1
|
Lai J, Demirbas D, Phillips K, Zhao B, Wallace H, Seferian M, Nakayama T, Harris H, Chatzipli A, Lee EA, Yu TW. Multi-omic analysis of the ciliogenic transcription factor RFX3 reveals a role in promoting activity-dependent responses via enhancing CREB binding in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640588. [PMID: 40060598 PMCID: PMC11888390 DOI: 10.1101/2025.02.27.640588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Heterozygous loss-of-function (LoF) variants in RFX3, a transcription factor known to play key roles in ciliogenesis, result in autism spectrum disorder (ASD) and neurodevelopmental delay. RFX binding motifs are also enriched upstream of genes found to be commonly dysregulated in transcriptomic analyses of brain tissue from individuals with idiopathic ASD. Still, the precise functions of RFX3 in the human brain is unknown. Here, we studied the impact of RFX3 deficiency using human iPSC-derived neurons and forebrain organoids. Biallelic loss of RFX3 disrupted ciliary gene expression and delayed neuronal differentiation, while monoallelic loss of RFX3 did not. Instead, transcriptomic and DNA binding analyses demonstrated that monoallelic RFX3 loss disrupted synaptic target gene expression and diminished neuronal activity-dependent gene expression. RFX3 binding sites co-localized with CREB binding sites near activity-dependent genes, and RFX3 deficiency led to decreased CREB binding and impaired induction of CREB targets in response to neuronal depolarization. This study demonstrates a novel role of the ASD-associated gene RFX3 in shaping neuronal synaptic development and plasticity.
Collapse
Affiliation(s)
- Jenny Lai
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Neuroscience, Harvard University, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Kaitlyn Phillips
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Boxun Zhao
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Harrison Wallace
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Megan Seferian
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Holly Harris
- Department of Pediatrics, Baylor College of Medicine and Meyer Center for Developmental Pediatrics, Texas Children's Hospital, Houston, Texas, 77054, USA
| | - Aikaterini Chatzipli
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Rane G, Kuan VLS, Wang S, Mok MMH, Khanchandani V, Hansen J, Norvaisaite I, Zulkaflee N, Yong WK, Jahn A, Mukundan VT, Shi Y, Osato M, Li F, Kappei D. ZBTB48 is a priming factor regulating B-cell-specific CIITA expression. EMBO J 2024; 43:6236-6263. [PMID: 39562739 PMCID: PMC11649694 DOI: 10.1038/s44318-024-00306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
The class-II transactivator (CIITA) is the master regulator of MHC class-II gene expression and hence the adaptive immune response. Three cell type-specific promoters (pI, pIII, and pIV) are involved in the regulation of CIITA expression, which can be induced by IFN-γ in non-immune cells. While key regulatory elements have been identified within these promoters, our understanding of the transcription factors regulating CIITA expression is incomplete. Here, we demonstrate that the telomere-binding protein and transcriptional activator ZBTB48 directly binds to both critical activating elements within the B-cell-specific promoter CIITA pIII. ZBTB48 knockout impedes the CIITA/MHC-II expression program induced in non-APC cells by IFN-γ, and loss of ZBTB48 in mice silences MHC-II expression in pro-B and immature B cells. Transcriptional regulation of CIITA by ZBTB48 is enabled by ZBTB48-dependent chromatin opening at CIITA pIII upstream of activating H3K4me3 marks. We conclude that ZBTB48 primes CIITA pIII by acting as a molecular on-off-switch for B-cell-specific CIITA expression.
Collapse
Affiliation(s)
- Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Vivian L S Kuan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Suman Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Julia Hansen
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Ieva Norvaisaite
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Naasyidah Zulkaflee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Wai Khang Yong
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Arne Jahn
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- ERN-GENTURIS, Hereditary Cancer Syndrome Center, Dresden, Germany
| | - Vineeth T Mukundan
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Yunyu Shi
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Salih OAMM, Erwa NHH, Abdelmoneim AH, Fadl HAO, Glanzmann B, Osman MAB, Osman MAH, Gasim TME, Mustafa A. Class II Transactivator Gene ( CIITA) Variants Associated with Bare Lymphocyte Syndrome II in a Female Sudanese Patient. Appl Clin Genet 2024; 17:133-141. [PMID: 39347515 PMCID: PMC11430264 DOI: 10.2147/tacg.s472788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Inborn errors of immunity (IEI) are disorders that present a health issue, especially in developing countries where there is a high rate of consanguineous marriages and an increasing rate of diagnosis. One of these disorders is Bare Lymphocyte Syndrome II (BLS II) which is a rare and genetically complex disease that has high morbidity and mortality. The exact genotypic and phenotypic characteristics are still poorly characterized especially in developing countries. Case Presentation Here, we report the first case of BLS II in a seven-month-old Sudanese female with recurrent chest infections, dermatitis, persistent diarrhea, and failure to thrive. The patient's all four sisters and three paternal uncles died in early infancy. Laboratory investigations revealed low CD3+, CD4+, and CD8+ lymphocytes, along with normal CD19+ and CD16+ lymphocytes, and low serum IgM and IgA levels. Genetic analysis revealed two CIITA variants; c.2296C >G p. (Pro766Ala) and c.439+1G >A. Conclusion Further bioinformatics, immunological and clinical workups supported a pathogenic effect of both mutations affecting the function of CIITA protein, and suggesting a compound heterozygote mutation. The patient was started on prophylactic antibiotics and regular intravenous immunoglobulin replacement therapy. The prognosis of this disease is poor in most of the cases, with only a few reported cases surviving until adulthood.
Collapse
Affiliation(s)
- Omaima Abdel Majeed Mohamed Salih
- Departments of Pediatrics, Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
- Pediatric Clinical Immunologist, Tropical Disease Teaching Hospital, Omdurman, Sudan
| | - Nahla Hashim Hassan Erwa
- Clinical Immunology Consultant, Faculty of Medicine & Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | | | - Hiba Awadelkareem Osman Fadl
- Department of Hematology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
- Senior Medical Laboratory Specialist, Saudi Commission for Health Specialties (SCFHS), Makkah, Kingdom of Saudi Arabia
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
- South African Medical Research Council (SAMRC) Genomics Platform, Cape Town, 7505, South Africa
| | | | | | | | - Alamin Mustafa
- Faculty of Medicine, Al-Neelain University, Khartoum, Sudan
| |
Collapse
|
4
|
Tovar Perez JE, Zhang S, Hodgeman W, Kapoor S, Rajendran P, Kobayashi KS, Dashwood RH. Epigenetic regulation of major histocompatibility complexes in gastrointestinal malignancies and the potential for clinical interception. Clin Epigenetics 2024; 16:83. [PMID: 38915093 PMCID: PMC11197381 DOI: 10.1186/s13148-024-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.
Collapse
Affiliation(s)
| | - Shilan Zhang
- Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200070, China
| | - William Hodgeman
- Wolfson Medical School, The University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sabeeta Kapoor
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA
| | - Koichi S Kobayashi
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
- Hokkaido University Institute for Vaccine Research and Development, Sapporo, 060-8638, Japan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, Bryan, TX, 77087, USA
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M Health, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, and Antibody & Biopharmaceuticals Core, Texas A&M Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Ünsal H, Caka C, Bildik HN, Esenboğa S, Kupesiz A, Kuşkonmaz B, Cetinkaya DU, van der Burg M, Tezcan İ, Çağdaş D. A large single-center cohort of bare lymphocyte syndrome: Immunological and genetic features in Turkey. Scand J Immunol 2024; 99:e13335. [PMID: 38441205 DOI: 10.1111/sji.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 03/07/2024]
Abstract
Major histocompatibility complex class II (MHC-II) deficiency or bare lymphocyte syndrome (BLS) is a rare, early-onset, autosomal recessive, and life-threatening inborn error of immunity. We aimed to assess the demographic, clinical, laboratory, follow-up, and treatment characteristics of patients with MHC-II deficiency, together with their survival. We retrospectively investigated 21 patients with MHC-II deficiency. Female/male ratio was 1.63. The median age at diagnosis was 16.3 months (5 months-9.7 years). Nineteen patients (90.5%) had parental consanguinity. Pulmonary diseases (pneumonia, chronic lung disease) (81%), diarrhoea (47.6%), and candidiasis (28.6%) were common. Four (19%) had autoimmunity, two developed septic arthritis, and three (14%) developed bronchiectasis in the follow-up. Three patients (14%) had CMV viraemia, one with bilateral CMV retinitis. Eight (38.1%) had lymphocytopenia, and four (19%) had neutropenia. Serum IgM, IgA, and IgG levels were low in 18 (85.7%), 15 (71.4%), and 11 (52.4%) patients, respectively. CD4+ lymphocytopenia, a reversed CD4+/CD8+ ratio, and absent/low HLA-DR expressions were detected in 93.3%, 86.7%, and 100% of the patients, respectively. Haematopoietic stem cell transplantation (HSCT) was performed on nine patients, and four died of septicaemia and ARDS after HSCT. The present median age of patients survived is 14 years (1-31 years). Genetic analysis was performed in 10 patients. RFX5 homozygous gene defect was found in three patients (P1, P4 and P8), and RFXANK (P2 and P14) and RFXAP (P18 and P19) heterozygous gene defects were found in each two patients, respectively. This large cohort showed that BLS patients have severe combined immunodeficiency (SCID)-like clinical findings. Flow cytometric MHC-II expression study is crucial for the diagnosis, differential diagnosis with SCID, early haematopoietic stem cell transplantation (HSCT), and post-HSCT follow-up. Genetic studies are required first for matched family donor evaluation before HSCT and then for genetic counselling.
Collapse
Affiliation(s)
- Hilal Ünsal
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Canan Caka
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Hacer Neslihan Bildik
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alphan Kupesiz
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Barış Kuşkonmaz
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Duygu Uçkan Cetinkaya
- Division of Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory of Immunology, Leiden University, Leiden, The Netherlands
| | - İlhan Tezcan
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Çağdaş
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Rajabalee N, Siushansian H, Weerapura M, Berton S, Berbatovci F, Hooks B, Geoffrion M, Yang D, Harper ME, Rayner K, Blais A, Sun J. ATF2 orchestrates macrophage differentiation and activation to promote antibacterial responses. J Leukoc Biol 2023; 114:280-298. [PMID: 37403209 DOI: 10.1093/jleuko/qiad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023] Open
Abstract
The differentiation and activation of macrophages are critical regulatory programs that are central to host inflammation and pathogen defense. However, the transcriptional regulatory pathways involved in these programs are not well understood. Herein, we demonstrate that the activity and expression of the transcription factor ATF2 is precisely regulated during primary human monocyte-to-macrophage differentiation and that its activation is linked to M1 polarization and antibacterial responses. Genetic perturbation experiments demonstrated that deletion of ATF2 (THP-ΔATF2) resulted in irregular and abnormal macrophage morphology, whereas macrophages overexpressing ATF2 (THP-ATF2) developed round and pancake-like morphology, resembling classically activated (M1) macrophages. Mechanistically, we show that ATF2 binds to the core promoter of PPM1A, a phosphatase that regulates monocyte-to-macrophage differentiation, to regulate its expression. Functionally, overexpression of ATF2 sensitized macrophages to M1 polarization, resulting in increased production of major histocompatibility complex class II, IL-1β, and IP-10; improved phagocytic capacity; and enhanced control of the intracellular pathogen Mycobacterium tuberculosis. Gene expression profiling revealed that overexpression of ATF2 reprogramed macrophages to promote antibacterial pathways enriched in chemokine signaling, metabolism, and antigen presentation. Consistent with pathways analysis, metabolic profiling revealed that genetic overexpression or stimuli-induced activation of ATF2 alters the metabolic capacity of macrophages and primes these cells for glycolytic metabolism during M1 polarization or bacterial infection. Our findings reveal that ATF2 plays a central role during macrophage differentiation and M1 polarization to enhance the functional capacities of macrophages.
Collapse
Affiliation(s)
- Nusrah Rajabalee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Hannah Siushansian
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Milani Weerapura
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Stefania Berton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Fjolla Berbatovci
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Breana Hooks
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Michele Geoffrion
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, 40 Ruskin Road, Ottawa, Ontario K1Y 4W7, Canada
| | - Dabo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Katey Rayner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, 40 Ruskin Road, Ottawa, Ontario K1Y 4W7, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Éric Poulin Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
7
|
He K, Wan T, Wang D, Hu J, Zhou T, Tao W, Wei Z, Lu Q, Zhou R, Tian Z, Flavell RA, Zhu S. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell 2023; 186:3033-3048.e20. [PMID: 37327784 DOI: 10.1016/j.cell.2023.05.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/03/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.
Collapse
Affiliation(s)
- Kaixin He
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Wan
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Decai Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ji Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingyue Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; School of Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Li X, Huang J, Liu C, Chen J, Wang S, Wei S, Yang M, Qin Q. Grouper ATF1 plays an antiviral role in response to iridovirus and nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:380-390. [PMID: 36150412 DOI: 10.1016/j.fsi.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Transcription factor ATF1 is a member of the ATF/CREB family of the CREB subfamily and is involved in physiological processes such as tumorigenesis, organ development, reproduction, cell survival, and apoptosis in mammals. However, studies on ATF1 in fish have been relatively poorly reported, especially on its role in antiviral immunity in fish. In this study, ATF1 from orange-spotted grouper (named EcATF1) were cloned and characterized. Molecular characterization analysis showed that EcATF1 encodes a 307-amino-acid protein, containing PKID and bZIP_CREB1 domains. Homology analysis showed that had the highest homology with E. lanceolatus(88.93%). Tissue expression pattern showed that EcATF1 was extensively distributed in twelve selected tissues, with higher expression in the skin, gill, liver and spleen. Subcellular localization analysis showed that EcATF1 was distributed in the nucleus of GS cells. EcATF1 overexpression inhibits Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) replication, as evidenced by a diminished degree of CPE induced by SGIV and RGNNV and a reduction in the level of viral gene transcription and viral capsid protein expression. Furthermore, EcATF1 overexpression upregulated interferon pathway-related genes and proinflammatory factors, and increased the promoter activities of IFN, IFN stimulated response element (ISRE), and nuclear factor κB(NFκB). Meanwhile, EcATF1 overexpression positive regulate the MHC-I signaling pathway, and upregulated the promoter activity of MHC-I. Collectively, these data demonstrate that EcATF1 plays an important role during the host antiviral immune response. This study provides insights into the function of ATF1 in the immune system of lower vertebrates.
Collapse
Affiliation(s)
- Xinshuai Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianling Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Cuiyu Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
9
|
Ong CEB, Cheng Y, Siddle HV, Lyons AB, Woods GM, Flies AS. Class II transactivator induces expression of MHC-I and MHC-II in transmissible Tasmanian devil facial tumours. Open Biol 2022; 12:220208. [PMID: 36259237 PMCID: PMC9579919 DOI: 10.1098/rsob.220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
MHC-I and MHC-II molecules are critical components of antigen presentation and T cell immunity to pathogens and cancer. The two monoclonal transmissible devil facial tumours (DFT1, DFT2) exploit MHC-I pathways to overcome immunological anti-tumour and allogeneic barriers. This exploitation underpins the ongoing transmission of DFT cells across the wild Tasmanian devil population. We have previously shown that the overexpression of NLRC5 in DFT1 and DFT2 cells can regulate components of the MHC-I pathway but not MHC-II, establishing the stable upregulation of MHC-I on the cell surface. As MHC-II molecules are crucial for CD4+ T cell activation, MHC-II expression in tumour cells is beginning to gain traction in the field of immunotherapy and cancer vaccines. The overexpression of Class II transactivator in transfected DFT1 and DFT2 cells induced the transcription of several genes of the MHC-I and MHC-II pathways. This was further supported by the upregulation of MHC-I protein on DFT1 and DFT2 cells, but interestingly MHC-II protein was upregulated only in DFT1 cells. This new insight into the regulation of MHC-I and MHC-II pathways in cells that naturally overcome allogeneic barriers can inform vaccine, immunotherapy and tissue transplant strategies for human and veterinary medicine.
Collapse
Affiliation(s)
- Chrissie E. B. Ong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hannah V. Siddle
- Department of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK,Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - A. Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
| | - Andrew S. Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Private Bag 23, Hobart, TAS 7000, Australia
| |
Collapse
|
10
|
Chilunda V, Weiselberg J, Martinez-Meza S, Mhamilawa LE, Cheney L, Berman JW. Methamphetamine induces transcriptional changes in cultured HIV-infected mature monocytes that may contribute to HIV neuropathogenesis. Front Immunol 2022; 13:952183. [PMID: 36059515 PMCID: PMC9433802 DOI: 10.3389/fimmu.2022.952183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica Weiselberg
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samuel Martinez-Meza
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lwidiko E. Mhamilawa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
11
|
Boss JM. The Regulation of Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2450-2455. [PMID: 35595305 DOI: 10.4049/jimmunol.2290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abstract
In their AAI President's Addresses reproduced in this issue, Jeremy M. Boss, Ph.D. (AAI '94; AAI president 2019–2020), and Jenny P.-Y. Ting, Ph.D. (AAI '97; AAI president 2020–2021), welcomed attendees to the AAI annual meeting, Virtual IMMUNOLOGY2021™. Due to the SARS-CoV-2 pandemic and the cancellation of IMMUNOLOGY2020™, Dr. Boss and Dr. Ting each presented their respective president's address to open the meeting.
Collapse
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
12
|
Structural aspects of the MHC expression control system. Biophys Chem 2022; 284:106781. [PMID: 35228036 PMCID: PMC8941990 DOI: 10.1016/j.bpc.2022.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) spans innate and adaptive immunity by presenting antigenic peptides to CD4+ and CD8+ T cells. Multiple transcription factors form an enhanceosome complex on the MHC promoter and recruit transcriptional machinery to activate gene transcription. Immune signals such as interferon-γ (IFN-γ) control MHC level by up-regulating components of the enhanceosome complex. As MHC plays crucial roles in immune regulation, alterations in the MHC enhanceosome structure will alter the pace of rapid immune responses at the transcription level and lead to various diseases related to the immune system. In this review, we discuss the current understanding of the MHC enhanceosome, with a focus on the structures of MHC enhanceosome components and the molecular basis of MHC enhanceosome assembly.
Collapse
|
13
|
Chen L, Zhang M, Wang X, Liu Y, Bian J, Yan D, Yin W. Cardiac steroid ouabain transcriptionally increases human leukocyte antigen DR expression on monocytes. Steroids 2021; 175:108915. [PMID: 34508735 DOI: 10.1016/j.steroids.2021.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023]
Abstract
Sepsis is a life-threatening disease characterized by acute multiple organ dysfunction and immunosuppression that is also called as immunoparalysis. Increasing evidence suggests that immunoparalysis largely contributes to the high mortality of sepsis, but the effective remedies are lacking. As an important antigen presentation molecule, human leukocyte antigen DR (HLA-DR) is remarkably down-regulated in sepsis-induced immunoparalysis, therefore, re-stimulation of HLA-DR expression is expected to be useful in reversing immunoparalysis. We previously described that ouabain, as a Na+, K+-ATPase ligand, is able to counteract immunoparalysis by regulating TH1 cytokines expression. Here, we expanded the finding that ouabain not only prevents LPS-induced down-regulation of HLA-DR on monocytes, but also transcriptionally activates HLA-DR α/β expression mediated by CIITA4, IRF1, c-Src, and Stat1 phosphorylation. Since ouabain can improve sepsis-induced immunoparalysis by multiple mechanisms, we propose that ouabain may be a promising agent in septic therapy that deserves further investigation.
Collapse
Affiliation(s)
- Lili Chen
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Manli Zhang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiya Wang
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yongjian Liu
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Jinjun Bian
- Department of Anesthesiology and Critical Care, Changhai Hospital, Naval Medical University, Shanghai, China.
| | - Dong Yan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, China.
| | - Wu Yin
- State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Majumder P, Lee JT, Barwick BG, Patterson DG, Bally APR, Scharer CD, Boss JM. The Murine MHC Class II Super Enhancer IA/IE-SE Contains a Functionally Redundant CTCF-Binding Component and a Novel Element Critical for Maximal Expression. THE JOURNAL OF IMMUNOLOGY 2021; 206:2221-2232. [PMID: 33863790 DOI: 10.4049/jimmunol.2001089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/01/2021] [Indexed: 11/19/2022]
Abstract
In both humans and mice, CTCF-binding elements form a series of interacting loops across the MHC class II (MHC-II) locus, and CTCF is required for maximal MHC-II gene expression. In humans, a CTCF-bound chromatin insulator termed XL9 and a super enhancer (SE) DR/DQ-SE situated in the intergenic region between HLA-DRB1 and HLA-DQA1 play critical roles in regulating MHC-II expression. In this study, we identify a similar SE, termed IA/IE-SE, located between H2-Eb1 and H2-Aa of the mouse that contains a CTCF site (C15) and a novel region of high histone H3K27 acetylation. A genetic knockout of C15 was created and its role on MHC-II expression tested on immune cells. We found that C15 deletion did not alter MHC-II expression in B cells, macrophages, and macrophages treated with IFN-γ because of functional redundancy of the remaining MHC-II CTCF sites. Surprisingly, embryonic fibroblasts derived from C15-deleted mice failed to induce MHC-II gene expression in response to IFN-γ, suggesting that at least in this developmental lineage, C15 was required. Examination of the three-dimensional interactions with C15 and the H2-Eb1 and H2-Aa promoters identified interactions within the novel region of high histone acetylation within the IA/IE-SE (termed N1) that contains a PU.1 binding site. CRISPR/Cas9 deletion of N1 altered chromatin interactions across the locus and resulted in reduced MHC-II expression. Together, these data demonstrate the functional redundancy of the MHC-II CTCF elements and identify a functionally conserved SE that is critical for maximal expression of MHC-II genes.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Joshua T Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Alexander P R Bally
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
15
|
Chinniah R, Sevak V, Pandi S, Ravi PM, Vijayan M, Kannan A, Karuppiah B. HLA-DRB1 genes and the expression dynamics of HLA CIITA determine the susceptibility to T2DM. Immunogenetics 2021; 73:291-305. [PMID: 33754173 DOI: 10.1007/s00251-021-01212-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a disease with polygenic inheritance. The expression of major histocompatibility complex class II genes are regulated by several trans-activators. We have studied the expression of HLA-DRB1, RFX, CIITA-P1, PIV transactivators, immunophenotyping of cells, SNPs in CIITA-168 (A/G) and IFN-γ + 874 (T/A) in T2DM patients and controls (n = 201 each). We observed increased frequencies of DRB1*03, DRB1*04 and DRB1*07 and decreased frequencies of DRB1*10, DRB1*14, and DRB1*15 alleles among patients. Significant up-regulations of HLA-DRB1 genes were observed in patients (p < 0.0001). Down-regulated expressions were documented in DRB1*03-homo (p < 0.002) and DRB1*04-homo (p < 0.009) patients. No significant differences were observed for CIITA-P1 expression except DRB1*04-pooled (p < 0.0113). The CIITA-PIV was up-regulated in overall (p < 0.0001), DRB1*03-pooled (p < 0.0006), DRB1*03-hetero (p < 0.0006) and DRB1*03-homo (p < 0.001) T2DM patients. However, significant down-regulations were documented for DRB1*04-pooled (p < 0.040), DRB1*04-hetero (p < 0.060), and DRB1*04-homo (p < 0.027) combinations. Further, significant down-regulations of RFX5 were observed in overall (p < 0.0006), DRB1*04-pooled (p < 0.0022), and DRB1*04-hetero (p < 0.0004) combinations. Immunophenotyping studies revealed significant increase of CD45+ CD14-, CD19+, CD14- and CD8 cells and elevated level of expression of IFN-γ (p < 0.0001) in patients. A significant increase of TT (p < 3.35 × 10-6) and decrease of TA (p < 4.57 × 10-4) genotypes of IFN-γ + 874 (T/A) and an increase of GG (p < 0.001) and decrease of AG (p < 8.24 × 10-5) genotypes of CIITA-168 A/G SNPs were observed. The combinatorial analysis revealed susceptible associations for DRB1*03 + AA, *03 + AG, *03 + GG and *04 + GG and protective associations for DRB1*10 + AG, *10 + GG, *15 + AG, and *14 + GG combinations. Thus, the present study corroborated the effect of differential expressions of promoters of risk alleles in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Rathika Chinniah
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu, 625021, India
| | - Vandit Sevak
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu, 625021, India
| | - Sasiharan Pandi
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu, 625021, India
| | - Padma Malini Ravi
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu, 625021, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Arun Kannan
- The Madurai Institute of Diabetes and Endocrine Practice Research, Madurai, Tamil Nadu, 625 001, India
| | - Balakrishnan Karuppiah
- Department of Immunology, School of Biological Sciences, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
16
|
Whillock AL, Ybarra TK, Bishop GA. TNF receptor-associated factor 3 restrains B-cell receptor signaling in normal and malignant B cells. J Biol Chem 2021; 296:100465. [PMID: 33639170 PMCID: PMC8042179 DOI: 10.1016/j.jbc.2021.100465] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
TRAF3 has diverse signaling functions, which vary by cell type. Uniquely in B lymphocytes, TRAF3 inhibits homeostatic survival. Highlighting the role of TRAF3 as a tumor suppressor, loss-of-function TRAF3 mutations are associated with human B-cell malignancies, while B-cell-specific deletion of TRAF3 in mice leads to autoimmunity and lymphoma development. The role of TRAF3 in inhibiting noncanonical NF-κB activation, CD40 and BAFF-R signaling to B cells is well documented. In contrast, TRAF3 enhances many T-cell effector functions, through associating with and enhancing signaling by the T-cell receptor (TCR)-CD28 complex. The present study was designed to determine the role of TRAF3 in signaling via the B-cell antigen receptor (BCR). The BCR is crucial for antigen recognition, survival, proliferation, and antibody production, and defects in BCR signaling can promote abnormal survival of malignant B cells. Here, we show that TRAF3 is associated with both CD79B and the BCR-activated kinases Syk and Btk following BCR stimulation. BCR-induced phosphorylation of Syk and additional downstream kinases was increased in TRAF3−/− B cells, with regulation observed in both follicular and marginal zone B-cell subsets. BCR stimulation of TRAF3−/− B cells resulted in increased surface expression of MHC-II, CD80, and CD86 molecules. Interestingly, increased survival of TRAF3−/− primary B cells was resistant to inhibition of Btk, while TRAF3-deficient malignant B-cell lines showed enhanced sensitivity. TRAF3 serves to restrain normal and malignant BCR signaling, with important implications for its role in normal B-cell biology and abnormal survival of malignant B cells.
Collapse
Affiliation(s)
- Amy L Whillock
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA; Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Tiffany K Ybarra
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA; Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA; Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
17
|
León Machado JA, Steimle V. The MHC Class II Transactivator CIITA: Not (Quite) the Odd-One-Out Anymore among NLR Proteins. Int J Mol Sci 2021; 22:1074. [PMID: 33499042 PMCID: PMC7866136 DOI: 10.3390/ijms22031074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the major histocompatibility complex (MHC) class II transactivator (CIITA), which is the master regulator of MHC class II gene expression. CIITA is the founding member of the mammalian nucleotide-binding and leucine-rich-repeat (NLR) protein family but stood apart for a long time as the only transcriptional regulator. More recently, it was found that its closest homolog, NLRC5 (NLR protein caspase activation and recruitment domain (CARD)-containing 5), is a regulator of MHC-I gene expression. Both act as non-DNA-binding activators through multiple protein-protein interactions with an MHC enhanceosome complex that binds cooperatively to a highly conserved combinatorial cis-acting module. Thus, the regulation of MHC-II expression is regulated largely through the differential expression of CIITA. In addition to the well-defined role of CIITA in MHC-II GENE regulation, we will discuss several other aspects of CIITA functions, such as its role in cancer, its role as a viral restriction element contributing to intrinsic immunity, and lastly, its very recently discovered role as an inhibitor of Ebola and SARS-Cov-2 virus replication. We will briefly touch upon the recently discovered role of NLRP3 as a transcriptional regulator, which suggests that transcriptional regulation is, after all, not such an unusual feature for NLR proteins.
Collapse
Affiliation(s)
| | - Viktor Steimle
- Département de Biologie, Université de Sherbrooke, 2500 Boul., Sherbrooke, QC J1K 2R1, Canada;
| |
Collapse
|
18
|
Kwon HJ, Qing K, Ponnazhagan S, Wang XS, Markusic DM, Gupte S, Boye SE, Srivastava A. Adeno-Associated Virus D-Sequence-Mediated Suppression of Expression of a Human Major Histocompatibility Class II Gene: Implications in the Development of Adeno-Associated Virus Vectors for Modulating Humoral Immune Response. Hum Gene Ther 2020; 31:565-574. [PMID: 32220217 DOI: 10.1089/hum.2020.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A 20-nt long sequence, termed the D-sequence, in the adeno-associated virus (AAV) inverted terminal repeat was observed to share a partial sequence homology with the X-box in the regulatory region of the human leukocyte antigen DRA (HLA-DRA) promoter of the human major histocompatibility complex class II (MHC-II) genes. The D-sequence was also shown to specifically interact with the regulatory factor binding to the X-box (RFX), binding of which to the X-box is a critical step in the MHC-II gene expression, suggesting that D-sequence might compete for RFX transcription factor binding, thereby suppressing expression from the MHC-II promoter. In DNA-mediated transfection experiments, using a reporter gene under the control of the HLA-DRA promoter, D-sequence oligonucleotides were found to inhibit expression of the reporter gene expression in HeLa and 293 cells by ∼93% and 96%, respectively. No inhibition was observed when nonspecific synthetic oligonucleotides were used. D-sequence oligonucleotides had no effect on expression from the cytomegalovirus immediate-early gene promoter. Interferon-γ-mediated activation of MHC-II gene expression was also inhibited by D-sequence oligonucleotides as well as after infection with either the wild-type AAV or transduction with recombinant AAV vectors. These studies suggest that the D-sequence-mediated downregulation of the MHC-II gene expression may be exploited toward the development of novel AAV vectors capable of dampening the host humoral response, which has important implication in the optimal use of these vectors in human gene therapy.
Collapse
Affiliation(s)
- Hyung-Joo Kwon
- Department of Microbiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | - David M Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Siddhant Gupte
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Eli Lilly & Company, Indianapolis, Indiana, USA.,Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
19
|
Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, Seykora JT, Sapkota B, Gutman DA, Cooper LA, Lesinski GB, Waller EK, Thomas SN, Kotenko SV, Boss JM, Moreno CS, Swerlick RA, Pollack BP. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Mol Cancer Res 2019; 17:2395-2409. [PMID: 31548239 DOI: 10.1158/1541-7786.mcr-19-0545] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022]
Abstract
Molecular events activating the PI3K pathway are frequently detected in human tumors and the activation of PI3K signaling alters numerous cellular processes including tumor cell proliferation, survival, and motility. More recent studies have highlighted the impact of PI3K signaling on the cellular response to interferons and other immunologic processes relevant to antitumor immunity. Given the ability of IFNγ to regulate antigen processing and presentation and the pivotal role of MHC class I (MHCI) and II (MHCII) expression in T-cell-mediated antitumor immunity, we sought to determine the impact of PI3K signaling on MHCI and MHCII induction by IFNγ. We found that the induction of cell surface MHCI and MHCII molecules by IFNγ is enhanced by the clinical grade PI3K inhibitors dactolisib and pictilisib. We also found that PI3K inhibition increases STAT1 protein levels following IFNγ treatment and increases accessibility at genomic STAT1-binding motifs. Conversely, we found that pharmacologic activation of PI3K signaling can repress the induction of MHCI and MHCII molecules by IFNγ, and likewise, the loss of PTEN attenuates the induction of MHCI, MHCII, and STAT1 by IFNγ. Consistent with these in vitro studies, we found that within human head and neck squamous cell carcinomas, intratumoral regions with high phospho-AKT IHC staining had reduced MHCI IHC staining. IMPLICATIONS: Collectively, these findings demonstrate that MHC expression can be modulated by PI3K signaling and suggest that activation of PI3K signaling may promote immune escape via effects on antigen presentation.
Collapse
Affiliation(s)
- Sanjay Chandrasekaran
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Maiko Sasaki
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Haydn T Kissick
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Urology Emory University School of Medicine, Atlanta, Georgia
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia
| | - Kelly R Magliocca
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - John T Seykora
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bishu Sapkota
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - David A Gutman
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Susan N Thomas
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Biomedical Engineering, Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Carlos S Moreno
- Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert A Swerlick
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia. .,Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
Mai W, Liu X, Wang J, Zheng J, Wang X, Zhou W. Protective effects of CX3CR1 on autoimmune inflammation in a chronic EAE model for MS through modulation of antigen-presenting cell-related molecular MHC-II and its regulators. Neurol Sci 2019; 40:779-791. [PMID: 30671738 DOI: 10.1007/s10072-019-3721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent evidences have implicated neuroprotective effects of CX3CR1 in multiple sclerosis (MS). But whether CX3CR1 is involved in modulation of antigen-presenting cell (APC)-related molecular MHC-II and what the possible mechanism is remain unidentified. OBJECTIVE In this study, we intended to investigate the effects of CX3CR1 on MHC-II expressions on brain myeloid cells in experimental autoimmune encephalomyelitis (EAE) mice and explore the possible regulators for it. METHODS CX3CR1-deficient EAE mice were created. Disease severity, pathological damage, and the expressions of MHC-II and its mediators on myeloid cells were detected. RESULTS We found that compare with wile-typed EAE mice, CX3CR1-deficient EAE mice exhibited more severe disease severity. An accumulation of CD45+CD115+Ly6C-CD11c+ cells was reserved in the affected EAE brain of CX3CR1-deficient mice, consistent with disease severity and pathological damage in the brain. The expressions of MHC-II on the brain CD45+CD115+Ly6C-CD11c+ cells of CX3CR1-deficient EAE mice were elevated, in accord with the increased protein and mRNA expressions of class II transactivator (CIITA) and interferon regulatory factor-1 (IRF-1). CONCLUSIONS The findings indicated that CX3CR1 might be an important regulator for MHC-II expressions on APCs, playing a beneficial role in EAE. The mechanism was probably through regulation on the MHC-II regulators CIITA and IRF-1.
Collapse
Affiliation(s)
- Weihua Mai
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, NO. 52 East Meihua Road, Zhuhai, 519000, Guangdong Province, China.
| | - Xingwei Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Junfeng Wang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, NO. 52 East Meihua Road, Zhuhai, 519000, Guangdong Province, China
| | - Jing Zheng
- Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiao Wang
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wenying Zhou
- Department of Laboratory Science, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
21
|
Julien L, Chassagne J, Peccate C, Lorain S, Piétri-Rouxel F, Danos O, Benkhelifa-Ziyyat S. RFX1 and RFX3 Transcription Factors Interact with the D Sequence of Adeno-Associated Virus Inverted Terminal Repeat and Regulate AAV Transduction. Sci Rep 2018; 8:210. [PMID: 29317724 PMCID: PMC5760533 DOI: 10.1038/s41598-017-18604-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Adeno-associated virus (AAV) transduction efficiency depends on the way in which cellular proteins process viral genomes in the nucleus. In this study, we have investigated the binding of nuclear proteins to the double stranded D (dsD) sequence of the AAV inverted terminal repeat (ITRs) by electromobility shift assay. We present here several lines of evidence that transcription factors belonging to the RFX protein family bind specifically and selectively to AAV2 and AAV1 dsD sequences. Using supershift experiments, we characterize complexes containing RFX1 homodimers and RFX1/RFX3 heterodimers. Following transduction of HEK-293 cells, the AAV genome can be pulled-down by RFX1 and RFX3 antibodies. Moreover, our data suggest that RFX proteins which interact with transcriptional enhancers of several mammalian DNA viruses, can act as regulators of AAV mediated transgene expression.
Collapse
Affiliation(s)
- Laura Julien
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Julie Chassagne
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Cécile Peccate
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Stéphanie Lorain
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - France Piétri-Rouxel
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Olivier Danos
- REGENXBIO, 9600 Blackwell Rd, Rockville, MD, 20850, USA
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France.
| |
Collapse
|
22
|
Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression. Mol Immunol 2017; 113:16-21. [PMID: 29224918 DOI: 10.1016/j.molimm.2017.12.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
The MHC class I pathway, presenting endogenously derived peptides to T lymphocytes, is hijacked in many pathological conditions. This affects MHC class I levels and peptide presentation at the cell surface leading to immune escape of cancer cells or microbes. It is therefore important to identify the molecular mechanisms behind MHC class I expression, processing and antigen presentation. The identification of NLRC5 as regulator of MHC class I transcription was a huge step forward in understanding the transcriptional mechanism involved. Nevertheless, many questions concerning MHC class I transcription are yet unsolved. Here we illuminate current knowledge on MHC class I and NLRC5 transcription, we highlight some remaining questions and discuss the use of quickly developing high-content screening tools to reveal unknowns in MHC class I transcription in the near future.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Anderson DA, Grajales-Reyes GE, Satpathy AT, Vasquez Hueichucura CE, Murphy TL, Murphy KM. Revisiting the specificity of the MHC class II transactivator CIITA in classical murine dendritic cells in vivo. Eur J Immunol 2017; 47:1317-1323. [PMID: 28608405 DOI: 10.1002/eji.201747050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/10/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
Ciita was discovered for its role in regulating transcription of major histocompatibility complex class II (MHCII) genes. Subsequently, CIITA was predicted to control many other genes based on reporter and ChIP-seq analysis but few such predictions have been verified in vivo using Ciita-/- mice. Testing these predictions for classical dendritic cells (cDCs) has been particularly difficult, since Ciita-/- mice lack MHCII expression required to identify cDCs. However, recent identification of the cDC-specific transcription factor Zbtb46 allows the identification of cDCs independently of MHCII expression. We crossed Zbtb46gfp mice onto the Ciita-/- background and found that all cDC lineages developed in vivo in the absence of Ciita. We then compared the complete transcriptional profile of wild-type and Ciita-/- cDCs to define the physiological footprint of CIITA for both immature and activated cDCs. We find that CIITA exerts a highly restricted control over only the MHCII, H2-DO and H2-DM genes, in DC1 and DC2 cDC subsets, but not over other proposed targets, including Ii. These findings emphasize the caveats needed in interpreting transcription factor binding sites identified by in-vitro reporter analysis, or by ChIP-seq, which may not necessarily indicate their functional activity in vivo.
Collapse
Affiliation(s)
- David A Anderson
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary E Grajales-Reyes
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Theresa L Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.,Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Vladimer GI, Snijder B, Krall N, Bigenzahn JW, Huber KV, Lardeau CH, Sanjiv K, Ringler A, Berglund UW, Sabler M, de la Fuente OL, Knöbl P, Kubicek S, Helleday T, Jäger U, Superti-Furga G. Global survey of the immunomodulatory potential of common drugs. Nat Chem Biol 2017; 13:681-690. [PMID: 28437395 PMCID: PMC5438060 DOI: 10.1038/nchembio.2360] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/17/2017] [Indexed: 12/20/2022]
Abstract
Small-molecule drugs may complement antibody-based therapies in an immune-oncology setting, yet systematic methods for the identification and characterization of the immunomodulatory properties of these entities are lacking. We surveyed the immumomodulatory potential of 1,402 small chemical molecules, as defined by their ability to alter the cell-cell interactions among peripheral mononuclear leukocytes ex vivo, using automated microscopy and population-wide single-cell image analysis. Unexpectedly, ∼10% of the agents tested affected these cell-cell interactions differentially. The results accurately recapitulated known immunomodulatory drug classes and revealed several clinically approved drugs that unexpectedly harbor the ability to modulate the immune system, which could potentially contribute to their physiological mechanism of action. For instance, the kinase inhibitor crizotinib promoted T cell interactions with monocytes, as well as with cancer cells, through inhibition of the receptor tyrosine kinase MSTR1 and subsequent upregulation of the expression of major histocompatibility complex molecules. The approach offers an attractive platform for the personalized identification and characterization of immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Gregory I. Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Nikolaus Krall
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Johannes W. Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kilian V.M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Structural Genomics Consortium, University of Oxford, Oxford, UK and Target Discovery Institute, University of Oxford, Oxford, UK
| | - Charles-Hugues Lardeau
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Anna Ringler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Monika Sabler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Oscar Lopez de la Fuente
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Paul Knöbl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Christian Doppler Laboratory for Chemical Epigenetics and Anti-Infectives, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
NLRC5/CITA: A Key Player in Cancer Immune Surveillance. Trends Cancer 2017; 3:28-38. [PMID: 28718425 DOI: 10.1016/j.trecan.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Cancer cells need to escape immune surveillance for successful tumor growth. Loss of MHC class I has been described as a major immune evasion strategy in many cancers. MHC class I transactivator (CITA), NLRC5 [nucleotide-binding domain and leucine-rich repeats containing (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5], is a key transcription coactivator of MHC class I genes. Recent genetic studies have revealed that NLRC5 is a major target for cancer immune evasion mechanisms. The reduced expression or activity of NLRC5 caused by promoter methylation, copy number loss, or somatic mutations is associated with defective MHC class I expression, impaired cytotoxic T cell activation, and poor patient prognosis. Here, we review the role of NLRC5 in cancer immune evasion and the future prospects for cancer research.
Collapse
|
26
|
Suzuki K, Luo Y. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:71-111. [PMID: 28057216 DOI: 10.1016/bs.apcsb.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4+ T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression.
Collapse
Affiliation(s)
- K Suzuki
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan.
| | - Y Luo
- Faculty of Medical Technology, Teikyo University, Itabashi, Japan
| |
Collapse
|
27
|
Zhao Y, Xie X, Liao W, Zhang H, Cao H, Fei R, Wang X, Wei L, Shao Q, Chen H. The transcription factor RFX5 is a transcriptional activator of the TPP1 gene in hepatocellular carcinoma. Oncol Rep 2016; 37:289-296. [DOI: 10.3892/or.2016.5240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
|
28
|
Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors 2016; 42:349-57. [PMID: 27087581 DOI: 10.1002/biof.1285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.
Collapse
Affiliation(s)
- Isaac Downs
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| |
Collapse
|
29
|
Lee JW, Park HS, Park SA, Ryu SH, Meng W, Jürgensmeier JM, Kurie JM, Hong WK, Boyer JL, Herbst RS, Koo JS. A Novel Small-Molecule Inhibitor Targeting CREB-CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0122628. [PMID: 25897662 PMCID: PMC4405579 DOI: 10.1371/journal.pone.0122628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is the leading cause of cancer death worldwide. Despite attempts for the treatment of lung cancer which have been accumulating, promising new therapies are still needed. Here, we found that cyclic-AMP response element-binding protein (CREB)-CREB binding protein (CBP) transcription factors complex inhibitor, Naphthol AS-TR phosphate (NASTRp), is a potential therapeutic agent for lung cancer. We show that NASTRp inhibited oncogenic cell properties through cell cycle arrest with concomitant suppression of tumor-promoting autophagy with down-regulations of Atg5-12 and Atg7, and accumulation of p62 in human lung cancer cell lines. In addition, NASTRp induced expression of endoplasmic reticulum stress markers such as DDIT3/CHOP, and led to apoptosis along with Bim induction. These findings suggest that transcription factor/co-activator complex, CREB-CBP, can be a potential therapeutic target and its inhibition could be a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Hee Sun Park
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Sin-Aye Park
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Seung-Hee Ryu
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wuyi Meng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States of America
| | - Juliane M. Jürgensmeier
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Julie L. Boyer
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Roy S. Herbst
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
- Translational Research Program, Yale Comprehensive Cancer Center, New Haven, CT 06520, United States of America
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
- Translational Research Program, Yale Comprehensive Cancer Center, New Haven, CT 06520, United States of America
| |
Collapse
|
30
|
Scharer CD, Choi NM, Barwick BG, Majumder P, Lohsen S, Boss JM. Genome-wide CIITA-binding profile identifies sequence preferences that dictate function versus recruitment. Nucleic Acids Res 2015; 43:3128-42. [PMID: 25753668 PMCID: PMC4381081 DOI: 10.1093/nar/gkv182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 01/06/2023] Open
Abstract
The class II transactivator (CIITA) is essential for the expression of major histocompatibility complex class II (MHC-II) genes; however, the role of CIITA in gene regulation outside of MHC-II biology is not fully understood. To comprehensively map CIITA-bound loci, ChIP-seq was performed in the human B lymphoblastoma cell line Raji. CIITA bound 480 sites, and was significantly enriched at active promoters and enhancers. The complexity of CIITA transcriptional regulation of target genes was analyzed using a combination of CIITA-null cells, including a novel cell line created using CRISPR/Cas9 tools. MHC-II genes and a few novel genes were regulated by CIITA; however, most other genes demonstrated either diminished or no changes in the absence of CIITA. Nearly all CIITA-bound sites were within regions containing accessible chromatin, and CIITA's presence at these sites was associated with increased histone H3K27 acetylation, suggesting that CIITA's role at these non-regulated loci may be to poise the region for subsequent regulation. Computational genome-wide modeling of the CIITA bound XY box motifs provided constraints for sequences associated with CIITA-mediated gene regulation versus binding. These data therefore define the CIITA regulome in B cells and establish sequence specificities that predict activity for an essential regulator of the adaptive immune response.
Collapse
Affiliation(s)
| | - Nancy M Choi
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Benjamin G Barwick
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Parimal Majumder
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Sarah Lohsen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
31
|
Weiterer S, Uhle F, Lichtenstern C, Siegler BH, Bhuju S, Jarek M, Bartkuhn M, Weigand MA. Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS One 2015; 10:e0121748. [PMID: 25793379 PMCID: PMC4368631 DOI: 10.1371/journal.pone.0121748] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Background Sepsis is a global burden and the primary cause of death in intensive care units worldwide. The pathophysiological changes induced by the host’s systemic inflammatory response to infection are not yet fully understood. During sepsis, the immune system is confronted with a variety of factors, which are integrated within the individual cells and result in changes of their basal state of responsiveness. Epigenetic mechanisms like histone modifications are known to participate in the control of immune reactions, but so far the situation during sepsis is unknown. Methods and Findings In a pilot approach, we performed combined chromatin immunoprecipitation followed by high-throughput sequencing to assess the genome-wide distribution of the chromatin modifications histone 3 lysine 4 and 27 trimethylation and lysine 9 acetylation in monocytes isolated from healthy donors (n = 4) and patients with sepsis (n = 2). Despite different underlying causes for sepsis, a comparison over promoter regions shows a high correlation between the patients for all chromatin marks. These findings hold true also when comparing patients to healthy controls. Despite the global similarity, differential analysis reveals a set of distinct promoters with significant enrichment or depletion of histone marks. Further analysis of overrepresented GO terms show an enrichment of genes involved in immune function. To the most prominent ones belong different members of the HLA family located within the MHC cluster together with the gene coding for the major regulator of this locus—CIITA. Conclusions We are able to show for the first time that sepsis in humans induces selective and precise changes of chromatin modifications in distinct promoter regions of immunologically relevant genes, shedding light on basal regulatory mechanisms that might be contributing to the functional changes occurring in monocytes.
Collapse
Affiliation(s)
- Sebastian Weiterer
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
- * E-mail:
| | - Florian Uhle
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Benedikt H. Siegler
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, Giessen, Germany
| | - Markus A. Weigand
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
32
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex. J Virol 2015; 89:5536-56. [PMID: 25740990 DOI: 10.1128/jvi.03713-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/26/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4(+) T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify a novel mechanism used by KSHV to downregulate the expressions of MHC-II genes. IMPORTANCE Kaposi's sarcoma-associated herpesvirus is the causative agent of multiple human malignancies. It establishes a lifelong latent infection and persists in infected cells without being detected by the host's immune surveillance system. Only a limited number of viral proteins are expressed during latency, and these proteins play a significant role in suppressing both the innate and adaptive immunities of the host. Latency-associated nuclear antigen (LANA) is one of the major proteins expressed during latent infection. Here, we show that LANA blocks MHC-II gene expression to subvert the host immune system by disrupting the MHC-II enhanceosome through binding with RFX transcription factors. Therefore, this study identifies a novel mechanism utilized by KSHV LANA to deregulate MHC-II gene expression, which is critical for CD4(+) T cell responses in order to escape host immune surveillance.
Collapse
|
33
|
Neerincx A, Jakobshagen K, Utermöhlen O, Büning H, Steimle V, Kufer TA. The N-Terminal Domain of NLRC5 Confers Transcriptional Activity for MHC Class I and II Gene Expression. THE JOURNAL OF IMMUNOLOGY 2014; 193:3090-100. [DOI: 10.4049/jimmunol.1401065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Majumder P, Scharer CD, Choi NM, Boss JM. B cell differentiation is associated with reprogramming the CCCTC binding factor-dependent chromatin architecture of the murine MHC class II locus. THE JOURNAL OF IMMUNOLOGY 2014; 192:3925-35. [PMID: 24634495 DOI: 10.4049/jimmunol.1303205] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The transcriptional insulator CCCTC binding factor (CTCF) was shown previously to be critical for human MHC class II (MHC-II) gene expression. Whether the mechanisms used by CTCF in humans were similar to that of the mouse and whether the three-dimensional chromatin architecture created was specific to B cells were not defined. Genome-wide CTCF occupancy was defined for murine B cells and LPS-derived plasmablasts by chromatin immunoprecipitation sequencing. Fifteen CTCF sites within the murine MHC-II locus were associated with high CTCF binding in B cells. Only one-third of these sites displayed significant CTCF occupancy in plasmablasts. CTCF was required for maximal MHC-II gene expression in mouse B cells. In B cells, a subset of the CTCF regions interacted with each other, creating a three-dimensional architecture for the locus. Additional interactions occurred between MHC-II promoters and the CTCF sites. In contrast, a novel configuration occurred in plasma cells, which do not express MHC-II genes. Ectopic CIITA expression in plasma cells to induce MHC-II expression resulted in high levels of MHC-II proteins, but did not alter the plasma cell architecture completely. These data suggest that reorganizing the three-dimensional chromatin architecture is an epigenetic mechanism that accompanies the silencing of MHC-II genes as part of the cell fate commitment of plasma cells.
Collapse
Affiliation(s)
- Parimal Majumder
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | |
Collapse
|
35
|
Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells. PLoS One 2014; 9:e87377. [PMID: 24475282 PMCID: PMC3903652 DOI: 10.1371/journal.pone.0087377] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022] Open
Abstract
The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E2) and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER− and ER+ breast cancer cell lines, we showed that E2 attenuated HLA-DR in two ER+ lines (MCF-7 and BT-474), but not in T47D, while it augmented expression in ER− lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used paired transfectants: ERα+ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene) and ERα− VC5 (MDA-MB-231 c10A transfected with the empty vector), treated or not with E2 and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E2 treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E2 in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα− breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα+ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.
Collapse
|
36
|
Stavride P, Arampatzi P, Papamatheakis J. Differential regulation of MHCII genes by PRMT6, via an AT-hook motif of RFX5. Mol Immunol 2013; 56:390-8. [DOI: 10.1016/j.molimm.2013.05.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
|
37
|
Neerincx A, Castro W, Guarda G, Kufer TA. NLRC5, at the Heart of Antigen Presentation. Front Immunol 2013; 4:397. [PMID: 24319445 PMCID: PMC3837245 DOI: 10.3389/fimmu.2013.00397] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.
Collapse
Affiliation(s)
- Andreas Neerincx
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne , Cologne , Germany
| | | | | | | |
Collapse
|
38
|
Forlani G, Abdallah R, Accolla RS, Tosi G. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators. Front Microbiol 2013; 4:234. [PMID: 23986750 PMCID: PMC3749491 DOI: 10.3389/fmicb.2013.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/13/2022] Open
Abstract
The activation of CD4(+) T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratory of General Pathology and Immunology, Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| | | |
Collapse
|
39
|
Expression regulation and function of NLRC5. Protein Cell 2013; 4:168-75. [PMID: 23483478 DOI: 10.1007/s13238-012-2109-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/10/2012] [Indexed: 02/01/2023] Open
Abstract
The NOD like receptors (NLRs), a class of intracellular receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5, the largest member of the NLR protein family, has recently been identified as a critical regulator of immune responses. While NLRC5 is constitutively and widely expressed, it can be dramatically induced by interferons during pathogen infections. Both in vitro and in vivo studies have demonstrated that NLRC5 is a specific and master regulator of major mistocompatibility complex (MHC) class I genes as well as related genes involved in MHC class I antigen presentation. The expression of MHC class I genes is regulated by NLRC5 in coordination with the RFX components through an enhanceosome-dependent manner. And the involvement of NLRC5 in MHC class I mediated CD8+ T cell activation, proliferation and cytotoxicity is proved to be critical for host defense against intracellular bacterial infections. Nevertheless, the role of NLRC5 in innate immunity remains to be further explored. Here, we review the research advances on the structure, expression regulation and function of NLRC5.
Collapse
|
40
|
Wierda RJ, Kuipers HF, van Eggermond MCJA, Benard A, van Leeuwen JC, Carluccio S, Geutskens SB, Jukema JW, Marquez VE, Quax PHA, van den Elsen PJ. Epigenetic control of CCR5 transcript levels in immune cells and modulation by small molecules inhibitors. J Cell Mol Med 2012; 16:1866-77. [PMID: 22050776 PMCID: PMC3309068 DOI: 10.1111/j.1582-4934.2011.01482.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, we have shown that CCR5 transcription is regulated by CREB-1. However, the ubiquitous pattern of CREB-1 expression suggests the involvement of an additional level of transcriptional control in the cell type–specific expression of CCR5. In this study, we show that epigenetic changes (i.e. DNA methylation and histone modifications) within the context of the CCR5 P1 promoter region correlate with transcript levels of CCR5 in healthy and in malignant CD4+ T lymphocytes as well as in CD14+ monocytes. In normal naïve T cells and CD14+ monocytes the CCR5 P1 promoter resembles a bivalent chromatin state, with both repressive and permissive histone methylation and acetylation marks. The CCR5-expressing CD14+ monocytes however show much higher levels of acetylated histone H3 (AcH3) compared to the non–CCR5-expressing naïve T cells. Combined with a highly methylated promoter in CD14+ monocytes, this indicates a dominant role for AcH3 in CCR5 transcription. We also show that pharmacological interference in the epigenetic repressive mechanisms that account for the lack of CCR5 transcription in T leukaemic cell lines results in an increase in CREB-1 association with CCR5 P1 chromatin. Furthermore, RNA polymerase II was also recruited into CCR5 P1 chromatin resulting in CCR5 re-expression. Together, these data indicate that epigenetic modifications of DNA, and of histones, contribute to the control of CCR5 transcription in immune effector cells.
Collapse
Affiliation(s)
- Rutger J Wierda
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Inostroza-Nieves Y, Venkatraman P, Zavala-Ruiz Z. Role of Sug1, a 19S proteasome ATPase, in the transcription of MHC I and the atypical MHC II molecules, HLA-DM and HLA-DO. Immunol Lett 2012; 147:67-74. [PMID: 22771340 DOI: 10.1016/j.imlet.2012.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/09/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
The 19S proteasome regulatory particle plays a critical role in cellular proteolysis. However, emerging evidence suggests roles for 19S proteasome subunits in regulating yeast and mammalian transcription. It has been previously shown that Sug1 is important for the transcription of MHC II molecules. We report here that Sug1 also has a role in regulating transcription of class I MHC and the MHC II-like molecules, HLA-DM and HLA-DO. Reduction of Sug1 expression causes a decrease in the transcription of MHC I and MHC II-like molecules. In addition, we show that association of Sug1 with MHC promoters is followed by the recruitment of the CREB-binding protein (CBP) and the class II transactivator (CIITA). Reduction of Sug1 expression is accompanied by decreased recruitment of CBP and CIITA to the MHC promoters and decreased histone H3 acetylation in these promoters. These studies suggest that Sug1 plays a critical role in transcription of MHC class I, and the MHC class II-like molecules, HLA-DM and HLA-DO.
Collapse
Affiliation(s)
- Yaritza Inostroza-Nieves
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | | | | |
Collapse
|
42
|
Choi NM, Boss JM. Multiple histone methyl and acetyltransferase complex components bind the HLA-DRA gene. PLoS One 2012; 7:e37554. [PMID: 22701520 PMCID: PMC3365104 DOI: 10.1371/journal.pone.0037554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 04/25/2012] [Indexed: 01/17/2023] Open
Abstract
Major histocompatibility complex class II (MHC-II) genes are fundamental components that contribute to adaptive immune responses. While characterization of the chromatin features at the core promoter region of these genes has been studied, the scope of histone modifications and the modifying factors responsible for activation of these genes are less well defined. Using the MHC-II gene HLA-DRA as a model, the extent and distribution of major histone modifications associated with active expression were defined in interferon-γ induced epithelial cells, B cells, and B-cell mutants for MHC-II expression. With active transcription, nucleosome density around the proximal regulatory region was diminished and histone acetylation and methylation modifications were distributed throughout the gene in distinct patterns that were dependent on the modification examined. Irrespective of the location, the majority of these modifications were dependent on the binding of either the X-box binding factor RFX or the class II transactivator (CIITA) to the proximal regulatory region. Importantly, once established, the modifications were stable through multiple cell divisions after the activating stimulus was removed, suggesting that activation of this system resulted in an epigenetic state. A dual crosslinking chromatin immunoprecipitation method was used to detect histone modifying protein components that interacted across the gene. Components of the MLL methyltransferase and GCN5 acetyltransferase complexes were identified. Some MLL complex components were found to be CIITA independent, including MLL1, ASH2L and RbBP5. Likewise, GCN5 containing acetyltransferase complex components belonging to the ATAC and STAGA complexes were also identified. These results suggest that multiple complexes are either used or are assembled as the gene is activated for expression. Together the results define and illustrate a complex network of histone modifying proteins and multisubunit complexes participating in MHC-II transcription.
Collapse
Affiliation(s)
- Nancy M. Choi
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Neerincx A, Rodriguez GM, Steimle V, Kufer TA. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner. THE JOURNAL OF IMMUNOLOGY 2012; 188:4940-50. [PMID: 22490867 DOI: 10.4049/jimmunol.1103136] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play important roles in innate immune responses as pattern-recognition receptors. Although most NLR proteins act in cell autonomous immune pathways, some do not function as classical pattern-recognition receptors. One such NLR protein is the MHC class II transactivator, the master regulator of MHC class II gene transcription. In this article, we report that human NLRC5, which we recently showed to be involved in viral-mediated type I IFN responses, shuttles to the nucleus and activates MHC class I gene expression. Knockdown of NLRC5 in different human cell lines and primary dermal fibroblasts leads to reduced MHC class I expression, whereas introduction of NLRC5 into cell types with very low expression of MHC class I augments MHC class I expression to levels comparable to those found in lymphocytes. Expression of NLRC5 positively correlates with MHC class I expression in human tissues. Functionally, we show that both the N-terminal effector domain of NLRC5 and its C-terminal leucine-rich repeat domain are needed for activation of MHC class I expression. Moreover, nuclear shuttling and function depend on a functional Walker A motif. Finally, we identified a promoter sequence in the MHC class I promoter, the X1 box, to be involved in NLRC5-mediated MHC class I gene activation. Taken together, this suggested that NLRC5 acts in a manner similar to class II transactivator to drive MHC expression and revealed NLRC5 as an important regulator of basal MHC class I expression.
Collapse
Affiliation(s)
- Andreas Neerincx
- Institute for Medical Microbiology, Immunology, and Hygiene, University of Cologne, 50931 Cologne, Germany
| | | | | | | |
Collapse
|
44
|
Meissner TB, Liu YJ, Lee KH, Li A, Biswas A, van Eggermond MCJA, van den Elsen PJ, Kobayashi KS. NLRC5 cooperates with the RFX transcription factor complex to induce MHC class I gene expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:4951-8. [PMID: 22490869 DOI: 10.4049/jimmunol.1103160] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tight regulation of MHC class I gene expression is critical for CD8 T cell activation and host adaptive-immune responses. The promoters of MHC class I genes contain a well-conserved core module, the W/S-X-Y motif, which assembles a nucleoprotein complex termed MHC enhanceosome. A member of the nucleotide-binding domain, leucine-rich repeat (NLR) protein family, NLRC5, is a newly identified transcriptional regulator of MHC class I genes. NLRC5 associates with and transactivates the proximal promoters of MHC class I genes, although the molecular mechanism of transactivation has not been understood. In this article, we show that NLRC5-mediated MHC class I gene induction requires the W/S and X1, X2 cis-regulatory elements. The transcription factors RFX5, RFXAP, and RFXANK/B, which compose the RFX protein complex and associate with the X1 box, cooperate with NLRC5 for MHC class I expression. Coimmunoprecipitation experiments revealed that NLRC5 specifically interacts with the RFX subunit RFXANK/B via its ankyrin repeats. In addition, we show that NLRC5 can cooperate with ATF1 and the transcriptional coactivators CBP/p300 and general control nonderepressible 5, which display histone acetyltransferase activity. Taken together, our data suggest that NLRC5 participates in an MHC class I-specific enhanceosome, which assembles on the conserved W/S-X-Y core module of the MHC class I proximal promoters, including the RFX factor components and CREB/ATF1 family transcription factors, to promote MHC class I gene expression.
Collapse
Affiliation(s)
- Torsten B Meissner
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Aloj G, Giardino G, Valentino L, Maio F, Gallo V, Esposito T, Naddei R, Cirillo E, Pignata C. Severe Combined Immunodeficiences: New and Old Scenarios. Int Rev Immunol 2012; 31:43-65. [DOI: 10.3109/08830185.2011.644607] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Hypoxia and hypoxia mimetics inhibit TNF-dependent VCAM1 induction in the 5A32 endothelial cell line via a hypoxia inducible factor dependent mechanism. J Dermatol Sci 2011; 65:86-94. [PMID: 22093255 DOI: 10.1016/j.jdermsci.2011.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/29/2011] [Accepted: 10/06/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND We previously reported that iron chelators inhibit TNFα-mediated induction of VCAM-1 in human dermal microvascular endothelial cells. We hypothesized that iron chelators mediate inhibition of VCAM-1 via inhibition of iron-dependent enzymes such as those involved with oxygen sensing and that similar inhibition may be observed with agents which simulate hypoxia. OBJECTIVE We proposed to examine whether non-metal binding hypoxia mimetics inhibit TNFα-mediated VCAM-1 induction and define the mechanisms by which they mediate their effects on VCAM-1 expression. METHODS These studies were undertaken in vitro using immortalized dermal endothelial cells, Western blot analysis, ELISA, immunofluorescence microscopy, quantitative real-time PCR, and chromatin immunoprecipitation. RESULTS Hypoxia and the non-iron binding hypoxia mimetic dimethyl oxallyl glycine (DMOG) inhibited TNFα-mediated induction of VCAM-1. DMOG inhibition of VCAM-1 was dose-dependent, targeted VCAM-1 gene transcription independent of NF-κB nuclear translocation, and blocked TNFα-mediated chromatin modifications of relevant elements of the VCAM-1 promoter. Combined gene silencing of both HIF-1α and HIF-2α using siRNA led to a partial rescue of VCAM expression in hypoxia mimetic-treated cells. CONCLUSION Iron chelators, non-metal binding hypoxia mimetics, and hypoxia all inhibit TNFα-mediated VCAM-1 expression. Inhibition is mediated independent of nuclear translocation of NF-κB, appears to target TNFα-mediated chromatin modifications, and is at least partially dependent upon HIF expression. The absence of complete VCAM-1 expression rescue with HIF silencing implies an important regulatory role for an Fe(II)/α-ketoglutarate dioxygenase distinct from the prolyl and asparagyl hydroxylases that control HIF function. Identification of this dioxygenase may provide a valuable target for modulating inflammation in human tissues.
Collapse
|
47
|
van den Elsen PJ. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front Immunol 2011; 2:48. [PMID: 22566838 PMCID: PMC3342053 DOI: 10.3389/fimmu.2011.00048] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022] Open
Abstract
Major histocompatibility complex (MHC)-I and MHC-II molecules play an essential role in the immune response to pathogens by virtue of their ability to present peptides to CD8+ and CD4+ T cells, respectively. Given this critical role, MHC-I and MHC-II genes are regulated in a tight fashion at the transcriptional level by a variety of transcription factors that interact with conserved cis-acting regulatory promoter elements. In addition to the activities of these regulatory factors, modification of chromatin also plays an essential role in the efficient transcription of these genes to meet with local requirement for an effective immune response. The focus of this review is on the transcription factors that interact with conserved cis-acting promoter elements and the epigenetic mechanisms that modulate induced and constitutive expression of these MHC genes.
Collapse
Affiliation(s)
- Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center Leiden, Netherlands.
| |
Collapse
|
48
|
Lambrechts N, Nelissen I, Van Tendeloo V, Witters H, Van Den Heuvel R, Hooyberghs J, Schoeters G. Functionality and specificity of gene markers for skin sensitization in dendritic cells. Toxicol Lett 2011; 203:106-10. [DOI: 10.1016/j.toxlet.2011.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
49
|
Epigenetic Control in Immune Function. EPIGENETIC CONTRIBUTIONS IN AUTOIMMUNE DISEASE 2011; 711:36-49. [DOI: 10.1007/978-1-4419-8216-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci 2010; 68:369-95. [PMID: 21107637 PMCID: PMC3021195 DOI: 10.1007/s00018-010-0580-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/27/2022]
Abstract
The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes.
Collapse
Affiliation(s)
- Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|