1
|
Yang L, Shen WW, Shao W, Zhao Q, Pang GZ, Yang Y, Tao XF, Zhang WP, Mei Q, Shen YX. MANF ameliorates DSS-induced mouse colitis via restricting Ly6C hiCX3CR1 int macrophage transformation and suppressing CHOP-BATF2 signaling pathway. Acta Pharmacol Sin 2023; 44:1175-1190. [PMID: 36635421 DOI: 10.1038/s41401-022-01045-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum stress-inducible secreting protein, has evolutionarily conserved immune-regulatory function that contributes to the negative regulation of inflammation in macrophages. In this study, we investigated the profiles of MANF in the macrophages of the patients with active inflammatory bowel disease (IBD) and the mice with experimental colitis, which was induced in both myeloid cell-specific MANF knockout mice and wild-type mice by 3% dextran sodium sulfate (DSS) for 7 days. We found that MANF expression was significantly increased in intestinal macrophages from both the mice with experimental colitis and patients with active IBD. DSS-induced colitis was exacerbated in myeloid cell-specific MANF knockout mice. Injection of recombinant human MANF (rhMANF, 10 mg·kg-1·d-1, i.v.) from D4 to D6 significantly ameliorated experimental colitis in DSS-treated mice. More importantly, MANF deficiency in myeloid cells resulted in a dramatic increase in the number of Ly6ChiCX3CRint proinflammatory macrophages in colon lamina propria of DSS-treated mice, and the proinflammatory cytokines and chemokines were upregulated as well. Meanwhile, we demonstrated that MANF attenuated Th17-mediated immunopathology by inhibiting BATF2-mediated innate immune response and downregulating CXCL9, CXCL10, CXCL11 and IL-12p40; MANF functioned as a negative regulator in inflammatory macrophages via inhibiting CHOP-BATF2 signaling pathway, thereby protecting against DSS-induced mouse colitis. These results suggest that MANF ameliorates colon injury by negatively regulating inflammatory macrophage transformation, which shed light on a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Lin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wen-Wen Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Qing Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Gao-Zong Pang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yi Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.,First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiao-Fang Tao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Wei-Ping Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China. .,Biopharmaceutical Institute, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Ohler AM, Braddock A. Infections and antibiotic use in early life, and obesity in early childhood: a mediation analysis. Int J Obes (Lond) 2022; 46:1608-1614. [PMID: 35654887 DOI: 10.1038/s41366-022-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVE Literature shows a positive association between antibiotics and obesity in childhood, but fails to account for confounding by indication. We evaluate the direct effect of infection on obesity and the indirect effect mediated by antibiotics by performing a mediation analysis of the infection-obesity association. METHODS A Medicaid cohort of children age 2-14 years old between 2015-2019 (n = 61,330) is used to perform mediation analysis of infections and antibiotic use in the first year of life, and obesity in childhood in Missouri, U.S.A. RESULTS An additional infection increases the risk of obesity in childhood (aIRR = 1.050, p < 0.001); however, mediation by antibiotic use is clinically and statistically insignificant. If the number of infections is not considered in the analysis, then antibiotic use as a risk factor for obesity is overstated (aIRR = 1.037 vs. 1.013 p < 0.001). CONCLUSIONS The number of infections exhibits a significant relationship with obesity and is a stronger risk factor for obesity than antibiotic use. In particular, a greater number of bronchitis, otitis media, and upper respiratory infections in the first year of life are associated with a significant increased risk of obesity in childhood. We find only weak evidence that an additional antibiotics claim increases the risk of obesity in childhood and this risk may not be clinically meaningful. Further research is needed to explore the association between early childhood infections, especially in the first 6 months of life, and obesity including the biological mechanism and environmental factor of early life infections associated with obesity.
Collapse
Affiliation(s)
- Adrienne M Ohler
- Department of Child Health, Child Health Research Institute, University of Missouri, COLUMBIA, MO, USA.
| | - Amy Braddock
- Department of Family and Community Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Scalavino V, Piccinno E, Lacalamita A, Tafaro A, Armentano R, Giannelli G, Serino G. miR-195-5p Regulates Tight Junctions Expression via Claudin-2 Downregulation in Ulcerative Colitis. Biomedicines 2022; 10:919. [PMID: 35453669 PMCID: PMC9029592 DOI: 10.3390/biomedicines10040919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation associated with an increased intestinal permeability. Several studies have shown that microRNAs (miRNAs) are involved in the IBD pathogenesis. Here, we aimed to functionally characterize the role of miRNAs in the regulation of intestinal permeability and barrier function. We identified 18 dysregulated miRNAs in intestinal epithelial cells (IECs) from the ulcerative colitis (UC) mice model and control mice. Among them, down-regulated miR-195-5p targeted claudin-2 (CLDN2) and was involved in impaired barrier function. CLDN2 expression levels were increased in UC mice models and negatively correlated with miR-195-5p expression. We demonstrated that gain-of-function of miR-195-5p in colonic epithelial cell lines decreased the CLDN2 levels. This modulation, in turn, downregulated claudin-1 (CLDN1) expression at protein level but not that of occludin. Our data support a previously unreported role of miR-195-5p in intestinal tight junctions' regulation and suggest a potential pharmacological target for new therapeutic approaches in IBD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grazia Serino
- National Institute of Gastroenterology IRCCS “S. de Bellis”, Research Hospital, 70013 Castellana Grotte, BA, Italy; (V.S.); (E.P.); (A.L.); (A.T.); (R.A.); (G.G.)
| |
Collapse
|
4
|
Das S, Saqib M, Meng RC, Chittur SV, Guan Z, Wan F, Sun W. Hemochromatosis drives acute lethal intestinal responses to hyperyersiniabactin-producing Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2022; 119:e2110166119. [PMID: 34969677 PMCID: PMC8764673 DOI: 10.1073/pnas.2110166119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Hemachromatosis (iron-overload) increases host susceptibility to siderophilic bacterial infections that cause serious complications, but the underlying mechanisms remain elusive. The present study demonstrates that oral infection with hyperyersiniabactin (Ybt) producing Yersinia pseudotuberculosis Δfur mutant (termed Δfur) results in severe systemic infection and acute mortality to hemochromatotic mice due to rapid disruption of the intestinal barrier. Transcriptome analysis of Δfur-infected intestine revealed up-regulation in cytokine-cytokine receptor interactions, the complement and coagulation cascade, the NF-κB signaling pathway, and chemokine signaling pathways, and down-regulation in cell-adhesion molecules and Toll-like receptor signaling pathways. Further studies indicate that dysregulated interleukin (IL)-1β signaling triggered in hemachromatotic mice infected with Δfur damages the intestinal barrier by activation of myosin light-chain kinases (MLCK) and excessive neutrophilia. Inhibiting MLCK activity or depleting neutrophil infiltration reduces barrier disruption, largely ameliorates immunopathology, and substantially rescues hemochromatotic mice from lethal Δfur infection. Moreover, early intervention of IL-1β overproduction can completely rescue hemochromatotic mice from the lethal infection.
Collapse
Affiliation(s)
- Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208
| | - Ryan C Meng
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany-State University of New York, Rensselaer, NY 12144
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208;
| |
Collapse
|
5
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
6
|
Hann M, Zeng Y, Zong L, Sakurai T, Taniguchi Y, Takagaki R, Watanabe H, Mitsuzumi H, Mine Y. Anti-Inflammatory Activity of Isomaltodextrin in a C57BL/6NCrl Mouse Model with Lipopolysaccharide-Induced Low-Grade Chronic Inflammation. Nutrients 2019; 11:nu11112791. [PMID: 31731774 PMCID: PMC6893451 DOI: 10.3390/nu11112791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023] Open
Abstract
:The purpose of this study was to identify the anti-inflammatory activity and mechanism of isomaltodextrin (IMD) in a C57BL/6NCrl mouse model with lipopolysaccharide (LPS)-induced systemic low-grade chronic inflammation and the effect on inflammation-induced potential risk of metabolic disorders. Pre-treatment of IMD decreased the production of pro-inflammatory mediators, TNF-α and MCP-1, and stimulated the production of the anti-inflammatory mediator, adiponectin by increasing the protein expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in the white adipose tissues. IMD administration reduced plasma concentrations of endotoxin, decreased macrophage infiltration into adipocytes, and increased expression of mucin 2, mucin 4, and the tight junction protein claudin 4. These results suggest that IMD administration exerted an anti-inflammatory effect on mice with LPS-induced inflammation, potentially by decreasing circulating endotoxin, suppressing pro-inflammatory mediators and macrophage infiltration, or by improving mucus or tight junction integrity. IMD exerted protein expression of insulin receptor subset-1 (IRS-1). IMD alleviated the disturbance of gut microflora in LPS-treated mice, as the number of B. bifidum, L. casei, and B. fragilis increased, and E. coli and C. difficile decreased, when compared to LPS-treated mice. The analysis of short chain fatty acids (SCFAs) further supported that the concentrations of acetic and butyric acids were positively correlated with IMD, as well as the number of beneficial bacteria. This study provides evidence that IMD possesses anti-inflammatory properties and exerts beneficial functions to prevent systemic low-grade chronic inflammation and reduces the risk of developing insulin resistance and associated metabolic diseases.
Collapse
Affiliation(s)
- Melissa Hann
- Department of Food Science, University of Guelph, Guelph, ON N1G2W1, Canada; (M.H.); (Y.Z.); (L.Z.)
| | - Yuhan Zeng
- Department of Food Science, University of Guelph, Guelph, ON N1G2W1, Canada; (M.H.); (Y.Z.); (L.Z.)
| | - Lingzi Zong
- Department of Food Science, University of Guelph, Guelph, ON N1G2W1, Canada; (M.H.); (Y.Z.); (L.Z.)
| | - Takeo Sakurai
- R&D Center, Hayashibara CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan; (T.S.); (Y.T.); (R.T.); (H.W.); (H.M.)
| | - Yoshifumi Taniguchi
- R&D Center, Hayashibara CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan; (T.S.); (Y.T.); (R.T.); (H.W.); (H.M.)
| | - Ryodai Takagaki
- R&D Center, Hayashibara CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan; (T.S.); (Y.T.); (R.T.); (H.W.); (H.M.)
| | - Hikaru Watanabe
- R&D Center, Hayashibara CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan; (T.S.); (Y.T.); (R.T.); (H.W.); (H.M.)
| | - Hitoshi Mitsuzumi
- R&D Center, Hayashibara CO., LTD., 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan; (T.S.); (Y.T.); (R.T.); (H.W.); (H.M.)
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, ON N1G2W1, Canada; (M.H.); (Y.Z.); (L.Z.)
- Correspondence: ; Tel.: +519-824-4120 (ext. 52901)
| |
Collapse
|
7
|
He W, Wang Y, Wang P, Wang F. Intestinal barrier dysfunction in severe burn injury. BURNS & TRAUMA 2019; 7:24. [PMID: 31372365 PMCID: PMC6659221 DOI: 10.1186/s41038-019-0162-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Severe burn injury is often accompanied by intestinal barrier dysfunction, which is closely associated with post-burn shock, bacterial translocation, systemic inflammatory response syndrome, hypercatabolism, sepsis, multiple organ dysfunction syndrome, and other complications. The intestinal epithelium forms a physical barrier that separates the intestinal lumen from the internal milieu, in which the tight junction plays a principal role. It has been well documented that after severe burn injury, many factors such as stress, ischemia/hypoxia, proinflammatory cytokines, and endotoxins can induce intestinal barrier dysfunction via multiple signaling pathways. Recent advances have provided new insights into the mechanisms and the therapeutic strategies of intestinal epithelial barrier dysfunction associated with severe burn injury. In this review, we will describe the current knowledge of the mechanisms involved in intestinal barrier dysfunction in response to severe burn injury and the emerging therapies for treating intestinal barrier dysfunction following severe burn injury.
Collapse
Affiliation(s)
- Wen He
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| |
Collapse
|
8
|
Abstract
Our bodies are protected from the external environment by mucosal barriers that are lined by epithelial cells. The epithelium plays a critical role as a highly dynamic, selective semipermeable barrier that separates luminal contents and pathogens from the rest of the body and controlling the absorption of nutrients, fluid and solutes. A series of protein complexes including the adherens junction, desmosomes, and tight junctions function as the principal barrier in paracellular diffusion and regulators of intracellular solute, protein, and lipid transport. Tight junctions are composed of a series of proteins called occludins, junctional adhesion molecules, and claudins that reside primarily as the most apical intercellular junction. Here we will review one of these protein families, claudins, and their relevance to gastrointestinal and liver diseases.
Collapse
|
9
|
Zhang B, Shao Y, Liu D, Yin P, Guo Y, Yuan J. Zinc prevents Salmonella enterica serovar Typhimurium-induced loss of intestinal mucosal barrier function in broiler chickens. Avian Pathol 2014; 41:361-7. [PMID: 22834550 DOI: 10.1080/03079457.2012.692155] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The study was carried out to evaluate the beneficial effects of supplemental zinc (Zn) on the intestinal mucosal barrier function in Salmonella enterica serovar Typhimurium-challenged broiler chickens in a 42-day experiment. A total of 336 1-day-old male Arbor Acres broiler chicks were assigned to eight treatment groups. A 4×2 factorial arrangement of treatments was used in a completely randomized experimental design to study the effects of levels of supplemental Zn (0, 40, 80 and 120 mg/kg diet), pathogen challenge (with or without S. Typhimurium challenge), and their interactions. S. Typhimurium infection caused reduction of growth performance (P<0.05) and intestinal injury, as determined by reduced (P<0.05) villus height/crypt depth ratio and sucrase activity in the ileum, increased (P<0.05) plasma endotoxin levels, and reduced (P<0.05) claudin-1, occludin and mucin-2 mRNA expression in the ileum at day 21. Zn pre-treatment tended to improve body weight gain (P=0.072) in the starter period, to increase the activity of ileal sucrase (P=0.077), to reduce plasma endotoxin levels (P=0.080), and to significantly increase (P<0.05) the villus height/crypt depth ratio and mRNA levels of occludin and claudin-1 in the ileum at day 21. The results indicated that dietary Zn supplementation appeared to alleviate the loss of intestinal mucosal barrier function induced by S. Typhimurium challenge and the partial mechanism might be related to the increased expression of occludin and claudin-1 in broiler chickens.
Collapse
Affiliation(s)
- Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Key Laboratory of Feed Safety and Bioavailability, Ministry of Agriculture, Beijing 100193, PR China
| | | | | | | | | | | |
Collapse
|
10
|
Kerr CA, Grice DM, Tran CD, Bauer DC, Li D, Hendry P, Hannan GN. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit Rev Microbiol 2014; 41:326-40. [PMID: 24645635 DOI: 10.3109/1040841x.2013.837863] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The capacity of our gut microbial communities to maintain a stable and balanced state, termed 'resilience', in spite of perturbations is vital to our achieving and maintaining optimal health. A loss of microbial resilience is observed in a number of diseases including obesity, diabetes and metabolic syndrome. There are large gaps in our understanding of why an individual's co-evolved microflora consortium fail to develop resilience thereby establishing a trajectory towards poor metabolic health. This review examines the connections between the developing gut microbiota and intestinal barrier function in the neonate, infant and during the first years of life. We propose that the effects of early life events on the gut microflora and permeability, whilst it is in a dynamic and vulnerable state, are fundamental in shaping the microbial consortia's resilience and that it is the maintenance of resilience that is pivotal for metabolic health throughout life. We review the literature supporting this concept suggesting new potential research directions aimed at developing a greater understanding of the longitudinal effects of the gut microflora on metabolic health and potential interventions to recalibrate the 'at risk' infant gut microflora in the direction of enhanced metabolic health.
Collapse
Affiliation(s)
- Caroline A Kerr
- Preventative Health Flagship, CSIRO , North Ryde , Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Markov AG, Falchuk EL, Kruglova NM, Rybalchenko OV, Fromm M, Amasheh S. Comparative analysis of theophylline and cholera toxin in rat colon reveals an induction of sealing tight junction proteins. Pflugers Arch 2014; 466:2059-65. [DOI: 10.1007/s00424-014-1460-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
12
|
Abstract
Epithelial transport relies on the proper function and regulation of the tight junction (TJ), other-wise uncontrolled paracellular leakage of solutes and water would occur. They also act as a fence against mixing of membrane proteins of the apical and basolateral side. The proteins determining paracellular transport consist of four transmembrane regions, intracellular N and C terminals, one intracellular and two extracellular loops (ECLs). The ECLs interact laterally and with counterparts of the neighboring cell and by this achieve a general sealing function. Two TJ protein families can be distinguished, claudins, comprising 27 members in mammals, and TJ-associated MARVEL proteins (TAMP), comprising occludin, tricellulin, and MarvelD3. They are linked to a multitude of TJ-associated regulatory and scaffolding proteins. The major TJ proteins are classified according to the physiological role they play in enabling or preventing paracellular transport. Many TJ proteins have sealing functions (claudins 1, 3, 5, 11, 14, 19, and tricellulin). In contrast, a significant number of claudins form channels across TJs which feature selectivity for cations (claudins 2, 10b, and 15), anions (claudin-10a and -17), or are permeable to water (claudin-2). For several TJ proteins, function is yet unclear as their effects on epithelial barriers are inconsistent (claudins 4, 7, 8, 16, and occludin). TJs undergo physiological and pathophysiological regulation by altering protein composition or abundance. Major pathophysiological conditions which involve changes in TJ protein composition are (1) effects of pathogens binding to TJ proteins, (2) altered TJ protein composition during inflammation and infection, and (3) altered TJ protein expression in cancers.
Collapse
Affiliation(s)
- Dorothee Günzel
- Institute of Clinical Physiology, Charité, Universtätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität/Humboldt-Universität, Berlin, Germany
| | | |
Collapse
|
13
|
Kim TI, Poulin EJ, Blask E, Bukhalid R, Whitehead RH, Franklin JL, Coffey RJ. Myofibroblast keratinocyte growth factor reduces tight junctional integrity and increases claudin-2 levels in polarized Caco-2 cells. Growth Factors 2012; 30:320-32. [PMID: 22946653 PMCID: PMC3594790 DOI: 10.3109/08977194.2012.717076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The colonic epithelium is composed of a polarized monolayer sheathed by a layer of pericryptal myofibroblasts (PCMFs). We mimicked these cellular compartments in vitro to assess the effects of paracrine-acting PCMF-derived factors on tight junction (TJ) integrity, as measured by transepithelial electrical resistance (TER). Coculture with 18Co PCMFs, or basolateral administration of 18Co conditioned medium, significantly reduced TER of polarized Caco-2 cells. Among candidate paracrine factors, only keratinocyte growth factor (KGF) reduced Caco-2 TER; basolateral KGF treatment led to time- and concentration-dependent increases in claudin-2 levels. We also demonstrate that amphiregulin (AREG), produced largely by Caco-2 cells, increased claudin-2 levels, leading to epidermal growth factor receptor-mediated TER reduction. We propose that colonic epithelial TJ integrity can be modulated by paracrine KGF and autocrine AREG through increased claudin-2 levels. KGF-regulated claudin-2 induction may have implications for inflammatory bowel disease, where both KGF and claudin-2 are upregulated.
Collapse
Affiliation(s)
- Tae Il Kim
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emily J. Poulin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Robert H. Whitehead
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L. Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232-2279, USA
- Corresponding Author: Robert J. Coffey, M.D., Epithelial Biology Center, 2213 Garland Avenue, 10415 MRB IV -0441, Vanderbilt University, Nashville, TN 37232, Tel: 615-343-6228, Fax: 615-343-1591,
| |
Collapse
|
14
|
Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011; 141:769-76. [PMID: 21430248 DOI: 10.3945/jn.110.135657] [Citation(s) in RCA: 849] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal epithelium is formed by a single layer of epithelial cells that separates the intestinal lumen from the underlying lamina propria. The space between these cells is sealed by tight junctions (TJ), which regulate the permeability of the intestinal barrier. TJ are complex protein structures comprised of transmembrane proteins, which interact with the actin cytoskeleton via plaque proteins. Signaling pathways involved in the assembly, disassembly, and maintenance of TJ are controlled by a number of signaling molecules, such as protein kinase C, mitogen-activated protein kinases, myosin light chain kinase, and Rho GTPases. The intestinal barrier is a complex environment exposed to many dietary components and many commensal bacteria. Studies have shown that the intestinal bacteria target various intracellular pathways, change the expression and distribution of TJ proteins, and thereby regulate intestinal barrier function. The presence of some commensal and probiotic strains leads to an increase in TJ proteins at the cell boundaries and in some cases prevents or reverses the adverse effects of pathogens. Various dietary components are also known to regulate epithelial permeability by modifying expression and localization of TJ proteins.
Collapse
Affiliation(s)
- Dulantha Ulluwishewa
- Food Nutrition Genomics Team, Agri-Foods and Health Section, Palmerston North 4442, New Zealand
| | | | | | | | | | | |
Collapse
|