1
|
Coetzee G, Smith JJ, Görgens JF. Influence of codon optimization, promoter, and strain selection on the heterologous production of a β-fructofuranosidase from Aspergillus fijiensis ATCC 20611 in Pichia pastoris. Folia Microbiol (Praha) 2022; 67:339-350. [PMID: 35133569 DOI: 10.1007/s12223-022-00947-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Fructooligosaccharides (FOS) are compounds possessing various health properties and are added to functional foods as prebiotics. The commercial production of FOS is done through the enzymatic transfructolysation of sucrose by β-fructofuranosidases which is found in various organisms of which Aureobasidium pullulans and Aspergillus niger are the most well known. This study overexpressed two differently codon-optimized variations of the Aspergillus fijiensis β-fructofuranosidase-encoding gene (fopA) under the transcriptional control of either the alcohol oxidase (AOX1) or glyceraldehyde-3-phosphate dehydrogenase (GAP) promoters. When cultivated in shake flasks, the two codon-optimized variants displayed similar volumetric enzyme activities when expressed under control of the same promoter with the GAP strains producing 11.7 U/ml and 12.7 U/ml, respectively, and the AOX1 strains 95.8 U/ml and 98.6 U/ml, respectively. However, the highest production levels were achieved for both codon-optimized genes when expressed under control of the AOX1 promoter. The AOX1 promoter was superior to the GAP promoter in bioreactor cultivations for both codon-optimized genes with 13,702 U/ml and 2718 U/ml for the AOX1 promoter for ATUM and GeneArt®, respectively, and 6057 U/ml and 1790 U/ml for the GAP promoter for ATUM and GeneArt®, respectively. The ATUM-optimized gene produced higher enzyme activities when compared to the one from GeneArt®, under the control of both promoters.
Collapse
Affiliation(s)
- Gerhardt Coetzee
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| | - Jacques J Smith
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
2
|
Li J, Xie X, Cai J, Wang H, Yang J. Enhanced Secretory Expression and Surface Display Level of Bombyx mori Acetylcholinesterase 2 by Pichia pastoris Based on Codon Optimization Strategy for Pesticides Setection. Appl Biochem Biotechnol 2021; 193:3321-3335. [PMID: 34160750 DOI: 10.1007/s12010-021-03597-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
The cholinesterase-based spectrophotometric assay, also called enzyme inhibition method, is a good choice for rapid detection of organophosphate pesticides (OPs) and carbamate pesticides (CPs). Obviously, the cholinesterase is the core reagent in enzyme inhibition method. In our previous work, a recombinant acetylcholinesterase 2 from Bombyx mori (rBmAChE2) was expressed in yeast successfully and exhibited great sensitivity. However, the yield of rBmAChE2 is not desirable. In this study, a codon optimization strategy was employed to enhance the yield of rBmAChE2 in Pichia pastoris GS115. Results showed that by replacing 6 key rare codons and increasing the percentage of bases G and C up to 46.85%, codon adaptation index (CAI) of Bombyx mori acetylcholinesterase 2 (bmace2) gene was improved from 0.70 to 0.81. After being transformed into Pichia pastoris GS115 via electroporation, the expression transformant can produce 139.7 U/mL secretory codon-optimized rBmAChE2 (opt-rBmAChE2) in the culture supernatant, 3.62 times higher than that of strain bearing the wild-type bmace2 gene. Meanwhile, opt-rBmAChE2 displayed on the yeast surface was up to 2280.02 U/g, 2.8 times higher than wild-type displayed rBmAChE2. In addition, either secretory or surface-displayed opt-rBmAChE2 maintained the similar sensitivities to the wild-type rBmAChE2 for tested inhibitors. Furthermore, the detection limits of the opt-rBmAChE2-based enzyme inhibition method for 10 kinds of OPs or CPs (0.01-2.69 mg/kg) were lower than most of the indexes present in current standard method (GB/T 5009.199-2003) or the maximum residue limits (GB 2763-2019) in China. The results might contribute to the utilization of rBmAChE2 for pesticide residue screening detection in practice.
Collapse
Affiliation(s)
- Jiadong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Jun Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Jinyi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Processing and Safety Control of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
3
|
Analysis of synonymous codon usage bias in human monocytes, B, and T lymphocytes based on transcriptome data. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Lu C, Liu C, Sun X, Wan P, Ni J, Wang L, Ji Y, Guo Y, Lu S. Bioinformatics analysis, codon optimization and expression of ovine pregnancy associated Glycoprotein-7 in HEK293 cells. Theriogenology 2021; 172:27-35. [PMID: 34091203 DOI: 10.1016/j.theriogenology.2021.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/15/2022]
Abstract
Pregnancy-associated glycoproteins (PAGs) are widely used as powerful markers for early pregnancy diagnosis in livestock. To improve expression efficiency of recombinant ovine pregnancy-associated glycoprotein-7 (ovPAG-7) in HEK293 cells, the codon usage bias of the ovPAG-7 gene was analyzed using bioinformatic approaches, after which the DNA sequence encoding ovPAG-7 was designed, synthesized, and expressed in HEK293. The structure and function of ovPAG-7 were predicted using bioinformatics software and online databases. The results showed that the effective number of codons (NEC) of the ovPAG-7 gene was 56.82, indicating that the ovPAG-7 gene was weakly biased. ovPAG-7 gene had 26 biased codons (relative synonymous codon usage (RSCU) > 1), 15 of which were biased towards G/C at the third position. After codon optimization, the codon adaptation index of the ovPAG-7 gene increased from 0.74 to 0.96, and its GC content changed from 46.6 to 58.6%. The amino acid sequence encoded by the optimized gene was entirely consistent with those published in Gen Bank. Western blot analysis indicated that the recombinant ovPAG-7 protein with a relative molecular mass of 48 kDa was successfully expressed in HEK293 cells. The bioinformatics prediction results showed that ovPAG-7 protein contained 3 N-glycosylation sites, 13 B-cell epitopes, and a signal peptide consisting of 15 amino acids at the N terminus. The secondary structure of the ovPAG-7 protein was predicted to consist of random coils (46.85%), extended strands (32.05%), α-helices (16.16%), and β-turns (4.93%). This study provided a tool for the screening of monoclonal antibodies and functional research on ovPAG-7.
Collapse
Affiliation(s)
- Chunxia Lu
- Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, PR China
| | - Changbin Liu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China.
| | - Xieping Sun
- Life Science and Technology Institute, Yangtze Normal University, Chongqing 408100, PR China
| | - Pengcheng Wan
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China
| | - Jianhong Ni
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China
| | - Limin Wang
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China
| | - Yong Ji
- Analysis and Testing Center, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China
| | - Yanhua Guo
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China
| | - Shouliang Lu
- Institute of Animal Husbandry and Veterinary Science, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, PR China
| |
Collapse
|
5
|
García-González G, Ascacio-Martínez JÁ, Hernández-Bello R, González GM, Palma-Nicolás JP. Expression of recombinant protease MarP from Mycobacterium tuberculosis in Pichia pastoris and its effect on human monocytes. Biotechnol Lett 2021; 43:1787-1798. [PMID: 34028659 DOI: 10.1007/s10529-021-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Mycobacterial acid-resistant protease (MarP) is a membrane-associated serine protease involved in the survival of Mycobacterium tuberculosis in macrophages; here we produced MarP in the yeast Pichia pastoris and study its involvement in macrophage immune modulation. RESULTS Pichia pastoris vectors, harboring a full-length or a partial sequence of MarP, were constructed. GS115 clones were selected, and homologous recombination at the AOX1 locus was assessed by PCR. Protein was purified by nickel affinity chromatography, and its effect on the cytokine profile was tested in human monocytes. Only the partial MarP protein (121-397 a.a.) lacking the transmembrane domain was successfully expressed as an N-glycosylated proteolytically active protease. In vitro stimulation of THP-1 cells with MarP promoted the release of TNF-α and IL-10. CONCLUSION Mycobacterial MarP was successfully expressed in P. pastoris, and it is capable of cytokine release in vitro.
Collapse
Affiliation(s)
- Gerardo García-González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - Jorge Ángel Ascacio-Martínez
- Departamento de Bioquímica y medicina molecular, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - Gloria María González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - José Prisco Palma-Nicolás
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
6
|
Huo X, Liu S, Li Y, Wei H, Gao J, Yan Y, Zhang G, Liu M. Analysis of synonymous codon usage of transcriptome database in Rheum palmatum. PeerJ 2021; 9:e10450. [PMID: 33505783 PMCID: PMC7789865 DOI: 10.7717/peerj.10450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Rheum palmatum is an endangered and important medicinal plant in Asian countries, especially in China. However, there is little knowledge about the codon usage bias for R. palmatum CDSs. In this project, codon usage bias was determined based on the R. palmatum 2,626 predicted CDSs from R. palmatum transcriptome. Methods In this study, all codon usage bias parameters and nucleotide compositions were calculated by Python script, Codon W, DNA Star, CUSP of EMBOSS. Results The average GC and GC3 content are 46.57% and 46.6%, respectively, the results suggested that there exists a little more AT than GC in the R. palmatum genes, and the codon bias of R. palmatum genes preferred to end with A/T. We concluded that the codon bias in R. palmatum was affect by nucleotide composition, mutation pressure, natural selection, gene expression levels, and the mutation pressure is the prominent factor. In addition, we figured out 28 optimal codons and most of them ended with A or U. The project here can offer important information for further studies on enhancing the gene expression using codon optimization in heterogeneous expression system, predicting the genetic and evolutionary mechanisms in R. palmatum.
Collapse
Affiliation(s)
- Xiaowei Huo
- College of Pharmaceutical Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Sisi Liu
- Hunan Academy of Forestry, Changsha, China
| | - Yimin Li
- College of Pharmacy and Shaanxi Provincial Key Laboratory for Chinese Medicine Basis & New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Hao Wei
- College of Pharmacy and Shaanxi Provincial Key Laboratory for Chinese Medicine Basis & New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Jing Gao
- College of Pharmacy and Shaanxi Provincial Key Laboratory for Chinese Medicine Basis & New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yonggang Yan
- College of Pharmacy and Shaanxi Provincial Key Laboratory for Chinese Medicine Basis & New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Gang Zhang
- College of Pharmacy and Shaanxi Provincial Key Laboratory for Chinese Medicine Basis & New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Mengmeng Liu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| |
Collapse
|
7
|
Barazesh M, Mohammadi S, Jalili S, Kavousipour S, Faraji SN, Mokarram P, Pirhadi S. Design and characterization of a recombinant immunotoxin for targeted therapy of breast cancer cells: In vitro and in silico analyses. Life Sci 2020; 265:118866. [PMID: 33301810 DOI: 10.1016/j.lfs.2020.118866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/17/2023]
Abstract
AIMS GnRH-DFF40 (gonadotropin releasing hormone-DNA fragmentation factor 40) humanized recombinant immunotoxin serves as a prospective candidate for targeted therapy of malignancies with over-expressed gonadotropin releasing hormone receptor (GnRHR). In this study, we attempted to generate a GnRH-based chimeric protein composed of human DFF40 fused with GnRH which encodes an apoptotic nuclease and specifically targets cancer cells displaying GnRH receptor overexpression. MATERIALS AND METHODS A codon optimized, synthetic GnRH-DFF40 fusion gene and its single counterpart (DFF40) were constructed in pET28a expression vector. Cytotoxicity of these expressed proteins were evaluated on three breast cancer cell lines (MCF7, MDA-MB231, and SKBR3). The stability and biological activity of the recombinant proteins were investigated in the treated cell line and cell-free system. Also, the ability of this fusion and its single form in inducing apoptosis, and inhibiting metastasis and migration were evaluated by flow cytometry, migration assay and wound healing analysis, respectively. In silico analyses were also done to understand the specific interactions between GnRH and its receptor. KEY FINDINGS GnRH-DFF40 fusion protein and DFF40 were successfully expressed. The purified chimeric protein showed dose-dependent cytotoxicity against all three cell lines. The recombinant fusion protein was biologically active with nucleolytic functionality and apoptosis induction ability. Moreover, the fusion could inhibit the invasion property of MDA-MB-231 cells. In silico analysis also showed that four residues from GnRH domain and 11 GnRHR residues had the most interaction sites for specific targeted delivery of the immunotoxin in cancer cells. SIGNIFICANCE Fusion construct could be a prospective candidate for targeted therapy of cancers upregulating GnRH receptor.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Sajad Jalili
- Department of Orthopaedic, School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Nooreddin Faraji
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
van der Woude R, Turner HL, Tomris I, Bouwman KM, Ward AB, de Vries RP. Drivers of recombinant soluble influenza A virus hemagglutinin and neuraminidase expression in mammalian cells. Protein Sci 2020; 29:1975-1982. [PMID: 32710576 PMCID: PMC7454420 DOI: 10.1002/pro.3918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
Recombinant soluble trimeric influenza A virus hemagglutinins (HA) and tetrameric neuraminidases (NAs) have proven to be excellent tools to decipher biological properties. Receptor binding and sialic acid cleavage by recombinant proteins correlate satisfactorily compared to whole viruses. Expression of HA and NA can be achieved in a plethora of different laboratory hosts. For immunological and receptor interaction studies however, insect and mammalian cell expressed proteins are preferred due to the presence of N-linked glycosylation and disulfide bond formation. Because mammalian-cell expression is widely applied, an increased expression yield is an important goal. Here we report that using codon-optimized genes and sfGFP fusions, the expression yield of HA can be significantly improved. sfGFP also significantly increased expression yields when fused to the N-terminus of NA. In this study, a suite of different hemagglutinin and neuraminidase constructs are described, which can be valuable tools to study a wide array of different HAs, NAs and their mutants.
Collapse
Affiliation(s)
- Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ilhan Tomris
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Kim M Bouwman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Rowland RJ, Wu L, Liu F, Davies GJ. A baculoviral system for the production of human β-glucocerebrosidase enables atomic resolution analysis. Acta Crystallogr D Struct Biol 2020; 76:565-580. [PMID: 32496218 PMCID: PMC7271948 DOI: 10.1107/s205979832000501x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
The lysosomal glycoside hydrolase β-glucocerebrosidase (GBA; sometimes called GBA1 or GCase) catalyses the hydrolysis of glycosphingolipids. Inherited deficiencies in GBA cause the lysosomal storage disorder Gaucher disease (GD). Consequently, GBA is of considerable medical interest, with continuous advances in the development of inhibitors, chaperones and activity-based probes. The development of new GBA inhibitors requires a source of active protein; however, the majority of structural and mechanistic studies of GBA today rely on clinical enzyme-replacement therapy (ERT) formulations, which are incredibly costly and are often difficult to obtain in adequate supply. Here, the production of active crystallizable GBA in insect cells using a baculovirus expression system is reported, providing a nonclinical source of recombinant GBA with comparable activity and biophysical properties to ERT preparations. Furthermore, a novel crystal form of GBA is described which diffracts to give a 0.98 Å resolution unliganded structure. A structure in complex with the inactivator 2,4-dinitrophenyl-2-deoxy-2-fluoro-β-D-glucopyranoside was also obtained, demonstrating the ability of this GBA formulation to be used in ligand-binding studies. In light of its purity, stability and activity, the GBA production protocol described here should circumvent the need for ERT formulations for structural and biochemical studies and serve to support GD research.
Collapse
Affiliation(s)
- Rhianna J. Rowland
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Liang Wu
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Feng Liu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Gideon J. Davies
- Department of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
10
|
Barazesh M, Mostafavipour Z, Kavousipour S, Mohammadi S, Mokarram P. Two Simple Methods for Optimizing the Production of "Difficult-to-Express" GnRH-DFF40 Chimeric Protein. Adv Pharm Bull 2019; 9:423-431. [PMID: 31592077 PMCID: PMC6773931 DOI: 10.15171/apb.2019.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: GnRH-DFF40 (gonadotropin releasing hormone - DNA fragmentation factor 40) is
a humanized recombinant immunotoxin and serves as a prospective candidate for targeted
therapy of gonadotropin releasing hormone receptor (GnRHR) overexpressing malignancies.
However, its production in Escherichia coli in a soluble and functional form still remains a
challenge. Here we introduce two successful and reproducible conditions for production and
purification of “difficult-to-express” GnRH-DFF40 protein.
Methods: A synthetic codon optimized GnRH-DFF40 fusion gene was cloned in pET28a
plasmid. Two methods including high cell density IPTG induction (HCDI) and autoinduction
method (AIM) with a focus on obtaining high cell density have been investigated to enhance the
protein production in (E. coli). Moreover, to obtain higher protein production several factors in
the AIM method including carbon sources, incubation time and temperature, plasmid stability
and double colony selection, were optimized.
Results: Remarkable amounts of soluble GnRH-DFF40 protein were achieved by both methods.
Cell density and protein yields in AIM was about 1.5 fold higher than that what obtained using
HCDI. Initial screening showed that 25ºC is better to achieve higher protein production in both
methods. pH alterations in AIM were maintained in a more constant level at 25ºC and 37ºC
temperatures without any detrimental effects on cell growth during protein production phase
up to 21 hours after incubation. Plasmid stability during growth and expression induction phase
was maintained at a high level of 98% and 96% for AIM and HCDI methods, respectively. After
parameter optimization and double colony selection in AIM, a very high yield of recombinant
protein was achieved (528.3 mg/L).
Conclusion: With the optimization of these high cell density expression methods, reproducible
manifold enhancement of soluble protein yields can be achieved for “difficult-to-express”
GnRH-DFF40 compared to conventional expression methods.
Collapse
Affiliation(s)
- Mahdi Barazesh
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Zohreh Mostafavipour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran.,Recombinant Proteins Lab, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Soudabeh Kavousipour
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
11
|
Effects of codon optimization and glycosylation on the high-level production of hydroxynitrile lyase from Chamberlinius hualienensis in Pichia pastoris. J Ind Microbiol Biotechnol 2019; 46:887-898. [PMID: 30879221 DOI: 10.1007/s10295-019-02162-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
A hydroxynitrile lyase (HNL) from the millipede Chamberlinius hualienensis has high potential for industrial use in the synthesis of cyanohydrins. However, obtaining sufficient amounts of millipedes is difficult, and the production of the Chamberlinius hualienensis HNL (ChuaHNL) in E. coli has not been very successful. Therefore, we investigated the conditions required for high-yield heterologous production of this enzyme using Pichia pastoris. When we employed P. pastoris to express His-ChuaHNL, the yield was very low (22.6 ± 3.8 U/L culture). Hence, we investigated the effects of ChuaHNL codon optimization and the co-production of two protein disulfide isomerases (PDIs) [from P. pastoris (PpPDI) and C. hualienensis (ChuaPDI1, ChuaPDI2)] on His-ChuaHNL production. The productivity of His-ChuaHNL was increased approximately 140 times per unit culture to 3170 ± 144.7 U/L by the co-expression of codon-optimized ChuaHNL and PpPDI. Moreover, we revealed that the N-glycosylation on ChuaHNL had a large effect on the stability, enzyme secretion, and catalytic properties of ChuaHNL in P. pastoris. This study demonstrates an economical and efficient approach for the production of HNL, and the data show that glycosylation has a large effect on the enzyme properties and the P. pastoris expression system.
Collapse
|
12
|
Molafilabi A, Shahabi M, Rafatpanah H, Mashkani B. Production of Universal Group O Red Blood Cells by Alpha- N-Acetylgalactosaminidase Enzyme Expressed in Pichia pastoris. Indian J Hematol Blood Transfus 2019; 35:125-130. [PMID: 30828159 DOI: 10.1007/s12288-018-0999-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022] Open
Abstract
Enzymatic removal of blood groups antigens A and B is an efficient method for production of universal red blood cells. In this research, an α-N-acetylgalactosaminidase (NAGA) enzyme was expressed in Pichia pastoris for digestion of the A blood antigen. DNA sequence of the gene NAGA, originally expressed in Elizabethkingia meningosepticum (NAGA-EM), was ordered for optimization and synthesis. It was then expressed in P. pastoris (KM71H and GS115 strains). Expression of the recombinant NAGA was evaluated by dot blot, SDS-PAGE, and Western blotting. The activity of the enzyme was measured using a synthetic substrate in addition to the conversion of group A red blood cells to the O cells. Expression of NAGA-EM with an apparent molecular mass of 55 kDa was verified by dot blot, SDS-PAGE and Western blot analysis. The maximum enzyme activity in the supernatant of KM71H was higher than that in the GS115 (250 vs. 200 U/ml). Treated group A RBCs did not react with the anti-A antiserum or with the sera from individuals with blood groups B and O. The results of this study indicated that NAGA-EM is an efficient enzyme for production of universal O blood cells.
Collapse
Affiliation(s)
- Azam Molafilabi
- 1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Bldg, Hemmat Exp. Way, 1449613111 Tehran, Iran
| | - Majid Shahabi
- 1Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, IBTO Bldg, Hemmat Exp. Way, 1449613111 Tehran, Iran
| | - Houshang Rafatpanah
- 2Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | - Baratali Mashkani
- 3Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| |
Collapse
|
13
|
Liu Y, Huang L, Fu Y, Zheng D, Ma J, Li Y, Xu Z, Lu F. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system. Food Chem 2019; 274:535-542. [DOI: 10.1016/j.foodchem.2018.08.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
|
14
|
Borshchevskaya L, Gordeeva T, Sineoky S. Increase in the Production of Endo-1,4-β-Xylanase from Paenibacillus brasilensis in Pichia pastoris. ACTA ACUST UNITED AC 2019. [DOI: 10.21519/0234-2758-2019-35-6-30-38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A Pichia pastoris yeast strain producing endo-l,4-β-xylanase from Paenibacillus brasilensis with an activity of 54,400 U/mL after 140 h of fermentation in a laboratory fermenter has been obtained. A number of approaches were used to increase the level of the xylanase production in this strain: optimization of the target gene codon composition, multiple integration of the expression cassette into the recipient strain chromosome using the Cre-lox recombination system, and also improving the heterologous protein folding via the overexpression of the HAC1i gene from Pichia pastoris.
xylanase, xylan, Cre-lox system, HAC1p transcriptional activator, multicopy strain, Paenibacillus brasilensis, Pichia pastoris
The work was performed with the financial support of the Ministry of Education and Science of Russia (Unique Project Identifier RFMEFI60717X0180) using the Multipurpose Scientific Installation of «All-Russian Collection of Industrial Microorganisms» National Bio-Resource Center, NRC «Kurchatov Institute» - GosNIIgenetika.
Collapse
Affiliation(s)
- L.N. Borshchevskaya
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute»-GosNIIgenetika), Moscow, 117545 Russia
| | - T.L. Gordeeva
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute»-GosNIIgenetika), Moscow, 117545 Russia
| | - S.P. Sineoky
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center «Kurchatov Institute» (NRC «Kurchatov Institute»-GosNIIgenetika), Moscow, 117545 Russia
| |
Collapse
|
15
|
Kangwa M, Salgado JAG, Fernandez-Lahore HM. Identification and characterization of N-glycosylation site on a Mucor circinelloides aspartic protease expressed in Pichia pastoris: effect on secretion, activity and thermo-stability. AMB Express 2018; 8:157. [PMID: 30276572 PMCID: PMC6167268 DOI: 10.1186/s13568-018-0691-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/26/2018] [Indexed: 11/23/2022] Open
Abstract
Methylotrophic yeasts have widely been used as model organisms for understanding cellular functions and biochemical activities in lower eukaryotes. The gene encoding an aspartic protease (MCAP) from Mucor circinelloides DSM 2183 was cloned and expressed into Pichia pastoris using both the native M. circinelloides signal peptide (mcSP) and α-factor secretion signal from Saccharomyces cerevisiae (α-MF). When expressed in P. pastoris using α-MF and mcSP, MCAP was secreted into the culture medium at a concentration 200 mg L-1 (410 MCU mL-1) and 110 mg L-1 (249 MCU mL-1), respectively. The SDS-PAGE analysis of each culture shows that the protein was secreted in the media in two forms with molecular weights of approximately 33 and 37 kDa. Upon digestion using endoglycosidase H (Endo H), only one band at 33 kDa was observed, indicating that the protein might be glycosylated. One putative N-glycosylation site was found and a site-directed mutagenesis at position Asn331-Gln of the sequence produce only one form of the protein of 33 kDa, similar to that obtained when digested with Endo H. The optimum temperature and pH activity of the expressed MCAP was found to be at 60 °C and 3.6, respectively.
Collapse
Affiliation(s)
- Martin Kangwa
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Jose Antonio Gama Salgado
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Hector Marcelo Fernandez-Lahore
- Downstream Bioprocessing Laboratory, Department of Life Sciences & Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
16
|
Improving heterologous expression of porcine follicle-stimulating hormone in Pichia pastoris by integrating molecular strategies and culture condition optimization. Appl Microbiol Biotechnol 2018; 102:8867-8882. [PMID: 30136206 DOI: 10.1007/s00253-018-9260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Muts phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut+ phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0-6.0 and 1.5-2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.
Collapse
|
17
|
High-level expression and characterization of solvent-tolerant lipase. J Biosci Bioeng 2018; 125:23-29. [DOI: 10.1016/j.jbiosc.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022]
|
18
|
Madhavan A, Pandey A, Sukumaran RK. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. BIORESOURCE TECHNOLOGY 2017; 245:1334-1342. [PMID: 28578805 DOI: 10.1016/j.biortech.2017.05.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Heterologous protein expression in filamentous fungi is advantageous, especially in the context of large scale production of high volume low value recombinant proteins. However, such systems are rare and not available in public domain. A novel filamentous fungus - Aspergillus unguis NII 08123 was used as host for developing a protein expression system. An expression cassette was assembled using A. nidulans glyceraldehyde 3 phosphate dehydrogenase promoter (Pgapd), tryptophan synthase transcription terminator (TtrpC) and hygromycin resistance gene (hph) as selection marker. The enhanced green fluorescent protein (GFP) gene from Aequorea victoria was used as the model test protein for the evaluation of the expression system. The genetic transformation of this novel fungus was optimized through electroporation. Use of heterologous signal peptides resulted in high levels of secreted expression. The fungal host-expression system combination was tested successfully for the expression of the recombinant therapeutic protein-human interferon beta (HuIFNβ).
Collapse
Affiliation(s)
- Aravind Madhavan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram 695 019, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram 695 019, India; Center of Innovative and Applied Bioprocessing, Mohali 160 071, Punjab, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram 695 019, India.
| |
Collapse
|
19
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
20
|
Li X, Zhang P, Zhang N, Liang X, Wang W, Yuan Q, Li Q. Secretory Expression and Characterization of Chinese Narcissus GNA-Like Lectin in Pichia pastoris. Appl Biochem Biotechnol 2017; 182:1433-1443. [DOI: 10.1007/s12010-017-2408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|
21
|
Damasceno L, Ritter G, Batt CA. Process development for production and purification of the Schistosoma mansoni Sm14 antigen. Protein Expr Purif 2017; 134:72-81. [DOI: 10.1016/j.pep.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/22/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
22
|
Mohajeri A, Sanaei S, Kiafar F, Fattahi A, Khalili M, Zarghami N. The Challenges of Recombinant Endostatin in Clinical Application: Focus on the Different Expression Systems and Molecular Bioengineering. Adv Pharm Bull 2017; 7:21-34. [PMID: 28507934 PMCID: PMC5426730 DOI: 10.15171/apb.2017.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis plays an essential role in rapid growing and metastasis of the tumors. Inhibition of angiogenesis is a putative strategy for cancer therapy. Endostatin (Es) is an attractive anti-angiogenesis protein with some clinical application challenges including; short half-life, instability in serum and requirement to high dosage. Therefore, production of recombinant endostatin (rEs) is necessary in large scale. The production of rEs is difficult because of its structural properties and is high-cost. Therefore, this review focused on the different expression systems that involved in rEs production including; mammalian, baculovirus, yeast, and Escherichia coli (E. coli) expression systems. The evaluating of the results of different expression systems declared that none of the mentioned systems can be considered to be generally superior to the other. Meanwhile with considering the advantages and disadvantage of E. coli expression system compared with other systems beside the molecular properties of Es, E. coli expression system can be a preferred expression system for expressing of the Es in large scale. Also, the molecular bioengineering and sustained release formulations that lead to improving of its stability and bioactivity will be discussed. Point mutation (P125A) of Es, addition of RGD moiety or an additional zinc biding site to N-terminal of Es , fusing of Es to anti-HER2 IgG or heavy-chain of IgG, and finally loading of the endostar by PLGA and PEG- PLGA nanoparticles and gold nano-shell particles are the effective bioengineering methods to overcome to clinical changes of endostatin.
Collapse
Affiliation(s)
- Abbas Mohajeri
- Department of Biotechnology, Zahravi Pharmaceutical Company, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaei
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Kiafar
- Department of Biotechnology, Zahravi Pharmaceutical Company, Tabriz, Iran
| | - Amir Fattahi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khalili
- Department of Basic Science, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences,Tabriz, Iran
| |
Collapse
|
23
|
Bhattacharya S, Reddy D, Reddy R, Sharda A, Bose K, Gupta S. Incorporation of a tag helps to overcome expression variability in a recombinant host. ACTA ACUST UNITED AC 2017; 11:62-69. [PMID: 28352541 PMCID: PMC5042304 DOI: 10.1016/j.btre.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 11/03/2022]
Abstract
Reason for the lack of recombinant protein expression in E. coli is indefinite. Recombinant histone expression does not correlate with rare codon content. Translational variability may lead to lack of expression or degradation of protein. Expression variability could be averted by incorporating a tag.
Epigenetics have witnessed a renewed interest over the past decade and assays with recombinant histones has become an important tool for uncovering various aspects of histone biology. However, at times absence of recombinant histone accumulation in bacteria is encountered which is also commonly observed for many eukaryotic proteins in general. In this study, we have investigated the effect of multiple parameters on heterologous expression of proteins. We show that there is marked variability in the accumulation of H2A.2, H2B.1, H3.2 and H4 in the recombinant host, possibly owing to translational variability and degradation by the host proteases. We found that the variability could be overcome by incorporation of the commonly used purification tags, like GST or MBP, of appropriate size and position. Our results provide compelling evidence that transcript parameters like rare codon and GC content, mRNA secondary structure etc. together modulate translation kinetics and govern recombinant protein accumulation.
Collapse
Key Words
- CAI, codon adaptation indexes
- DUSP1, dual specificity phosphatase 1
- GAPDH, glyceraldehyde phosphate dehydrogenase
- GST, glutathione-S-transferase
- HAX-1, human protein HCLS-1 associated protein X-1
- Histones
- IPTG, Isopropyl β-d-1-thiogalactopyranoside
- MALDI, matrix-assisted laser desorption/ionization
- MBP, maltose binding protein
- Misfolding
- NAP1, nucleosome assemble protein 1
- PP1, protein phosphatase 1
- RBS, ribosome-binding site
- RT-PCR, reverse transcriptase polymerase chain reaction
- Rare codons
- TMAO, trimethylamine oxide
- Translation
- Truncated GST
Collapse
Affiliation(s)
| | - Divya Reddy
- Epigenetics and Chromatin Biology Group, Gupta Lab, India
| | - Raja Reddy
- Integrated Biophysics and Structural Biology Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Asmita Sharda
- Epigenetics and Chromatin Biology Group, Gupta Lab, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, India
| |
Collapse
|
24
|
Codon Optimization of the "Bos Taurus Chymosin" Gene for the Production of Recombinant Chymosin in Pichia pastoris. Mol Biotechnol 2017; 58:657-664. [PMID: 27394727 DOI: 10.1007/s12033-016-9965-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Codon optimization of the Bos taurus Chymosin gene (CYM) for its expression in Pichia pastoris was performed in this study. A synthetic CYM gene was designed in silico by replacing codons rarely used by P. pastoris with equivalent nucleotide combinations that codify for the same amino acid but that are more frequently encountered in the genome of P. pastoris. A total of 332 nucleotides were modified to optimize 289 codons. The synthetic CYM gene was cloned into the expression vector pPICZαA and transformed into P. pastoris. The transformed strains were grown in artificial media supplemented with glycerol as a carbon source to increase biomass and then cultured in a similar medium replacing glycerol with methanol as a carbon source to initiate gene induction. Raw extracts of the growth media exhibited milk-clotting activity of 146.11 SU/mL. Produced recombinant chymosin showed coagulant activity from 25 to 50 °C, and within a pH range of 5-6.9, having optimum activity at 35-40 °C, and pH 5.0. These results show that codon optimization is a viable strategy to improve CYM gene expression levels in P. pastoris for the production of recombinant chymosin.
Collapse
|
25
|
Mohseni AH, Razavilar V, Keyvani H, Razavi MR, Khavari Nejad RA. Codon Usage Optimization and Construction of Plasmid Encoding Iranian Human Papillomavirus Type 16 E7 Oncogene for Lactococcus Lactis Subsp. Cremoris MG1363. Asian Pac J Cancer Prev 2017; 18:783-788. [PMID: 28441787 PMCID: PMC5464500 DOI: 10.22034/apjcp.2017.18.3.783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HPV 16 intratypic sequence variations has been recognized in association with oncogenic potential diverge and
geographic distribution. This study aimed to investigate nucleotide modifications and optimization of HPV 16 E7
regions from Iranian infected women. Cervical biopsies from 79/163 HPV 16 positive cancer patients detected in
our study were analyzed by PCR in a couple of cloning of a complete ORF of the E7 gene, and sequencing. The
most frequently observed variant was C196T in E7 which led to an amino acid change of R66W. In addition, only
one common variant T234G was identified from all specimens, but it did not lead to any amino acid change. We also
detected nucleotide variations A86G, and C188T in samples. Among 99 codons in E7 gene, 56 codons were improved
for Lactococcus lactis subsp. cremoris MG1363 resulting in a reduced G+C content from 43.1% to 34.0%. Also, the
AT%, ENC, and CAI values were 66, 20±1.1, and 1.000 instead of 56.90, 60 ±1.1, and 0.406 respectively. Finally we
constructed expression vector pNZ8148 encoding optimized E7 oncoprotein of HPV 16. This study declared for the
first time, the genetic variations of HPV 16 E7 in IRAN. We conclude that plasmid pNZ8148-HPV 16-opti E7 can be
potential vaccine candidates in the future.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, IR Iran. ,
| | | | | | | | | |
Collapse
|
26
|
Huang P, Li W, Yang Z, Zhang N, Xu Y, Bao J, Jiang D, Dong X. LYZL6, an acidic, bacteriolytic, human sperm-related protein, plays a role in fertilization. PLoS One 2017; 12:e0171452. [PMID: 28182716 PMCID: PMC5300149 DOI: 10.1371/journal.pone.0171452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 01/21/2017] [Indexed: 11/17/2022] Open
Abstract
Lysozyme-like proteins (LYZLs) belong to the c-type lysozyme/α-lactalbumin family and are selectively expressed in the mammalian male reproductive tract. Two members, human sperm lysozyme-like protein (SLLP) -1 and mouse LYZL4, have been reported to contribute to fertilization but show no bacteriolytic activity. Here, we focused on the possible contribution of LYZL6 to immunity and fertilization. In humans, LYZL6 was selectively expressed by the testis and epididymis and became concentrated on spermatozoa. Native LYZL6 isolated from sperm extracts exhibited bacteriolytic activity against Micrococcus lysodeikticus. Recombinant LYZL6 (rLYZL6) reached its peak activity at pH 5.6 and 15 mM of Na+, and could inhibit the growth of Gram-positive, but not Gram-negative bacteria. Nevertheless, the bacteriolytic activity of rLYZL6 proved to be much lower than that of human lysozyme under physiological conditions. Immunodetection with a specific antiserum localized the LYZL6 protein on the postacrosomal membrane of mature spermatozoa. Immunoneutralization of LYZL6 significantly decreased the numbers of human spermatozoa fused with zona-free hamster eggs in a dose-dependent manner in vitro. Thus, we report here for the first time that LYZL6, an acidic, bacteriolytic and human sperm-related protein, is likely important for fertilization but not for the innate immunity of the male reproductive tract.
Collapse
Affiliation(s)
- Peng Huang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Wenshu Li
- College of Arts and Sciences, New York University, Shanghai, People’s Republic of China
| | - Zhifang Yang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ning Zhang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Yixin Xu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Jianying Bao
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xianping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| |
Collapse
|
27
|
Ranjan B, Satyanarayana T. Recombinant HAP Phytase of the Thermophilic Mold Sporotrichum thermophile: Expression of the Codon-Optimized Phytase Gene in Pichia pastoris and Applications. Mol Biotechnol 2016; 58:137-47. [PMID: 26758064 DOI: 10.1007/s12033-015-9909-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The codon-optimized phytase gene of the thermophilic mold Sporotrichum thermophile (St-Phy) was expressed in Pichia pastoris. The recombinant P. pastoris harboring the phytase gene (rSt-Phy) yielded a high titer of extracellular phytase (480 ± 23 U/mL) on induction with methanol. The recombinant phytase production was ~40-fold higher than that of the native fungal strain. The purified recombinant phytase (rSt-Phy) has the molecular mass of 70 kDa on SDS-PAGE, with K m and V max (calcium phytate), k cat and k cat/K m values of 0.147 mM and 183 nmol/mg s, 1.3 × 10(3)/s and 8.84 × 10(6)/M s, respectively. Mg(2+) and Ba(2+) display a slight stimulatory effect, while other cations tested exert inhibitory action on phytase. The enzyme is inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K and 2,3-bunatedione, but resistant to both pepsin and trypsin. The rSt-Phy is useful in the dephytinization of broiler feeds efficiently in simulated gut conditions of chick leading to the liberation of soluble inorganic phosphate with concomitant mitigation in antinutrient effects of phytates. The addition of vanadate makes it a potential candidate for generating haloperoxidase, which has several applications.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
28
|
Faraji H, Ramezani M, Sadeghnia HR, Abnous K, Soltani F, Mashkani B. High-level expression of a biologically active staphylokinase in Pichia pastoris. Prep Biochem Biotechnol 2016; 47:379-387. [PMID: 27813714 DOI: 10.1080/10826068.2016.1252924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Staphylokinase (SAK) as the third generation thrombolytic molecule is a promising agent for the treatment of thrombosis. SAK variant of SAKфC was expressed in Pichia pastoris strains KM71H and GS115. The codon adaptation index of SAK was improved from 0.75 to 0.89. The expression of recombinant SAK (rSAK) reached to its maximum (310 mg/L of the culture medium) after 48-hr stimulation with 3% methanol and remained steady until day 5. The maximum activity of the enzyme was at pH 8.6 and 37°C. It was highly active at temperatures 20-37°C and pH ranges of 6.8-9 (relative residual activity more than 80%). It was determined that rSAK was 73.8% of the total proteins secreted by P. pastoris KM71H into the culture media. The specific activities of rSAK were measured as 9,002 and 21,042 U/mg for the nonpurified and purified proteins, respectively. The quantity of the purified protein (>99% purity) was 720 µg/mL with a purification factor of 2.34. Western blot analysis showed two bands of nearly 22 and 18.6 kDa. It was concluded that P. pastoris is a proper host for expression of biologically active and endotoxin-free rSAK due to its high expression and low protein impurity in culture supernatant.
Collapse
Affiliation(s)
- Habibollah Faraji
- a Department of Medical Biotechnology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- b Pharmaceutical Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Hamid Reza Sadeghnia
- c Neurocognitive Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of New Sciences and Technology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Khalil Abnous
- e Pharmaceutical Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,f Department of Medicinal Chemistry , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Fatemeh Soltani
- g Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Baratali Mashkani
- h Department of Medical Biochemistry, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
29
|
Chen GJ, Yang JK, Peng XB, He JR. High-level secretory expression of Aspergillus exo-inulinase and its use in the preparation of fructose syrup from inulin. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Optimization of codon usage of the envelope protein E2 gene from various genotypes of hepatitis C virus to predict the expression level in Pichia pastoris. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Liu Y, Huang L, Li M, Liu H, Guo W, Gui S, Niu J, Lu F. Characterization of the recombinant porcine pancreas phospholipase A 2 expressed in Pichia pastoris GS115 and its application to synthesis of 2-DHA-PS. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
33
|
Xia F, Li X, Li X, Zheng D, Sun Q, Liu J, Li Y, Hua J, Qi B. Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes. PLoS One 2016; 11:e0158103. [PMID: 27433934 PMCID: PMC4951033 DOI: 10.1371/journal.pone.0158103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/12/2016] [Indexed: 12/23/2022] Open
Abstract
Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis.
Collapse
Affiliation(s)
- Fei Xia
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Xueying Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Desong Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Quanxi Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Jiang Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Yaxiao Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
| | - Jinping Hua
- Department of Plant Genetics & Breeding, College of Agronomy and Biotechnology, China Agricultural University, No 2, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Baoxiu Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, 271000, China
- * E-mail:
| |
Collapse
|
34
|
Hou W, Meng X, Wang Y, Mo W, Wu Y, Yu M. Characterization and high-yield production of non- N-glycosylated recombinant human BCMA-Fc in Pichia pastoris. Eng Life Sci 2016; 17:96-106. [PMID: 32624756 DOI: 10.1002/elsc.201600039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/17/2016] [Accepted: 06/09/2016] [Indexed: 11/11/2022] Open
Abstract
B-cell maturation antigen (BCMA) fused at the C-terminus to the Fc portion of human IgG1 (BCMA-Fc) blocks B-cell activating factor (BAFF) and proliferation-inducing ligand (APRIL)-mediated B-cell activation, leading to immune disorders. The fusion protein has been cloned and produced by several engineering cell lines. To reduce cost and enhance production, we attempted to express recombinant human BCMA-Fc (rhBCMA-Fc) in Pichia pastoris under the control of the AOX1 methanol-inducible promoter. To produce the target protein with uniform molecular weight and reduced immunogenicity, we mutated two predicted N-linked glycosylation sites. The secretory yield was improved by codon optimization of the target gene sequence. After fed-batch fermentation under optimized conditions, the highest yield (207 mg/L) of rhBCMA-Fc was obtained with high productivity (3.45 mg/L/h). The purified functional rhBCMA-Fc possessed high-binding affinity to APRIL and dose-dependent inhibition of APRIL-induced proliferative activity in vitro through three-step purification. Thus, this yeast-derived expression method could be a low-cost and effective alternative to the production of rhBCMA-Fc in mammalian cell lines.
Collapse
Affiliation(s)
- Weihua Hou
- Ministry of Education and Department of Biochemistry and Molecular Biology School of Basic Medicine Fudan University Shanghai China
| | - Xianchao Meng
- Ministry of Education and Department of Biochemistry and Molecular Biology School of Basic Medicine Fudan University Shanghai China
| | - Yuxiong Wang
- Ministry of Education and Department of Biochemistry and Molecular Biology School of Basic Medicine Fudan University Shanghai China
| | - Wei Mo
- Ministry of Education and Department of Biochemistry and Molecular Biology School of Basic Medicine Fudan University Shanghai China
| | - Yi Wu
- Ministry of Education and Department of Biochemistry and Molecular Biology School of Basic Medicine Fudan University Shanghai China
| | - Min Yu
- Ministry of Education and Department of Biochemistry and Molecular Biology School of Basic Medicine Fudan University Shanghai China
| |
Collapse
|
35
|
Rodríguez-López A, Alméciga-Díaz CJ, Sánchez J, Moreno J, Beltran L, Díaz D, Pardo A, Ramírez AM, Espejo-Mojica AJ, Pimentel L, Barrera LA. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep 2016; 6:29329. [PMID: 27378276 PMCID: PMC4932491 DOI: 10.1038/srep29329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A.
Collapse
Affiliation(s)
- Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltran
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea Pardo
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luisa Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
36
|
Extracellular expression and antiviral activity of a bovine interferon-alpha through codon optimization in Pichia pastoris. Microbiol Res 2016; 191:12-8. [PMID: 27524649 DOI: 10.1016/j.micres.2016.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 11/23/2022]
Abstract
Interferons (IFNs) are the primary line of defense against infectious agents. In particular, IFN-α is an important antiviral cytokine and has a wide range of immune-modulating functions. Porcine and human IFN-α have been successfully prepared and play important roles in the prevention and therapy of viral diseases. To date, there has been limited applied research on bovine IFN-α. To achieve high-level expression of recombinant bovine IFN-α (bIFN-α) in Pichia pastoris for large-scale application, the bIFN-α gene was optimized and synthesized on the basis of codon bias of P. pastoris. Optimized bIFN-α (opti-bIFN-α) was successfully expressed in P. pastoris and directly secreted into the culture supernatant. The amount of extracellular soluble opti-bIFN-α was observed to be 200μg/mL in a shake flask. Expression efficiency of opti-bIFN-α was found to be about three times that of wild-type bIFN-α when the expression yield was compared at the same copies of the targeted gene. In addition, both the original cultural supernatant and purified opti-bIFN-α showed strong antiviral activity in MDBK cells (2×10(6)AU/mL and 1×10(7)AU/mg, respectively) and IBRS-2 cells (3×10(5)AU/mL and 1.5×10(6)AU/mg, respectively) against a recombinant vesicular stomatitis virus expressing the green fluorescence protein. In this study, we demonstrated high-level extracellular expression of opti-bIFN-α by P. pastoris. To the best of our knowledge, the opti-bIFN-α yield observed in this study is the highest to be reported to date. Our results demonstrated that the extracellular opti-bIFN-α with strong antiviral activity could be easily prepared and purified at a low cost and that it may be a potential biological therapeutic drug against bovine viral infections.
Collapse
|
37
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
38
|
Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS. Production of Ginsenoside F2 by Using Lactococcus lactis with Enhanced Expression of β-Glucosidase Gene from Paenibacillus mucilaginosus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2506-2512. [PMID: 26494255 DOI: 10.1021/acs.jafc.5b04098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study aimed to produce a pharmacologically active minor ginsenoside F2 from the major ginsenosides Rb1 and Rd by using a recombinant Lactococcus lactis strain expressing a heterologous β-glucosidase gene. The nucleotide sequence of the gene (BglPm) was derived from Paenibacillus mucilaginosus and synthesized after codon optimization, and the two genes (unoptimized and optimized) were expressed in L. lactis NZ9000. Codon optimization resulted in reduction of unfavorable codons by 50% and a considerable increase in the expression levels (total activities) of β-glucosidases (0.002 unit/mL, unoptimized; 0.022 unit/mL, optimized). The molecular weight of the enzyme was 52 kDa, and the purified forms of the enzymes could successfully convert Rb1 and Rd into F2. The permeabilized L. lactis expressing BglPm resulted in a high conversion yield (74%) of F2 from the ginseng extract. Utilization of this microbial cell to produce F2 may provide an alternative method to increase the health benefits of Panax ginseng.
Collapse
Affiliation(s)
- Ling Li
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - So-Yeon Shin
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - Soo Jin Lee
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - Jin Seok Moon
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| | - Wan Taek Im
- Department of Biotechnology, Hankyong National University , Kyonggi-do 456-749, Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural and Food Sciences, Chungbuk National University , Cheongju 361-763, Korea
| |
Collapse
|
39
|
Chen X, Chen J, Zhang Y, Zhu P, Deng Y, Liu Q. Secreted expression of truncated capsid protein from porcine circovirus type 2 in Pichia pastoris. Biotechnol Lett 2016; 38:959-67. [PMID: 26994771 DOI: 10.1007/s10529-016-2076-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/01/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To achieve secreted expression of the truncated capsid protein from porcine circovirus type 2 (PCV2) in Pichia pastoris. RESULTS A truncated cap gene (tcap) with a deleted N-terminal nuclear localization signal was optimized and synthesized. Effective secreted expression was achieved in P. pastoris GS115. The high-productive recombinant strain for tCap was grown in a 5 l bioreactor and the productivity of tCap in supernatant reached 250 μg/ml. Furthermore, serum antibody test demonstrated that adjuvant-assisting tCap induced a significant increase of specific PCV2-Cap antibody over time in mice and a similar antibody level in pigs compared with a commercial Cap-based subunit vaccine. CONCLUSION This work establishes a secreted expression strategy in P. pastoris for the production of PCV2 Cap with superior bioactivity, and this strategy might provide potential uses in developing Cap-based subunit vaccine in the future.
Collapse
Affiliation(s)
- Xiaohong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Junjun Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Ping Zhu
- Beijing Wanmuyuan Agriculture S&T Co., Ltd, Beijing, 100081, China
| | - Yong Deng
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing, 100081, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
40
|
Akbarzadeh A, Dehnavi E, Aghaeepoor M, Amani J. Optimization of Recombinant Expression of Synthetic Bacterial Phytase in Pichia pastoris Using Response Surface Methodology. Jundishapur J Microbiol 2015; 8:e27553. [PMID: 26870311 PMCID: PMC4746705 DOI: 10.5812/jjm.27553] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/19/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022] Open
Abstract
Background: Escherichia coli phytase is an acidic histidine phytase with great specific activity. Pichia pastoris is a powerful system for the heterologous expression of active and soluble proteins which can express recombinant proteins in high cell density fermenter without loss of product yield and efficiently secrete heterologous proteins into the media. Recombinant protein expression is influenced by expression conditions such as temperature, concentration of inducer, and pH. By optimization, the yield of expressed proteins can be increase. Response surface methodology (RSM) has been widely used for the optimization and studying of different parameters in biotechnological processes. Objectives: In this study, the expression of synthetic appA gene in P. pastoris was greatly improved by adjusting the expression condition. Materials and Methods: The appA gene with 410 amino acids was synthesized by P. pastoris codon preference and cloned in expression vector pPinkα-HC, under the control of AOX1 promoter, and it was transformed into P. pastoris GS115 by electroporation. Recombinant phytase was expressed in buffered methanol-complex medium (BMMY) and the expression was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and enzymatic assay. To achieve the highest level of expression, methanol concentration, pH and temperature were optimized via RSM. Finally, the optimum pH and temperature for recombinant phytase activity was determined. Results: Escherichia coli phytase was expressed in P. pastoris under different cultivation conditions (post-induction temperature, methanol concentration, and post-induction pH). The optimized conditions by RSM using face centered central composite design were 1% (v/v) methanol, pH = 5.8, and 24.5°C. Under the optimized conditions, appA was successfully expressed in P. pastoris and the maximum phytase activity was 237.2 U/mL after 72 hours of expression. Conclusions: By optimization of recombinant phytase expression in shake flask culture, we concluded that P. pastoris was a suitable host for high-level expression of phytase and it can possess high potential for industrial applications.
Collapse
Affiliation(s)
- Ali Akbarzadeh
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Ehsan Dehnavi
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
| | - Mojtaba Aghaeepoor
- Gene Transfer Pioneers Research Group, Shahid Beheshti University, Tehran, IR Iran
- Semnan Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, IR Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Jafar Amani, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq, Molasadra St, P. O. Box: 193955487, Tehran, IR Iran. Tel: +98-2182482568, Fax: +98-2188068924, E-mail:
| |
Collapse
|
41
|
Madhavan A, Sukumaran RK. Signal peptides from filamentous fungi efficiently mediate the secretion of recombinant proteins in Kluyveromyces lactis. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Li X, Liu Z, Wang G, Pan D, Jiao L, Yan Y. Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris. Enzyme Microb Technol 2015; 82:115-124. [PMID: 26672457 DOI: 10.1016/j.enzmictec.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/27/2022]
Abstract
In this study, combined strategies were employed to heterologously overexpress Candida rugosa lipase Lip1 (CRL1) in a Pichia pastoris system. The LIP1 gene was systematically codon-optimized and synthesized in vitro. The Lip1 activity of a recombinant strain harboring three copies of the codon-optimized LIP1 gene reached 1200 U/mL in a shake flask culture. Higher lipase activity, 1450 U/mL, was obtained using a five copy number construct. Co-expressing one copy of the ERO1p and BiP chaperones with Lip1p, the CRL1 lipase yield further reached 1758 U/mL, which was significantly higher than that achieved by expressing Lip1p alone or only co-expressing one molecular chaperone. When cultivated in a 3 L fermenter under optimal conditions, the recombinant strain GS115/87-ZA-ERO1p-BiP #7, expressing the molecular chaperones Ero1p and BiP, produced 13,490 U/mL of lipase activity at 130 h, which was greater than the 11,400 U/mL of activity for the recombinant strain GS115/pAO815-α-mCRL1 #87, which did not express a molecular chaperone. This study indicates that a strategy of combining codon optimization with co-expression of molecular chaperones has great potential for the industrial-scale production of pure CRL1.
Collapse
Affiliation(s)
- Xu Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zimin Liu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guilong Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dujie Pan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
43
|
Luo Y, Li L, Austermann-Busch S, Dong M, Xu J, Shao L, Lei J, Li N, He WR, Zhao B, Li S, Li Y, Liu L, Becher P, Sun Y, Qiu HJ. Enhanced expression of the Erns protein of classical swine fever virus in yeast and its application in an indirect enzyme-linked immunosorbent assay for antibody differentiation of infected from vaccinated animals. J Virol Methods 2015; 222:22-7. [DOI: 10.1016/j.jviromet.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 04/18/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
44
|
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 2015; 116:13-23. [PMID: 26071627 DOI: 10.1016/j.ymgme.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.
Collapse
Affiliation(s)
- Ángela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Alexander Rodríguez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ángela Mosquera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltrán
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sergio Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Oscar F Sánchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Henry Córdoba
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
45
|
Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol 2015; 202:118-34. [DOI: 10.1016/j.jbiotec.2015.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/28/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
46
|
Zhou WJ, Yang JK, Mao L, Miao LH. Codon optimization, promoter and expression system selection that achieved high-level production of Yarrowia lipolytica lipase in Pichia pastoris. Enzyme Microb Technol 2015; 71:66-72. [DOI: 10.1016/j.enzmictec.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022]
|
47
|
Cao X, Yu H, Chen C, Wei J, Wang P. Expression and characterization of recombinant humanized anti-HER2 single-chain antibody in Pichia pastoris for targeted cancer therapy. Biotechnol Lett 2015; 37:1347-54. [DOI: 10.1007/s10529-015-1804-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
48
|
Liu Q, Xu W, Han S, Cao D, He X, Huang K, Mei X. Production and optimization of a kiwi pectin methylesterase inhibitor in Pichia pastoris GS115. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0269-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance. Bioprocess Biosyst Eng 2014; 38:889-903. [PMID: 25492311 DOI: 10.1007/s00449-014-1333-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.
Collapse
|
50
|
Liu Y, Zhang T, Qiao J, Liu X, Bo J, Wang J, Lu F. High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5354-5360. [PMID: 24841277 DOI: 10.1021/jf405836x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The gene encoding phospholipase D (PLD) from Streptomyces chromofuscus was displayed on the cell surface of Pichia pastoris GS115/pKFS-pldh using a Flo1p anchor attachment signal sequence (FS anchor). The displayed PLD (dPLD) showed maximum enzymatic activity at pH 6.0 and 55 °C and was stable within a broad range of temperatures (20-65 °C) and pHs (pH 4.0-11.0). In addition, the thermostability, acid stability and organic solvent tolerance of the dPLD were significantly enhanced compared with the secreted PLD (sPLD) from S. chromofuscus. Use of dPLD for conversion of phosphatidylcholine (PC) and l-serine to phosphatidylserine (PS) showed that 67.5% of PC was converted into PS at the optimum conditions. Moreover, the conversion rate of PS remained above 50% after 7 repeated batch cycles. Thus, P. pastoris GS115/pKFS-pldh shows the potential for viable industrial production of PS.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|