1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Archuleta SR, Goodrich JA, Kugel JF. Mechanisms and Functions of the RNA Polymerase II General Transcription Machinery during the Transcription Cycle. Biomolecules 2024; 14:176. [PMID: 38397413 PMCID: PMC10886972 DOI: 10.3390/biom14020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
Collapse
Affiliation(s)
| | - James A. Goodrich
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| | - Jennifer F. Kugel
- Department of Biochemistry, University of Colorado Boulder, 596 UCB, Boulder, CO 80309, USA;
| |
Collapse
|
3
|
Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation. Gene X 2022; 833:146581. [PMID: 35597524 DOI: 10.1016/j.gene.2022.146581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.
Collapse
|
4
|
Wang J, Shi K, Wu Z, Zhang C, Li Y, Deng H, Zhao S, Deng W. Disruption of the interaction between TFIIAαβ and TFIIA recognition element inhibits RNA polymerase II gene transcription in a promoter context-dependent manner. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194611. [PMID: 32745626 DOI: 10.1016/j.bbagrm.2020.194611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
General transcription factors and core promoter elements play a pivotal role in RNA polymerase II (Pol II)-mediated transcription initiation. In the previous work, we have defined a TFIIA recognition element (IIARE) that modulates Pol II-directed gene transcription in a promoter context-dependent manner. However, how TFIIA interacts with the IIARE and whether the interaction between TFIIA and the IIARE is involved in the regulation of gene transcription by Pol II are not fully understood. In the present study, we confirm that both K348 and K350 residues in TFIIAαβ are required for the interaction between TFIIAαβ and the IIARE. Disruption of the interaction between them by gene mutations dampens TFIIAαβ binding to the AdML-IIARE promoter and the transcriptional activation of the promoter containing a IIARE in vitro and in vivo. Stable expression of the TFIIAαβ mutant containing both K348A and K350A in the cell line with endogenous TFIIAαβ silence represses endogenous gene expression by reducing the occupancies of TFIIAαβ, TBP, p300, and Pol II at the promoters containing a IIARE. The findings from this study provide a novel insight into the regulatory mechanism of gene transcription mediated by TFIIA and the IIARE.
Collapse
Affiliation(s)
- Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Schrenk C, Fetz V, Vallet C, Heiselmayer C, Schröder E, Hensel A, Hahlbrock A, Wünsch D, Goesswein D, Bier C, Habtemichael N, Schneider G, Stauber RH, Knauer SK. TFIIA transcriptional activity is controlled by a 'cleave-and-run' Exportin-1/Taspase 1-switch. J Mol Cell Biol 2018; 10:33-47. [PMID: 28992066 DOI: 10.1093/jmcb/mjx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
Transcription factor TFIIA is controlled by complex regulatory networks including proteolysis by the protease Taspase 1, though the full impact of cleavage remains elusive. Here, we demonstrate that in contrast to the general assumption, de novo produced TFIIA is rapidly confined to the cytoplasm via an evolutionary conserved nuclear export signal (NES, amino acids 21VINDVRDIFL30), interacting with the nuclear export receptor Exportin-1/chromosomal region maintenance 1 (Crm1). Chemical export inhibition or genetic inactivation of the NES not only promotes TFIIA's nuclear localization but also affects its transcriptional activity. Notably, Taspase 1 processing promotes TFIIA's nuclear accumulation by NES masking, and modulates its transcriptional activity. Moreover, TFIIA complex formation with the TATA box binding protein (TBP) is cooperatively enhanced by inhibition of proteolysis and nuclear export, leading to an increase of the cell cycle inhibitor p16INK, which is counteracted by prevention of TBP binding. We here identified a novel mechanism how proteolysis and nuclear transport cooperatively fine-tune transcriptional programs.
Collapse
Affiliation(s)
- Christian Schrenk
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Verena Fetz
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Cecilia Vallet
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Christina Heiselmayer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Elisabeth Schröder
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Astrid Hensel
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| | - Angelina Hahlbrock
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Désirée Wünsch
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Dorothee Goesswein
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Carolin Bier
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Negusse Habtemichael
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Günter Schneider
- University Hospital Klinikum rechts der Isar, II. Medizinische Klinik, Technical University München, 81675 Munich, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Hospital of Mainz, 55101 Mainz, Germany
| | - Shirley K Knauer
- Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
6
|
Ma L, Wang Q, Yuan M, Zou T, Yin P, Wang S. Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion. Biochem Biophys Res Commun 2018; 496:608-613. [PMID: 29331375 DOI: 10.1016/j.bbrc.2018.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Abstract
The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties.
Collapse
Affiliation(s)
- Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Zou
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Gribko A, Hahlbrock A, Strieth S, Becker S, Hagemann J, Deichelbohrer M, Hildebrandt A, Habtemichael N, Wünsch D. Disease-relevant signalling-pathways in head and neck cancer: Taspase1's proteolytic activity fine-tunes TFIIA function. Sci Rep 2017; 7:14937. [PMID: 29097782 PMCID: PMC5668323 DOI: 10.1038/s41598-017-14814-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 12/23/2022] Open
Abstract
Head and neck cancer (HNC) is the seventh most common malignancy in the world and its prevailing form, the head and neck squamous cell carcinoma (HNSCC), is characterized as aggressive and invasive cancer type. The transcription factor II A (TFIIA), initially described as general regulator of RNA polymerase II-dependent transcription, is part of complex transcriptional networks also controlling mammalian head morphogenesis. Posttranslational cleavage of the TFIIA precursor by the oncologically relevant protease Taspase1 is crucial in this process. In contrast, the relevance of Taspase1-mediated TFIIA cleavage during oncogenesis of HNSCC is not characterized yet. Here, we performed genome-wide expression profiling of HNSCC which revealed significant downregulation of the TFIIA downstream target CDKN2A. To identify potential regulatory mechanisms of TFIIA on cellular level, we characterized nuclear-cytoplasmic transport and Taspase1-mediated cleavage of TFIIA variants. Unexpectedly, we identified an evolutionary conserved nuclear export signal (NES) counteracting nuclear localization and thus, transcriptional activity of TFIIA. Notably, proteolytic processing of TFIIA by Taspase1 was found to mask the NES, thereby promoting nuclear localization and transcriptional activation of TFIIA target genes, such as CDKN2A. Collectively, we here describe a hitherto unknown mechanism how cellular localization and Taspase1 cleavage fine-tunes transcriptional activity of TFIIA in HNSCC.
Collapse
Affiliation(s)
- Alena Gribko
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Angelina Hahlbrock
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Sven Becker
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Max Deichelbohrer
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Andreas Hildebrandt
- Scientific Computing and Bioinformatics, Johannes Gutenberg University, Staudingerweg 9, Mainz, 55128, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - D Wünsch
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany.
| |
Collapse
|
8
|
Malecová B, Caputo VS, Lee DF, Hsieh JJ, Oelgeschläger T. Taspase1 processing alters TFIIA cofactor properties in the regulation of TFIID. Transcription 2015; 6:21-32. [PMID: 25996597 DOI: 10.1080/21541264.2015.1052178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
TFIIA is an important positive regulator of TFIID, the primary promoter recognition factor of the basal RNA polymerase II transcription machinery. TFIIA antagonises negative TFIID regulators such as negative cofactor 2 (NC2), promotes specific binding of the TBP subunit of TFIID to TATA core promoter sequence elements and stimulates the interaction of TBP-associated factors (TAFs) in the TFIID complex with core promoter elements located downstream of TATA, such as the initiator element (INR). Metazoan TFIIA consists of 3 subunits, TFIIAα (35 kDa), β (19 kDa) and γ (12 kDa). TFIIAα and β subunits are encoded by a single gene and result from site-specific cleavage of a 55 kDa TFIIA(α/β) precursor protein by the protease Taspase1. Metazoan cells have been shown to contain variable amounts of TFIIA (55/12 kDa) and Taspase1-processed TFIIA (35/19/12 kDa) depending on cell type, suggesting distinct gene-specific roles of unprocessed and Taspase1-processed TFIIA. How precisely Taspase1 processing affects TFIIA functions is not understood. Here we report that Taspase1 processing alters TFIIA interactions with TFIID and the conformation of TFIID/TFIIA promoter complexes. We further show that Taspase1 processing induces increased sensitivity of TFIID/TFIIA complexes to the repressor NC2, which is counteracted by the presence of an INR core promoter element. Our results provide first evidence that Taspase1 processing affects TFIIA regulation of TFIID and suggest that Taspase1 processing of TFIIA is required to establish INR-selective core promoter activity in the presence of NC2.
Collapse
Affiliation(s)
- Barbora Malecová
- a Marie Curie Research Institute; The Chart , Oxted , Surrey , United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Suzuki H, Isogai M, Maeda R, Ura K, Tamura TA. TBP-like protein (TLP) interferes with Taspase1-mediated processing of TFIIA and represses TATA box gene expression. Nucleic Acids Res 2015; 43:6285-98. [PMID: 26038314 PMCID: PMC4513858 DOI: 10.1093/nar/gkv576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
TBP-TFIIA interaction is involved in the potentiation of TATA box-driven promoters. TFIIA activates transcription through stabilization of TATA box-bound TBP. The precursor of TFIIA is subjected to Taspase1-directed processing to generate α and β subunits. Although this processing has been assumed to be required for the promoter activation function of TFIIA, little is known about how the processing is regulated. In this study, we found that TBP-like protein (TLP), which has the highest affinity to TFIIA among known proteins, affects Taspase1-driven processing of TFIIA. TLP interfered with TFIIA processing in vivo and in vitro, and direct binding of TLP to TFIIA was essential for inhibition of the processing. We also showed that TATA box promoters are specifically potentiated by processed TFIIA. Processed TFIIA, but not unprocessed TFIIA, associated with the TATA box. In a TLP-knocked-down condition, not only the amounts of TATA box-bound TFIIA but also those of chromatin-bound TBP were significantly increased, resulting in the stimulation of TATA box-mediated gene expression. Consequently, we suggest that TLP works as a negative regulator of the TFIIA processing and represses TFIIA-governed and TATA-dependent gene expression through preventing TFIIA maturation.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Momoko Isogai
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Ryo Maeda
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Kiyoe Ura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| | - Taka-Aki Tamura
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
11
|
Takeda S, Sasagawa S, Oyama T, Searleman AC, Westergard TD, Cheng EH, Hsieh JJ. Taspase1-dependent TFIIA cleavage coordinates head morphogenesis by limiting Cdkn2a locus transcription. J Clin Invest 2015; 125:1203-14. [PMID: 25664857 DOI: 10.1172/jci77075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 01/05/2015] [Indexed: 01/06/2023] Open
Abstract
Head morphogenesis requires complex signal relays to enable precisely coordinated proliferation, migration, and patterning. Here, we demonstrate that, during mouse head formation, taspase1-mediated (TASP1-mediated) cleavage of the general transcription factor TFIIA ensures proper coordination of rapid cell proliferation and morphogenesis by maintaining limited transcription of the negative cell cycle regulators p16Ink4a and p19Arf from the Cdkn2a locus. In mice, loss of TASP1 function led to catastrophic craniofacial malformations that were associated with inadequate cell proliferation. Compound deficiency of Cdkn2a, especially p16Ink4a deficiency, markedly reduced the craniofacial anomalies of TASP1-deficent mice. Furthermore, evaluation of mice expressing noncleavable TASP1 targets revealed that TFIIA is the principal TASP1 substrate that orchestrates craniofacial morphogenesis. ChIP analyses determined that noncleaved TFIIA accumulates at the p16Ink4a and p19Arf promoters to drive transcription of these negative regulators. In summary, our study elucidates a regulatory circuit comprising proteolysis, transcription, and proliferation that is pivotal for construction of the mammalian head.
Collapse
|
12
|
Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 2013; 34:939-54. [PMID: 24379442 DOI: 10.1128/mcb.01344-13] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key activators of adipogenesis. They mutually induce the expression of each other and have been reported to cooperate in activation of a few adipocyte genes. Recently, genome-wide profiling revealed a high degree of overlap between PPARγ and C/EBPα binding in adipocytes, suggesting that cooperativeness could be mediated through common binding sites. To directly investigate the interplay between PPARγ and C/EBPα at shared binding sites, we established a fibroblastic model system in which PPARγ and C/EBPα can be independently expressed. Using RNA sequencing, we demonstrate that coexpression of PPARγ and C/EBPα leads to synergistic activation of many key metabolic adipocyte genes. This is associated with extensive C/EBPα-mediated reprogramming of PPARγ binding and vice versa in the vicinity of these genes, as determined by chromatin immunoprecipitation combined with deep sequencing. Our results indicate that this is at least partly mediated by assisted loading involving chromatin remodeling directed by the leading factor. In conclusion, we report a novel mechanism by which the key adipogenic transcription factors, PPARγ and C/EBPα, cooperate in activation of the adipocyte gene program.
Collapse
|
13
|
Guglielmi B, La Rochelle N, Tjian R. Gene-specific transcriptional mechanisms at the histone gene cluster revealed by single-cell imaging. Mol Cell 2013; 51:480-92. [PMID: 23973376 DOI: 10.1016/j.molcel.2013.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/20/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
To bridge the gap between in vivo and in vitro molecular mechanisms, we dissected the transcriptional control of the endogenous histone gene cluster (His-C) by single-cell imaging. A combination of quantitative immunofluorescence, RNA FISH, and FRAP measurements revealed atypical promoter recognition complexes and differential transcription kinetics directing histone H1 versus core histone gene expression. While H1 is transcribed throughout S phase, core histones are only transcribed in a short pulse during early S phase. Surprisingly, no TFIIB or TFIID was detectable or functionally required at the initiation complexes of these promoters. Instead, a highly stable, preloaded TBP/TFIIA "pioneer" complex primes the rapid initiation of His-C transcription during early S phase. These results provide mechanistic insights for the role of gene-specific core promoter factors and implications for cell cycle-regulated gene expression.
Collapse
Affiliation(s)
- Benjamin Guglielmi
- Howard Hughes Medical Institute, Department of Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
14
|
Choukrallah MA, Kobi D, Martianov I, Pijnappel WWMP, Mischerikow N, Ye T, Heck AJR, Timmers HTM, Davidson I. Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome. Nucleic Acids Res 2011; 40:1446-59. [PMID: 22013162 PMCID: PMC3287176 DOI: 10.1093/nar/gkr802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The TATA binding protein (TBP) plays a pivotal role in RNA polymerase II (Pol II) transcription through incorporation into the TFIID and B-TFIID complexes. The role of mammalian B-TFIID composed of TBP and B-TAF1 is poorly understood. Using a complementation system in genetically modified mouse cells where endogenous TBP can be conditionally inactivated and replaced by exogenous mutant TBP coupled to tandem affinity purification and mass spectrometry, we identify two TBP mutations, R188E and K243E, that disrupt the TBP–BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not generally alter gene expression or genomic distribution of TBP, but positively or negatively affects TBP and/or Pol II recruitment to a subset of promoters. We identify promoters where wild-type TBP assembles a partial inactive preinitiation complex comprising B-TFIID, TFIIB and Mediator complex, but lacking TFIID, TFIIE and Pol II. Exchange of B-TFIID in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters completes preinitiation complex formation and recruits Pol II to activate their expression. We propose a novel regulatory mechanism involving formation of a partial preinitiation complex comprising B-TFIID that primes the promoter for productive preinitiation complex formation in mammalian cells.
Collapse
Affiliation(s)
- Mohamed-Amin Choukrallah
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Akhtar W, Veenstra GJC. TBP2 is a substitute for TBP in Xenopus oocyte transcription. BMC Biol 2009; 7:45. [PMID: 19650908 PMCID: PMC2731028 DOI: 10.1186/1741-7007-7-45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/03/2009] [Indexed: 11/14/2022] Open
Abstract
Background TATA-box-binding protein 2 (TBP2/TRF3) is a vertebrate-specific paralog of TBP that shares with TBP a highly conserved carboxy-terminal domain and the ability to bind the TATA box. TBP2 is highly expressed in oocytes whereas TBP is more abundant in embryos. Results We find that TBP2 is proteolytically degraded upon meiotic maturation; after germinal vesicle breakdown relatively low levels of TBP2 expression persist. Furthermore, TBP2 localizes to the transcriptionally active loops of lampbrush chromosomes and is recruited to a number of injected promoters in oocyte nuclei. Using an altered binding specificity mutant reporter system we show that TBP2 promotes RNA polymerase II transcription in vivo. Intriguingly, TBP, which in oocytes is undetectable at the protein level, can functionally replace TBP2 when ectopically expressed in oocytes, showing that switching of initiation factors can be driven by changes in their expression. Proteolytic degradation of TBP2 is not required for repression of transcription during meiotic maturation, suggesting a redundant role in this repression or a role in initiation factor switching between oocytes and embryos. Conclusion The expression and transcriptional activity of TBP2 in oocytes show that TBP2 is the predominant initiation factor in oocytes, which is substituted by TBP on a subset of promoters in embryos as a result of proteolytic degradation of TBP2 during meiotic maturation.
Collapse
Affiliation(s)
- Waseem Akhtar
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands.
| | | |
Collapse
|
16
|
Bugge A, Grøntved L, Aagaard MM, Borup R, Mandrup S. The PPARgamma2 A/B-domain plays a gene-specific role in transactivation and cofactor recruitment. Mol Endocrinol 2009; 23:794-808. [PMID: 19282365 DOI: 10.1210/me.2008-0236] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have previously shown that adenoviral expression of peroxisome proliferator-activated receptors (PPARs) leads to rapid establishment of transcriptionally active complexes and activation of target gene expression within 5-8 h after transduction. Here we have used the adenoviral delivery system combined with expression array analysis to identify novel putative PPARgamma target genes in murine fibroblasts and to determine the role of the A/B-domain in PPARgamma-mediated transactivation of genomic target genes. Of the 257 genes found to be induced by PPARgamma2 expression, only 25 displayed A/B-domain dependency, i.e. significantly reduced induction in the cells expressing the truncated PPARgamma lacking the A/B-domain (PPARgammaCDE). Nine of the 25 A/B-domain-dependent genes were involved in lipid storage, and in line with this, triglyceride accumulation was considerably decreased in the cells expressing PPARgammaCDE compared with cells expressing full-length PPARgamma2. Using chromatin immunoprecipitation, we demonstrate that PPARgamma binding to genomic target sites and recruitment of the mediator component TRAP220/MED1/PBP/DRIP205 is not affected by the deletion of the A/B-domain. By contrast, the PPARgamma-mediated cAMP response element-binding protein (CREB)-binding protein (CBP) and p300 recruitment to A/B-domain-dependent target genes is compromised by deletion of the A/B-domain. These results indicate that the A/B-domain of PPARgamma2 is specifically involved in the recruitment or stabilization of CBP- and p300-containing cofactor complexes to a subset of target genes.
Collapse
Affiliation(s)
- Anne Bugge
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | | | |
Collapse
|
17
|
Mousson F, Kolkman A, Pijnappel WWMP, Timmers HTM, Heck AJR. Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol Cell Proteomics 2007; 7:845-52. [PMID: 18087068 DOI: 10.1074/mcp.m700306-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Affinity purification in combination with isotope labeling of proteins has proven to be a powerful method to discriminate specific from nonspecific interactors. However, in the standard SILAC (stable isotope labeling by amino acids in cell culture) approach dynamic components may easily be assigned as nonspecific. We compared two affinity purification protocols, which in combination revealed information on the dynamics of protein complexes. We focused on the central component in eukaryotic transcription, the human TATA-binding protein, which is involved in different complexes. All known TATA-binding protein-associated factors (TAFs) were detected as specific interactors. Interestingly one of them, BTAF1, exchanged significantly in cell extracts during the affinity purification. The other TAFs did not display this behavior. Cell cycle synchronization showed that BTAF1 exchange was regulated during mitosis. The combination of the two affinity purification protocols allows a quantitative approach to identify transient components in any protein complex.
Collapse
Affiliation(s)
- Florence Mousson
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Høiby T, Zhou H, Mitsiou DJ, Stunnenberg HG. A facelift for the general transcription factor TFIIA. ACTA ACUST UNITED AC 2007; 1769:429-36. [PMID: 17560669 DOI: 10.1016/j.bbaexp.2007.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
TFIIA was classified as a general transcription factor when it was first identified. Since then it has been debated to what extent it can actually be regarded as "general". The most notable feature of TFIIA is the proteolytical cleavage of the TFIIAalphabeta into a TFIIAalpha and TFIIAbeta moiety which has long remained a mystery. Recent studies have showed that TFIIA is cleaved by Taspase1 which was initially identified as the protease for the proto-oncogene MLL. Cleavage of TFIIA does not appear to serve as a step required for its activation as the uncleaved TFIIA in the Taspase1 knock-outs adequately support bulk transcription. Instead, cleavage of TFIIA seems to affect its turn-over and may be a part of an intricate degradation mechanism that allows fine-tuning of cellular levels of TFIIA. Cleavage might also be responsible for switching transcription program as the uncleaved and cleaved TFIIA might have distinct promoter specificity during development and differentiation. This review will focus on functional characteristics of TFIIA and discuss novel insights in the role of this elusive transcription factor.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, PO Box 91001, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Nielsen R, Grøntved L, Stunnenberg HG, Mandrup S. Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery. Mol Cell Biol 2006; 26:5698-714. [PMID: 16847324 PMCID: PMC1592764 DOI: 10.1128/mcb.02266-05] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARgamma2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARgamma2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (alpha, gamma, and beta/delta), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci.
Collapse
Affiliation(s)
- Ronni Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | | | |
Collapse
|
20
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
21
|
Zhou H, Spicuglia S, Hsieh JJD, Mitsiou DJ, Høiby T, Veenstra GJC, Korsmeyer SJ, Stunnenberg HG. Uncleaved TFIIA is a substrate for taspase 1 and active in transcription. Mol Cell Biol 2006; 26:2728-35. [PMID: 16537915 PMCID: PMC1430320 DOI: 10.1128/mcb.26.7.2728-2735.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In higher eukaryotes, the large subunit of the general transcription factor TFIIA is encoded by the single TFIIAalphabeta gene and posttranslationally cleaved into alpha and beta subunits. The molecular mechanisms and biological significance of this proteolytic process have remained obscure. Here, we show that TFIIA is a substrate of taspase 1 as reported for the trithorax group mixed-lineage leukemia protein. We demonstrate that recombinant taspase 1 cleaves TFIIA in vitro. Transfected taspase 1 enhances cleavage of TFIIA, and RNA interference knockdown of endogenous taspase 1 diminishes cleavage of TFIIA in vivo. In taspase 1-/- MEF cells, only uncleaved TFIIA is detected. In Xenopus laevis embryos, knockdown of TFIIA results in phenotype and expression defects. Both defects can be rescued by expression of an uncleavable TFIIA mutant. Our study shows that uncleaved TFIIA is transcriptionally active and that cleavage of TFIIA does not serve to render TFIIA competent for transcription. We propose that cleavage fine tunes the transcription regulation of a subset of genes during differentiation and development.
Collapse
Affiliation(s)
- Huiqing Zhou
- NCMLS, Department of Molecular Biology, 191, Radboud University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fan X, Shi H, Lis JT. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP. Nucleic Acids Res 2005; 33:838-45. [PMID: 15701755 PMCID: PMC549393 DOI: 10.1093/nar/gki212] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TATA-binding protein (TBP) is a general factor that is involved in transcription by all three types of nuclear RNA polymerase. To delineate the roles played by the DNA-binding surface of TBP in these transcription reactions, we used a set of RNA aptamers directed against TBP and examined their ability to perturb transcription in vitro by the different RNA polymerases. Distinct responses to the TBP aptamers were observed for transcription by different types of polymerase at either the initiation, reinitiation or both stages of the transcription cycle. We further probed the TBP interactions in the TFIIIB•DNA complex to elucidate the mechanism for the different sensitivity of Pol III dependent transcription before and after preinitiation complex (PIC) formation. Lastly, the aptamers were employed to measure the time required for Pol III PIC formation in vitro. This approach can be generalized to define the involvement of a particular region on the surface of a protein at particular stages in a biological process.
Collapse
Affiliation(s)
| | | | - John T. Lis
- To whom correspondence should be addressed. Tel: +1 607 255 2442; Fax: +1 607 255 6249;
| |
Collapse
|
23
|
Kalkhoven E. CBP and p300: HATs for different occasions. Biochem Pharmacol 2004; 68:1145-55. [PMID: 15313412 DOI: 10.1016/j.bcp.2004.03.045] [Citation(s) in RCA: 370] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/30/2004] [Indexed: 11/25/2022]
Abstract
The transcriptional coactivators CREB binding protein (CBP) and p300 are key regulators of RNA polymerase II-mediated transcription. Genetic alterations in the genes encoding these regulatory proteins and their functional inactivation have been linked to human disease. Findings in patients, knockout mice and cell-based studies indicate that the ability of these multidomain proteins to acetylate histones and other proteins is critical for many biological processes. Furthermore, despite their high degree of homology, accumulating evidence indicates that CBP and p300 are not completely redundant but also have unique roles in vivo. Recent studies suggest that these functional differences could be due to differential association with other proteins or differences in substrate specificity between these acetyltransferases. Inactivation of the acetyltransferase function of either CBP or p300 in various experimental systems will no doubt teach us more about the specific biological roles of these proteins. Given the wide range of human diseases in which CBP and/or p300 have been implicated, understanding the mechanisms that regulate their activity in vivo could help to develop novel approaches for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Eric Kalkhoven
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA, The Netherlands.
| |
Collapse
|
24
|
Jallow Z, Jacobi UG, Weeks DL, Dawid IB, Veenstra GJC. Specialized and redundant roles of TBP and a vertebrate-specific TBP paralog in embryonic gene regulation in Xenopus. Proc Natl Acad Sci U S A 2004; 101:13525-30. [PMID: 15345743 PMCID: PMC518790 DOI: 10.1073/pnas.0405536101] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The general transcription factor TATA-binding protein (TBP) is a key initiation factor involved in transcription by all three eukaryotic RNA polymerases. In addition, the related metazoan-specific TBP-like factor (TLF/TRF2) is essential for transcription of a distinct subset of genes. Here we characterize the vertebrate-specific TBP-like factor TBP2, using in vitro assays, in vivo antisense knockdown, and mRNA rescue experiments, as well as chromatin immunoprecipitation. We show that TBP2 is recruited to promoters in Xenopus oocytes in the absence of detectable TBP recruitment. Furthermore, TBP2 is essential for gastrulation and for the transcription of a subset of genes during Xenopus embryogenesis. In embryos, TBP2 protein is much less abundant than TBP, and moderate overexpression of TBP2 partially rescues an antisense knockdown of TBP levels and restores transcription of many TBP-dependent genes. TBP2 may be a TBP replacement factor in oocytes, whereas in embryos both TBP and TBP2 are required even though they exhibit partial redundancy and gene selectivity.
Collapse
Affiliation(s)
- Zainab Jallow
- Department of Molecular Biology, Radboud University Nijmegen Center for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Høiby T, Mitsiou DJ, Zhou H, Erdjument-Bromage H, Tempst P, Stunnenberg HG. Cleavage and proteasome-mediated degradation of the basal transcription factor TFIIA. EMBO J 2004; 23:3083-91. [PMID: 15257296 PMCID: PMC514921 DOI: 10.1038/sj.emboj.7600304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 06/07/2004] [Indexed: 11/09/2022] Open
Abstract
The transcription factor TFIIA is encoded by two genes, TFIIAalphabeta and TFIIAgamma. In higher eukaryotes, the TFIIAalphabeta is translated as a precursor and undergoes proteolytic cleavage; the regulation and biological implications of the cleavage have remained elusive. We determined by Edman degradation that the TFIIAbeta subunit starts at Asp 278. We found that a cleavage recognition site (CRS), a string of amino acids QVDG at positions -6 to -3 from Asp 278, is essential for cleavage. Mutations in the CRS that prevent cleavage significantly prolong the half-life of TFIIA. Consistently, the cleaved TFIIA is a substrate for the ubiquitin pathway and proteasome-mediated degradation. We show that mutations in the putative phosphorylation sites of TFIIAbeta greatly affect degradation of the beta-subunit. We propose that cleavage and subsequent degradation fine-tune the amount of TFIIA in the cell and consequently the level of transcription.
Collapse
Affiliation(s)
- Torill Høiby
- NCMLS, Department of Molecular Biology, HB Nijmegen, The Netherlands
| | - Dimitra J Mitsiou
- NCMLS, Department of Molecular Biology, HB Nijmegen, The Netherlands
| | - Huiqing Zhou
- NCMLS, Department of Molecular Biology, HB Nijmegen, The Netherlands
| | | | - Paul Tempst
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
26
|
Müller F, Tora L. The multicoloured world of promoter recognition complexes. EMBO J 2004; 23:2-8. [PMID: 14685269 PMCID: PMC1271665 DOI: 10.1038/sj.emboj.7600027] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 11/18/2003] [Indexed: 11/09/2022] Open
Abstract
The expression pattern of regulated genes changes dynamically depending on the developmental stage and the differentiation state of the cell. Transcription factors regulate cellular events at the gene expression level by communicating signals to the general transcription machinery that forms a preinitiation complex (PIC) at class II core promoters. Recent data strongly suggest that PICs are composed of different sets of factors at distinct promoters, reflecting the spatiotemporal profile of gene expression in multicellular organisms. Thus, today it is important to ask the question: how universal are the promoter recognition factors? This review will focus on findings that support the new idea that core promoter recognition by distinct factors is an additional level of transcriptional regulation and that this step is developmentally regulated.
Collapse
Affiliation(s)
- Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum, Karlsruhe, Germany
| | - Làszlò Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|
27
|
Matangkasombut O, Auty R, Buratowski S. Structure and Function of the TFIID Complex. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:67-92. [PMID: 14969724 DOI: 10.1016/s0065-3233(04)67003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oranart Matangkasombut
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
28
|
Kobayashi A, Kokubo T, Ota Y, Yokoyama S. Promoter-specific function of the TATA element in undifferentiated P19 cells. Biochem Biophys Res Commun 2003; 310:458-63. [PMID: 14521932 DOI: 10.1016/j.bbrc.2003.09.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
P19 embryonal carcinoma cells differentiate into neuronal cells when treated with retinoic acid (RA). To explore the importance of core promoter structures in the regulation of gene expression during neuronal differentiation, the activities of three classes of modified or unmodified model promoters (Spec2a, OtxE, and Ars) were compared in P19 cells before and after RA treatment. The Spec2a promoter was activated in undifferentiated cells specifically when the E-box was located at a proximal position, whereas the OtxE promoter was activated when the E-box was in a distal position. The Ars promoter was only slightly activated by this element. In addition, the TATA element reduced the level of activation provided by the E-box, but only when it was located in the Spec2a core promoter. These results indicate that the core promoter structure may govern, at least in part, the stage-specific expression of endogenous genes involved in the neuronal differentiation of P19 cells.
Collapse
Affiliation(s)
- Akiko Kobayashi
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
29
|
Pereira LA, Klejman MP, Timmers HTM. Roles for BTAF1 and Mot1p in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene 2003; 315:1-13. [PMID: 14557059 DOI: 10.1016/s0378-1119(03)00714-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulation of RNA polymerase II (pol II) transcription is a highly dynamic process requiring the coordinated interaction of an array of regulatory proteins. Central to this process is the TATA-binding protein (TBP), the key component of the multiprotein complex TFIID. Interaction of TBP with core promoters nucleates the assembly of the preinitiation complex and subsequent recruitment of pol II. Despite recent advances in our understanding of the dynamic nature of the pol II transcription apparatus, the dynamics of TBP function on pol II promoters has remained largely unexplored. Human BTAF1 (TAF(II)170/TAF-172) and its yeast ortholog, Mot1p, are evolutionarily conserved members of the SNF2-like family of ATPase proteins. Genetic identification of Mot1p as a repressor of pol II transcription was supported by findings that Mot1p and BTAF1 could dissociate TBP from TATA DNA complexes using the energy of ATP hydrolysis. Recent data have revealed new aspects of BTAF1 and Mot1p as positive regulators of TBP function in the pol II system and have described new observations relating to their molecular mechanism of action. We review these data in the context of previous findings with particular attention paid to how human BTAF1 and Mot1p may dynamically regulate TBP function on pol II promoters in cells.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Laboratory for Physiological Chemistry, Division of Biomedical Genetics, UMC-U, Universiteitsweg 100, 3584 Utrecht CG, The Netherlands
| | | | | |
Collapse
|
30
|
Bleichenbacher M, Tan S, Richmond TJ. Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 2003; 332:783-93. [PMID: 12972251 DOI: 10.1016/s0022-2836(03)00887-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RNA polymerase II-dependent transcription requires the assembly of a multi-protein, preinitiation complex on core promoter elements. Transcription factor IID (TFIID) comprising the TATA box-binding protein (TBP) and TBP-associated factors (TAFs) is responsible for promoter recognition in this complex. Subsequent association of TFIIA and TFIIB provides enhanced complex stability. TFIIA is required for transcriptional stimulation by certain viral and cellular activators, and favors formation of the preinitiation complex in the presence of repressor NC2. The X-ray structures of human and yeast TBP/TFIIA/DNA complexes at 2.1A and 1.9A resolution, respectively, are presented here and seen to resemble each other closely. The interactions made by human TFIIA with TBP and DNA within and upstream of the TATA box, including those involving water molecules, are described and compared to the yeast structure. Of particular interest is a previously unobserved region of TFIIA that extends the binding interface with TBP in the yeast, but not in the human complex, and that further elucidates biochemical and genetic results.
Collapse
Affiliation(s)
- Michael Bleichenbacher
- ETH Zürich, Institute for Molecular Biology and Biophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Mitsiou DJ, Stunnenberg HG. p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC. EMBO J 2003; 22:4501-11. [PMID: 12941701 PMCID: PMC202362 DOI: 10.1093/emboj/cdg419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have recently identified a novel basal transcription complex, TAC, that is present and active in embryonal carcinoma (EC) cells but not in other adult cells such as COS7. In the search for factors involved in TAC formation, we found that expression of the adenoviral 12S E1A oncoprotein abolishes TAC formation in EC cells. This effect of E1A depends on its N-terminal domain that is essential for cell differentiation and that targets the transcriptional coactivators p300 and PCAF. Expression of p300 lacking its major E1A interaction domain, CH3, restores TAC formation in the presence of E1A, in a bromodomain- and HAT domain-dependent manner. Consistently, the unprocessed TFIIAalphabeta precursor that is selectively assembled into TAC is acetylated preferentially compared with the processed subunits present in 'free' TFIIA. Intriguingly, expression of p300 in COS7 cells that do not contain detectable levels of TAC instigates formation of TAC from endogenous components. Our data suggest that p300 plays a role in formation of the TBP-TFIIA-containing basal transcription complex, TAC.
Collapse
Affiliation(s)
- Dimitra J Mitsiou
- Department of Molecular Biology, University of Nijmegen, NCMLS 191, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
32
|
Affiliation(s)
- Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France.
| |
Collapse
|
33
|
Yatherajam G, Zhang L, Kraemer SM, Stargell LA. Protein-protein interaction map for yeast TFIID. Nucleic Acids Res 2003; 31:1252-60. [PMID: 12582245 PMCID: PMC150223 DOI: 10.1093/nar/gkg204] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major rate-limiting step in transcription initiation by RNA polymerase II is recognition and binding of the TATA element by the transcription factor TFIID. TFIID is composed of TATA binding protein (TBP) and approximately a dozen TBP-associated factors (TAFs). Emerging consensus regarding the role of TAFs is that TFIID assumes a gene specific activity that is regulated by interaction with other factors. In spite of many studies demonstrating the essential nature of TAFs in transcription, very little is known about the subunit contacts within TFIID. To understand fully the functional role of TAFs, it is imperative to define TAF-TAF interactions and their topological arrangement within TFIID. We performed a systematic two-hybrid analysis using the 13 essential TAFs of the Saccharomyces cerevisiae TFIID complex and TBP. Specific interactions were defined for each component, and the biological significance of these interactions is supported by numerous genetic and biochemical studies. By combining the interaction profiles presented here, and the available studies utilizing specific TAFs, we propose a working hypothesis for the arrangement of components in the TFIID complex. Thus, these results serve as a foundation for understanding the overall architecture of yeast TFIID.
Collapse
Affiliation(s)
- Gayatri Yatherajam
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
34
|
Kobayashi A, Akasaka K, Kawaichi M, Kokubo T. Functional interaction between TATA and upstream CACGTG elements regulates the temporally specific expression of Otx mRNAs during early embryogenesis of the sea urchin, Hemicentrotus pulcherrimus. Nucleic Acids Res 2002; 30:3034-44. [PMID: 12136085 PMCID: PMC135759 DOI: 10.1093/nar/gkf439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Accepted: 05/27/2002] [Indexed: 11/12/2022] Open
Abstract
The orthodenticle-related protein (HpOtx) gene derived from the sea urchin Hemicentrotus pulcherrimus encodes two distinct isoforms, HpOtxE and HpOtxL, which are differentially expressed during early embryogenesis and are driven by TATA-less and TATA-containing promoters, respectively. In order to determine if the TATA element is involved in the establishment of the temporally specific expression profile of the HpOtx gene, reporter genes under the control of modified or wild-type HpOtxE/L promoters were introduced into fertilized eggs. When the activities of the different promoter constructs were examined, we found that deletion of the TATA element from the HpOtxL promoter causes early expression, whereas addition of the TATA element to the HpOtxE promoter causes delayed expression. This suppressive action of the TATA element on transcription from the HpOtxE/L promoters requires the presence of upstream CACGTG elements. These results indicate that the presence or absence of the TATA element determines, at least in part, the expression profile of the HpOtxE/L promoters, in concert with the transcription factor(s) that binds to the upstream CACGTG element. Immunoblot and gel retardation analyses suggest that functional interaction between CACGTG binding factor(s) and TATA factor(s) may be regulated by an unidentified third factor(s) during early embryogenesis in the sea urchin.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Electrophoretic Mobility Shift Assay
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Luciferases/genetics
- Luciferases/metabolism
- Molecular Sequence Data
- Otx Transcription Factors
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/physiology
- Sea Urchins/embryology
- Sea Urchins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- TATA Box/genetics
- TATA Box/physiology
- TATA-Box Binding Protein
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Upstream Stimulatory Factors
Collapse
Affiliation(s)
- Akiko Kobayashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
35
|
Banik U, Beechem JM, Klebanow E, Schroeder S, Weil PA. Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J Biol Chem 2001; 276:49100-9. [PMID: 11677244 DOI: 10.1074/jbc.m109246200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used a combination of fluorescence anisotropy spectroscopy and fluorescence-based native gel electrophoresis methods to examine the effects of the transcription factor IID-specific subunit TAF130p (TAF145p) upon the TATA box DNA binding properties of TATA box-binding protein (TBP). Purified full-length recombinant TAF130p decreases TBP-TATA DNA complex formation at equilibrium by competing directly with DNA for binding to TBP. Interestingly, we have found that full-length TAF130p is capable of binding multiple molecules of TBP with nanomolar binding affinity. The biological implications of these findings are discussed.
Collapse
Affiliation(s)
- U Banik
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Innumerable transcription factors integrate cellular and intercellular signals to generate a profile of expressed genes that is characteristic of the biochemical and cellular properties of the cell. This profile of expressed genes changes dynamically along with the developmental stage and differentiation state of the cell. The biochemical machinery upon which transcription factors integrate their signals is referred to as the general transcription machinery. However, this machinery is not of universal composition, and variants of the general transcription factors play specific roles in embryonic development, reflecting the constraints and requirements of developmental gene regulation.
Collapse
Affiliation(s)
- G J Veenstra
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | | |
Collapse
|
37
|
Wu SY, Chiang CM. TATA-binding protein-associated factors enhance the recruitment of RNA polymerase II by transcriptional activators. J Biol Chem 2001; 276:34235-43. [PMID: 11457828 DOI: 10.1074/jbc.m102463200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor (TF) IID, comprised of the TATA-binding protein (TBP) and TBP-associated factors (TAFs), is a general transcription factor required for RNA polymerase II (pol II) transcription on most eukaryotic genes. Recent findings that TAFs may not be globally required for activator-dependent transcription in vivo and in vitro and that both TAF-dependent and TAF-independent promoters are found in yeast suggest that transcriptional activation can occur through at least two different pathways, depending on the presence or absence of TAFs. Using order-of-addition and template challenge assays performed in a human cell-free transcription system reconstituted with recombinant general transcription factors (TFIIB, TBP, TFIIE, TFIIF), a recombinant general cofactor (PC4), and highly purified epitope-tagged multiprotein complexes (TFIID, TFIIH, pol II), we demonstrate that when TBP is used as the TATA-binding factor transcriptional activators such as Gal4-VP16 and human papillomavirus E2 mainly function by facilitating pol II entry to the promoter region. In contrast, when TFIID is used as the TATA-binding factor, promoter recognition by TFIID appears to be the rate-limiting step facilitated by transcriptional activators during preinitiation complex assembly. Using protein-protein pull-down and far-Western analyses, we further show that the presence of TAFs in TFIID facilitates the recruitment of pol II by transcriptional activators, thereby switching the rate-limiting step from pol II entry to promoter recognition. Our findings thus provide distinct molecular mechanisms for TAF-independent and TAF-dependent activation.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | |
Collapse
|
38
|
Remboutsika E, Jacq X, Tora L. Chromatin is permissive to TATA-binding protein (TBP)-mediated transcription initiation. J Biol Chem 2001; 276:12781-4. [PMID: 11279078 DOI: 10.1074/jbc.m100481200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preinitiation complex assembly is nucleated by the binding of TFIID to the promoters of protein coding genes transcribed by RNA polymerase II. TFIID is comprised of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s). We investigated the transcription properties of TBP and TFIID on chromatin templates. On naked templates both TBP and purified TFIID are able to initiate basal transcription. However, on chromatin templates only TBP mediates transcription initiation in a heat-treated extract, whereas TFIID does not. Moreover, TBP-mediated chromatin transcription is blocked in a nontreated extract. These observations suggest that a chromatin-targeted repressor is present in crude extracts and that chromatin per se is not refractory to transcription mediated by TBP. As TBP can function through TAF(II)-independent and TAF(II)-dependent pathways, the repression of TBP-mediated basal transcription may be an additional level to the control of Pol II transcription initiation on chromatin.
Collapse
Affiliation(s)
- E Remboutsika
- Department of Transcriptional and Post-transcriptional Control of Gene Regulation, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, F-67404 Illkirch Cedex, Communauté Urbaine de Strasbourg, France
| | | | | |
Collapse
|
39
|
Müller F, Lakatos L, Dantonel J, Strähle U, Tora L. TBP is not universally required for zygotic RNA polymerase II transcription in zebrafish. Curr Biol 2001; 11:282-7. [PMID: 11250159 DOI: 10.1016/s0960-9822(01)00076-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
General transcription factors TFIIA, B, D, E, F, H, and RNA polymerase II (Pol II) are required for accurate initiation of Pol II transcription. The TATA binding protein (TBP), a subunit of TFIID, is responsible for recognition of the TATA box, a core element shared by a category of class II promoters [1]. Recently, novel TBP-like factors (TLFs) have been described in metazoan organisms [2]. In spite of the numerous in vitro studies describing the general role of TBP in RNA polymerase II (Pol lI) transcription initiation, the precise function of TBP and the newly described TLF is poorly understood in vivo. We inhibited TBP and TLF function in zebrafish embryos to study the role of these factors during zygotic transcription. A dominant-negative variant of TLF mRNA and a TBP morpholino antisense oligo was used to block either TLF or TBP function. Both TBP- or TLF-blocked embryos developed normally until the midblastula stage; however, they then failed to gastrulate. Several zygotic regulatory genes were downregulated by a block in either TBP or TLF function, while others were differentially affected. These results suggest that TBP is not universally required for Pol II transcription in vertebrates and that there is a differential requirement for TBP and TLF during early embryogenesis.
Collapse
Affiliation(s)
- F Müller
- Department of Developmental Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP BP 163, F-67404 Cedex, C.U. de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
40
|
Teichmann M, Wang Z, Roeder RG. A stable complex of a novel transcription factor IIB- related factor, human TFIIIB50, and associated proteins mediate selective transcription by RNA polymerase III of genes with upstream promoter elements. Proc Natl Acad Sci U S A 2000; 97:14200-5. [PMID: 11121026 PMCID: PMC18895 DOI: 10.1073/pnas.97.26.14200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factor IIIB (TFIIIB) is directly involved in transcription initiation by RNA polymerase III in eukaryotes. Yeast contain a single TFIIIB activity that is comprised of the TATA-binding protein (TBP), TFIIB-related factor 1 (BRF1), and TFIIIB", whereas two distinct TFIIIB activities, TFIIIB-alpha and TFIIIB-beta, have been described in human cells. Human TFIIIB-beta is required for transcription of genes with internal promoter elements, and contains TBP, a TFIIIB" homologue (TFIIIB150), and a BRF1 homologue (TFIIIB90), whereas TFIIIB-alpha is required for transcription of genes with promoter elements upstream of the initiation site. Here we describe the identification, cloning, and characterization of TFIIIB50, a novel homologue of TFIIB and TFIIIB90. TFIIIB50 and tightly associated factors, along with TBP and TFIIIB150, reconstitute human TFIIIB-alpha activity. Thus, higher eukaryotes, in contrast to the yeast Saccharomyces cerevisiae, have evolved two distinct TFIIB-related factors that mediate promoter selectivity by RNA polymerase III.
Collapse
Affiliation(s)
- M Teichmann
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|