1
|
He X, Xu Y, Huang D, Yu Z, Yu J, Xie L, Liu L, Yu Y, Chen C, Wan J, Zhang Y, Zheng J. P2X1 enhances leukemogenesis through PBX3-BCAT1 pathways. Leukemia 2023; 37:265-275. [PMID: 36418376 PMCID: PMC9898031 DOI: 10.1038/s41375-022-01759-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
How bone marrow niches regulate leukemogenic activities of leukemia-initiating cells (LICs) is unclear. The present study revealed that the metabolic niche component, ATP, efficiently induced ion influx in LICs through its ligand-gated ion channel, P2X1. P2X1 deletion impaired LIC self-renewal capacities and resulted in an approximately 8-fold decrease in functional LIC numbers in a murine acute myeloid leukemia (AML) model without affecting normal hematopoiesis. P2X1 phosphorylation at specific sites of S387 and T389 was essential for sustaining its promoting effects on leukemia development. ATP-P2X1-mediated signaling upregulated the PBX3 level to transactivate BCAT1 to maintain LIC fates. P2X1 knockdown inhibited the proliferation of both human AML cell lines and primary cells. The P2X1 antagonist sufficiently suppressed AML cell proliferation. These results provided a unique perspective on how metabolic niche factor ATP fine-tunes LIC activities, which may benefit the development of strategies for targeting LICs or other cancer stem cells.
Collapse
Affiliation(s)
- Xiaoxiao He
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yilu Xu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Dan Huang
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhuo Yu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jing Yu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Xie
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ligen Liu
- grid.16821.3c0000 0004 0368 8293Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ye Yu
- grid.254147.10000 0000 9776 7793School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China.
| |
Collapse
|
2
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
3
|
Wong J, Gu BJ, Teoh H, Krupa M, Monif M, Slee M, Wiley JS. Flow Cytometry Identifies an Early Stage of Platelet Apoptosis Produced by Agonists of the P2X1 and P2X7 Receptors. Platelets 2022; 33:621-631. [PMID: 35042433 DOI: 10.1080/09537104.2021.1981844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platelets express P2X1 receptors and our data also show the expression of P2X7 receptors. We studied the role of both receptors in platelet apoptosis by incubation of PRP with P2X agonists, then centrifuged to remove viable platelets, and analyzed the supernatant by flow cytometry to identify a sparse platelet-derived population that stained with MitoTracker dyes and CD41. BzATP, a potent agonist of P2X receptors, and ABT737, an activator of intrinsic apoptosis, produced altered platelets that stained moderately for annexin V and corresponded to an early stage apoptotic platelet (ESAP). Over a range of BzATP concentrations, we observed a dose-dependent formation of ESAPs between 5 and 500 uM BzATP, together with a variable formation of ESAPs at nanomolar ATP or BzATP (50-200 nM). Production of ESAPs occurred with αβ-meATP, while responses with either BzATP or αβ-meATP showed desensitization at a higher agonist concentration. Formation of ESAPs by either 100 nM or 0.5 mM BzATP was inhibited by preincubation of platelets with latrunculin A, an inhibitor of the actin cytoskeleton that prevents apoptosis. ESAP production was totally inhibited by preincubation of platelets with methyl-beta-cyclodextrin, which removes cholesterol from lipid rafts. Our data show that both P2X1 and P2X7 receptors are localized in platelet lipid rafts where P2X-agonists act to produce early stage apoptotic platelets.
Collapse
Affiliation(s)
- Joelyn Wong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Harry Teoh
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Malgorzata Krupa
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,Department of Neuroscience, Monash University, Clayton, Australia
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Haematology Department, Box Hill Hospital, Australia
| |
Collapse
|
4
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Ruiz-Rodríguez VM, Cortes-García JD, de Jesús Briones-Espinoza M, Rodríguez-Varela E, Vega-Cárdenas M, Gómez-Otero A, García-Hernández MH, Portales-Pérez DP. P2X4 receptor as a modulator in the function of P2X receptor in CD4+ T cells from peripheral blood and adipose tissue. Mol Immunol 2019; 112:369-377. [PMID: 31279218 DOI: 10.1016/j.molimm.2019.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
Obesity is characterized by immune cell infiltration and inflammation. Purinergic receptors such as P2X1, 4 and 7 are expressed on immune cells and their activation contributes with an inflammatory response. However, the simultaneous expression of P2X1, 4 and 7 during overweight or obesity have not been described. Therefore, the aim of this study was to determine single and simultaneously expression and function of the P2X1, 4 and 7 receptors in lymphocytes and CD4 + T cells from peripheral blood (PB) and adipose tissue (AT). Our results showed a higher expression of the P2X4 receptor on CD4 + T cells from PB regarding P2X7 and P2X1 receptor expression. In addition, P2X4 receptor expression on CD4 + T cells from PB and AT was increased in individuals with BMI ≥ 25 Kg/m2. Moreover, a higher simultaneous expression of the P2X4 and P2X7 receptors on CD4 + T cells from AT compared to CD4 + T cells expressing P2X1 and P2X7 receptors simultaneously. Besides, CD4 + T cells expressing P2X4 and P2X7 receptors from PB and AT were augmented in individuals with BMI ≥ 25 Kg/m2. In addition, the percentage of lymphocytes and also CD4 + T cells expressing P2X4 receptor were elevated both in PB and AT compared to cells expressing P2X7 or P2X1. However, CD4 + T cells expressing P2X4 and P2X7 were augmented in AT compared to PB. The function of the receptors showed a lower shedding of CD62 L in adipose tissue mononuclear cells (ATMC) compared with peripheral blood mononuclear cells (PBMC) and a greater participation of P2X4 in the mobilization of intracellular calcium. We concluded that it was possible to determine for the first time the simultaneous expression of purinergic receptors in ATMC, where the P2X4 receptor has a greater participation in the activation of CD4 + T cells possibly modulating the function of the other two receptors.
Collapse
Affiliation(s)
- Victor Manuel Ruiz-Rodríguez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Juan Diego Cortes-García
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | | | - Eduardo Rodríguez-Varela
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Mariela Vega-Cárdenas
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Arturo Gómez-Otero
- Aesthetic and Corrective Plastic Surgery Clinic, San Luis Potosí, S.L.P., Mexico
| | | | - Diana Patricia Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico; Translational and Molecular Medicine Department, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, Mexico.
| |
Collapse
|
6
|
Kain V, Sawant MA, Dasgupta A, Jaiswal G, Vyas A, Padhye S, Sitasawad SL. A novel SOD mimic with a redox-modulating mn (II) complex, ML1 attenuates high glucose-induced abnormalities in intracellular Ca 2+ transients and prevents cardiac cell death through restoration of mitochondrial function. Biochem Biophys Rep 2016; 5:296-304. [PMID: 28955837 PMCID: PMC5600348 DOI: 10.1016/j.bbrep.2016.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/25/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
A key contributor to the pathophysiology of diabetic cardiomyopathy, mitochondrial superoxide can be adequately countered by Mn-superoxide dismutase, which constitutes the first line of defense against mitochondrial oxidative stress. Our group has recently synthesized low molecular weight SOD mimics, demonstrating superior protection against oxidative damages to kidney cells. In the current study, we sought to evaluate the protective effect of the SOD mimic ML1 against high glucose induced cardiomyopathy in diabetes. Mechanistic studies using rat cardiac myoblast H9c2 showed that ML1 markedly inhibited High Glucose (HG) induced cytotoxicity. This was associated with increased Mn-SOD expression along with decreased mitochondrial [Formula: see text], ONOO- and Ca2+ accumulation, unveiling its anti-oxidant potentials. ML1 also attenuated HG-induced loss of mitochondrial membrane potential (ΔΨm) and release of cytochrome c, suggesting that ML1 effectuates its cytoprotective action via the preservation of mitochondrial function. In an ex-vivo model normal adult rat ventricular myocytes (ARVMs) were isolated and cultured in either normal glucose (5.5 mmol/l glucose) or HG (25.5 mmol/l glucose) conditions and the efficiency of ML-1 was analyzed by studying contractile function and calcium indices. Mechanical properties were assessed using a high-speed video-edge detection system, and intracellular Ca2+ transients were recorded in fura-2-loaded myocytes. Pretreatment of myocytes with ML1 (10 nM) ameliorated HG induced abnormalities in relaxation including depressed peak shortening, prolonged time to 90% relenghthening, and slower Ca2+ transient decay. Thus, ML1 exhibits significant cardio protection against oxidative damage, perhaps through its potent antioxidant action via activation of Mn-SOD.
Collapse
Affiliation(s)
- Vasundhara Kain
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Mithila A Sawant
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Aparajita Dasgupta
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Gaurav Jaiswal
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Alok Vyas
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India
| | - Subhash Padhye
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, S.P. Pune University Campus, Ganeshkhind Road, Pune 411007, Maharashtra, India
| |
Collapse
|
7
|
Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal 2016; 12:59-67. [PMID: 26739702 DOI: 10.1007/s11302-015-9493-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation limits tissue damage in response to pathogens or injury and promotes repair. There are two stages of inflammation, initiation and resolution. P2X receptors are gaining attention in relation to immunology and inflammation. The P2X7 receptor in particular appears to be an essential immunomodulatory receptor, although P2X1 and P2X4 receptors also appear to be involved. ATP released from damaged or infected cells causes inflammation by release of inflammatory cytokines via P2X7 receptors and acts as a danger signal by occupying upregulated P2X receptors on immune cells to increase immune responses. The purinergic involvement in inflammation is being explored for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK. .,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Pacheco PAF, Faria RX, Ferreira LGB, Paixão ICNP. Putative roles of purinergic signaling in human immunodeficiency virus-1 infection. Biol Direct 2014; 9:21. [PMID: 25351961 PMCID: PMC4218944 DOI: 10.1186/1745-6150-9-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023] Open
Abstract
Reviewers This article was reviewed by Neil S. Greenspan and Rachel Gerstein. Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies.
Collapse
Affiliation(s)
| | - Robson X Faria
- Laboratory of Cellular Communication, Oswaldo Cruz Foundation, Av, Brazil, 4365 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
9
|
Liu XM, Zhang D, Wang TT, Sheng JZ, Huang HF. Ion/Water Channels for Embryo Implantation Barrier. Physiology (Bethesda) 2014; 29:186-95. [PMID: 24789983 DOI: 10.1152/physiol.00039.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy.
Collapse
Affiliation(s)
- Xin-Mei Liu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Pathology & Pathophysiology, School of Medicine, Zhejiang University, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| | - Ting-Ting Wang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| | - Jian-Zhong Sheng
- Department of Pathology & Pathophysiology, School of Medicine, Zhejiang University, People's Republic of China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education of the People's Republic of China, People's Republic of China
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China; and
| |
Collapse
|
10
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
11
|
Lischke T, Schumacher V, Wesolowski J, Hurwitz R, Haag F, Koch-Nolte F, Mittrücker HW. CD8-β ADP-ribosylation affects CD8(+) T-cell function. Eur J Immunol 2013; 43:1828-38. [PMID: 23575529 DOI: 10.1002/eji.201243231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 12/12/2022]
Abstract
The CD8αβ coreceptor is crucial for effective peptide: MHC-I recognition by the TCR of CD8(+) T cells. Adenosine diphosphate ribosyl transferase 2.2 (ART2.2) utilizes extracellular NAD(+) to transfer ADP-ribose to arginine residues of extracellular domains of surface proteins. Here, we show that in the presence of extracellular NAD(+) , ART2.2 caused ADP-ribosylation of CD8-β on murine CD8(+) T cells in vitro and in vivo. Treatment with NAD(+) prevented binding of anti-CD8-β mAb YTS156.7.7 but not of mAb H35-17.2, indicating that NAD(+) caused modification of certain epitopes and not a general loss of CD8-β. Loss of antibody binding was strictly dependent on ART2.2, because it was not observed on ART2-deficient T cells or in the presence of inhibitory anti-ART2.2 single-domain antibodies. ADP-ribosylation of CD8-β occurred during cell isolation, particularly when cells were isolated from CD38-deficient mice. Incubation of ART2-expressing, but not of ART2-deficient, OVA-specific CD8(+) T cells with NAD(+) interfered with binding of OVA257-264 :MHC-I tetramers. In line with this result, treatment of WT mice with NAD(+) resulted in reduced CD8(+) T-cell mediated cytotoxicity in vivo. We propose that ADP-ribosylation of CD8-β can regulate the coreceptor function of CD8 in the presence of elevated levels of extracellular NAD(+) .
Collapse
Affiliation(s)
- Timo Lischke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
13
|
Marques-da-Silva C, Chaves MM, Chaves SP, Figliuolo VR, Meyer-Fernandes JR, Corte-Real S, Lameu C, Ulrich H, Ojcius DM, Rossi-Bergmann B, Coutinho-Silva R. Infection with Leishmania amazonensis upregulates purinergic receptor expression and induces host-cell susceptibility to UTP-mediated apoptosis. Cell Microbiol 2011; 13:1410-28. [PMID: 21740498 DOI: 10.1111/j.1462-5822.2011.01630.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleotides are released into the extracellular milieu from infected cells and cells at inflammatory sites. The extracellular nucleotides bind to specific purinergic (P2) receptors and thereby induce a variety of cellular responses including anti-parasitic effects. Here we investigated whether extracellular nucleotides affect leishmanial infection in macrophages, and found that UTP reduces strongly the parasite load in peritoneal macrophages. Ultrastructural analysis of infected cells revealed that UTP induced morphological damage in the intracellular parasites. Uridine nucleotides also induced dose-dependent apoptosis of macrophages and production of ROI and RNI only in infected macrophages. The intracellular calcium measurements of infected cells showed that the response to UTP, but not UDP, increased the sensitivity and amplitude of cytosolic Ca(2+) changes. Infection of macrophages with Leishmania upregulated the expression of P2Y(2) and P2Y(4) receptor mRNA. The data suggest indirectly that Leishmania amazonensis infection induces modulation and heteromerization of P2Y receptors on macrophages. Thus UTP modulates the host response against L. amazonensis infection. UTP and UTP homologues should therefore be considered as novel components of therapeutic strategies against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro RJ, 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1251-9. [DOI: 10.1016/j.bbabio.2010.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
|
15
|
Woo SR, Barletta RG, Czuprynski CJ. Extracellular ATP is cytotoxic to mononuclear phagocytes but does not induce killing of intracellular Mycobacterium avium subsp. paratuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1078-83. [PMID: 17634511 PMCID: PMC2043304 DOI: 10.1128/cvi.00166-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis is the etiologic agent of Johne's disease, a chronic granulomatous enteritis in ruminants. ATP has been reported to induce cell death of macrophages and killing of Mycobacterium species in human and murine macrophages. In this study we investigated the short-term effect of ATP on the viability of M. avium subsp. paratuberculosis-infected bovine mononuclear phagocytes and the bacilli within them. Addition of 5 mM ATP to M. avium subsp. paratuberculosis-infected bovine monocytes resulted in 50% cytotoxicity of bovine monocytes at 24 h. Addition of 2'(3')-O-(4-benzoylbenzoyl) ATP triethylammonium salt (Bz-ATP), which is a longer-lived ATP homologue and purinergic receptor agonist, significantly increased the uptake of YO-PRO, which is a marker for membrane pore activation by P2X receptors. Addition of Bz-ATP also stimulated lactate dehydrogenase release and caspase-3 activity in infected bovine monocytes. Neither ATP nor Bz-ATP reduced the survival of M. avium subsp. paratuberculosis in bovine mononuclear phagocytes. Likewise, addition of ATP or Bz-ATP was cytotoxic to murine macrophage cell lines (RAW 264.7 and J774A.1 cells) but did not affect the intracellular survival of M. avium subsp. paratuberculosis, nor were the numbers of viable Mycobacterium avium subsp. avium or Mycobacterium bovis BCG cells altered in bovine mononuclear phagocytes or J774A.1 cells following ATP or Bz-ATP treatment. These data suggest that extracellular ATP does not induce the killing of intracellular M. avium subsp. paratuberculosis in bovine mononuclear phagocytes.
Collapse
Affiliation(s)
- Seng-Ryong Woo
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
16
|
Delwing D, Delwing D, Gonçalves MCF, Sarkis JJF, Wyse ATS. NTPDase and 5'-nucleotidase activities of synaptosomes from hippocampus of rats subjected to hyperargininemia. Neurochem Res 2007; 32:1209-16. [PMID: 17401661 DOI: 10.1007/s11064-007-9292-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5'-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5'-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 microL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1-1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.
Collapse
Affiliation(s)
- Débora Delwing
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
17
|
Mergler S, Pleyer U. The human corneal endothelium: new insights into electrophysiology and ion channels. Prog Retin Eye Res 2007; 26:359-78. [PMID: 17446115 DOI: 10.1016/j.preteyeres.2007.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The corneal endothelium is a monolayer that mediates the flux of solutes and water across the posterior corneal surface. Thereby, it plays an essential role to maintain the transparency of the cornea. Unlike the epithelium, the human endothelium is an amitotic cell layer with a critical cell density and the risk of corneal decompensation. The number of endothelial cells subsequently decreases with age. Moreover, the endothelial cell loss is accelerated after various impairments such as surgical trauma (e.g. cataract extraction) and following corneal transplantation. This cell loss is associated with programmed cell death (apoptosis) and changed ion channel activity. However, little is known about the electrophysiology and ion channel expression (in particular Ca2+ channels) in corneal endothelial cells. This article reviews our current knowledge about the electrophysiology of the corneal endothelium. It highlights ion channel expression, which may have a major role in corneal cell physiology and pathological events. A better understanding of the (electro)physiological function of the cornea may lead to the development of clinical relevant new therapeutic and preventive measures.
Collapse
Affiliation(s)
- Stefan Mergler
- Department of Ophthalmology, Charité-University Medicine Berlin, Campus Virchow-Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
18
|
Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M. P2X7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. THE JOURNAL OF IMMUNOLOGY 2006; 177:2842-50. [PMID: 16920919 DOI: 10.4049/jimmunol.177.5.2842] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular ATP causes apoptosis and/or necrosis of the hemopoietic lineage through the activation of P2X7 receptors. In this study, we investigated P2X7 receptor-mediated cell death during murine T cell maturation. The expression level and activity of P2X7 receptors, as measured by induction of cell death and pore formation, were higher in splenocytes than thymocytes. Flow cytometric analysis revealed that cell shrinkage was induced by activation of the P2X7 receptor in murine lymphocytes and the responding cells were T cells. Splenic T cells were more responsive than their thymic counterpart. These observations indicate that the system of P2X7 receptor-mediated cell death in T cells could be modulated during T cell maturation. Furthermore, decreased extracellular Cl- suppressed ATP-induced cell shrinkage in splenocytes without inhibiting ERK1/2 phosphorylation, which is reported to mediate necrotic cell death. Treatment with U0126 (a MEK inhibitor) suppressed ATP-induced ERK1/2 phosphorylation without inhibiting cell shrinkage. Moreover, decreased extracellular Cl- and treatment with U0126 suppressed ATP-induced cell death. These observations indicate that the activation of P2X7 receptor leads to T cell death by two independent pathways, one of which is cell shrinkage dependent and the other of which involves the phosphorylation of ERK1/2. In conclusion, we demonstrate increasing P2X7 receptor activity during T cell maturation and the existence of two essential pathways in P2X7 receptor-mediated T cell death. Our findings suggest that ATP-induced cell death of peripheral T lymphocytes is important in P2X7 receptor-regulated immune responses.
Collapse
|
19
|
Ulett GC, Adderson EE. Regulation of Apoptosis by Gram-Positive Bacteria: Mechanistic Diversity and Consequences for Immunity. CURRENT IMMUNOLOGY REVIEWS 2006; 2:119-141. [PMID: 19081777 PMCID: PMC2600511 DOI: 10.2174/157339506776843033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apoptosis, or programmed cell death (PCD), is an important physiological mechanism, through which the human immune system regulates homeostasis and responds to diverse forms of cellular damage. PCD may also be involved in immune counteraction to microbial infection. Over the past decade, the amount of research on bacteria-induced PCD has grown tremendously, and the implications of this mechanism on immunity are being elucidated. Some pathogenic bacteria actively trigger the suicide response in critical lineages of leukocytes that orchestrate both the innate and adaptive immune responses; other bacteria proactively prevent PCD to benefit their own survival and persistence. Currently, the microbial virulence factors, which represent the keys to unlocking the suicide response in host cells, are a primary focus of this field. In this review, we discuss these bacterial "apoptosis regulatory molecules" and the apoptotic events they either trigger or prevent, the host target cells of this regulatory activity, and the possible ramifications for immunity to infection. Gram-positive pathogens including Staphylococcus, Streptococcus, Bacillus, Listeria, and Clostridia species are discussed as important agents of human infection that modulate PCD pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Glen C Ulett
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
20
|
Seetulsingh-Goorah SP. Mechanisms of adenosine-induced cytotoxicity and their clinical and physiological implications. Biofactors 2006; 27:213-30. [PMID: 17012777 DOI: 10.1002/biof.5520270119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Extracellular ATP (ATPo) and adenosine are cytotoxic to several cancer cell lines, suggesting their potential use for anticancer therapy. Adenosine causes cytotoxicity, either when added exogenously or when generated from ATPo hydrolysis, via mechanisms which are not mutually exclusive and which involve, adenosine receptor activation, pyrimidine starvation and/or increases in intracellular S-adenosylhomocysteine: S-adenosylmethionine ratio. Given that adenosine also appears to protect against cytotoxicity via mechanisms including immunity against damage by oxygen free radicals, an understanding of the contribution of adenosine to ATPo-induced cytotoxicity is thus crucial, when considering any potential therapeutic use for these compounds. However, such an understanding has been largely hindered by the fact that many studies have not focused enough on the possibility that both ATPo and adenosine may mediate cytotoxicity in the same system. Such studies can benefit from use a range of ATPo concentrations when assessing the contribution of adenosine to ATPo-induced cytotoxicity. Whilst future molecular and pharmacological studies are needed to establish the nature of the cytotoxic adenosine receptor, it is possible that more than just one adenosine receptor type is involved and that the cytotoxic receptor(s) type is more likely to have a low affinity for adenosine. Activation of the adenosine receptor(s) would thus lead to cytotoxicity only at relatively high adenosine concentrations, while lower adenosine concentrations mediate non-cytotoxic physiological effects.
Collapse
|
21
|
Lépine S, Le Stunff H, Lakatos B, Sulpice JC, Giraud F. ATP-induced apoptosis of thymocytes is mediated by activation of P2 X 7 receptor and involves de novo ceramide synthesis and mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1761:73-82. [PMID: 16325464 DOI: 10.1016/j.bbalip.2005.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 11/26/2022]
Abstract
Thymocytes were reported to undergo apoptosis in the presence of extracellular ATP through the activation of the purinergic receptors P2 X 1R, P2 X 7R or both. We investigated the identity of the P2 X R and the signaling pathways involved in ATP-mediated apoptosis. Apoptosis elicited by ATP was prevented by inhibition of P2 X 7R, or in thymocytes bearing a mutated P2 X 7R, and reproduced with a P2 X 7R agonist, but not with a P2 X 1R agonist. Stimulation of thymocytes with either ATP or a P2 X 7R agonist was found to stimulate a late de novo ceramide synthesis and mitochondrial alterations. Inhibition of either processes attenuated apoptosis. Interestingly, stimulation with either ATP or a P2 X 1R agonist induced an early ceramide accumulation and a weak caspases-3/7 activation that did not lead to apoptosis. In conclusion, de novo ceramide generation and mitochondrial alterations, both resulting from P2 X 7R activation, were implicated in ATP-induced thymocyte apoptosis.
Collapse
Affiliation(s)
- S Lépine
- Biomembranes et Messagers Cellulaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8619, Université Paris XI-Orsay, France
| | | | | | | | | |
Collapse
|
22
|
Morrone FB, Horn AP, Stella J, Spiller F, Sarkis JJF, Salbego CG, Lenz G, Battastini AMO. Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 2005; 71:135-40. [PMID: 15690128 DOI: 10.1007/s11060-004-1383-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glioblastomas are the most common form of primary tumors of the central nervous system (CNS) and despite treatment, patients with these tumors have a very poor prognosis. ATP and other nucleotides and nucleosides are very important signaling molecule in physiological and pathological conditions in the CNS. ATP is degraded very slowly by gliomas when compared to astrocytes, potentially resulting in the accumulation of extracellular ATP around gliomas. Cell lysis caused by excitotoxic death or by tumor resection may liberate intracellular ATP, a known mitotic factor for glioma cells. The aim of this study is to examine the effects on cytotoxicity induced by extracellular ATP in U138-MG human glioma cell line and C6 rat glioma cell line compared to hippocampal organotypic cell cultures. The cytotoxicity of ATP (0.1, 0.5, 5 mM) was measured using propidium iodide and LDH assays. Caspases assay was performed to identify apoptotic cell death. Results showed that the glioma cells present resistance to death induced by ATP when compared with a normal tissue. High ATP concentrations (5 mM) induced cell death after 24 h in organotypic cell cultures but not in glioma cell lines. Our data indicate that ATP released in these situations can induce cell death of the normal tissue surrounding the tumor, potentially opening space to the fast growth and invasion of the tumor.
Collapse
Affiliation(s)
- Fernanda B Morrone
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, UFRGS, Rua Ramiro Barcelos 2600-Anexo, 90.035.003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Auger R, Motta I, Benihoud K, Ojcius DM, Kanellopoulos JM. A role for mitogen-activated protein kinase(Erk1/2) activation and non-selective pore formation in P2X7 receptor-mediated thymocyte death. J Biol Chem 2005; 280:28142-51. [PMID: 15937334 DOI: 10.1074/jbc.m501290200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extracellular ATP (ATPe) binds to P2X7 receptors (P2X7R) expressed on the surface of cells of hematopoietic lineage, including murine thymocytes. Activation of P2X7R by ATPe results in the opening of cation-specific channels, and prolonged ATPe exposure leads to the formation of non-selective pores enabling transmembrane passage of solutes up to 900 Da. In the presence of ATPe, P2X7R-mediated thymocyte death is due primarily to necrosis/lysis and not apoptosis, as measured by the release of lactate dehydrogenase indicative of a loss of plasma membrane integrity. The present study is focused on the identification of P2X7R signaling mediators in ATP-induced thymocyte necrosis/lysis. Thus, extracellular signal-regulated protein kinase 1/2 (Erk1/2) phosphorylation was found to be required for cell lysis, and both events were independent of ATP-induced calcium influx. P2X7R-dependent thymocyte death involved the chronological activation of Src family tyrosine kinase(s), phosphatidylinositol 3-kinase, the mitogen-activated protein (MAP) kinase(Erk1/2) module, and the proteasome. Although independent of this signaling cascade, non-selective pore formation may modulate ATP-mediated thymocyte death. These results therefore suggest a role for both activation of MAP kinase(Erk1/2) and non-selective pore opening in P2X7R-induced thymocyte death.
Collapse
Affiliation(s)
- Rodolphe Auger
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | |
Collapse
|
24
|
Palaga T, Kataoka T, Nagai K. Extracellular ATP inhibits apoptosis and maintains cell viability by inducing autocrine production of interleukin-4 in a myeloid progenitor cell line. Int Immunopharmacol 2005; 4:953-61. [PMID: 15182734 DOI: 10.1016/j.intimp.2004.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 02/03/2004] [Accepted: 04/09/2004] [Indexed: 11/23/2022]
Abstract
Interleukin-3 (IL-3)-dependent myeloid progenitor cell FDC.P2 is induced to undergo apoptotic cell death upon IL-3 depletion. Extracellular adenosine triphosphate (ATP) was found to prevent apoptosis and maintain cell viability of FDC.P2 cells upon IL-3 withdrawal. The antiapoptotic effect of ATP required extracellular Ca2+. Furthermore, FK506, a specific inhibitor of calcium/calmodulin-dependent protein phosphatase calcineurin, inhibited the antiapoptotic effect of ATP. As one of cytokines whose expression is dependent on the activation of calcineurin, interleukin-4 (IL-4) played a critical role in ATP-mediated cell survival of FDC.P2 cells because neutralizing antibody against IL-4 effectively abrogated the antiapoptotic activity of ATP. Moreover, ATP treatment induced a significant amount of secreted IL-4 that was sufficient to maintain cell viability. Taken together, our present results demonstrate that extracellular ATP triggers autocrine production of IL-4 through calcium-dependent activation of calcineurin and secreted IL-4 substitutes IL-3 in protecting FDC.P2 cells from apoptosis even in the absence of IL-3.
Collapse
Affiliation(s)
- Tanapat Palaga
- Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori, Yokohama 226, Japan.
| | | | | |
Collapse
|
25
|
Frankfurt O, Rosen ST. Mechanisms of glucocorticoid-induced apoptosis in hematologic malignancies: updates. Curr Opin Oncol 2005; 16:553-63. [PMID: 15627017 DOI: 10.1097/01.cco.0000142072.22226.09] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Glucocorticoids remain a central component of the therapeutic armamentarium for a broad spectrum of hematologic malignancies. There is an extensive body of evidence suggesting that the efficacy of glucocorticoids stems from their ability to mediate apoptosis in leukemia, lymphoma, and myeloma cells. RECENT FINDINGS Traditionally, glucocorticoid-induced apoptosis is divided into three stages: an initiation stage, which involves glucocorticoid receptor activation and glucocorticoid receptor-mediated gene regulation; a decision stage, which engages the prosurvival and proapoptotic factors at the mitochondrial level; and an execution stage, which implicates caspases and endonuclease activation. Recent discoveries have clarified many aspects of the apoptotic pathway, including activation of the caspases cascade and multicatalytic proteasome, suppression of prosurvival transcription factors such as AP-1, c-myc, nuclear factor-kappaB, as well as cross-talk between the T-cell receptor and cytokine signaling pathways. SUMMARY This review focuses primarily on insights gained during recent years into the mechanism of the signaling pathways responsible for mediating glucocorticoid-induced apoptosis in hematologic malignancies. This information provides a scientific basis to explore synergistic approaches that may enhance glucocorticoid-induced apoptosis and may bypass mechanism of resistance.
Collapse
Affiliation(s)
- Olga Frankfurt
- Northwestern Memorial Hospital, Robert H. Lurie Comprehensive Cancer Center, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
26
|
Coutinho-Silva R, Ojcius DM, Górecki DC, Persechini PM, Bisaggio RC, Mendes AN, Marks J, Burnstock G, Dunn PM. Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochem Pharmacol 2005; 69:641-55. [PMID: 15670583 DOI: 10.1016/j.bcp.2004.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 11/18/2004] [Indexed: 11/20/2022]
Abstract
We investigated P2 receptor expression and function in macrophages from mouse, and in the J774 cell line, and revealed a larger spectrum of P2 receptor subtypes than previously recognised. The nucleotides adenosine triphosphate (ATP), adenosine diphosphate, uridine triphosphate and uridine diphosphate evoked an increase in intracellular calcium and the activation of a potassium current. The sensitivity of these responses to the antagonists suramin, PPADS, MRS 2179 and Cibacron blue suggest the presence of at least three functional P2Y receptor subtypes, most probably P2Y(2), P2Y(4) and P2Y(6). ATP also activated P2X receptors, giving rise to a rapidly activating cation conductance. This response was insensitive to the antagonists suramin and Cibacron blue, was potentiated by Zn(2+) and inhibited by acidification suggesting involvement of P2X(4) receptors. In low divalent cation solution, responses to ATP became larger, and dibenzoyl-ATP became more potent than ATP, indicating the presence of P2X(7) receptors. Immunofluorescence, flow cytometry, Western blots and RT-PCR show that P2X(4) and P2X(7) receptors are the most prominent in both macrophage types, while the expression of the other P2X subunits is variable and sometimes weak or undetectable. These techniques also demonstrated the presence of mRNA for P2Y(1), P2Y(2), P2Y(4) and P2Y(6) receptors along with protein expression for the three subtypes we investigated, namely, P2Y(1), P2Y(2) and P2Y(4).
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mantuano-Barradas M, Henriques-Pons A, Araújo-Jorge TC, Di Virgilio F, Coutinho-Silva R, Persechini PM. Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes Infect 2004; 5:1363-71. [PMID: 14670449 DOI: 10.1016/j.micinf.2003.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the acute phase of Trypanosoma cruzi infection, there is dramatic atrophy of the thymus. However, the pathways involved in this change have not yet been identified. This event is mainly characterized by a massive loss of cortical CD4+/CD8+ double-positive cells, but also by other structural and functional alterations in the organ. A number of molecules, including extracellular ATP, have been suggested to play a role in the selective processes that take place in the thymus. ATP and analogues trigger many different cellular responses in thymocytes and other cell types, such as the opening of plasma membrane cation channels and a pore that may induce cell death. Herein, we investigated the possible involvement of extracellular ATP in thymus atrophy induced by infection with T. cruzi. We observed that ATP induces an increase in plasma membrane permeabilization and cellular death in CD4+/CD8+ double-positive thymocytes collected from infected mice during the atrophy phase. No differences were observed prior to the atrophy phase or during the chronic phase. Our results indicate that P2Z/P2X7 receptors may play a central role in thymus atrophy during T. cruzi infection.
Collapse
Affiliation(s)
- Marcio Mantuano-Barradas
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Bloco G do CCS, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Courageot MP, Lépine S, Hours M, Giraud F, Sulpice JC. Involvement of sodium in early phosphatidylserine exposure and phospholipid scrambling induced by P2X7 purinoceptor activation in thymocytes. J Biol Chem 2004; 279:21815-23. [PMID: 14996828 DOI: 10.1074/jbc.m401426200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular ATP (ATP(ec)), a possible effector in thymocyte selection, induces thymocyte death via purinoceptor activation. We show that ATP(ec) induced cell death by apoptosis, rather than lysis, and early phosphatidylserine (PS) exposure and phospholipid scrambling in a limited thymocyte population (35-40%). PS externalization resulted from the activation of the cationic channel P2X7 (formerly P2Z) receptor and was triggered in all thymocyte subsets although to different proportions in each one. Phospholipid movement was dependent on ATP(ec)-induced Ca(2+) and/or Na(+) influx. At physiological external Na(+) concentration, without external Ca(2+), PS was exposed in all ATP(ec)-responsive cells. In contrast, without external Na(+), physiological external Ca(2+) concentration promoted a submaximal response. Altogether these data show that Na(+) influx plays a major role in the rapid PS exposure induced by P2X7 receptor activation in thymocytes.
Collapse
Affiliation(s)
- Marie-Pierre Courageot
- Laboratoire des Biomembranes et Messagers Cellulaires, CNRS UMR 8619 and Service de cytométrie, Institut Fédératif de Recherches 46, bât 440, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
29
|
Le Stunff H, Auger R, Kanellopoulos J, Raymond MN. The Pro-451 to Leu polymorphism within the C-terminal tail of P2X7 receptor impairs cell death but not phospholipase D activation in murine thymocytes. J Biol Chem 2004; 279:16918-26. [PMID: 14761980 DOI: 10.1074/jbc.m313064200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The P2X family of ATP receptors (P2XR) are ligandgated channels that have been proposed to regulate cell death of immature thymocytes. However, the nature of the P2XR subtype involved has been controversial until recently. In agreement with previous studies, we found that extracellular ATP (ATPe) induces a caspase-dependent apoptosis of BALB/c thymocytes, as observed by DNA fragmentation. Additionally, ATPe induces a predominant caspase-independent thymocytes lysis characterized by plasma membrane disruption. Both responses to ATPe can be induced by a potent P2X7R agonist, benzoylbenzoyl-ATP, whereas P2X7R antagonists, oxidized ATP and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, inhibited the effect of ATPe. These results are further supported by observations where disruption of the P2X7R gene (P2X7R(-/-) mice) completely abolishes thymocytes death induced by ATPe. Interestingly, the natural P451L mutation in the C-terminal tail of P2X7R present in C57BL/6 mice, which impairs ATPe-dependent pore formation in T lymphocytes, significantly reduces thymocytes death triggered by ATPe. Furthermore, we found that P2X7R from BW5147 thymoma cells also harbors this point mutation, accounting for their insensitivity to ATPe-induced cell death. Concentrations of ATPe effective in inducing cell death also increase phosphatidylcholine-hydrolyzing phospholipase D (PC-PLD) activity in BALB/c thymocytes through the stimulation of P2X7R. However, in contrast to ATPe-induced cell death, PC-PLD activation is totally Ca(2+)-dependent. Moreover, the stimulation of PC-PLD by ATPe is not affected by the P451L mutation present in C57BL/6 thymocytes and BW5147 cells, suggesting that cell death and PC-PLD activity are regulated through distinct domains of the P2X7R. Finally, the inhibition of ATPe-induced PC-PLD stimulation does not affect thymocytes death. Altogether, these data suggest that P2X7R-induced thymocytes death is independent of the stimulation of PC-PLD activity.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Laboratoire d'activation Cellulaire et Transduction des Signaux, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Bâtiment 430, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
30
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
31
|
Ohta K, Okoshi R, Wakabayashi M, Sato Y, Kizaki H. MODULATION OF DEXAMETHASONE-INDUCED THYMOCYTE APOPTOSIS BY HEAT-SHOCK PROTEIN 90-BINDING AGENTS. THE BULLETIN OF TOKYO DENTAL COLLEGE 2004; 45:1-8. [PMID: 15346879 DOI: 10.2209/tdcpublication.45.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Heat-shock protein 90 (HSP90) is known to affect a variety of cellular activities. The present study showed that the HSP90-binding agents, geldanamycin, herbimycin A and radicicol, inhibited the murine thymocyte apoptosis induced by dexamethasone and was accompanied by the inhibition of the reduction of the mitochondrial transmembrane potential (delta psi m). HSP90-binding agents did not inhibit etoposide-induced apoptosis. The inhibition of dexamethasone-induced apoptosis was in part due to the interference of HSP90 with the glucocorticoid receptor, resulting in the inhibition of nuclear translocation of the receptor. The expression of inositol 1,4,5-triphosphate receptors, which were shown to be involved in dexamethasone-induced apoptosis, did not participate in the inhibition of apoptosis.
Collapse
Affiliation(s)
- Kazumasa Ohta
- Department of Biochemistry, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan
| | | | | | | | | |
Collapse
|
32
|
Wen LT, Knowles AF. Extracellular ATP and adenosine induce cell apoptosis of human hepatoma Li-7A cells via the A3 adenosine receptor. Br J Pharmacol 2003; 140:1009-18. [PMID: 14530217 PMCID: PMC1574113 DOI: 10.1038/sj.bjp.0705523] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. Extracellular ATP is a potent signaling molecule that modulates a myriad of cellular functions through the activation of P2 purinergic receptors and is cytotoxic to a variety of cells at higher concentrations. The mechanism of ATP-elicited cytotoxicity is not fully understood. In this study, we investigated the effect of extracellular ATP on the human hepatoma Li-7A cells. 2. We observed a time- and dose-dependent growth inhibition of Li-7A cells by ATP, which is accompanied by an increase in the active form of caspase-3 as well as increased cleavage of its substrate, poly (ADP-ribose) polymerase. The cytotoxic effect of extracellular ATP was not mediated by the P2X7 receptor, since (1).the effect was not abolished by the P2X7 receptor antagonists oxidized ATP and KN-62, and (2).extracellular ADP, AMP, and adenosine were also cytotoxic. 3. We found that ATP and ADP were degraded to adenosine by Li-7A cells and that treatment of Li-7A cells by adenosine resulted in growth inhibition and caspase-3 activation, indicating that adenosine is the apoptotic agent. Using adenosine receptor agonists and antagonists, as well as inhibitors of adenosine transport and deamination, we showed that the cytotoxic effect of adenosine is specifically mediated by the A3 receptor even though transcripts of A1, A2A, A2B, and a splice variant of the P2X7 receptors were detected in Li-7A cells by RT-PCR. 4. Cytotoxicity caused by exogenous ATP and adenosine was completely abolished by the caspase-3 inhibitor Z-DEVD-FMK, demonstrating the central role of caspase-3 in apoptosis of Li-7A cells.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adenosine/metabolism
- Adenosine/pharmacology
- Adenosine Deaminase Inhibitors
- Adenosine Diphosphate/pharmacology
- Adenosine Monophosphate/pharmacology
- Adenosine Triphosphate/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Biological Transport/drug effects
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Caspase 3
- Caspases/genetics
- Caspases/metabolism
- Cell Division/drug effects
- Cell Line
- Cell Line, Tumor
- Coformycin/pharmacology
- Dipyridamole/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Humans
- In Situ Nick-End Labeling
- Nucleosides/metabolism
- Oligonucleotide Array Sequence Analysis
- Receptor, Adenosine A3/genetics
- Receptor, Adenosine A3/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X7
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Long T Wen
- Department of Biology, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
33
|
Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F. NAD-Induced T Cell Death. Immunity 2003; 19:571-82. [PMID: 14563321 DOI: 10.1016/s1074-7613(03)00266-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T cells express a toxin-related ADP-ribosylating ectoenzyme, ART2. Exposure of mature T cells to NAD, the substrate for ADP-ribosylation, induces cell death. ART2-catalyzed ADP-ribosylation activates the cytolytic P2X7 purinoceptor, causing calcium flux, pore formation, phosphatidylserine exposure, shedding of CD62L, cell shrinkage, and propidium iodide uptake. Interestingly, much lower NAD than ATP concentrations are required to activate P2X7. NAD-induced cell death (NICD) operates with endogenous sources of NAD released upon cell lysis. These findings identify P2X7 as a key effector of NICD and demonstrate that P2X7 can be activated by an endogenous ligand other than ATP. Our results delineate an alternative mechanism for inducing T cell death and set an interesting precedent for immunoregulation via crosstalk between NAD-dependent ADP-ribosyltransferases and purinoceptors.
Collapse
|
34
|
Morelli A, Chiozzi P, Chiesa A, Ferrari D, Sanz JM, Falzoni S, Pinton P, Rizzuto R, Olson MF, Di Virgilio F. Extracellular ATP causes ROCK I-dependent bleb formation in P2X7-transfected HEK293 cells. Mol Biol Cell 2003; 14:2655-64. [PMID: 12857854 PMCID: PMC165666 DOI: 10.1091/mbc.02-04-0061] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The P2X7 ATP receptor mediates the cytotoxic effect of extracellular ATP. P2X7-dependent cell death is heralded by dramatic plasma membrane bleb formation. Membrane blebbing is a complex phenomenon involving as yet poorly characterized intracellular pathways. We have investigated the effect of extracellular ATP on HEK293 cells transfected with the cytotoxic/pore-forming P2X7 receptor. Addition of ATP to P2X7-transfected, but not to wt P2X7-less, HEK293 cells caused massive membrane blebbing within 1-2 min. UTP, a nucleotide incapable of activating P2X7, had no early effects on cell shape and bleb formation. Bleb formation triggered by ATP was reversible and required extracellular Ca2+ and an intact cytoskeleton. Furthermore, it was completely prevented by preincubation with the P2X blocker oxidized ATP. It was recently observed that the ROCK protein is a key determinant of bleb formation. Preincubation of HEK293-P2X7 cells with the ROCK blocker Y-27632 completely prevented P2X7-dependent blebbing. Although ATP triggered cleavage of the ROCK I isoform in P2X7-transfected HEK293 cells, the wide range caspase inhibitor z-VAD-fluoromethylketone had no effect. These observations suggest that P2X7-dependent plasma membrane blebbing depends on the activation of the serine/threonine kinase ROCK I.
Collapse
Affiliation(s)
- Anna Morelli
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, I-44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Slater M, Scolyer RA, Gidley-Baird A, Thompson JF, Barden JA. Increased expression of apoptotic markers in melanoma. Melanoma Res 2003; 13:137-45. [PMID: 12690296 DOI: 10.1097/00008390-200304000-00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive labelling for the apoptotic markers calcium channel receptor P2X(7) and caspase-3 and telomerase activity was co-localized at a similar intensity in areas affected by superficial spreading melanoma obtained from 80 patients. Labelling for each of these markers also extended 2 microm from the melanoma into the keratinocyte layer of the adjacent normal epidermis. Conversely, the calcium-regulating receptors P2X(1-3) and P2Y(2) (found in normal but not neoplastic skin) were fully de-expressed within 2 microm of the melanoma but fully expressed beyond that distance. The cell adhesion protein E-cadherin (also only present in normal skin) was progressively de-expressed from a point 2 microm from the melanoma until full de-expression within the lesion. These results show that telomerase-induced proliferation and defensive apoptosis are co-localized and simultaneous processes in melanoma tissue. Melanoma cell proliferation appears to overwhelm the apoptotic defence, perhaps due to the anti-apoptotic effects of telomerase. In addition, keratinocyte regulation of the epidermis and dermis is severely compromised by the loss of E-cadherin and P2X(1-3) and P2Y(2) receptors, resulting in a lesion that is aggressive and malignant.
Collapse
Affiliation(s)
- Michael Slater
- Institute for Biomedical Research, Department of Anatomy and Histology, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
36
|
Into T, Okada K, Inoue N, Yasuda M, Shibata KI. Extracellular ATP regulates cell death of lymphocytes and monocytes induced by membrane-bound lipoproteins of Mycoplasma fermentans and Mycoplasma salivarium. Microbiol Immunol 2003; 46:667-75. [PMID: 12477245 DOI: 10.1111/j.1348-0421.2002.tb02750.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cytotoxicities of lipoproteins of Mycoplasma fermentans and Mycoplasma salivarium to a lymphocytic cell line, MOLT-4, and a monocytic cell line, HL-60, was upregulated by ATP added extracellularly in a dose-dependent manner. These lipoproteins induced ATP release and plasma membrane permeability increase in these cell lines. In addition, periodate-oxidized ATP, an antagonist for P2X purinergic receptors, suppressed the cytotoxicity of the lipoproteins, suggesting the possibility that P2X receptors for ATP play crucial roles in the cytotoxicity. Activation of caspase-3 induced by the lipoproteins, which was assessed by the cleavage of the synthetic substrate DEVD-pNA and the endogenous substrate poly(ADP-ribose) polymerase, was also upregulated and downregulated by extracellular ATP and periodate-oxidized ATP, respectively. On the basis of these results, this study suggests that mycoplasmal lipoproteins induce the permeability increase in lymphocytes and monocytes, by which ATP is released, and the ATP regulates the cytotoxicities of the lipoproteins to the cells, possibly by interaction with ATP receptors such as P2X purinergic receptors.
Collapse
Affiliation(s)
- Takeshi Into
- Department of' Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido 060-8586, Japan
| | | | | | | | | |
Collapse
|
37
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
38
|
Maaser K, Höpfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherübl H. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br J Cancer 2002; 86:636-44. [PMID: 11870549 PMCID: PMC2375265 DOI: 10.1038/sj.bjc.6600100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Revised: 09/12/2001] [Accepted: 11/23/2001] [Indexed: 12/18/2022] Open
Abstract
Extracellular ATP is known to inhibit growth of various tumours by activating specific purinergic receptors (P2-receptors). Since the therapy of advanced oesophageal cancer is unsatisfying, new therapeutic approaches are mandatory. Here, we investigated the functional expression and potential antiproliferative effects of P2-purinergic receptors in human oesophageal cancer cells. Prolonged incubation of primary cell cultures of human oesophageal cancers as well as of the squamous oesophageal cancer cell line Kyse-140 with ATP or its stable analogue ATP gamma S dose-dependently inhibited cell proliferation. This was due to both an induction of apoptosis and cell cycle arrest. The expression of P2-receptors was examined by RT-PCR, immunocytochemistry, and [Ca(2+)](i)-imaging. Application of various extracellular nucleotides dose-dependently increased [Ca(2+)](i). The rank order of potency was ATP=UTP>ATP gamma S>ADP=UDP. 2-methylthio-ATP and alpha,beta-methylene-ATP had no effects on [Ca(2+)](i). Complete cross-desensitization between ATP and UTP was observed. Moreover, the phospholipase C inhibitor U73122 dose-dependently reduced the ATP triggered [Ca(2+)](i) signal. The pharmacological features strongly suggest the functional expression of G-protein coupled P2Y(2)-receptors in oesophageal squamous cancer cells. P2Y(2)-receptors are involved in the antiproliferative actions of extracellular nucleotides. Thus, P2Y(2)-receptors are promising target proteins for innovative approaches in oesophageal cancer therapy.
Collapse
Affiliation(s)
- K Maaser
- Medical Clinic I, Gastroenterology/Infectious Diseases/Rheumatology, Benjamin Franklin Clinics, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Slater M, Murphy CR, Barden JA. Tenascin, E-cadherin and P2X calcium channel receptor expression is increased during rat blastocyst implantation. THE HISTOCHEMICAL JOURNAL 2002; 34:13-9. [PMID: 12365795 DOI: 10.1023/a:1021335606896] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The calcium-activated cell-adhesion proteins tenascin, E-cadherin and the purinergic (P2X) calcium channel receptors are expressed in an identical spatial and temporal pattern in uterine epithelium in the rat during implantation. On Day 1 of pregnancy (estrous), a diffuse cytoplasmic and specific basement membrane label for each of the proteins was observed throughout the uterine epithelium. On Day 3 of pregnancy, a specific and prominent lateral plasma membrane label for each protein was seen. At the time of implantation on Day 6, an additional and significant increase in the label for each was observed on the apical epithelium. At this time, the label for tenascin in the apical epithelium was increased 2.1-fold (p < 0.0004), that of E-cadherin was increased 2.5-fold (p < 0.0001) and the P2X receptor label was increased 2.0-fold (p < 0.0001). These observations suggest a major role for the calcium-activated adhesion proteins tenascin and E-cadherin in attachment and implantation, with ionic calcium for protein activation possibly provided by the P2X calcium channels. These events occur along the entire length of the uterine epithelium in preparation for blastocyst adhesion.
Collapse
Affiliation(s)
- M Slater
- Institute for Biomedical Research and Department of Anatomy and Histology, The University of Sydney, NSW, Australia
| | | | | |
Collapse
|
40
|
Distelhorst CW. Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9:6-19. [PMID: 11803370 DOI: 10.1038/sj.cdd.4400969] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Revised: 09/07/2001] [Accepted: 10/03/2001] [Indexed: 01/08/2023] Open
Abstract
Glucocorticosteroid hormones induce apoptosis in lymphocytes. Therefore, glucocorticoids are commonly used as immunosuppressive and chemotherapeutic agents. This review examines many facets of the process by which glucocorticoids induce apoptosis. This process is divided into three stages, an initiation stage that involves glucocorticoid receptor-mediated gene regulation, a decision stage that involves the counterbalancing influence of prosurvival and proapoptotic factors, and the execution stage which involves caspase and endonuclease activation. Many aspects of glucocorticoid-induced apoptosis, such as mitochondrial dysfunction and caspase activation, are important steps in virtually all forms of apoptosis. But the process glucocorticoid-induced apoptosis differs from other forms of apoptosis in terms of initiation at the transcriptional level and involvement of the multicatalytic proteasome and calcium. Moreover, the abundant opportunity for crosstalk between the glucocorticoid receptor and other signaling pathways increases the complexity of glucocorticoid-induced apoptosis and its regulation.
Collapse
Affiliation(s)
- C W Distelhorst
- Division of Hematology/Oncology and Comprehensive Cancer Center, Departments of Medicine and Pharmacology, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106-4937, USA.
| |
Collapse
|
41
|
Vial C, Rolf MG, Mahaut-Smith MP, Evans RJ. A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol 2002; 135:363-72. [PMID: 11815371 PMCID: PMC1573149 DOI: 10.1038/sj.bjp.0704486] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We have examined the role of ATP-dependent P2X(1) receptors in megakaryocytes (MKs) and platelets using receptor-deficient mice and selective agonists. Alpha,beta-meATP- and ATP- evoked ionotropic inward currents were absent in whole-cell recordings from MKs of P2X(1)(-/-) mice, demonstrating that the P2X receptor phenotype in MKs, and by inference, platelets, is due to expression of homomeric P2X(1) receptors. P2X(1) receptor deficiency had no effect on MK (CD 41) numbers or size distribution, showing that it is not essential for normal MK development. P2Y receptor-stimulated [Ca(2+)](i) responses were unaffected in MKs from P2X(1)(-/-) mice, however the inward cation current associated with Ca(2+) release was reduced by approximately 50%, suggesting an interaction between the membrane conductances activated by P2X(1) and P2Y receptors. Interaction between P2X(1) and P2Y receptors in human platelets was also examined using [Ca(2+)](i) recordings from cell suspensions. Alpha,beta-meATP (10 microM) evoked a rapid transient P2X(1) receptor-mediated increase in [Ca(2+)](i), whereas ADP-(10 microM) evoked P2Y receptor responses were slower, peaked at a higher level and remained elevated for longer periods. Co-application of alpha, beta-meATP and ADP resulted in marked acceleration and amplification of the peak [Ca(2+)](i) response. We conclude that ionotropic P2X(1) receptors may play a priming role in the subsequent activation of metabotropic P2Y receptors during platelet stimulation.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, U.K
| | - Michael G Rolf
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | - Martyn P Mahaut-Smith
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, U.K
| | - Richard J Evans
- Department of Cell Physiology & Pharmacology, Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, U.K
- Author for correspondence:
| |
Collapse
|
42
|
Suh BC, Kim JS, Namgung U, Ha H, Kim KT. P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. THE JOURNAL OF IMMUNOLOGY 2001; 166:6754-63. [PMID: 11359833 DOI: 10.4049/jimmunol.166.11.6754] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The P2X(7) receptor, which induces cation channel opening imparting significant permeability to Ca2+ and pore formation with changes in the plasma membrane potential, has been known to be rather restrictedly expressed in cells of the macrophage lineage including dendrites, mature macrophages, and microglial cells. However, we show here that the P2X(7) receptor is also expressed in cells of granulocytic lineage such as HL-60 promyelocytes, granulocytic differentiated cells, and neutrophils. Exposure of these cells to 2',3'-O-(4-benzoyl)benzoyl-ATP (BzATP) triggered intracellular Ca2+ rise through the mediation of phospholipase C-independent and suramin-sensitive pathways. BzATP also induced depolarization of the plasma membrane in the absence of extracellular Ca2+, whereas it hyperpolarized the cells in the presence of external Ca2+, probably in part through the activation of Ca2+-activated K(+) channels. However, the hyperpolarization phenomenon was markedly attenuated in differentiated HL-60 cells and neutrophils. RT-PCR and Northern blot analysis revealed the presence of P2X(7) receptors on both HL-60 and neutrophil-like cells. This was further confirmed by pore formation through which the uptake of Lucifer yellow and YO-PRO1 occurred on BzATP treatment. BzATP stimulated in a concentration-dependent manner the production of superoxide in differentiated HL-60 cells via a pathway partially dependent on extracellular Ca2+. Moreover, in human neutrophils, BzATP was a more effective inducer of superoxide generation than PMA. Taken together, this is a first demonstration of the expression of P2X(7) receptors on neutrophils, which shows that the receptor is functionally involved in the defense mechanism by activation of the respiratory burst pathway.
Collapse
Affiliation(s)
- B C Suh
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Hyoja-Dong, Pohang 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Bortell R, Moss J, McKenna RC, Rigby MR, Niedzwiecki D, Stevens LA, Patton WA, Mordes JP, Greiner DL, Rossini AA. Nicotinamide adenine dinucleotide (NAD) and its metabolites inhibit T lymphocyte proliferation: role of cell surface NAD glycohydrolase and pyrophosphatase activities. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2049-59. [PMID: 11489987 DOI: 10.4049/jimmunol.167.4.2049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of NAD-metabolizing enzymes (e.g., ADP-ribosyltransferase (ART)2) on the surface of immune cells suggests a potential immunomodulatory activity for ecto-NAD or its metabolites at sites of inflammation and cell lysis where extracellular levels of NAD may be high. In vitro, NAD inhibits mitogen-stimulated rat T cell proliferation. To investigate the mechanism of inhibition, the effects of NAD and its metabolites on T cell proliferation were studied using ART2a+ and ART2b+ rat T cells. NAD and ADP-ribose, but not nicotinamide, inhibited proliferation of mitogen-activated T cells independent of ART2 allele-specific expression. Inhibition by P2 purinergic receptor agonists was comparable to that induced by NAD and ADP-ribose; these compounds were more potent than P1 agonists. Analysis of the NAD-metabolizing activity of intact rat T cells demonstrated that ADP-ribose was the predominant metabolite, consistent with the presence of cell surface NAD glycohydrolase (NADase) activities. Treatment of T cells with phosphatidylinositol-specific phospholipase C removed much of the NADase activity, consistent with at least one NADase having a GPI anchor; ART2- T cell subsets contained NADase activity that was not releasable by phosphatidylinositol-specific phospholipase C treatment. Formation of AMP from NAD and ADP-ribose also occurred, a result of cell surface pyrophosphatase activity. Because AMP and its metabolite, adenosine, were less inhibitory to rat T cell proliferation than was NAD or ADP-ribose, pyrophosphatases may serve a regulatory role in modifying the inhibitory effect of ecto-NAD on T cell activation. These data suggest that T cells express multiple NAD and adenine nucleotide-metabolizing activities that together modulate immune function.
Collapse
Affiliation(s)
- R Bortell
- Diabetes Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
O'Connell PJ, Klyachko VA, Badminton MN, Thomson AW, Jackson MB, Clapham DE, Ahern GP. Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6126-33. [PMID: 11342632 DOI: 10.4049/jimmunol.166.10.6126] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although Ca(2+)-signaling processes are thought to underlie many dendritic cell (DC) functions, the Ca(2+) entry pathways are unknown. Therefore, we investigated Ca(2+)-signaling in mouse myeloid DC using Ca(2+) imaging and electrophysiological techniques. Neither Ca(2+) currents nor changes in intracellular Ca(2+) were detected following membrane depolarization, ruling out the presence of functional voltage-dependent Ca(2+) channels. ATP, a purinergic receptor ligand, and 1-4 dihydropyridines, previously suggested to activate a plasma membrane Ca(2+) channel in human myeloid DC, both elicited Ca(2+) rises in murine DC. However, in this study these responses were found to be due to mobilization from intracellular stores rather than by Ca(2+) entry. In contrast, Ca(2+) influx was activated by depletion of intracellular Ca(2+) stores with thapsigargin, or inositol trisphosphate. This Ca(2+) influx was enhanced by membrane hyperpolarization, inhibited by SKF 96365, and exhibited a cation permeability similar to the Ca(2+) release-activated Ca(2+) channel (CRAC) found in T lymphocytes. Furthermore, ATP, a putative DC chemotactic and maturation factor, induced a delayed Ca(2+) entry with a voltage dependence similar to CRAC. Moreover, the level of phenotypic DC maturation was correlated with the extracellular Ca(2+) concentration and enhanced by thapsigargin treatment. These results suggest that CRAC is a major pathway for Ca(2+) entry in mouse myeloid DC and support the proposal that CRAC participates in DC maturation and migration.
Collapse
|
45
|
Nikolic P, Housley GD, Luo L, Ryan AF, Thorne PR. Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 126:173-82. [PMID: 11248351 DOI: 10.1016/s0165-3806(00)00149-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression pattern of the ATP-gated ion channel P2X(1) receptor subunit was studied in the developing rat cochlea by riboprobe in situ hybridisation and immunohistochemistry. Embryonic (E12, E14, E16 and E18) and postnatal (P0, P2, P4, P6, P10 and adult) rat cochleae were examined. Both mRNA and protein localisation techniques demonstrated comparable P2X(1) receptor expression from E16 until P6 but this expression was absent at later developmental stages. P2X(1) receptor mRNA expression was localised within the otic capsule and associated mesenchyme (from E16 to P6), spiral limbus (from P0 to P6) and within the spiral ligament adjacent to the insertion of Reissner's membrane (from P2 to P6). P2X(1) receptor protein had a similar distribution based upon immunoperoxidase localisation. P2X(1) receptor-like immunoreactivity was detected in the otic capsule and the surrounding mesenchyme (from E16 to P6), spiral limbus (from P0) and epithelial cells of Reissner's membrane (from P2 to P6). The spiral ganglion neurones showed the earliest P2X(1) receptor expression (from E16 to P6). This became associated with immunolabelling of their afferent neurite projections to the base of the developing inner and outer hair cells (observed from E18 and peaking at P2). Immunolabelling of the efferent nerve fibres of the intraganglionic spiral bundle (from E18 to P6) within the spiral ganglion was also observed. The results suggest that ATP-gated ion channels assembled from P2X(1) receptor subunits provide a signal transduction pathway for development of afferent and efferent innervation of the sensory hair cells and purinergic influence on cochlear morphogenesis.
Collapse
Affiliation(s)
- P Nikolic
- Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
46
|
Di Virgilio F, Chiozzi P, Ferrari D, Falzoni S, Sanz JM, Morelli A, Torboli M, Bolognesi G, Baricordi OR. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 2001; 97:587-600. [PMID: 11157473 DOI: 10.1182/blood.v97.3.587] [Citation(s) in RCA: 577] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleotides are emerging as an ubiquitous family of extracellular signaling molecules. It has been known for many years that adenosine diphosphate is a potent platelet aggregating factor, but it is now clear that virtually every circulating cell is responsive to nucleotides. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular adenosine triphosphate (ATP). These effects are mediated through a specific class of plasma membrane receptors called purinergic P2 receptors that, according to the molecular structure, are further subdivided into 2 subfamilies: P2Y and P2X. ATP and possibly other nucleotides are released from damaged cells or secreted via nonlytic mechanisms. Thus, during inflammation or vascular damage, nucleotides may provide an important mechanism involved in the activation of leukocytes and platelets. However, the cell physiology of these receptors is still at its dawn, and the precise function of the multiple P2X and P2Y receptor subtypes remains to be understood.
Collapse
Affiliation(s)
- F Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology and Medical Genetics, and Center of Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Morelli A, Ferrari D, Bolognesi G, Rizzuto R, Virgilio FD. Proapoptotic plasma membrane pore: P2X7 receptor. Drug Dev Res 2001. [DOI: 10.1002/ddr.1160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Coutinho-Silva R, Perfettini JL, Persechini PM, Dautry-Varsat A, Ojcius DM. Modulation of P2Z/P2X(7) receptor activity in macrophages infected with Chlamydia psittaci. Am J Physiol Cell Physiol 2001; 280:C81-9. [PMID: 11121379 DOI: 10.1152/ajpcell.2001.280.1.c81] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Given the role that extracellular ATP (ATP(o))-mediated apoptosis may play in inflammatory responses and in controlling mycobacterial growth in macrophages, we investigated whether ATP(o) has any effect on the viability of chlamydiae in macrophages and, conversely, whether the infection has any effect on susceptibility to ATP(o)-induced killing via P2Z/P2X(7) purinergic receptors. Apoptosis of J774 macrophages could be selectively triggered by ATP(o), because other purine/pyrimidine nucleotides were ineffective, and it was inhibited by oxidized ATP, which irreversibly inhibits P2Z/P2X(7) purinergic receptors. Incubation with ATP(o) but not other extracellular nucleotides inhibits the growth of intracellular chlamydiae, consistent with previous observations on ATP(o) effects on growth of intracellular mycobacteria. However, chlamydial infection for 1 day also inhibits ATP(o)-mediated apoptosis, which may be a mechanism to partially protect infected cells against the immune response. Infection by Chlamydia appears to protect cells by decreasing the ability of ATP(o) to permeabilize macrophages to small molecules and by abrogating a sustained Ca(2+) influx previously associated with ATP(o)-induced apoptosis.
Collapse
Affiliation(s)
- R Coutinho-Silva
- Unité de Biologie des Interactions Cellulaires, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1960, Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
49
|
Ferrari D, La Sala A, Chiozzi P, Morelli A, Falzoni S, Girolomoni G, Idzko M, Dichmann S, Norgauer J, Di Virgilio F. The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J 2000; 14:2466-76. [PMID: 11099464 DOI: 10.1096/fj.00-0031com] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We investigated the expression of purinoceptors in human dendritic cells, providing functional, pharmacological, and biochemical evidence that immature and mature cells express P2Y and P2X subtypes, coupled to increase in the intracellular Ca(2+), membrane depolarization, and secretion of inflammatory cytokines. The ATP-activated Ca(2+) change was biphasic, with a fast release from intracellular stores and a delayed influx across the plasma membrane. A prolonged exposure to ATP was toxic to dendritic cells that swelled, lost typical dendrites, became phase lucent, detached from the substrate, and eventually died. These changes were highly suggestive of expression of the cytotoxic receptor P2X(7), as confirmed by ability of dendritic cells to become permeant to membrane impermeant dyes such as Lucifer yellow or ethidium bromide. The P2X(7) receptor ligand 2',3'-(4-benzoylbenzoyl)-ATP was a better agonist then ATP for Ca(2+) increase and plasma membrane depolarization. Oxidized ATP, a covalent blocker of P2X receptors, and the selective P2X(7) antagonist KN-62 inhibited both permeabilization and Ca(2+) changes induced by ATP. The following purinoceptors were expressed by immature and mature dendritic cells: P2Y(1), P2Y(2), P2Y(5), P2Y(11) and P2X(1), P2X(4), P2X(7). Finally, stimulation of LPS-matured cells with ATP triggered release of IL-1 beta and TNF-alpha. Purinoceptors may provide a new avenue to modulation of dendritic cells function.
Collapse
Affiliation(s)
- D Ferrari
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Koshlukova SE, Araujo MW, Baev D, Edgerton M. Released ATP is an extracellular cytotoxic mediator in salivary histatin 5-induced killing of Candida albicans. Infect Immun 2000; 68:6848-56. [PMID: 11083804 PMCID: PMC97789 DOI: 10.1128/iai.68.12.6848-6856.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salivary histatins (Hsts) are antifungal peptides with promise as therapeutic agents against candidiasis. Hst 5 kills the fungal pathogen Candida albicans via a mechanism that involves release of cellular ATP in the absence of cytolysis. Here we demonstrate that released ATP has a further role in Hst 5 killing. Incubation of the cells with ATP analogues induced cell death, and addition of the ATP scavenger apyrase to remove extracellular ATP released during Hst 5 treatment resulted in a reduction in cell killing. Experiments using anaerobically grown C. albicans with decreased susceptibility to Hst 5 confirmed that depletion of cellular ATP as a result of ATP efflux was not sufficient to cause cell death. In contrast to Hst-susceptible aerobic cultures, anaerobically grown cells were not killed by exogenously applied ATP. These findings established that Hst binding, subsequent entry into the cells, and ATP release precede the signal for cytotoxicity, which is mediated by extracellular ATP. In a higher-eukaryote paradigm, released ATP acts as a cytotoxic mediator by binding to membrane nucleotide P2X receptors. Based on a pharmacological profile and detection of a C. albicans 60-kDa membrane protein immunoreactive with antibody to P2X(7) receptor, we propose that released ATP in response to Hst 5 activates candidal P2X(7)-like receptors to cause cell death.
Collapse
Affiliation(s)
- S E Koshlukova
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|