.
| | | | | |
Collapse
|
28
|
Pro- and anti-apoptotic CD95 signaling in T cells. Cell Commun Signal 2011; 9:7. [PMID: 21477291 PMCID: PMC3090738 DOI: 10.1186/1478-811x-9-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022] Open
Abstract
The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6) is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L) to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.
Collapse
|
29
|
Abstract
Proper regulation of T cell death is of vital importance for the function of the immune system. Positive and negative selection of developing T cells in the thymus ensures the survival of only those T cells that can recognize peptides presented by self-MHC molecules and at the same time not respond to self-antigens, and thus, T cell death within the thymus is instrumental in shaping the mature T cell repertoire. The death of activated peripheral T cells is crucial for processes such as down-modulation of immune responses after clearance of infectious agents, peripheral tolerance, and maintenance of immune-privileged sites. These processes are largely proceeding due to the enhanced susceptibility of activated T cells to spontaneous, activation-, and Fas-induced apoptosis. The active metabolite of the immune regulator vitamin A, retinoic acid, has been reported to influence various types of apoptotic processes in both thymocytes and activated peripheral T cells. This chapter gives an overview of, and discusses the reported effects of vitamin A on spontaneous and activation-induced cell death of thymocytes and mature T cells, as well as on Fas-induced T cell death.
Collapse
|
30
|
Ebada SS, Lajkiewicz N, Porco JA, Li-Weber M, Proksch P. Chemistry and biology of rocaglamides (= flavaglines) and related derivatives from aglaia species (meliaceae). PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2011; 94:1-58. [PMID: 21833837 PMCID: PMC4157394 DOI: 10.1007/978-3-7091-0748-5_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sherif S. Ebada
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University of Duesseldorf, Universitaetsstrasse 1, D-40225, Duesseldorf, Germany. Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity 1, 11566 Cairo, Egypt
| | - Neil Lajkiewicz
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Commonwealth Avenue 590, Boston, MA 02215, USA
| | - John A. Porco
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Commonwealth Avenue 590, Boston, MA 02215, USA
| | - Min Li-Weber
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University of Duesseldorf, Universitaetsstrasse 1, D-40225, Duesseldorf, Germany
| |
Collapse
|
31
|
|
32
|
Li-Weber M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett 2010; 332:304-12. [PMID: 20685036 DOI: 10.1016/j.canlet.2010.07.015] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/11/2010] [Accepted: 07/13/2010] [Indexed: 01/27/2023]
Abstract
The traditional Chinese medicine (TCM) uses a combination of different natural products based on practical experiences. To better understand the therapeutic functions of TCM, large efforts have been made to identify the principle constituents of TCM and to unravel the molecular mechanisms behind the efficacy observed. This review aims to summarize research results obtained from the most intensively studied TCM phytochemical compounds namely the alkaloids Berberine, Evodiamine; anthraquinones Emodin, Aloe-emodin, Rhein; the terpenoids Artemisinin, Celastrol, Triptolide; the flavones Apigenin, Chrysin, Wogonin, Baicalein; and the cyclopenta[b]benzofuran derivatives Rocaglamide. Most of them have been originally identified as anti-inflammatory and anti-viral reagents and are now known to also possess anti-tumor activities by targeting the apoptosis pathways in cancer. This review also intends to give an overview of the mechanisms of action identified so far. These breakthrough findings may have important implications for targeted-cancer therapy and for modernization of TCM.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Soluble Fas might serve as a diagnostic tool for gastric adenocarcinoma. BMC Cancer 2010; 10:275. [PMID: 20534173 PMCID: PMC2906478 DOI: 10.1186/1471-2407-10-275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 06/10/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Fas (Apo-1/CD95) and its specific ligand (FasL) are key elements in apoptosis. They have been studied in different malignancies but there are few published studies about the soluble forms of these markers (i.e. sFas/sFasL) in gastric cancer. We have compared the serum levels of sFas/sFasL in gastric adenocarcinoma patients and cases with pre-neoplastic lesions as potential markers for early diagnosis, and investigated their relation with clinicopathological characteristics. METHODS Fifty-nine newly-diagnosed cases of gastric adenocarcinoma who had undergone gastrectomy, along with 62 endoscopically- and histologically-confirmed non-cancer individuals were enrolled in this study. sFas/sFasL serum levels were detected by Enzyme Linked Immunosurbent Assay. RESULTS Mean serum sFas level was significantly higher in gastric cancer patients than in control group (305.97 +/- 63.71 (pg/ml) vs. 92.98 +/- 4.95 (pg/ml), P < 0.001); while the mean serum level of sFasL was lower in patients with gastric adenocarcinoma (0.138 +/- 0.04 (pg/ml) vs. 0.150 +/- 0.02 (pg/ml), P < 0.001). Mean serum levels of sFas/sFasL were significantly different in both intestinal/diffuse and cardiac/non-cardiac subtypes when compared to the control group (P < 0.001). There was an increase in the serum level of sFas from the first steps of pre-neoplastic lesions to gastric adenocarcinoma (P < 0.001). Patients who had no lymph node involvement (N0) showed significantly higher serum levels of sFas compared to others (P = 0.044). CONCLUSIONS Production of sFas may play a critical role in the carcinogenesis of intestinal-type gastric cancer. sFas serum level may serve as a non-invasive tool for early diagnosis of gastric cancer.
Collapse
|
34
|
Liao YH, Qian NS, Zhang Y, Dou KF. Traumatic stress and hepatocyte apoptosis. Shijie Huaren Xiaohua Zazhi 2010; 18:1569-1576. [DOI: 10.11569/wcjd.v18.i15.1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trauma can cause stress in organisms and may promote cell apoptosis and lead to pathological damage. A variety of factors are involved in this process. The mechanisms responsible for traumatic stress-induced apoptosis are complex and controversial, especially in non-nervous organs. The liver plays a key role in metabolism and is one of the target organs of severe stress. Stress-induced hyperglycemia, calcium overload, oxidative stress, ischemia/reperfusion, inflammatory response, and immunosuppression caused by traumatic stress may lead to hepatocyte apoptosis. Thus, it is of great significance to explore the relationship between traumatic stress and hepatocyte apoptosis.
Collapse
|
35
|
Kaminski MM, Sauer SW, Klemke CD, Süss D, Okun JG, Krammer PH, Gülow K. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. THE JOURNAL OF IMMUNOLOGY 2010; 184:4827-41. [PMID: 20335530 DOI: 10.4049/jimmunol.0901662] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article shows that T cell activation-induced expression of the cytokines IL-2 and -4 is determined by an oxidative signal originating from mitochondrial respiratory complex I. We also report that ciprofloxacin, a fluoroquinolone antibiotic, exerts immunosuppressive effects on human T cells suppressing this novel mechanism. Sustained treatment of preactivated primary human T cells with ciprofloxacin results in a dose-dependent inhibition of TCR-induced generation of reactive oxygen species (ROS) and IL-2 and -4 expression. This is accompanied by the loss of mitochondrial DNA and a resulting decrease in activity of the complex I. Consequently, using a complex I inhibitor or small interfering RNA-mediated downregulation of the complex I chaperone NDUFAF1, we demonstrate that TCR-triggered ROS generation by complex I is indispensable for activation-induced IL-2 and -4 expression and secretion in resting and preactivated human T cells. This oxidative signal (H(2)O(2)) synergizes with Ca(2+) influx for IL-2/IL-4 expression and facilitates induction of the transcription factors NF-kappaB and AP-1. Moreover, using T cells isolated from patients with atopic dermatitis, we show that inhibition of complex I-mediated ROS generation blocks disease-associated spontaneous hyperexpression and TCR-induced expression of IL-4. Prolonged ciprofloxacin treatment of T cells from patients with atopic dermatitis also blocks activation-induced expression and secretion of IL-4. Thus, our work shows that the activation phenotype of T cells is controlled by a mitochondrial complex I-originated oxidative signal.
Collapse
Affiliation(s)
- Marcin M Kaminski
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Braun FK, Hirsch B, Al-Yacoub N, Dürkop H, Assaf C, Kadin ME, Sterry W, Eberle J. Resistance of cutaneous anaplastic large-cell lymphoma cells to apoptosis by death ligands is enhanced by CD30-mediated overexpression of c-FLIP. J Invest Dermatol 2009; 130:826-40. [PMID: 19890350 DOI: 10.1038/jid.2009.299] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Death ligands, including TNF-alpha, CD95L/FasL, and TRAIL, mediate safeguard mechanisms against tumor growth and critically contribute to lymphocyte homeostasis. We investigated death receptor-mediated apoptosis and CD30/CD95 crosstalk in four CD30-positive cell lines of cutaneous anaplastic large-cell lymphoma (cALCL). Whereas CD95 stimulation strongly induced apoptosis in cALCL cells, the pro-apoptotic pathways of TNF-alpha and TRAIL were completely blocked at an early step. Expression of TNF receptor 1 was lost in three of four cell lines, providing an explanation for TNF-alpha unresponsiveness. TRAIL resistance may be explained by the consistent overexpression of cellular flice inhibitory protein (c-FLIP) (four of four cell lines) and frequent loss of the pro-apoptotic Bcl-2 protein Bid (three of four cell lines). Changes at the receptor-expression level were largely ruled out. CD30/CD95 crosstalk experiments showed that CD30 ligation leads to NF-kappaB-mediated c-FLIP upregulation in cALCL cells, which in turn conferred enhanced resistance to CD95-mediated apoptosis. Knockdown of c-FLIP by a lentiviral approach enhanced basic apoptosis rates in cALCL cells and diminished the CD30-mediated suppression of apoptosis, thus proving the significance of c-FLIP in this context. These in vitro findings may be indicative of the clinical situation of cALCL. Further clarifying the defects in apoptosis pathways in cutaneous lymphomas may lead to improved therapies for these disorders.
Collapse
Affiliation(s)
- Frank K Braun
- Department of Dermatology and Allergy, Charité-University Medical Center Berlin, HTCC-Skin Cancer Center, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fecker LF, Schmude M, Jost S, Hossini AM, Picó AH, Wang X, Schwarz C, Fechner H, Eberle J. Efficient and selective tumor cell lysis and induction of apoptosis in melanoma cells by a conditional replication-competent CD95L adenovirus. Exp Dermatol 2009; 19:e56-66. [DOI: 10.1111/j.1600-0625.2009.00977.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Zhu JY, Giaisi M, Köhler R, Müller WW, Mühleisen A, Proksch P, Krammer PH, Li-Weber M. Rocaglamide sensitizes leukemic T cells to activation-induced cell death by differential regulation of CD95L and c-FLIP expression. Cell Death Differ 2009; 16:1289-99. [DOI: 10.1038/cdd.2009.42] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
39
|
Lettau M, Paulsen M, Kabelitz D, Janssen O. FasL expression and reverse signalling. Results Probl Cell Differ 2009; 49:49-61. [PMID: 19132323 DOI: 10.1007/400_2008_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
FasL plays a central role in the induction of apoptosis within the immune system. It mediates activation-induced cell death (AICD) of T lymphocytes and contributes to the cytotoxic effector function of T and NK cells. Moreover, FasL is discussed as direct effector molecule for the establishment of immune privilege and tumour survival. Besides its death-promoting activity, FasL has been implicated in reverse signalling and might thus also play a role in T cell development and selection and the modulation of T cell activation. Considering these diverse functions, the overall FasL expression has to be tightly controlled to avoid unwanted damage. Based on an activation-associated transcriptional control, several post-transcriptional processes ensure a safe storage, a rapid mobilisation, a target-directed activity and a subsequent inactivation. Over the past years, the identification and characterisation of FasL-interacting proteins provided novel insight into the mechanisms of FasL transport, processing and reverse signalling, which might be exemplary also for the other members of the TNF family.
Collapse
Affiliation(s)
- M Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | |
Collapse
|
40
|
Schütze S, Schneider-Brachert W. Impact of TNF-R1 and CD95 internalization on apoptotic and antiapoptotic signaling. Results Probl Cell Differ 2009; 49:63-85. [PMID: 19132322 DOI: 10.1007/400_2008_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Internalization of cell surface receptors has long been regarded as a pure means to terminate signaling via receptor degradation. A growing body of information points to the fact that many internalized receptors are still in their active state and that signaling continues along the endocytic pathway. Thus endocytosis orchestrates cell signaling by coupling and integrating different cascades on the surface of endocytic vesicles to control the quality, duration, intensity, and distribution of signaling events. The death receptors tumor necrosis factor-receptor 1 (TNF-R1) and CD95 (Fas, APO-1) are known not only to signal for cell death via apoptosis but are also capable of inducing antiapoptotic signals via transcription factor NF-kappaB induction or activation of the proliferative mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) protein kinase cascades, resulting in cell protection and tissue regeneration. A clue to the understanding of these contradictory biological phenomena may arise from recent findings which reveal a regulatory role of receptor internalization and intracellular receptor trafficking in selectively transmitting signals, which lead either to apoptosis or to the survival of the cell. In this chapter, we discuss the dichotomy of pro- and antiapoptotic signaling of the death receptors TNF-R1 and CD95. First, we will address the role of lipid rafts and post-translational modifications of death receptors in regulating the formation of receptor complexes. Then, we will discuss the role of internalization in determining the fate of the receptors and subsequently the specificity of signaling events. We propose that fusion of internalized TNF-receptosomes with trans-Golgi vesicles should be recognized as a novel mechanism to transduce death signals along the endocytic route. Finally, the lessons learnt from the strategy of adenovirus to escape apoptosis by targeting death receptor internalization demonstrate the biological significance of TNF receptor compartmentalization for immunosurveillance.
Collapse
Affiliation(s)
- Stefan Schütze
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Michaelisstr. 5, D-24105, Kiel, Germany.
| | | |
Collapse
|
41
|
Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 2008; 9:655-62. [PMID: 18545270 DOI: 10.1038/nrm2430] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The death receptors tumour-necrosis factor receptor-1 (TNFR1) and CD95 (also known as FAS and APO-1) transduce signals that promote cell death by apoptosis. However, these receptors are also capable of inducing anti-apoptotic signals through the activation of the transcription factor nuclear factor-kappaB (NF-kappaB) or through activation of the proliferative mitogen-activated protein kinase (MAPK) cascade. Recent findings reveal a role for receptor internalization and endosomal trafficking in selectively transmitting the signals that lead either to apoptosis or to the survival of the cell.
Collapse
|
42
|
Grosse-Wilde A, Voloshanenko O, Bailey SL, Longton GM, Schaefer U, Csernok AI, Schütz G, Greiner EF, Kemp CJ, Walczak H. TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 2008; 118:100-10. [PMID: 18079967 DOI: 10.1172/jci33061] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/24/2007] [Indexed: 12/22/2022] Open
Abstract
TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in established tumor cell lines but not nontransformed cells. Herein, we demonstrate a role for the apoptosis-inducing TRAIL receptor (TRAIL-R) as a metastasis suppressor. Although mouse models employing tumor transplantation have shown that TRAIL can reduce tumor growth, autochthonous tumor models have generated conflicting results with respect to the physiological role of the TRAIL system during tumorigenesis. We used a multistage model of squamous cell carcinoma to examine the role of TRAIL-R throughout all steps of tumor development. DMBA/TPA-treated TRAIL-R-deficient mice showed neither an increase in number or growth rate of benign papillomas nor an increase in the rate of progression to squamous cell carcinoma. However, metastasis to lymph nodes was significantly enhanced, indicating a role for TRAIL-R specifically in the suppression of metastasis. We also found that adherent TRAIL-R-expressing skin carcinoma cells were TRAIL resistant in vitro but were sensitized to TRAIL upon detachment by inactivation of the ERK signaling pathway. As detachment from the primary tumor is an obligatory step in metastasis, this provides a possible mechanism by which TRAIL-R could inhibit metastasis. Hence, treatment of cancer patients with agonists of the apoptosis-inducing receptors for TRAIL may prove useful in reducing the incidence of metastasis.
Collapse
Affiliation(s)
- Anne Grosse-Wilde
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eberle J, Fecker LF, Hossini AM, Kurbanov BM, Fechner H. Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol 2008; 17:1-11. [PMID: 18095940 DOI: 10.1111/j.1600-0625.2007.00655.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the last decades melanoma incidence has been increasing worldwide, while mortality remained on a high level. Until now, there is no suitable therapy for metastasized melanoma, which could lead to a significant increase in overall survival. Apoptosis deficiency is supposed to be a critical factor for therapy resistance, and previous work has characterized the basic mechanisms of apoptosis regulation in melanoma. Genes and strategies suitable for efficient induction of apoptosis in melanoma cells were identified, which are based on proapoptotic Bcl-2 proteins (Bcl-x(S), Bcl-x(AK), Bik/Nbk and Bax) as well as on tumor necrosis factor (TNF)-related death ligands (CD95L/Fas ligand and TNF-related apoptosis-inducing ligand, TRAIL). Proapoptotic genes may be employed in improved gene therapeutic strategies, based on conditional oncolytic adenoviral vectors.
Collapse
Affiliation(s)
- Jürgen Eberle
- Department of Dermatology and Allergy, Skin Cancer Center, Charité- Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
44
|
Semaphorin3A signaling controls Fas (CD95)-mediated apoptosis by promoting Fas translocation into lipid rafts. Blood 2007; 111:2290-9. [PMID: 18056484 DOI: 10.1182/blood-2007-06-096529] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Semaphorins and their receptors (plexins) have pleiotropic biologic functions, including regulation of immune responses. However, the role of these molecules inside the immune system and the signal transduction mechanism(s) they use are largely unknown. Here, we show that Semaphorin3A (Sema3A) triggers a proapoptotic program that sensitizes leukemic T cells to Fas (CD95)-mediated apoptosis. We found that Sema3A stimulation provoked Fas translocation into lipid raft microdomains before binding with agonistic antibody or FasL (CD95L). Disruption of lipid rafts reduced sensitivity to Fas-mediated apoptosis in the presence of Sema3A. Furthermore, we show that plexin-A1, together with Sema3A-binding neuropilin-1, was rapidly incorporated into membrane rafts after ligand stimulation, resulting in the transport of actin-linking proteins into Fas-enriched rafts. Cells expressing a dominant-negative mutant of plexin-A1 did not show Fas clustering and apoptosis on Sema3A/Fas costimulation. This work identifies a novel biologic function of semaphorins and presents an unexpected signaling mechanism linking semaphorin to the tumor necrosis factor family receptors.
Collapse
|
45
|
Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat 2007; 10:218-34. [PMID: 18054518 DOI: 10.1016/j.drup.2007.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
The increased incidence of malignant melanoma in the last decades, its high mortality and pronounced therapy resistance pose an enormous challenge. Important therapeutic targets for melanoma are the induction of apoptosis and suppression of survival pathways. Preclinical studies have demonstrated the efficacy of pro-apoptotic Bcl-2 proteins and of death receptor ligands to trigger apoptosis in melanoma cells. In the clinical setting, BH3 domain mimics and death receptor agonists are therefore considered as promising, specific novel treatments to add to the conventional pro-apoptotic strategies such as chemo- or radiotherapy. However, constitutively activated survival pathways, in particular the mitogen-activated protein kinases, protein kinase B/Akt and nuclear factor (NF)-kappaB, all may work in concert to prevent effective therapy. Thus, selective biologicals developed with the aim to inhibit pro-survival signaling are currently tested in melanoma. For highly therapy-resistant tumors such as melanoma, development of novel drug combinations will be essential, and combinations of survival inhibitors and pro-apoptotic mediators appear most promising. The challenge of the near future will be to make a rational choice of the multiple possible combinations and protocols. This review gives a critical overview of proteins involved in melanoma chemoresistance, which are targets for current drug development leading to the best choice for future trials.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
46
|
Morgan XC, Ni S, Miranker DP, Iyer VR. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics 2007; 8:445. [PMID: 18005433 PMCID: PMC2211755 DOI: 10.1186/1471-2105-8-445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/15/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regulate gene expression in concert by identifying over-represented combinations of sequence motifs that occur together in the genome. In order to detect combinations of transcription factor binding motifs, we developed a data mining approach based on the use of association rules, which are typically used in market basket analysis. We scored each segment of the genome for the presence or absence of each of 83 transcription factor binding motifs, then used association rule mining algorithms to mine this dataset, thus identifying frequently occurring pairs of distinct motifs within a segment. Results Support for most pairs of transcription factor binding motifs was highly correlated across different chromosomes although pair significance varied. Known true positive motif pairs showed higher association rule support, confidence, and significance than background. Our subsets of high-confidence, high-significance mined pairs of transcription factors showed enrichment for co-citation in PubMed abstracts relative to all pairs, and the predicted associations were often readily verifiable in the literature. Conclusion Functional elements in the genome where transcription factors bind to regulate expression in a combinatorial manner are more likely to be predicted by identifying statistically and biologically significant combinations of transcription factor binding motifs than by simply scanning the genome for the occurrence of binding sites for a single transcription factor.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712-0159, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
During the course of an immune response, antigen-reactive T cells clonally expand and then are removed by apoptosis to maintain immune homeostasis. Life and death of T cells is determined by multiple factors, such as T-cell receptor triggering, co-stimulation or cytokine signalling, and by molecules, such as caspase-8 (FLICE)-like inhibitory protein (FLIP) and haematopoietic progenitor kinase 1 (HPK1), which regulate the nuclear factor-kappaB (NF-kappaB) pathway. Here, we discuss the concepts of activation-induced cell death (AICD) and activated cell-autonomous death (ACAD) in the regulation of life and death in T cells.
Collapse
Affiliation(s)
- Peter H Krammer
- Tumour Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
48
|
de Oliveira GM, Diniz RL, Batista W, Batista MM, Bani Correa C, de Araújo-Jorge TC, Henriques-Pons A. Fas ligand-dependent inflammatory regulation in acute myocarditis induced by Trypanosoma cruzi infection. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:79-86. [PMID: 17591955 PMCID: PMC1941608 DOI: 10.2353/ajpath.2007.060643] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fas/Fas ligand (Fas-L) engagement, a potent inducer of apoptosis, is also important for cellular activation, regulation of effector and chemotactic activity, and secretion of chemokines and cytokines. We evaluated the relevance of Fas/Fas-L in the regulation of myocarditis induced by Trypanosoma cruzi infection and observed that in Fas-L(-/-) mice (gld/gld), cardiac infiltration was significantly reduced, accordingly showing less cardiomyocyte destruction. Fluorescence-activated cell sorting analysis of cardiac inflammatory cells showed higher numbers of CD8(+) T cells in BALB/c compared with gld/gld mice but similar levels of lymphocyte function-associated antigen-1, intercellular adhesion molecule, CD2, and CD69 expression; MAC-1(+) myeloid cells and mast cells were increased in BALB/c mice, whereas gld/gld mice exhibited an enrichment of CD4(+/low) T cells. Intracellular labeling of cytokines revealed no clear cardiac skewing of Th1 or Th2 responses, but we found a higher number of interleukin-10(+) cells in gld/gld mice and a deficient expression of vascular cell adhesion molecule-1 on cardiac endothelial cells in gld/gld mice. Finally, we found a population of CD3(+) but CD4/CD8 double negative cardiac T cells in both groups of infected mice, but down-regulation of some adhesion molecules and surface receptors was only observed in gld/gld mice, indicating a targeted T-cell population mostly affected by the lack of Fas-L engagement. These results point to a role for myocarditis regulation by Fas/Fas-L beyond its possible direct relevance in cellular death.
Collapse
Affiliation(s)
- Gabriel Melo de Oliveira
- Fundação Oswaldo Cruz/Instituto Oswaldo Cruz, Departamento de Ultra-estrutura e Biologia Celular (DUBC), Laboratório de Biologia Celular, Rio de Janeiro (RJ); Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Sengupta S, Jayaraman P, Chilton PM, Casella CR, Mitchell TC. Unrestrained glycogen synthase kinase-3 beta activity leads to activated T cell death and can be inhibited by natural adjuvant. THE JOURNAL OF IMMUNOLOGY 2007; 178:6083-91. [PMID: 17475833 DOI: 10.4049/jimmunol.178.10.6083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40202, USA
| | | | | | | | | |
Collapse
|
50
|
Kirkin V, Cahuzac N, Guardiola-Serrano F, Huault S, Lückerath K, Friedmann E, Novac N, Wels WS, Martoglio B, Hueber AO, Zörnig M. The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells. Cell Death Differ 2007; 14:1678-87. [PMID: 17557115 DOI: 10.1038/sj.cdd.4402175] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fas ligand (FasL) is a type II transmembrane protein belonging to the tumor necrosis factor family. Its binding to the cognate Fas receptor triggers the apoptosis that plays a pivotal role in the maintenance of immune system homeostasis. The cell death-inducing property of FasL has been associated with its extracellular domain, which can be cleaved off by metalloprotease activity to produce soluble FasL. The fate of the remaining membrane-anchored N-terminal part of the FasL molecule has not been determined. Here we show that post-translational processing of overexpressed and endogenous FasL in T-cells by the disintegrin and metalloprotease ADAM10 generates a 17-kDa N-terminal fragment, which lacks the receptor-binding extracellular domain. This FasL remnant is membrane anchored and further processed by SPPL2a, a member of the signal peptide peptidase-like family of intramembrane-cleaving proteases. SPPL2a cleavage liberates a smaller and highly unstable fragment mainly containing the intracellular FasL domain (FasL ICD). We show that this fragment translocates to the nucleus and is capable of inhibiting gene transcription. With ADAM10 and SPPL2a we have identified two proteases implicated in FasL processing and release of the FasL ICD, which has been shown to be important for retrograde FasL signaling.
Collapse
Affiliation(s)
- V Kirkin
- Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|