1
|
Alvarado-Ocampo J, Abrahams-Sandí E, Retana-Moreira L. Overview of extracellular vesicles in pathogens with special focus on human extracellular protozoan parasites. Mem Inst Oswaldo Cruz 2024; 119:e240073. [PMID: 39319874 PMCID: PMC11421424 DOI: 10.1590/0074-02760240073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/09/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid-bilayered membrane-delimited particles secreted by almost any cell type, involved in different functions according to the cell of origin and its state. From these, cell to cell communication, pathogen-host interactions and modulation of the immune response have been widely studied. Moreover, these vesicles could be employed for diagnostic and therapeutic purposes, including infections produced by pathogens of diverse types; regarding parasites, the secretion, characterisation, and roles of EVs have been studied in particular cases. Moreover, the heterogeneity of EVs presents challenges at every stage of studies, which motivates research in this area. In this review, we summarise some aspects related to the secretion and roles of EVs from several groups of pathogens, with special focus on the most recent research regarding EVs secreted by extracellular protozoan parasites.
Collapse
Affiliation(s)
- Johan Alvarado-Ocampo
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
| | - Elizabeth Abrahams-Sandí
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
- Universidad de Costa Rica, Facultad de Microbiología, Departamento de Parasitología, San José, Costa Rica
| | - Lissette Retana-Moreira
- Universidad de Costa Rica, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, San José, Costa Rica
- Universidad de Costa Rica, Facultad de Microbiología, Departamento de Parasitología, San José, Costa Rica
| |
Collapse
|
2
|
Ferreira B, Lourenço Á, Sousa MDC. Protozoa-Derived Extracellular Vesicles on Intercellular Communication with Special Emphasis on Giardia lamblia. Microorganisms 2022; 10:microorganisms10122422. [PMID: 36557675 PMCID: PMC9788250 DOI: 10.3390/microorganisms10122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Parasitic diseases are an important worldwide problem threatening human health and affect millions of people. Acute diarrhea, intestinal bleeding, malabsorption of nutrients and nutritional deficiency are some of the issues related to intestinal parasitic infections. Parasites are experts in subvert the host immune system through different kinds of mechanisms. There are evidences that extracellular vesicles (EVs) have an important role in dissemination of the disease and in modulating the host immune system. Released by almost all types of cells, these nanovesicles are a natural secretory product containing multiple components of interest. The EVs are classified as apoptotic bodies, microvesicles, exosomes, ectosomes, and microparticles, according to their physical characteristics, biochemical composition and cell of origin. Interestingly, EVs play an important role in intercellular communication between parasites as well as with the host cells. Concerning Giardia lamblia, it is known that this parasite release EVs during it life cycle that modulate the parasite growth and adherence as well the immune system of the host. Here we review the recently updates on protozoa EVs, with particular emphasis on the role of EVs released by the flagellate protozoa G. lamblia in cellular communication and its potential for future applications as vaccine, therapeutic agent, drug delivery system and as diagnostic or prognostic biomarker.
Collapse
Affiliation(s)
- Bárbara Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIVG-Vasco da Gama Research Center, EUVG-Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Ágata Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Maria do Céu Sousa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
3
|
Benchimol M, de Souza W. Giardia intestinalis and its Endomembrane System. J Eukaryot Microbiol 2022; 69:e12893. [PMID: 35148450 DOI: 10.1111/jeu.12893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro Duque de Caxias, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Talamás-Lara D, Acosta-Virgen K, Chávez-Munguía B, Lagunes-Guillén A, Salazar-Villatoro L, Espinosa-Cantellano M, Martínez-Palomo A. Golgi apparatus components in Entamoeba histolytica and Entamoeba dispar after monensin treatment. Microsc Res Tech 2021; 84:1887-1896. [PMID: 33675108 DOI: 10.1002/jemt.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/23/2021] [Accepted: 02/19/2021] [Indexed: 11/07/2022]
Abstract
Highly dynamic ribosomes, glycogen granules, thinly fibrillar material, and multiple membrane-bound vesicles are embedded in the matrix-rich cytoplasm of Entamoeba spp. trophozoites. The absence of a Golgi apparatus in these amoebae has been commonly accepted. Here we challenge this observation by incubating Entamoeba histolytica and Entamoeba dispar with monensin, an ionophore that produces swelling of the Golgi apparatus. We observe changes in the trophozoites through standard transmission electron microscopy, cryofixation and cryosubstitution, and analyze the label and expression of known resident proteins of the cis-GM130 and trans-TGN38 Golgi network through confocal microscopy and Western blot assays. Cryosubstitution and standard methods using the treatment, preserved membranous lamellae resembling Golgi components. GM130 and TGN38 Golgi antigens were found by immunoelectron, immunoblot, and co-localization by confocal microscopy using the reagent NBD C6-ceramide. Our results indicate that previously undetected Golgi apparatus components are present in the cytoplasm of E. histolytica and E. dispar.
Collapse
Affiliation(s)
- Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Karla Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
5
|
Olajide JS, Cai J. Perils and Promises of Pathogenic Protozoan Extracellular Vesicles. Front Cell Infect Microbiol 2020; 10:371. [PMID: 32923407 PMCID: PMC7456935 DOI: 10.3389/fcimb.2020.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures formed during biological processes in living organisms. For protozoan parasites, secretion of EVs can occur directly from the parasite organellar compartments and through parasite-infected or antigen-stimulated host cells in response to in vitro and in vivo physiological stressors. These secreted EVs characteristically reflect the biochemical features of their parasitic origin and activating stimuli. Here, we review the species-specific morphology and integrity of parasitic protozoan EVs in concurrence with the origin, functions, and internalization process by recipient cells. The activating stimuli for the secretion of EVs in pathogenic protozoa are discoursed alongside their biomolecules and specific immune cell responses to protozoan parasite-derived EVs. We also present some insights on the intricate functions of EVs in the context of protozoan parasitism.
Collapse
Affiliation(s)
- Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China.,Centre for Distance Learning, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| |
Collapse
|
6
|
Lactoferrin and lactoferricin endocytosis halt Giardia cell growth and prevent infective cyst production. Sci Rep 2018; 8:18020. [PMID: 30575774 PMCID: PMC6303297 DOI: 10.1038/s41598-018-36563-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Lactoferrin (LF) is an 80 KDa iron-binding glycoprotein that plays a significant role in the innate immune system and is considered to be an important microbicide molecule. It has been suggested to be effective in the treatment of giardiasis, an intestinal disease caused by the protozoan parasite G. lamblia. However, the molecular mechanisms by which LF exerts its effect on this parasite are unknown. Most of the microbicidal activity of human or bovine LF (hLF or bLF) has been associated with the N-terminal region of the mature LF - lactoferricin (LFcin). LFcin is produced by pepsin cleavage of the native protein in vitro and likely in vivo. In this work, we analyse the participation of the endocytic machinery of G. lamblia in the internalization of bLF and bLFcin and their effects on cell homeostasis. Our results show that, when bLF or bLFcin are internalized by receptor-mediated endocytosis, cell growth stops, and morphological changes are produced in the trophozoites, which ultimately will produce immature cysts. Our findings contribute to disclose the fine mechanism by which bLF and bLFcin may function as an antigiardial molecule and why they have therapeutic potential to eradicate giardiasis.
Collapse
|
7
|
Zamponi N, Zamponi E, Mayol GF, Lanfredi-Rangel A, Svärd SG, Touz MC. Endoplasmic reticulum is the sorting core facility in the Golgi-lacking protozoanGiardia lamblia. Traffic 2017; 18:604-621. [DOI: 10.1111/tra.12501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Emiliano Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Gonzalo F. Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| | | | - Staffan G. Svärd
- Department of Cell and Molecular Biology; Uppsala University; Uppsala Sweden
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC - CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
8
|
Abstract
SUMMARYTo determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling ‘beads on a string’. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.
Collapse
|
9
|
Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB. Proteomics of secretory and endocytic organelles in Giardia lamblia. PLoS One 2014; 9:e94089. [PMID: 24732305 PMCID: PMC3986054 DOI: 10.1371/journal.pone.0094089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia is a flagellated protozoan enteroparasite transmitted as an environmentally resistant cyst. Trophozoites attach to the small intestine of vertebrate hosts and proliferate by binary fission. They access nutrients directly via uptake of bulk fluid phase material into specialized endocytic organelles termed peripheral vesicles (PVs), mainly on the exposed dorsal side. When trophozoites reach the G2/M restriction point in the cell cycle they can begin another round of cell division or encyst if they encounter specific environmental cues. They induce neogenesis of Golgi-like organelles, encystation-specific vesicles (ESVs), for regulated secretion of cyst wall material. PVs and ESVs are highly simplified and thus evolutionary diverged endocytic and exocytic organelle systems with key roles in proliferation and transmission to a new host, respectively. Both organelle systems physically and functionally intersect at the endoplasmic reticulum (ER) which has catabolic as well as anabolic functions. However, the unusually high degree of sequence divergence in Giardia rapidly exhausts phylogenomic strategies to identify and characterize the molecular underpinnings of these streamlined organelles. To define the first proteome of ESVs and PVs we used a novel strategy combining flow cytometry-based organelle sorting with in silico filtration of mass spectrometry data. From the limited size datasets we retrieved many hypothetical but also known organelle-specific factors. In contrast to PVs, ESVs appear to maintain a strong physical and functional link to the ER including recruitment of ribosomes to organelle membranes. Overall the data provide further evidence for the formation of a cyst extracellular matrix with minimal complexity. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000694.
Collapse
Affiliation(s)
- Petra B. Wampfler
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Vinko Tosevski
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Cornelia Spycher
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Institute of Parasitology, University of Bern, Bern, Switzerland
- * E-mail: (ABH); (CS)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CS)
| |
Collapse
|
10
|
A new set of carbohydrate-positive vesicles in encysting Giardia lamblia. Protist 2012; 164:261-71. [PMID: 23266141 DOI: 10.1016/j.protis.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022]
Abstract
Giardia lamblia is a protozoan parasite that presents both trophozoite and cyst forms. In this study, the distribution of the different sugar residues and the origin of the carbohydrate components of the cyst wall were studied using transmission electron microscopy, ultrastructural cytochemistry for carbohydrate detection and immunocytochemistry. Immunofluorescence microscopy using anti-cyst wall protein 1 (CWP1) and gold- and fluorescent-conjugated lectins, such as WGA and DBA, were also used. Interestingly, a population of carbohydrate-containing vesicles, distinct from the encystation-specific vesicles (ESVs) was found in the encysting cells and was named encystation carbohydrate-positive vesicles (ECVs). The differences between the ECVs and the ESVs were: (1) they are electron-translucent, whereas ESVs are electron dense; (2) they do not react with antibodies against cyst wall proteins; (3) the contents are positive for carbohydrates, whereas ESVs display a negative reaction; and (4) they exhibit a positive labeling for DBA indicating the presence of N-acetyl-galactosamine, whereas ESVs are negative. To evaluate if ECVs could be vesicles involved in the endocytic pathway, endocytic markers were used. No co-localization of these markers with ECVs was observed. We suggest that the ECVs may represent a new structure involved in cyst wall formation.
Collapse
|
11
|
Carpenter ML, Assaf ZJ, Gourguechon S, Cande WZ. Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. J Cell Sci 2012; 125:2523-32. [PMID: 22366460 DOI: 10.1242/jcs.103879] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Giardia intestinalis (also known as Giardia lamblia) is a major waterborne pathogen. During its life cycle, Giardia alternates between the actively growing trophozoite, which has two diploid nuclei with low levels of allelic heterozygosity, and the infectious cyst, which has four nuclei and a tough outer wall. Although the formation of the cyst wall has been studied extensively, we still lack basic knowledge about many fundamental aspects of the cyst, including the sources of the four nuclei and their distribution during the transformation from cyst into trophozoite. In this study, we tracked the identities of the nuclei in the trophozoite and cyst using integrated nuclear markers and immunofluorescence staining. We demonstrate that the cyst is formed from a single trophozoite by a mitotic division without cytokinesis and not by the fusion of two trophozoites. During excystation, the cell completes cytokinesis to form two daughter trophozoites. The non-identical nuclear pairs derived from the parent trophozoite remain associated in the cyst and are distributed to daughter cells during excystation as pairs. Thus, nuclear sorting (such that each daughter cell receives a pair of identical nuclei) does not appear to be a mechanism by which Giardia reduces heterozygosity between its nuclei. Rather, we show that the cyst nuclei exchange chromosomal genetic material, perhaps as a way to reduce heterozygosity in the absence of meiosis and sex, which have not been described in Giardia. These results shed light on fundamental aspects of the Giardia life cycle and have implications for our understanding of the population genetics and cell biology of this binucleate parasite.
Collapse
Affiliation(s)
- Meredith L Carpenter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
12
|
Touz MC, Rivero MR, Miras SL, Bonifacino JS. Lysosomal protein trafficking in Giardia lamblia: common and distinct features. Front Biosci (Elite Ed) 2012; 4:1898-909. [PMID: 22202006 DOI: 10.2741/511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Giardia is a flagellated protozoan parasite that has to face different microenvironments during its life cycle in order to survive. All cells exchange materials with the extracellular medium through the reciprocal processes of endocytosis and secretion. Unlike more evolved cells, Giardia lacks a defined endosomal/lysosomal system, but instead possesses peripheral vacuoles that play roles in endocytosis, degradation, recycling, and secretion of proteins during growth and differentiation of the parasite. This review focuses on recent reports defining the role of different molecules involved in protein trafficking to the peripheral vacuoles, and discusses possible mechanisms of receptor recycling. Since Giardia is an early-branching protist, the study of this parasite may lead to a clearer understanding of the minimal machinery required for protein transport in eukaryotic cells.
Collapse
Affiliation(s)
- Maria C Touz
- Instituto de Investigacion Medica Mercedes y Martin Ferreyra, INIMEC - CONICET, Friuli 2434, Cordoba, Argentina.
| | | | | | | |
Collapse
|
13
|
Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies? Trends Parasitol 2011; 27:450-8. [PMID: 21775209 DOI: 10.1016/j.pt.2011.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
Abstract
Certain protozoan parasites use survival strategies to reside outside the host such as the formation of cysts. This dormant and resistant stage results from the complex process of encystment that involves diverse molecular and cellular modifications. The stimuli and changes associated with cyst biogenesis are a matter of ongoing studies in human and animal protozoan parasites such as amoeba and Giardia species because blocking every step in the encystment pathway should, in theory, interrupt their life cycles. The present review thoroughly examines this essential process in those protozoan parasites and discusses the possibility of using that information to develop new kinds of anti-parasite specific and life cycle-interrupting drugs, aimed at holding back the dissemination of these infections.
Collapse
|
14
|
Expression of Cryptosporidium parvum Cpa135/CpCCP1 chimeras in Giardia duodenalis: organization of the protein domains affects the protein secretion pathway. Exp Parasitol 2010; 127:680-6. [PMID: 21112325 DOI: 10.1016/j.exppara.2010.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/25/2010] [Accepted: 11/17/2010] [Indexed: 11/23/2022]
Abstract
Cpa135 is a multidomain antigenic protein secreted at the sporozoite stage of the Apicomplexa protozoan Cryptosporidium parvum. Previous studies have shown that the protozoan flagellate parasite Giardia duodenalis is a suitable system for the heterologous expression of secreted proteins of Apicomplexa. Here, we designed three different Cpa135 variants fused to a C-terminal HA tag in order to test their expression in G. duodenalis under the control of the inducible promoter of the cyst wall protein 1 gene (cwp1). The three Cpa135 chimeras encompassed different portions of the protein; CpaG encodes the entire polypeptide of 1574 amino acids (aa); CpaGΔC includes the first 826 aa at the N-terminus; and CpaGΔN consists in of the final 833 aa at the C-terminus. Immunoblot experiments showed that CpaG and CpaGΔN maintained the epitopes recognized by anti-C. parvum-specific human serum. The intracellular localization and transport of the three Cpa135 variants were studied by immunofluorescence in combination with G. duodenalis-specific antibodies. CpaGΔC was mainly accumulated in the endoplasmic reticulum and the intact form was also excreted in the medium. Differently, the Cpa135 chimeras possessing an intact C-terminus (CpaG and CpaGΔN) were transported towards the forming cyst wall possibly and were not detected in the medium. Furthermore, the full-length CpaG was incorporated into the cyst wall. The data presented suggest that the C-terminus of Cpa135, which includes a cysteine reach domain, could influence the secretion of the chimeric proteins.
Collapse
|
15
|
Adaptor protein 2 regulates receptor-mediated endocytosis and cyst formation in Giardia lamblia. Biochem J 2010; 428:33-45. [PMID: 20199400 DOI: 10.1042/bj20100096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The parasite Giardia lamblia possesses PVs (peripheral vacuoles) that function as both endosomes and lysosomes and are implicated in the adaptation, differentiation and survival of the parasite in different environments. The mechanisms by which Giardia traffics essential proteins to these organelles and regulates their secretion have important implications in the control of parasite dissemination. In the present study, we describe the participation of the heterotetrameric clathrin-adaptor protein gAP2 (Giardia adaptor protein 2) complex in lysosomal protein trafficking. A specific monoclonal antibody against the medium subunit (gmu2) of gAP2 showed localization of this complex to the PVs, cytoplasm and plasma membrane in the growing trophozoites. gAP2 also co-localized with clathrin in the PVs, suggesting its involvement in endocytosis. Uptake experiments using standard molecules for the study of endocytosis revealed that gAP2 specifically participated in the endocytosis of LDL (low-density lipoprotein). Targeted down-regulation of the gene encoding gmu2 in growing and encysting trophozoites resulted in a large decrease in the amount of cell growth and cyst wall formation, suggesting a distinct mechanism in which gAP2 is directly involved in both endocytosis and vesicular trafficking.
Collapse
|
16
|
Bittencourt-Silvestre J, Lemgruber L, de Souza W. Encystation process of Giardia lamblia: morphological and regulatory aspects. Arch Microbiol 2010; 192:259-65. [PMID: 20151113 DOI: 10.1007/s00203-010-0554-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/24/2010] [Accepted: 01/27/2010] [Indexed: 12/21/2022]
Abstract
One important step in the life cycle of the pathogenic protozoan Giardia lamblia is the transformation of the proliferative form, the trophozoite, into the non-proliferative cyst. This process, known as encystation, can be triggered in vitro. Morphological analysis showed that during trophozoite-cyst transformation, major changes take place: modification of the protozoan shape, internalization of the flagella, fragmentation of the adhesive disk, and appearance of encystation vesicles (ESVs), which later on fuse with the plasma membrane forming the cell wall. Sites of attachment of these vesicles to the inner portion of the protozoan plasma membrane were observed 6 h after the beginning of the encystation process. These sites were only visible when we used high-resolution scanning electron microscopy to study Giardia surface. In order to analyze the involvement of protein kinases and phosphatases on the encystation process, inhibitors of these enzymes were added to the culture medium, and their effect on the differentiation process was determined using light, immunofluorescence, and electron microscopy. Significant inhibition was observed with LY294002, an inhibitor of PI3 kinase; genistein, an inhibitor of tyrosine kinase; and staurosporine, at concentrations, which inhibit protein kinase C. Okadaic acid, an inhibitor or protein phosphatase, and wortmannin, an inhibitor of PI3K, did not interfere with the encystation process. However, they induced the appearance of large and pleomorphic forms where several nuclei and disorganization of the peripheral vesicles were observed.
Collapse
|
17
|
A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. EUKARYOTIC CELL 2009; 8:1665-76. [PMID: 19749174 DOI: 10.1128/ec.00123-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamic evolution of organelle compartmentalization in eukaryotes and how strictly compartmentalization is maintained are matters of ongoing debate. While the endoplasmic reticulum (ER) is classically envisioned as the site of protein cotranslational translocation, it has recently been proposed to have pluripotent functions. Using transfected reporter constructs, organelle-specific markers, and functional enzyme assays, we now show that in an early-diverging protozoan, Giardia lamblia, endocytosis and subsequent degradation of exogenous proteins occur in the ER or in an adjacent and communicating compartment. The Giardia endomembrane system is simple compared to those of typical eukaryotes. It lacks peroxisomes, a classical Golgi apparatus, and canonical lysosomes. Giardia orthologues of mammalian lysosomal proteases function within an ER-like tubulovesicular compartment, which itself can dynamically communicate with clathrin-containing vacuoles at the periphery of the cell to receive endocytosed proteins. These primitive characteristics support Giardia's proposed early branching and could serve as a model to study the compartmentalization of endocytic and lysosomal functions into organelles distinct from the ER. This system also may have functional similarity to the retrograde transport of toxins and major histocompatibility complex class I function in the ER of mammals.
Collapse
|
18
|
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, Spycher C, Wild P, Hehl AB. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci 2009; 122:2846-56. [PMID: 19622633 DOI: 10.1242/jcs.049411] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The highly reduced protozoan parasite Giardia lamblia has minimal machinery for cellular processes such as protein trafficking. Giardia trophozoites maintain diverse and regulated secretory pathways but lack an identifiable Golgi complex. During differentiation to cysts, however, they produce specialized compartments termed encystation-specific vesicles (ESVs). ESVs are hypothesized to be unique developmentally regulated Golgi-like organelles dedicated to maturation and export of pre-sorted cyst wall proteins. Here we present a functional analysis of this unusual compartment by direct interference with the functions of the small GTPases Sar1, Rab1 and Arf1. Conditional expression of dominant-negative variants revealed an essential role of Sar1 in early events of organelle neogenesis, whilst inhibition of Arf1 uncoupled morphological changes and cell cycle progression from extracellular matrix export. The latter led to development of ;naked cysts', which lacked water resistance and thus infectivity. Time-lapse microscopy and photobleaching experiments showed that putative Golgi-like cisternae in Giardia develop into a network capable of exchanging soluble cargo at a high rate via dynamic, tubular connections, presumably to synchronize maturation. The minimized and naturally pulsed trafficking machinery for export of the cyst wall biopolymer in Giardia is a simple model for investigating basic principles of neogenesis and maturation of Golgi compartments.
Collapse
Affiliation(s)
- Sasa Stefanic
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Giardia lamblia behavior during encystment: How morphological changes in shape occur. Parasitol Int 2009; 58:72-80. [DOI: 10.1016/j.parint.2008.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 11/06/2008] [Accepted: 11/20/2008] [Indexed: 01/18/2023]
|
20
|
CHÁVEZ-MUNGUÍA BIBIANA, OMAÑA-MOLINA MARITZA, CASTAÑÓN GUADALUPE, BONILLA PATRICIA, GONZÁLEZ-LÁZARO MÓNICA, HERNÁNDEZ-MARTÍNEZ DOLORES, SALAZAR-VILLATORO LIZBETH, ESPARZA-GARCÍA AMELIA, MARTÍNEZ-PALOMO ADOLFO, ORTEGA-PIERRES GUADALUPE. Ultrastructural Study of the Encystation and Excystation Processes inNaegleriasp. J Eukaryot Microbiol 2009; 56:66-72. [DOI: 10.1111/j.1550-7408.2008.00372.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Amazonas JN, Cosentino-Gomes D, Werneck-Lacerda A, de Sá Pinheiro AA, Lanfredi-Rangel A, Souza WD, Meyer-Fernandes JR. Giardia lamblia: Characterization of ecto-phosphatase activities. Exp Parasitol 2009; 121:15-21. [DOI: 10.1016/j.exppara.2008.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 11/29/2022]
|
22
|
Effects of a putrescine analog on Giardia lamblia. Parasitol Res 2008; 103:363-70. [DOI: 10.1007/s00436-008-0981-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
23
|
Maia C, Attias M, Urbina J, Gilbert I, Magaraci F, de Souza W. Azasterols impair Giardia lamblia proliferation and induces encystation. Biochem Biophys Res Commun 2007; 363:310-6. [PMID: 17870055 DOI: 10.1016/j.bbrc.2007.08.174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 01/22/2023]
Abstract
The effects of sterol biosynthesis inhibitors on growth and fine structure of Giardia lamblia P1 strain cultures were analyzed. Azasterols demonstrated high efficacy in killing cells. The IC(50) values for 22,26-azasterol and 24(R,S),25-epiminolanosterol were 7muM and 170nM, respectively. Morphological analysis showed that azasterols induced changes in G. lamblia ultrastructure. The most significant alterations were: (a) considerable increase of the size of the peripheral vesicles, which are part of the parasite endosomal-lysosomal system; (b) appearance of autophagosomal structures; and (c) induction of differentiation, followed by an abnormal enlargement of encystation secretory vesicles. We propose that azasterols are effective chemotherapeutic drugs against Giardia lamblia in vitro and may have another target in cells besides sterol biosynthesis.
Collapse
Affiliation(s)
- Claudia Maia
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Cedillo-Rivera R, Bonilla P, Martínez-Palomo A. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol Res 2007; 100:1169-75. [PMID: 17252271 DOI: 10.1007/s00436-006-0447-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/29/2022]
Abstract
Cysts represent a phase in the life cycle of biphasic parasitic protozoa that allow them to survive under adverse environmental conditions. Two events are required for the morphological differentiation from trophozoite to cyst and from cyst to trophozoite: the encystation and excystation processes. In this paper, we present a review of the ultrastructure of the encystation and excystation processes in Entamoeba invadens, Acanthamoeba castellanii, and Giardia lamblia. The comparative electron microscopical observations of these events here reported provide a morphological background to better understand recent advances in the biochemistry and molecular biology of the differentiation phenomena in these microorganisms.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hernandez Y, Castillo C, Roychowdhury S, Hehl A, Aley SB, Das S. Clathrin-dependent pathways and the cytoskeleton network are involved in ceramide endocytosis by a parasitic protozoan, Giardia lamblia. Int J Parasitol 2007; 37:21-32. [PMID: 17087963 PMCID: PMC1831817 DOI: 10.1016/j.ijpara.2006.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/07/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation.
Collapse
Affiliation(s)
- Yunuen Hernandez
- Infectious Diseases/Immunology, University of Texas at El Paso, TX 79968-0519, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Secretory processes play an important role on the biology and life cycles of parasitic protozoa. This review focus on basic aspects, from a cell biology perspective, of the secretion of (a) micronemes, rhoptries and dense granules in members of the Apicomplexa group, where these organelles are involved in the process of protozoan penetration into the host cell, survival within the parasitophorous vacuole and subsequent egress from the host cell, (b) the Maurer's cleft in Plasmodium, a structure involved in the secretion of proteins synthesized by the intravacuolar parasite and transported through vesicles to the erythrocyte surface, (c) the secretion of macromolecules into the flagellar pocket of trypanosomatids, and (d) the secretion of proteins which make the cyst wall of Giardia and Entamoeba, with the formation of encystation vesicles.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Gibson C, Schanen B, Chakrabarti D, Chakrabarti R. Functional characterisation of the regulatory subunit of cyclic AMP-dependent protein kinase A homologue of Giardia lamblia: Differential expression of the regulatory and catalytic subunits during encystation. Int J Parasitol 2006; 36:791-9. [PMID: 16472811 DOI: 10.1016/j.ijpara.2005.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/19/2005] [Accepted: 11/25/2005] [Indexed: 10/25/2022]
Abstract
To understand the functional roles of protein kinase A (PKA) during vegetative and differentiating states of Giardia parasites, we studied the structural and functional characteristics of the regulatory subunit of PKA (gPKAr) and its involvement in the giardial encystment process. Molecular cloning and characterisation showed that gPKAr contains two tandem 3'5'-cyclic adenosine monphosphate (cyclic AMP) binding domains at the C-terminal end and the interaction domain for the catalytic subunit. A number of consensus residues including in vivo phosphorylation site for PKAc and dimerisation/docking domain are present in gPKAr. The regulatory subunit physically interacts with the catalytic subunit and inhibits its kinase activity in the absence of cyclic AMP, which could be partially restored upon addition of cyclic AMP. Western blot analysis showed a marked reduction in the endogenous gPKAr concentration during differentiation of Giardia into cysts. An increased activity of gPKAc was also detected during encystation without any significant change in the protein concentration. Distinct localisations of gPKAc to the anterior flagella, basal bodies and caudal flagella as noted in trophozoites were absent in encysting cells at later stages. Instead, PKAc staining was punctate and located mostly to the cell periphery. Our study indicates possible enrichment of the active gPKAc during late stages of encystation, which may have implications in completion of the encystment process or priming of cysts for efficient excystation.
Collapse
Affiliation(s)
- Candace Gibson
- Department of Molecular Biology and Microbiology, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | | | | | | |
Collapse
|
28
|
Gottig N, Elías EV, Quiroga R, Nores MJ, Solari AJ, Touz MC, Luján HD. Active and passive mechanisms drive secretory granule biogenesis during differentiation of the intestinal parasite Giardia lamblia. J Biol Chem 2006; 281:18156-66. [PMID: 16611634 DOI: 10.1074/jbc.m602081200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The parasitic protozoan Giardia lamblia undergoes important changes to survive outside the intestine of its host by differentiating into infective cysts. During encystation, three cyst wall proteins (CWPs) are specifically expressed and concentrated within encystation-specific secretory vesicles (ESVs). ESVs are electron-dense secretory granules that transport CWPs before exocytosis and extracellular polymerization into a rigid cyst wall. Because secretory granules form at the trans-Golgi in higher eukaryotes and because Giardia lacks an identifiable Golgi apparatus, the aim of this work was to investigate the molecular basis of secretory granule formation in Giardia by examining the role of CWPs in this process. Although CWP1, CWP2, and CWP3 are structurally similar in their 26-kDa leucine-rich overlapping region, CWP2 is distinguished by the presence of a 13-kDa C-terminal basic extension. In non-encysting trophozoites, expression of different CWP chimeras showed that the CWP2 basic extension is necessary for biogenesis of ESVs, which occurs in a compartment derived from the endoplasmic reticulum. Nevertheless, the CWP2 basic extension per se is insufficient to trigger ESV formation, indicating that other domains in CWPs are also required. We found that CWP2 is a key regulator of ESV formation by acting as an aggregation factor for CWP1 and CWP3 through interactions mediated by its conserved region. CWP2 also acts as a ligand for sorting via its C-terminal basic extension. These findings show that granule biogenesis requires complex interactions among granule components and membrane receptors.
Collapse
Affiliation(s)
- Natalia Gottig
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Friuli 2434, CP 5000 Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Stefanic S, Palm D, Svärd SG, Hehl AB. Organelle proteomics reveals cargo maturation mechanisms associated with Golgi-like encystation vesicles in the early-diverged protozoan Giardia lamblia. J Biol Chem 2006; 281:7595-604. [PMID: 16407213 DOI: 10.1074/jbc.m510940200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During encystation Giardia trophozoites secrete a fibrillar extracellular matrix of glycans and cyst wall proteins on the cell surface. The cyst wall material is accumulated in encystation-specific vesicles (ESVs), specialized Golgi-like compartments generated de novo, after export from the endoplasmic reticulum (ER) and before secretion. These large post-ER vesicles neither have the morphological characteristics of Golgi cisternae nor sorting functions, but may represent an evolutionary early form of the Golgi-like maturation compartment. Because little is known about the genesis and maturation of ESVs, we used a limited proteomics approach to discover novel proteins that are specific for developing ESVs or associated peripherally with these organelles. Unexpectedly, we identified cytoplasmic and luminal factors of the ER quality control system on two-dimensional electrophoresis gels, i.e. several proteasome subunits and HSP70-BiP. We show that BiP is exported to ESVs and retrieved via its C-terminal KDEL signal from ESVs. In contrast, cytoplasmic proteasome complexes undergo a developmentally regulated re-localization to ESVs during encystation. This suggests that maturation of bulk exported cyst wall material in the Golgi-like ESVs involves both continuous activity of ER-associated quality control mechanisms and retrograde Golgi to ER transport.
Collapse
Affiliation(s)
- Sasa Stefanic
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
30
|
Abstract
Giardia Lamblia is a flagellar parasite possessing the unusual morphology of bearing two nuclei. New morphological observations on trophozoites and encysting Giardia nuclei using routine transmission electron microscopy, freeze fracture and cytochemistry are presented. Nuclear pores of both nuclei in the same cells were assessed on freeze-fracture replicas from different cell cycle phases, and compared. These techniques showed that (1) both nuclei in the same cell are distinct in nuclear pore number and distribution; (2) nuclear pore complexes are frequently clustered in nuclear envelope domains; (3) dividing nuclei display very few nuclear pores; (4) few ribosomes are found on the outer nuclear envelope of the trophozoite form; (5) nuclear membranes present spots of closely apposed membranes, which are different from the typical diaphragm nuclear pore complexes; (6) in addition to the nuclear pores, membrane blebs are also present in the nuclear envelope; (7) encysting cells show intranuclear inclusions, morphologically similar to the ESV (encystation-specific vesicles) and to the ER membranes, which may be the result of nuclear envelope folding. It is proposed that the two nuclei in Giardia are dissimilar in morphology and activity.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Santa Ursula, Rua Jornalista Orlando Dantas 59, CEP 222-31-010 Botafogo, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Abdul-Wahid A, Faubert GM. Similarity in cyst wall protein (CWP) trafficking between encysting Giardia duodenalis trophozoites and CWP-expressing human embryonic kidney-293 cells. Biochem Biophys Res Commun 2004; 324:1069-80. [PMID: 15485664 DOI: 10.1016/j.bbrc.2004.09.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Indexed: 10/26/2022]
Abstract
Cyst wall proteins 1 and 2 (CWP1 and CWP2) are major constituents of the giardial cyst wall and are expressed with similar kinetics by encysting trophozoites. In the present study, we were interested to determine if the expression of giardial CWPs as heterologous proteins in a higher eukaryotic cell would result in their trafficking across the secretory pathway, as is the case in encysting trophozoites. Recombinant (r)CWP1 and rPro-CWP2 were detected in the lysate and culture media of transfected HEK-293 cells. We then conducted intracellular localization experiments using confocal microscopy and found that the proteins were trafficked in membrane enclosed vesicles across the secretory pathway and released to the culture medium by transfected HEK-293 cells. We then dissected the rCWP1 and rPro-CWP2 molecules to identify the portion(s) responsible for their secretion and found that the putative N-terminal signal peptide was sufficient for directing the secretion of rCWP1, while both the putative N-terminal signal peptide and the 13kDa C-terminal regions were necessary for the secretion of rPro-CWP2 by transfected HEK-293 cells. Taken together, these results demonstrate the degree of conservation of signal peptide recognition between lower and higher eukaryotes.
Collapse
Affiliation(s)
- A Abdul-Wahid
- Institute of Parasitology, McGill University, MacDonald Campus, 21,111 Lakeshore Road, Montréal, Quebec, Canada H9X 3V9
| | | |
Collapse
|
32
|
Abstract
Early diverged extant organisms, which may serve as convenient laboratory models to look for and study evolutionary ancient features of eukaryotic cell biology, are rare. The diplomonad Giardia intestinalis, a protozoan parasite known to cause diarrhoeal disease, has become an increasingly popular object of basic research in cell biology, not least because of a genome sequencing project nearing completion. Commensurate with its phylogenetic status, the Giardia trophozoite has a very basic secretory system and even lacks hallmark structures such as a morphologically identifiable Golgi apparatus. The cell's capacity for protein sorting is nevertheless unimpeded, exemplified by its ability to cope with massive amounts of newly synthesized cyst wall proteins and glycans, which are sorted to dedicated Golgi-like compartments termed encystation-specific vesicles (ESVs) generated from endoplasmic reticulum (ER)-derived transport intermediates. This soluble bulk cargo is kept strictly separate from constitutively transported variant surface proteins during export, a function that is dependent on the stage-specific recognition of trafficking signals. Encysting Giardia therefore provide a unique system for the study of unconventional, Golgi-independent protein trafficking mechanisms in the broader context of eukaryotic endomembrane organization and evolution.
Collapse
Affiliation(s)
- Adrian B Hehl
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | | |
Collapse
|
33
|
Chávez-Munguía B, Hernández-Ramírez V, Angel A, Ríos A, Talamás-Rohana P, González-Robles A, González-Lázaro M, Martínez-Palomo A. Entamoeba histolytica: ultrastructure of trophozoites recovered from experimental liver lesions. Exp Parasitol 2004; 107:39-46. [PMID: 15208036 DOI: 10.1016/j.exppara.2004.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 04/16/2004] [Accepted: 04/22/2004] [Indexed: 11/21/2022]
Abstract
Ultrastructural studies on Entamoeba histolytica have been carried out mostly with trophozoites cultured for many years. Under these conditions, the availability of nutrients and the absence of environmental stimuli may switch off some phenotypic characteristics of the parasite. As a result, virulence of E. histolytica diminishes with prolonged culture passages, and the ability to form cysts disappears in axenically maintained trophozoites. The present analysis by transmission electron microscopy of trophozoites recovered from experimental amebic liver lesions in hamsters revealed two types of cytoplasmic changes. On the one hand, the number of peripheral electron dense granules significantly increased in amebas obtained from liver lesions 15 min and 6h after inoculation. On the other hand, large cytoplasmic vesicles with a microfibrillar content appeared in trophozoites cultured from 72 or 96 h hepatic lesions. With fluorescence microscopy, a chitin-like material was identified in these vesicles by reactivity with calcofluor M2R. Ultrastructurally, these cytoplasmic components resemble the encystation vesicles of Entamoeba invadens and Giardia lamblia. The release of large amounts of electron dense granules, known to contain collagenase activity, probably contributes to degrade extracellular matrix components during tissue invasion. In addition, under the conditions mentioned above, amebas form encystation-like vesicles in an incomplete process of differentiation into cysts, which are the resistant form of the parasite.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|