1
|
Nóvoa E, da Silva Lima N, Gonzalez-Rellan MJ, Chantada-Vazquez MD, Verheij J, Rodriguez A, Esquinas-Roman EM, Fondevila MF, Koning M, Fernandez U, Cabaleiro A, Parracho T, Iglesias-Moure J, Seoane S, Porteiro B, Escudero A, Senra A, Perez-Fernandez R, López M, Fidalgo M, Guallar D, Martinez-Chantar ML, Dieguez C, Varela-Rey M, Prevot V, Schwaninger M, Meijnikman A, Bravo SB, Frühbeck G, Nogueiras R. Mitochondrial antiviral signaling protein enhances MASLD progression through the ERK/TNFα/NFκβ pathway. Hepatology 2025; 81:1535-1552. [PMID: 38761407 PMCID: PMC11999095 DOI: 10.1097/hep.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/19/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AND AIMS Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. APPROACH AND RESULTS Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκβ. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. CONCLUSIONS MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD.
Collapse
Affiliation(s)
- Eva Nóvoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Natália da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria J. Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria D.P. Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Amaia Rodriguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
| | - Eva M. Esquinas-Roman
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Marcos F. Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mirja Koning
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Iglesias-Moure
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Adriana Escudero
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Miguel Fidalgo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Diana Guallar
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Maria L. Martinez-Chantar
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Abraham Meijnikman
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Susana B. Bravo
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), A Coruña, Spain
| | - Gema Frühbeck
- Department of Pathology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Endocrinology & Nutrition, Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Navarra, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2025; 145:766-779. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
3
|
Chen X, Sun W, Kong X, Ming X, Zhang Y, Yan W, Mohibi S, Chen M, Mitchell K, Zhang J. TAp63γ is the primary isoform of TP63 for tumor suppression but not development. Cell Death Discov 2025; 11:51. [PMID: 39915463 PMCID: PMC11802870 DOI: 10.1038/s41420-025-02326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
TP63 is expressed as TAp63 and ΔNp63 from the P1 and P2 promoters, respectively. While TAp63 and ΔNp63 are expressed as three TAp63α/β/γ and ΔNp63α/β/γ due to alternative splicing, only p63α (TA and ΔN) and p63γ (TA and ΔN) proteins are found to be detectable and likely to be responsible for p63-dependent activity. Previous studies implied and/or demonstrated that TAp63α, which contains an N-terminal activation domain conserved in p53, functions as a tumor suppressor by regulating an array of genes for growth suppression. By contrast, ΔNp63α, which also contains an N-terminal activation domain but is different from that in TAp63, regulates a unique set of genes and functions as a master regulator for development of epidermis and other stratified epithelial tissues. However, the biological function of p63γ is largely unexplored. To explore this, we generated a mouse model in that exon 10', a coding exon specific for p63γ, was deleted by CRISPR-cas9. We showed that mice deficient in p63γ are viable and futile, which is different from mice deficient in total TP63 or p63α. Like TAp63-deficient mice, p63γ-deficient mice have a short lifespan and are prone to spontanenous tumors. Additionally, loss of p63γ shortens the lifespan of tumor-free mice potentially via increased cellular senescence. Moreover, mice deficient in p63γ are prone to chronic inflammation in multiple organs and liver steatosis potentially via altered lipid metabolism. Single-cell RNA-seq revealed that loss of p63γ increases the expression of SCD1, a rate-limiting enzyme for synthesis of monounsaturated fatty acids, leading to altered lipid homeostasis. Together, our data indicate that TP63γ is the primary isoform of TP63 for tumor suppression but not development by maintaining normal inflammatory response and lipid homeostasis.
Collapse
Affiliation(s)
- Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
- Department of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Xin Ming
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Keith Mitchell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA.
| |
Collapse
|
4
|
Zhuang J, Li Y, Chen Y, Zhang H, Liu S, Hu M, Chen C. Molecular characterization of a rare TP63 variant associated with split-hand/split-foot malformation 4 and incomplete penetrance: disruption of the p63-Dlx signaling pathway. BMC Genomics 2025; 26:113. [PMID: 39910461 PMCID: PMC11800522 DOI: 10.1186/s12864-025-11297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Split-hand/foot malformation (SHFM) is a congenital disability characterized by the absence or hypoplasia of the central ray of the hands and/or feet. This study reports a causative variant in the TP63 gene in a Chinese family exhibiting limb anomalies associated with SHFM4. METHODS Enrolled in this study was a Chinese family with limb anomalies without any other clinical features. Karyotype analysis and chromosomal microarray analysis (CMA) were conducted to identify chromosomal abnormalities. Whole exome sequencing (WES) was utilized to investigate sequence variants, while RNA sequencing assessed differentially expressed genes, with findings confirmed through quantitative PCR (qPCR). RESULTS Karyotype analysis and CMA revealed no chromosomal abnormalities in the family. Subsequently, WES identified a rare heterozygous variant of NM_003722.5: c.956G > A (p.Arg319His) in the TP63 gene in the proband, which was inherited from her father who also presented with limb deformities. However, both of the sister and grandfather of the proband had the same variant but exhibited normal limb morphology. RNA sequencing results demonstrated an increased expression level of TP63 and its downstream genes (PERP, CDH3, and DLX5) compared with the controls, indicating an enrichment of cell adhesion molecules the differentially expressed genes in the patient. However, significant differences were noted only for the CDH3 and DLX5 genes in qPCR analysis (p<0.05). CONCLUSION This study identifies, for the first time, the TP63 gene variant c.956G > A (p.Arg319His) as a causative factor for SHFM4 in Chinese individuals with incomplete penetrance. In addition, we hypothesize that the p.Arg319His variant functions as a gain-of-function variant, leading to the upregulation of cell adhesion target genes. Such upregulation then disrupts the p63-Dlx signaling pathway and causes AER stratification failure.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China.
| | - Yanqing Li
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Yu'e Chen
- Department of Ultrasound, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Hegan Zhang
- Department of Gynecology, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, Fujian Province, China
| | - Shufen Liu
- Department of Neurology, Rare Disease Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Manman Hu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Chunnuan Chen
- Department of Neurology, Rare Disease Medical Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
5
|
Kato Y, Inaba T, Shinke K, Hiramatsu N, Horie T, Sakamoto T, Hata Y, Sugihara E, Takimoto T, Nagai N, Ishigaki Y, Kojima H, Nagano O, Yamamoto N, Saya H. Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing. Cells 2025; 14:215. [PMID: 39937006 PMCID: PMC11817626 DOI: 10.3390/cells14030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Developmental toxicity testing is essential to identify substances that may harm embryonic development. This study aimed to establish a protocol for evaluating developmental toxicity using human induced pluripotent stem cells (iPSCs) by analyzing cellular activity and gene expression changes. Two ICH S5(R3) positive substances, valproic acid (VPA), which is a substance previously detected as positive by other test methods, and thalidomide (Thalido), were examined during early trichoderm differentiation without fetal bovine serum. RNA-seq analysis identified seven candidate genes, including TP63, associated with altered expression following exposure to VPA or Thalido. These genes were implicated in pathways related to tissue development, cell growth, and molecular interactions. While the assay effectively detected VPA and Thalido, its limitations include testing only soluble substances and focusing on early differentiation stages. Nevertheless, the protocol demonstrates potential for the classification and evaluation of emerging modality drugs based on physical properties such as solubility, polarity, and pH. Integration with AI analysis may enhance its capacity to uncover genetic variations and evaluate previously uncharacterized substances. This study provides a foundation for alternative developmental toxicity testing methods, with further refinements in the culture method expected to improve accuracy and applicability in regulatory toxicology.
Collapse
Affiliation(s)
- Yu Kato
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
- Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Takeshi Inaba
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (T.I.); (K.S.)
| | - Koudai Shinke
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (T.I.); (K.S.)
| | - Noriko Hiramatsu
- Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
- Clinical Laboratory, Fujita Health University Hospital, Toyoake 470-1192, Aichi, Japan
| | - Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (T.H.); (T.S.); (Y.I.)
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (T.H.); (T.S.); (Y.I.)
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Yuko Hata
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Eiji Sugihara
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Tetsuya Takimoto
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka 577-8502, Osaka, Japan;
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (T.H.); (T.S.); (Y.I.)
| | - Hajime Kojima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan;
- National Institute of Health Sciences (NIHS), Kawasaki 210-9501, Kanagawa, Japan
| | - Osamu Nagano
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
| | - Naoki Yamamoto
- Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (T.I.); (K.S.)
- International Center for Cell and Gene Therapy, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
| |
Collapse
|
6
|
Lotz R, Osterburg C, Chaikuad A, Weber S, Akutsu M, Machel AC, Beyer U, Gebel J, Löhr F, Knapp S, Dobbelstein M, Lu X, Dötsch V. Alternative splicing in the DBD linker region of p63 modulates binding to DNA and iASPP in vitro. Cell Death Dis 2025; 16:4. [PMID: 39762243 PMCID: PMC11704248 DOI: 10.1038/s41419-024-07320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The transcription factor p63 is expressed in many different isoforms as a result of differential promoter use and splicing. Some of these isoforms have very specific physiological functions in the development and maintenance of epithelial tissues and surveillance of genetic integrity in oocytes. The ASPP family of proteins is involved in modulating the transcriptional activity of the p53 protein family members, including p63. In particular, iASPP plays an important role in the development and differentiation of epithelial tissues. Here we characterize the interaction of iASPP with p63 and show that it binds to the linker region between the DNA binding domain and the oligomerization domain. We further demonstrate that this binding site is removed in a splice variant of p63 where a stretch of five amino acids is replaced with a single alanine residue. This stretch contains a degenerate class II SH3 domain binding motif that is responsible for interaction with iASPP, as well as two positively charged amino acids. Moreover, the concomitant loss of the charged amino acids in the alternatively spliced version decreases the affinity of p63 to its cognate DNA element two- to threefold. mRNAs encoding full-length p63, as well as its alternatively spliced version, are present in all tissues that we investigated, albeit in differing ratios. We speculate that, through the formation of hetero-complexes of both isoforms, the affinity to DNA, as well as the interaction with iASPP, can be fine-tuned in a tissue-specific manner.
Collapse
Affiliation(s)
- Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University, 60438, Frankfurt, Germany
- Structural Genomics Consortium (SGC), Goethe University, 60438, Frankfurt, Germany
| | - Sabrina Weber
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438, Frankfurt, Germany
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Anne Christin Machel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Ulrike Beyer
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, 60438, Frankfurt, Germany
- Structural Genomics Consortium (SGC), Goethe University, 60438, Frankfurt, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
7
|
Lotz R, Osterburg C, Schäfer B, Lu X, Dötsch V. Cardiocutaneous syndrome is caused by aggregation of iASPP mutants. Cell Death Discov 2024; 10:497. [PMID: 39695191 DOI: 10.1038/s41420-024-02265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
The ASPP (apoptosis-stimulating protein of p53) family of proteins is involved in many cellular interactions and is starting to emerge as a major scaffolding hub for numerous proteins involved in cancer biology, inflammation and cellular integrity. It consists of the three members ASPP1, ASPP2 and iASPP which are best known for modulating the apoptotic function of p53, thereby directing cell fate decision. Germline mutations in iASPP have been shown to cause cardiocutaneous syndromes, a combination of heart and skin defects usually leading to death before the age of five. Mutations in iASPP causing these syndromes do not cluster in hot spots but are distributed throughout the protein. To understand the molecular mechanism(s) of how mutations in iASPP cause the development of cardiocutaneous syndromes we analysed the stability and solubility of iASPP mutants, characterized their interaction with chaperones and investigated their influence on NF-ĸB activity. Here we show that three different mechanisms are responsible for loss of function of iASPP: loss of the complete C-terminal domain, mutations resulting in increased auto-inhibition and aggregation due to destabilization of the C-terminal domain. In contrast to these germline mutations causing cardiocutaneous syndromes, missense mutations found in cancer do not result in aggregation.
Collapse
Affiliation(s)
- Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| | - Birgit Schäfer
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
| |
Collapse
|
8
|
Baniulyte G, McCann AA, Woodstock DL, Sammons MA. Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity. Nucleic Acids Res 2024; 52:13812-13831. [PMID: 39565223 DOI: 10.1093/nar/gkae1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression. The specific mechanisms controlling p63-dependent gene regulatory activity are not well understood. Here, we use massively parallel reporter assays (MPRA) to investigate how local DNA sequence context influences p63-dependent transcriptional activity. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, although binding of the p63 paralog, p53, drives a substantial proportion of that activity. p63RE sequence content and co-enrichment with other known activating and repressing transcription factors, including lineage-specific factors, correlates with differential p63RE-mediated activities. p63 isoforms dramatically alter transcriptional behavior, primarily shifting inactive regulatory elements towards high p63-dependent activity. Our analysis provides novel insight into how local sequence and cellular context influences p63-dependent behaviors and highlights the key, yet still understudied, role of transcription factor paralogs and isoforms in controlling gene regulatory element activity.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Abby A McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dana L Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| |
Collapse
|
9
|
Hira A, Zhang J, Kadakia MP. TIP60 enhances cisplatin resistance via regulating ΔNp63α acetylation in SCC. Cell Death Dis 2024; 15:877. [PMID: 39627186 PMCID: PMC11615348 DOI: 10.1038/s41419-024-07265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Non-melanoma skin cancer, including basal and squamous cell carcinoma, is the most common form of cancer worldwide, with approximately 5.4 million new cases diagnosed each year in the United States. While the chemotherapeutic drug cisplatin is often used to treat squamous cell carcinoma (SCC) patients, low response rates and disease recurrence are common. In this study, we show that TIP60 and ΔNp63α levels correlate with cisplatin resistance in SCC cell lines, suggesting that TIP60 contributes to the failure of platinum-based drugs in SCC by regulating the stability and transcriptional activity of ΔNp63α. Depletion of endogenous TIP60 or pharmacological inhibition of TIP60 led to a decrease in ΔNp63α protein and acetylation levels in multiple SCC cell lines. We showed that TIP60 upregulates ΔNp63α protein levels in cisplatin-resistant SCC cell lines by protecting it from cisplatin-mediated degradation and increasing its protein stability. Stable expression of TIP60 or ΔNp63α individually promoted resistance to cisplatin and reduced cell death, while loss of either TIP60 or ΔNp63α induced G2/M arrest, increased cell death, and sensitized cells to cisplatin. Moreover, pharmacological inhibition of TIP60 reduced acetylation of ΔNp63α and sensitized resistant cells to cisplatin. Taken together, our study indicates that TIP60-mediated stabilization of ΔNp63α increases cisplatin resistance and provides critical insights into the mechanisms by which ΔNp63α confers cisplatin resistance by promoting cell proliferation and inhibiting apoptosis. Furthermore, our data suggests that inhibition of TIP60 may be therapeutically advantageous in overcoming cisplatin resistance in SCC and other epithelial cancers.
Collapse
Affiliation(s)
- Akshay Hira
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jin Zhang
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Madhavi P Kadakia
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA.
| |
Collapse
|
10
|
Pérez-Posada A, Lin CY, Fan TP, Lin CY, Chen YC, Gómez-Skarmeta JL, Yu JK, Su YH, Tena JJ. Hemichordate cis-regulatory genomics and the gene expression dynamics of deuterostomes. Nat Ecol Evol 2024; 8:2213-2227. [PMID: 39424956 PMCID: PMC11618098 DOI: 10.1038/s41559-024-02562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes. However, a comprehensive, quantitative catalogue of gene expression and chromatin dynamics in hemichordates is still lacking. In this study, we analysed the transcriptomes and chromatin accessibility of multiple developmental stages of the indirect-developing hemichordate Ptychodera flava. We observed that P. flava development is underpinned by a biphasic transcriptional program probably controlled by distinct genetic networks. Comparisons with other bilaterian species revealed similar transcriptional and regulatory dynamics during hemichordate gastrulation, cephalochordate neurulation and elongation stages of annelids. By means of regulatory networks analysis and functional validations by transgenesis experiments in echinoderms, we propose that gastrulation is the stage of highest molecular resemblance in deuterostomes and that much of the molecular basis of deuterostome development was probably present in the bilaterian last common ancestor.
Collapse
Affiliation(s)
- Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.
| |
Collapse
|
11
|
Foffi E, Violante A, Pecorari R, Lena AM, Rugolo F, Melino G, Candi E. BRD4 sustains p63 transcriptional program in keratinocytes. Biol Direct 2024; 19:124. [PMID: 39605045 PMCID: PMC11600901 DOI: 10.1186/s13062-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essential for epithelial development and skin homeostasis. Our protein-protein interaction assays demonstrated a strong and conserved physical interaction between BRD4 and the p53 family members-p63, p73, and p53-suggesting a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-transformed cells, such as keratinocytes, remain largely unknown. Our functional analyses revealed changes in cellular proliferation and differentiation in keratinocytes depleted of either p63 or BRD4, which were further supported by using the BRD4 inhibitor JQ1. Transcriptomic analyses, chromatin immunoprecipitation, and RT-qPCR indicated a synergistic mechanism between p63 and BRD4 in regulating the transcription of keratinocyte-specific p63 target genes, including HK2, FOXM1, and EVPL. This study not only highlights the complex relationship between BRD4 and p53 family members but also suggests a role for BRD4 in maintaining keratinocyte functions. Our findings pave the way for further exploration of potential therapeutic applications of BRD4 inhibitors in treating skin disorders.
Collapse
Affiliation(s)
- E Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - A Violante
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - R Pecorari
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - A M Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - F Rugolo
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - G Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - E Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
12
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
13
|
Buckley NA, Craxton A, Sun XM, Panatta E, Pinon LG, Beier S, Kalmar L, Llodrá J, Morone N, Amelio I, Melino G, Martins LM, MacFarlane M. TAp73 regulates mitochondrial dynamics and multiciliated cell homeostasis through an OPA1 axis. Cell Death Dis 2024; 15:807. [PMID: 39516459 PMCID: PMC11549358 DOI: 10.1038/s41419-024-07130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Dysregulated mitochondrial fusion and fission has been implicated in the pathogenesis of numerous diseases. We have identified a novel function of the p53 family protein TAp73 in regulating mitochondrial dynamics. TAp73 regulates the expression of Optic Atrophy 1 (OPA1), a protein responsible for controlling mitochondrial fusion, cristae biogenesis and electron transport chain function. Disruption of this axis results in a fragmented mitochondrial network and an impaired capacity for energy production via oxidative phosphorylation. Owing to the role of OPA1 in modulating cytochrome c release, TAp73-/- cells display an increased sensitivity to apoptotic cell death, e.g., via BH3-mimetics. We additionally show that the TAp73/OPA1 axis has functional relevance in the upper airway, where TAp73 expression is essential for multiciliated cell differentiation and function. Consistently, ciliated epithelial cells of Trp73-/- (global p73 knock-out) mice display decreased expression of OPA1 and perturbations of the mitochondrial network, which may drive multiciliated cell loss. In support of this, Trp73 and OPA1 gene expression is decreased in chronic obstructive pulmonary disease (COPD) patients, a disease characterised by alterations in mitochondrial dynamics. We therefore highlight a potential mechanism involving the loss of p73 in COPD pathogenesis. Our findings also add to the growing body of evidence for growth-promoting roles of TAp73 isoforms.
Collapse
Affiliation(s)
- Niall A Buckley
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andrew Craxton
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Emanuele Panatta
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Sina Beier
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Jaime Llodrá
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Ivano Amelio
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Division for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerry Melino
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | |
Collapse
|
14
|
Marakhonov A, Serebryakova E, Mukhina A, Vechkasova A, Prokhorov N, Efimova I, Balinova N, Lobenskaya A, Vasilyeva T, Zabnenkova V, Ryzhkova O, Rodina Y, Pershin D, Soloveva N, Fomenko A, Saydaeva D, Ibisheva A, Irbaieva T, Koroteev A, Zinchenko R, Voronin S, Shcherbina A, Kutsev S. A Rare Case of TP63-Associated Lymphopenia Revealed by Newborn Screening Using TREC. Int J Mol Sci 2024; 25:10844. [PMID: 39409174 PMCID: PMC11482481 DOI: 10.3390/ijms251910844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The expanded newborn screening (NBS) program in the Russian Federation was initiated in 2023, among which severe combined immunodeficiency (SCID) is screened using TREC/KREC assays. Here, we report a rare case of a TP63-associated disease identified through this NBS program. Dried blood spots from newborns were initially screened for TREC/KREC levels, and those with values below the cut-off underwent confirmatory testing and further genetic analysis, including whole-exome sequencing (WES). A male newborn was identified with significantly reduced TREC values, indicative of T cell lymphopenia. Genetic analysis revealed a heterozygous NM_003722.5:c.1027C>T variant in TP63, leading to the p.(Arg343Trp) substitution within the DNA binding domain. This mutation has been previously associated with Ectrodactyly-Ectodermal Dysplasia-Cleft lip/palate syndrome (EEC) syndrome and shown to reduce the transactivation activity of TP63 in a dominant-negative manner. This case represents one of the few instances of immune system involvement in a patient with a TP63 mutation, highlighting the need for further investigation into the immunological aspects of TP63-associated disorders. Our findings suggest that comprehensive immunological evaluation should be considered for patients with TP63 mutations to better understand and manage potential immune dysfunctions.
Collapse
Affiliation(s)
- Andrey Marakhonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Elena Serebryakova
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Anna Mukhina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Anastasia Vechkasova
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Nikolai Prokhorov
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA;
| | - Irina Efimova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Natalia Balinova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Anastasia Lobenskaya
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Tatyana Vasilyeva
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Victoria Zabnenkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Oxana Ryzhkova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Nadezhda Soloveva
- Department of Neonatal and Infantile Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (N.S.); (A.F.)
| | - Anna Fomenko
- Department of Neonatal and Infantile Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (N.S.); (A.F.)
| | - Djamila Saydaeva
- State Budgetary Institution “Maternity Hospital” of the Ministry of Healthcare of the Chechen Republic, 364017 Grozny, Russia; (D.S.); (A.I.)
| | - Aset Ibisheva
- State Budgetary Institution “Maternity Hospital” of the Ministry of Healthcare of the Chechen Republic, 364017 Grozny, Russia; (D.S.); (A.I.)
| | - Taisiya Irbaieva
- Department of Maternity and Childhood, Ministry of Healthcare of the Chechen Republic, 364061 Grozny, Russia;
| | - Alexander Koroteev
- Saint-Petersburg State Medical Diagnostic Center (Medical Genetic Center), 194044 Saint-Petersburg, Russia; (E.S.); (A.V.); (A.L.); (A.K.)
| | - Rena Zinchenko
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Sergey Voronin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia; (A.M.); (Y.R.); (D.P.); (A.S.)
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (I.E.); (N.B.); (T.V.); (V.Z.); (O.R.); (R.Z.); (S.V.); (S.K.)
| |
Collapse
|
15
|
Pietryga K, Jesse K, Drzyzga R, Konka A, Zembala-John J, Kowalik A, Kiełbowicz Z, Ćwirko M, Bułdak RJ, Dobrowolski D, Wylęgała E. Bio-printing method as a novel approach to obtain a fibrin scaffold settled by limbal epithelial cells for corneal regeneration. Sci Rep 2024; 14:23352. [PMID: 39375390 PMCID: PMC11458895 DOI: 10.1038/s41598-024-73383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Treatment of Limbal Stem Cell Deficiency (LSCD), based on autologous transplantation of the patient's stem cells, is one of the few medical stem cell therapies approved by the European Medicines Agency (EMA). It relies on isolating and culturing in vivo Limbal Epithelial Stem Cells (LESC) and then populating them on the fibrin substrate, creating a scaffold for corneal epithelial regeneration. Such a solution is then implanted into the patient's eye. The epithelial cell culture process is specific, and its results strongly depend on the initial cell seeding density. Achieving control of the density and repeatability of the process is a desirable aim and can contribute to the success of the therapy. The study aimed to test bioprinting as a potential technique to increase the control over LESCs seeding on a scaffold and improve process reproducibility. Cells were applied to 0.5 mm thick, flat, transparent fibrin substrates using extrusion bioprinting; the control was the traditional manual application of cells using a pipette. The use of 3D printer enabled uniform coverage of the scaffold surface, and LESCs density in printed lines was close to the targeted value. Moreover, printed cells had higher cell viability than those seeded traditionally (91.1 ± 8.2% vs 82.6 ± 12.8%). The growth rate of the epithelium was higher in bioprinted samples. In both methods, the epithelium had favorable phenotypic features (p63 + and CK14 +). 3D printing constitutes a promising approach in LSCD therapy. It provides favorable conditions for LESCs growth and process reproducibility. Its application may lead to reduced cell requirements, thereby to using fewer cells on lower passages, which will contribute to preserving LESCs proliferative potential.
Collapse
Affiliation(s)
- Krzysztof Pietryga
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800, Zabrze, Poland
| | - Katarzyna Jesse
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800, Zabrze, Poland
| | - Rafał Drzyzga
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800, Zabrze, Poland
| | - Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800, Zabrze, Poland
| | - Joanna Zembala-John
- Acellmed, M. Curie-Skłodowskiej 10C, 41-800, Zabrze, Poland
- Department of Medicine and Environmental Epidemiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, H. Jordana 19, 41-808, Zabrze, Poland
| | | | - Zdzisław Kiełbowicz
- Department and Clinic of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marek Ćwirko
- Ophthalmology Clinical Centre SPEKTRUM, ul. Zaolziańska 4, Wroclaw, Poland
| | - Rafał J Bułdak
- Acellmed, M. Curie-Skłodowskiej 10C, 41-800, Zabrze, Poland
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Dariusz Dobrowolski
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65, 40-760, Katowice, Poland.
- Department of Ophthalmology, Trauma Center, St. Barbara Hospital, Medyków Square 1, 41-200, Sosnowiec, Poland.
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Panewnicka 65, 40-760, Katowice, Poland
- Chair Vice-Rector for Development and Technology Transfer (Chair End Ophthalmology Departament in Faculty of Medical Sciences in Zabrze, Railway Hospital in Katowice), Katowice, Poland
| |
Collapse
|
16
|
Gall A, Bosticardo M, Ma S, Chen K, Amini K, Pala F, Delmonte OM, Wenger T, Bamshad M, Sleasman J, Blessing M, van Oers NSC, Notarangelo LD, de la Morena MT. Case report: Artificial thymic organoids facilitate clinical decisions for a patient with a TP63 variant and severe persistent T cell lymphopenia. Front Immunol 2024; 15:1438383. [PMID: 39364398 PMCID: PMC11448704 DOI: 10.3389/fimmu.2024.1438383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Pathogenic variants in the transcription factor TP63 are associated with clinically overlapping syndromes including ectrodactyly-ectodermal dysplasia clefting (EEC) and ankyloblepharon-ectodermal defects-cleft lip/palate (AEC). T cell lymphopenia has rarely been described in individuals with TP63 variants and the cause of the T cell defect is unclear. Here, we present a case of a female infant born with TP63-related syndrome and profound T cell lymphopenia, first uncovered through newborn screening. Flow cytometry analysis revealed low CD4+ naïve T cells and nearly absent CD8+ T cells with intact B and NK cell compartments. A de novo heterozygous pathogenic variant c.1040 G>A (C347Y) in exon 8 of TP63 was identified. An artificial thymic organoid system, to assess the intrinsic ability of the patient's hematopoietic cells to develop into T cells, was performed twice using separate peripheral blood samples. Ex vivo T cell differentiation was evident with the artificial organoid system, suggesting that a thymic stromal cell defect may be the cause of the T cell lymphopenia. Consistent with this, interrogation of publicly available data indicated that TP63 expression in the human thymus is restricted to thymic epithelial cells. Based on these data, congenital athymia was suspected and the patient received an allogenic cultured thymus tissue implant (CTTI). This is the first report of suspected congenital athymia and attempted treatment with CTTI associated with TP63 variant. At 9 months post-implant, peripheral lymphocyte analysis revealed measurable T cell receptor excision circles and presence of CD4+ recent thymic emigrants suggestive of early thymopoiesis. She will continue regular monitoring to ensure restoration of T cell immunity.
Collapse
Affiliation(s)
- Alevtina Gall
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stacey Ma
- Division of Allergy and Infectious Diseases, Department of Internal Medicine, University of Washington, Seattle, WA, United States
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tara Wenger
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, United States
| | - John Sleasman
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Matthew Blessing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| | - Nicolai S. C. van Oers
- Department of Immunology, Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - M. Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, WA, United States
| |
Collapse
|
17
|
Polito MP, Romaldini A, Rinaldo S, Enzo E. Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation. Biol Direct 2024; 19:63. [PMID: 39113077 PMCID: PMC11308432 DOI: 10.1186/s13062-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, 00185, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
18
|
Fondevila MF, Novoa E, Fernandez U, Dorta V, Parracho T, Kreimeyer H, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Porteiro B, Cabaleiro A, Koning M, Senra A, Souto Y, Verheij J, Guallar D, Fidalgo M, Meijnikman AS, da Silva Lima N, Dieguez C, Gonzalez-Rellan MJ, Nogueiras R. Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice. Mol Metab 2024; 85:101962. [PMID: 38815625 PMCID: PMC11180345 DOI: 10.1016/j.molmet.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Mijra Koning
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Yara Souto
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Diana Guallar
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Abraham S Meijnikman
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, M5T 3H7, Canada
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, 15702, Spain.
| |
Collapse
|
19
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
20
|
Kim U, Debnath R, Maiz JE, Rico J, Sinha S, Blanco MA, Chakrabarti R. ΔNp63 regulates MDSC survival and metabolism in triple-negative breast cancer. iScience 2024; 27:109366. [PMID: 38510127 PMCID: PMC10951988 DOI: 10.1016/j.isci.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) contributes greatly to mortality of breast cancer, demanding new targetable options. We have shown that TNBC patients have high ΔNp63 expression in tumors. However, the function of ΔNp63 in established TNBC is yet to be explored. In current studies, targeting ΔNp63 with inducible CRISPR knockout and Histone deacetylase inhibitor Quisinostat showed that ΔNp63 is important for tumor progression and metastasis in established tumors by promoting myeloid-derived suppressor cell (MDSC) survival through tumor necrosis factor alpha. Decreasing ΔNp63 levels are associated with decreased CD4+ and FOXP3+ T-cells but increased CD8+ T-cells. RNA sequencing analysis indicates that loss of ΔNp63 alters multiple MDSC properties such as lipid metabolism, chemotaxis, migration, and neutrophil degranulation besides survival. We further demonstrated that targeting ΔNp63 sensitizes chemotherapy. Overall, we showed that ΔNp63 reprograms the MDSC-mediated immunosuppressive functions in TNBC, highlighting the benefit of targeting ΔNp63 in chemotherapy-resistant TNBC.
Collapse
Affiliation(s)
- Ukjin Kim
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Debnath
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Javier E. Maiz
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua Rico
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satrajit Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Mario Andrés Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rumela Chakrabarti
- Department of Surgery, Sylvester Comprehensive Cancer, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Traoré L, Savadogo M, Zouré AA, Kiendrebeogo TI, Soudre FMBTB, Dabre S, Traore ADD, Adico MDW, Lare T, Ouedraogo TWC, Ouedraogo RA, Ouattara AK, Yelemkoure ET, Sawadogo AY, Zongo N, Bambara HA, Nadembega CW, Djigma FW, Simpore J. Carrying SNP rs17506395 (T > G) in TP63 gene and CCR5Δ32 mutation associated with the occurrence of breast cancer in Burkina Faso. Open Life Sci 2024; 19:20220847. [PMID: 38585642 PMCID: PMC10998675 DOI: 10.1515/biol-2022-0847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/25/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Genetic alterations in the TP63 (GenBank: NC_000003.12, ID: 8626) and CCR5 (receptor 5 chemokine co-receptor) (GenBank: NC_000003.12, ID: 1234) genes may increase the risk of developing breast cancer. The aim of this study was to investigate the probable involvement of polymorphisms rs17506395 in the TP63 (tumour protein 63) gene and the CCR5Δ32 mutation in the occurrence of breast cancer in Burkina Faso. This case-control study included 72 patients and 72 controls. Genotyping of SNP rs17506395 (TP63) was performed by polymerase chain reaction-restriction fragment length polymorphism, and genotyping of the CCR5Δ32 mutation was performed by allele-specific oligonucleotide polymerase chain reaction. For SNP rs17506395 (TP63), the genotypic frequencies of wild-type homozygotes (TT) and heterozygotes (TG) were, respectively, 27.72 and 72.22% in cases and 36.11 and 63.89% in controls. No mutated homozygotes (GG) were observed. For the CCR5Δ32 mutation, the genotypic frequencies of wild-type homozygotes (WT/WT) and heterozygotes (WT/Δ32) were 87.5 and 13.5%, respectively, in the cases and 89.29 and 10.71%, respectively, in the controls. No mutated homozygotes (Δ32/Δ32) were observed. None of the polymorphisms rs17506395 of the TP63 gene (OR = 1.47, 95% CI = 0.69-3.17, P = 0.284) and the CCR5Δ32 mutation (OR = 1.32, 95% CI = 0.46-3.77; P = 0.79) were associated with the occurrence of breast cancer in this study.
Collapse
Affiliation(s)
- Lassina Traoré
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Mousso Savadogo
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Abdou Azaque Zouré
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
- Biomedical Research Laboratory (LaReBio), Biomedical and Public Health Department, Health Sciences Research Institute (IRSS/CNRST), 03 BP 7192Ouaga 03, Burkina Faso
| | - Touwendpoulimdé Isabelle Kiendrebeogo
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Fabienne Marie B. T. B. Soudre
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Laboratory Department, University Hospital Centre-Yalgado OUEDRAOGO, Joseph KI-ZERBO University, UFR/SDS, 03 BP 7021, Ouagadougou 03, Ouagadougou, Burkina Faso
| | - Soayebo Dabre
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Aida Djé Djénéba Traore
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Marc Donald Wilfried Adico
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Tilate Lare
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Teega-Wendé Clarisse Ouedraogo
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Rogomenoma Alice Ouedraogo
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
- Gaoua University Centre, NAZI BONI University, 01 BP 1091, Bobo-Dioulasso 01, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
- Manga University Centre, Norbert ZONGO University, Koudougou, Burkina Faso
| | - Edwige T. Yelemkoure
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Alexis Yobi Sawadogo
- Gynecology Department, Yalgado Ouédraogo University Hospital, UFR/SDS, 03 BP 7021, Ouagadougou 03, Ouagadougou, Burkina Faso
| | - Nayi Zongo
- Department of Surgery, Visceral and Digestive Surgery Service, Yalgado Ouédraogo University Hospital, Joseph KI-ZERBO University, UFR/SDS 03 BP 7021, Ouagadougou 03, Ouagadougou, Burkina Faso
| | - Hierrhum Aboubacar Bambara
- Oncology Department, University Hospital Centre-BOGODOGO, Joseph KI-ZERBO University, UFR/SDS, 03 BP 7021, Ouagadougou 03, Ouagadougou, Burkina Faso
| | - Christelle W. Nadembega
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Florencia W. Djigma
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| | - Jacques Simpore
- Laboratory of Molecular and Genetic Biology (LABIOGENE), Joseph KI-ZERBO University, 03 BP 7021, Ouagadougou 03, Burkina Faso
- Pietro Annigoni Biomolecular Research Centre (CERBA), 01 BP 364, Ouagadougou 01, Burkina Faso
| |
Collapse
|
22
|
LeFever NM, Katreddi RR, Dolphin NM, Mathias NA, Forni PE. Following the p63/Keratin5 basal cells in the sensory and non-sensory epithelia of the vomeronasal organ. Genesis 2024; 62:e23596. [PMID: 38665067 PMCID: PMC11141727 DOI: 10.1002/dvg.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.
Collapse
Affiliation(s)
| | | | | | | | - Paolo E. Forni
- Department of Biological Sciences
- The RNA Institute
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
23
|
Vella L, Sternjakob A, Lohse S, Fingerle A, Sperling T, Wickenhauser C, Stöckle M, Vogt T, Roemer K, Ołdak M, Smola S. The cutaneous beta human papillomavirus type 8 E6 protein induces CCL2 through the CEBPα/miR-203/p63 pathway to support an inflammatory microenvironment in epidermodysplasia verruciformis skin lesions. Front Cell Infect Microbiol 2024; 14:1336492. [PMID: 38510961 PMCID: PMC10953690 DOI: 10.3389/fcimb.2024.1336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)β to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.
Collapse
Affiliation(s)
- Luca Vella
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Anna Sternjakob
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Alina Fingerle
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Tanya Sperling
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University Medical Center, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Klaus Roemer
- Jose Carreras Center for Immune and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| |
Collapse
|
24
|
Lim S, Khalmuratova R, Lee YY, Kim YS, Lee M, Lee NK, Kim SN, Choy YB, Park CG, Kim DW, Shin HW. Neutrophil extracellular traps promote ΔNp63+ basal cell hyperplasia in chronic rhinosinusitis. J Allergy Clin Immunol 2024; 153:705-717.e11. [PMID: 38000697 DOI: 10.1016/j.jaci.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are observed in chronic rhinosinusitis (CRS), although their role remains unclear. OBJECTIVES This study aimed to investigate the influence of NETs on the CRS epithelium. METHODS Forty-five sinonasal biopsy specimens were immunofluorescence-stained to identify NETs and p63+ basal stem cells. Investigators treated human nasal epithelial cells with NETs and studied them with immunofluorescence staining, Western blotting, and quantitative real-time PCR. NET inhibitors were administered to a murine neutrophilic nasal polyp model. RESULTS NETs existed in tissues in patients with CRS with nasal polyps, especially in noneosinophilic nasal polyp tissues. p63+ basal cell expression had a positive correlation with the release of NETs. NETs induced the expansion of Ki-67+p63+ cells. We found that ΔNp63, an isoform of p63, was mainly expressed in the nasal epithelium and controlled by NETs. Treatment with deoxyribonuclease (DNase) I or Sivelestat (NET inhibitors) prevented the overexpression of ΔNp63+ epithelial stem cells and reduced polyp formation. CONCLUSIONS These results reveal that NETs are implicated in CRS pathogenesis via basal cell hyperplasia. This study suggests a novel possibility of treating CRS by targeting NETs.
Collapse
Affiliation(s)
- Suha Lim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Roza Khalmuratova
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Yi Sook Kim
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mingyu Lee
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Se-Na Kim
- Department of Research and Development Center, MediArk Inc, Cheongju, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Korea
| | - Dae Woo Kim
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
25
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, Seoane S, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Senra A, Leiva M, Marcos M, Sabio G, Perez-Fernandez R, Dieguez C, Prevot V, Schwaninger M, Woodhoo A, Martinez-Chantar ML, Schwabe R, Cubero FJ, Varela-Rey M, Crespo J, Iruzubieta P, Nogueiras R. p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med 2024; 5:101401. [PMID: 38340725 PMCID: PMC10897550 DOI: 10.1016/j.xcrm.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-β1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magdalena Leiva
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- University of Salamanca, Department of Internal Medicine, University Hospital of Salamanca-IBSAL, 37008 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, 23562 Lübeck, Germany
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Robert Schwabe
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Francisco J Cubero
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Napoli M, Deshpande AA, Chakravarti D, Rajapakshe K, Gunaratne PH, Coarfa C, Flores ER. Genome-wide p63-Target Gene Analyses Reveal TAp63/NRF2-Dependent Oxidative Stress Responses. CANCER RESEARCH COMMUNICATIONS 2024; 4:264-278. [PMID: 38165157 PMCID: PMC10832605 DOI: 10.1158/2767-9764.crc-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The p53 family member TP63 encodes two sets of N-terminal isoforms, TAp63 and ΔNp63 isoforms. They each regulate diverse biological functions in epidermal morphogenesis and in cancer. In the skin, where their activities have been extensively characterized, TAp63 prevents premature aging by regulating the quiescence and genomic stability of stem cells required for wound healing and hair regeneration, while ΔNp63 controls maintenance and terminal differentiation of epidermal basal cells. This functional diversity is surprising given that these isoforms share a high degree of similarity, including an identical sequence for a DNA-binding domain. To understand the mechanisms of the transcriptional programs regulated by each p63 isoform and leading to diverse biological functions, we performed genome-wide analyses using p63 isoform-specific chromatin immunoprecipitation, RNA sequencing, and metabolomics of TAp63-/- and ΔNp63-/- mouse epidermal cells. Our data indicate that TAp63 and ΔNp63 physically and functionally interact with distinct transcription factors for the downstream regulation of their target genes, thus ultimately leading to the regulation of unique transcriptional programs and biological processes. Our findings unveil novel transcriptomes regulated by the p63 isoforms to control diverse biological functions, including the cooperation between TAp63 and NRF2 in the modulation of metabolic pathways and response to oxidative stress providing a mechanistic explanation for the TAp63 knock out phenotypes. SIGNIFICANCE The p63 isoforms, TAp63 and ΔNp63, control epithelial morphogenesis and tumorigenesis through the interaction with distinct transcription factors and the subsequent regulation of unique transcriptional programs.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avani A. Deshpande
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Kimal Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elsa R. Flores
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
27
|
Xie Q, Tong C, Xiong X. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects. Life Sci 2024; 336:122314. [PMID: 38030057 DOI: 10.1016/j.lfs.2023.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
28
|
Low-Calle AM, Ghoneima H, Ortega N, Cuibus AM, Katz C, Prives C, Prywes R. A Non-Canonical Hippo Pathway Represses the Expression of ΔNp63. Mol Cell Biol 2024; 44:27-42. [PMID: 38270135 PMCID: PMC10829837 DOI: 10.1080/10985549.2023.2292037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
The p63 transcription factor, a member of the p53 family, plays an oncogenic role in squamous cell carcinomas, while in breast cancers its expression is often repressed. In the canonical conserved Hippo pathway, known to play a complex role in regulating growth of cancer cells, protein kinases MST1/2 and LATS1/2 act sequentially to phosphorylate and inhibit the YAP/TAZ transcription factors. We found that in MCF10A mammary epithelial cells as well as in squamous and breast cancer cell lines, expression of ΔNp63 RNA and protein is strongly repressed by inhibition of the Hippo pathway protein kinases. While MST1/2 and LATS1 are required for p63 expression, the next step of the pathway, namely phosphorylation and degradation of the YAP/TAZ transcriptional activators is not required for p63 repression. This suggests that regulation of p63 expression occurs by a noncanonical version of the Hippo pathway. We identified similarly regulated genes, suggesting the broader importance of this pathway. Interestingly, lowering p63 expression lead to increased YAP protein levels, indicating crosstalk of the YAP/TAZ-independent and -dependent branches of the Hippo pathway. These results, which reveal the intersection of the Hippo and p63 pathways, may prove useful for the control of their activities in cancer cells.
Collapse
Affiliation(s)
- Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Hana Ghoneima
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Nicholas Ortega
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Adriana M. Cuibus
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Ron Prywes
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
29
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
30
|
Eyermann CE, Chen X, Somuncu OS, Li J, Joukov AN, Chen J, Alexandrova EM. ΔNp63 Regulates Homeostasis, Stemness, and Suppression of Inflammation in the Adult Epidermis. J Invest Dermatol 2024; 144:73-83.e10. [PMID: 37543242 DOI: 10.1016/j.jid.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
The p63 transcription factor is critical for epidermis formation in embryonic development, but its role in the adult epidermis is poorly understood. In this study, we show that acute genetic ablation of ΔNp63, the main p63 isoform, in adult epidermis disrupts keratinocyte proliferation and self-maintenance and, unexpectedly, triggers an inflammatory psoriasis-like condition. Mechanistically, single-cell RNA sequencing revealed the downregulation of cell cycle genes, upregulation of differentiation markers, and induction of several proinflammatory pathways in ΔNp63-ablated keratinocytes. Intriguingly, ΔNp63-ablated cells disappear by 3 weeks after ablation, at the expense of the remaining nonablated cells. This is not associated with active cell death and is likely due to reduced self-maintenance and enhanced differentiation. Indeed, in vivo wound healing, a physiological readout of the epidermal stem cell function, is severely impaired upon ΔNp63 ablation. We found that the Wnt signaling pathway (Wnt10A, Fzd6, Fzd10) and the activator protein 1 (JunB, Fos, FosB) factors are the likely ΔNp63 effectors responsible for keratinocyte proliferation/stemness and suppression of differentiation, respectively, whereas IL-1a, IL-18, IL-24, and IL-36γ are the likely negative effectors responsible for suppression of inflammation. These data establish ΔNp63 as a critical node that coordinates epidermal homeostasis, stemness, and suppression of inflammation, upstream of known regulatory pathways.
Collapse
Affiliation(s)
- Christopher E Eyermann
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Xi Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Ozge S Somuncu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | | | - Jiang Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Evguenia M Alexandrova
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Stony Brook Cancer Center, Stony Brook, New York, USA.
| |
Collapse
|
31
|
Chen L, Zhu S, Liu T, Zhao X, Xiang T, Hu X, Wu C, Lin D. Aberrant epithelial cell interaction promotes esophageal squamous-cell carcinoma development and progression. Signal Transduct Target Ther 2023; 8:453. [PMID: 38097539 PMCID: PMC10721848 DOI: 10.1038/s41392-023-01710-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and proliferation play important roles in epithelial cancer formation and progression, but what molecules and how they trigger EMT is largely unknown. Here we performed spatial transcriptomic and functional analyses on samples of multistage esophageal squamous-cell carcinoma (ESCC) from mice and humans to decipher these critical issues. By investigating spatiotemporal gene expression patterns and cell-cell interactions, we demonstrated that the aberrant epithelial cell interaction via EFNB1-EPHB4 triggers EMT and cell cycle mediated by downstream SRC/ERK/AKT signaling. The aberrant epithelial cell interaction occurs within the basal layer at early precancerous lesions, which expands to the whole epithelial layer and strengthens along the cancer development and progression. Functional analysis revealed that the aberrant EFNB1-EPHB4 interaction is caused by overexpressed ΔNP63 due to TP53 mutation, the culprit in human ESCC tumorigenesis. Our results shed new light on the role of TP53-TP63/ΔNP63-EFNB1-EPHB4 axis in EMT and cell proliferation in epithelial cancer formation.
Collapse
Affiliation(s)
- Liping Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xuan Zhao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiao Hu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing, 100006, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| |
Collapse
|
32
|
Seong SY, Kang MK, Kang H, Lee HJ, Kang YR, Lee CG, Sohn DH, Han SJ. Low dose rate radiation impairs early follicles in young mice. Reprod Biol 2023; 23:100817. [PMID: 37890397 DOI: 10.1016/j.repbio.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
Low-dose radiation is generally considered less harmful than high-dose radiation. However, its impact on ovaries remains debated. Since previous reports predominantly employed low-dose radiation delivered at a high dose rate on the ovary, the effect of low-dose radiation at a low dose rate on the ovary remains unknown. We investigated the effect of low-dose ionizing radiation delivered at a low dose rate on murine ovaries. Three- and ten-week-old mice were exposed to 0.1 and 0.5 Gy of radiation at a rate of 6 mGy/h and monitored after 3 and 30 days. While neither body weight nor ovarian area showed significant changes, ovarian cells were damaged, showing apoptosis and a decrease in cell proliferation after exposure to 0.1 and 0.5 Gy radiation. Follicle numbers decreased over time in both age groups proportionally to the radiation dose. Younger mice were more susceptible to radiation damage, as evidenced by decreased follicles in 3-week-old mice after 30 days of 0.1 Gy exposure, while 10-week-old mice showed reduced follicles only following 0.5 Gy exposure. Primordial or primary follicles were the most vulnerable to radiation. These findings suggest that even low-dose radiation, delivered at a low dose rate, can adversely affect ovarian function, particularly in the early follicles of younger mice.
Collapse
Affiliation(s)
- Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Hyunju Kang
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Seoul 01812, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Seung Jin Han
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
33
|
Abstract
Keratinocyte senescence contributes to skin ageing and epidermal dysfunction. According to the existing knowledge, the transcription factor ΔNp63α plays pivotal roles in differentiation and proliferation of keratinocytes. It is traditionally accepted that ΔNp63α exerts its functions via binding to promoter regions to activate or repress gene transcription. However, accumulating evidence demonstrates that ΔNp63α can bind to elements away from promoter regions of its target genes, mediating epigenetic regulation. On the other hand, several epigenetic alterations, including DNA methylation, histone modification and variation, chromatin remodelling, as well as enhancer-promoter looping, are found to be related to cell senescence. To systematically elucidate how ΔNp63α affects keratinocyte senescence via epigenetic regulation, we comprehensively compiled the literatures on the roles of ΔNp63α in keratinocyte senescence, epigenetics in cellular senescence, and the relation between ΔNp63α-mediated epigenetic regulation and keratinocyte senescence. Based on the published data, we conclude that ΔNp63α mediates epigenetic regulation via multiple mechanisms: recruiting epigenetic enzymes to modify DNA or histones, coordinating chromatin remodelling complexes (CRCs) or regulating their expression, and mediating enhancer-promoter looping. Consequently, the expression of genes related to cell cycle is modulated, and proliferation of keratinocytes and renewal of stem cells are maintained, by ΔNp63α. During skin inflammaging, the decline of ΔNp63α may lead to epigenetic dysregulation, resultantly deteriorating keratinocyte senescence.
Collapse
Affiliation(s)
- Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
34
|
Peng A, Lin X, Yang Q, Sun Y, Chen R, Liu B, Yu X. ΔNp63α facilitates proliferation and migration, and modulates the chromatin landscape in intrahepatic cholangiocarcinoma cells. Cell Death Dis 2023; 14:777. [PMID: 38012140 PMCID: PMC10682000 DOI: 10.1038/s41419-023-06309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
p63 plays a crucial role in epithelia-originating tumours; however, its role in intrahepatic cholangiocarcinoma (iCCA) has not been completely explored. Our study revealed the oncogenic properties of p63 in iCCA and identified the major expressed isoform as ΔNp63α. We collected iCCA clinical data from The Cancer Genome Atlas database and analyzed p63 expression in iCCA tissue samples. We further established genetically modified iCCA cell lines in which p63 was overexpressed or knocked down to study the protein function/function of p63 in iCCA. We found that cells overexpressing p63, but not p63 knockdown counterparts, displayed increased proliferation, migration, and invasion. Transcriptome analysis showed that p63 altered the iCCA transcriptome, particularly by affecting cell adhesion-related genes. Moreover, chromatin accessibility decreased at p63 target sites when p63 binding was lost and increased when p63 binding was gained. The majority of the p63 bound sites were located in the distal intergenic regions and showed strong enhancer marks; however, active histone modifications around the Transcription Start Site changed as p63 expression changed. We also detected an interaction between p63 and the chromatin structural protein YY1. Taken together, our results suggest an oncogenic role for p63 in iCCA.
Collapse
Affiliation(s)
- Anghui Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Xiaowen Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yihao Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Ruiyan Chen
- Department of Dermatology, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| | - Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China.
| |
Collapse
|
35
|
Wang H, Yan L, Liu L, Lu X, Chen Y, Zhang Q, Chen M, Cai L, Dai Z. A pyroptosis gene-based prognostic model for predicting survival in low-grade glioma. PeerJ 2023; 11:e16412. [PMID: 38025749 PMCID: PMC10652862 DOI: 10.7717/peerj.16412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Pyroptosis, a lytic form of programmed cell death initiated by inflammasomes, has been reported to be closely associated with tumor proliferation, invasion and metastasis. However, the roles of pyroptosis genes (PGs) in low-grade glioma (LGG) remain unclear. Methods We obtained information for 1,681 samples, including the mRNA expression profiles of LGGs and normal brain tissues and the relevant corresponding clinical information from two public datasets, TCGA and GTEx, and identified 45 differentially expressed pyroptosis genes (DEPGs). Among these DEPGs, nine hub pyroptosis genes (HPGs) were identified and used to construct a genetic risk scoring model. A total of 476 patients, selected as the training group, were divided into low-risk and high-risk groups according to the risk score. The area under the curve (AUC) values of the receiver operating characteristic (ROC) curves verified the accuracy of the model, and a nomogram combining the risk score and clinicopathological characteristics was used to predict the overall survival (OS) of LGG patients. In addition, a cohort from the Gene Expression Omnibus (GEO) database was selected as a validation group to verify the stability of the model. qRT-PCR was used to analyze the gene expression levels of nine HPGs in paracancerous and tumor tissues from 10 LGG patients. Results Survival analysis showed that, compared with patients in the low-risk group, patients in the high-risk group had a poorer prognosis. A risk score model combining PG expression levels with clinical features was considered an independent risk factor. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that immune-related genes were enriched among the DEPGs and that immune activity was increased in the high-risk group. Conclusion In summary, we successfully constructed a model to predict the prognosis of LGG patients, which will help to promote individualized treatment and provide potential new targets for immunotherapy.
Collapse
Affiliation(s)
- Hua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Yan
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lixiao Liu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhang’an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
36
|
Li Y, Giovannini S, Wang T, Fang J, Li P, Shao C, Wang Y, Shi Y, Candi E, Melino G, Bernassola F. p63: a crucial player in epithelial stemness regulation. Oncogene 2023; 42:3371-3384. [PMID: 37848625 PMCID: PMC10638092 DOI: 10.1038/s41388-023-02859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Epithelial tissue homeostasis is closely associated with the self-renewal and differentiation behaviors of epithelial stem cells (ESCs). p63, a well-known marker of ESCs, is an indispensable factor for their biological activities during epithelial development. The diversity of p63 isoforms expressed in distinct tissues allows this transcription factor to have a wide array of effects. p63 coordinates the transcription of genes involved in cell survival, stem cell self-renewal, migration, differentiation, and epithelial-to-mesenchymal transition. Through the regulation of these biological processes, p63 contributes to, not only normal epithelial development, but also epithelium-derived cancer pathogenesis. In this review, we provide an overview of the role of p63 in epithelial stemness regulation, including self-renewal, differentiation, proliferation, and senescence. We describe the differential expression of TAp63 and ΔNp63 isoforms and their distinct functional activities in normal epithelial tissues and in epithelium-derived tumors. Furthermore, we summarize the signaling cascades modulating the TAp63 and ΔNp63 isoforms as well as their downstream pathways in stemness regulation.
Collapse
Affiliation(s)
- Yanan Li
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Sara Giovannini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tingting Wang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Peishan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai, 200031, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
37
|
Katoh I, Tsukinoki K, Hata RI, Kurata SI. ΔNp63 silencing, DNA methylation shifts, and epithelial-mesenchymal transition resulted from TAp63 genome editing in squamous cell carcinoma. Neoplasia 2023; 45:100938. [PMID: 37778252 PMCID: PMC10544079 DOI: 10.1016/j.neo.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
TP63 (p63) is strongly expressed in lower-grade carcinomas of the head and neck, skin, breast, and urothelium to maintain a well-differentiated phenotype. TP63 has two transcription start sites at exons 1 and 3' that produce TAp63 and ΔNp63 isoforms, respectively. The major protein, ΔNp63α, epigenetically activates genes essential for epidermal/craniofacial differentiation, including ΔNp63 itself. To examine the specific role of weakly expressed TAp63, we disrupted exon 1 using CRISPR-Cas9 homology-directed repair in a head and neck squamous cell carcinoma (SCC) line. Surprisingly, TAp63 knockout cells having either monoallelic GFP cassette insertion paired with a frameshift deletion allele or biallelic GFP cassette insertion exhibited ΔNp63 silencing. Loss of keratinocyte-specific gene expression, switching of intermediate filament genes from KRT(s) to VIM, and suppression of cell-cell and cell-matrix adhesion components indicated the core events of epithelial-mesenchymal transition. Many of the positively and negatively affected genes, including ΔNp63, displayed local DNA methylation changes. Furthermore, ΔNp63 expression was partially rescued by transfection of the TAp63 knockout cells with TAp63α and application of DNA methyltransferase inhibitor zebularine. These results suggest that TAp63, a minor part of the TP63 gene, may be involved in the auto-activation mechanism of ΔNp63 by which the keratinocyte-specific epigenome is maintained in SCC.
Collapse
Affiliation(s)
- Iyoko Katoh
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Ryu-Ichiro Hata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Shun-Ichi Kurata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
38
|
Strubel A, Münick P, Hartmann O, Chaikuad A, Dreier B, Schaefer JV, Gebel J, Osterburg C, Tuppi M, Schäfer B, Buck V, Rosenfeldt M, Knapp S, Plückthun A, Diefenbacher ME, Dötsch V. DARPins detect the formation of hetero-tetramers of p63 and p73 in epithelial tissues and in squamous cell carcinoma. Cell Death Dis 2023; 14:674. [PMID: 37828008 PMCID: PMC10570377 DOI: 10.1038/s41419-023-06213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
The two p53 homologues p63 and p73 regulate transcriptional programs in epithelial tissues and several cell types in these tissues express both proteins. All members of the p53 family form tetramers in their active state through a dedicated oligomerization domain that structurally assembles as a dimer of dimers. The oligomerization domain of p63 and p73 share a high sequence identity, but the p53 oligomerization domain is more divergent and it lacks a functionally important C-terminal helix present in the other two family members. Based on these structural differences, p53 does not hetero-oligomerize with p63 or p73. In contrast, p63 and p73 form hetero-oligomers of all possible stoichiometries, with the hetero-tetramer built from a p63 dimer and a p73 dimer being thermodynamically more stable than the two homo-tetramers. This predicts that in cells expressing both proteins a p632/p732 hetero-tetramer is formed. So far, the tools to investigate the biological function of this hetero-tetramer have been missing. Here we report the generation and characterization of Designed Ankyrin Repeat Proteins (DARPins) that bind with high affinity and selectivity to the p632/p732 hetero-tetramer. Using these DARPins we were able to confirm experimentally the existence of this hetero-tetramer in epithelial mouse and human tissues and show that its level increases in squamous cell carcinoma.
Collapse
Affiliation(s)
- Alexander Strubel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Philipp Münick
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Oliver Hartmann
- Department of Biochemistry and Molecular Biology I, University of Würzburg, 97074, Würzburg, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, 60438, Frankfurt, Germany
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marcel Tuppi
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Birgit Schäfer
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Viktoria Buck
- Department of Pathology, University of Würzburg, 97074, Würzburg, Germany
| | - Mathias Rosenfeldt
- Department of Pathology, University of Würzburg, 97074, Würzburg, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Goethe University, 60438, Frankfurt, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Markus E Diefenbacher
- Department of Biochemistry and Molecular Biology I, University of Würzburg, 97074, Würzburg, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
39
|
Lambert M, Gebel J, Trejtnar C, Wesch N, Bozkurt S, Adrian-Allgood M, Löhr F, Münch C, Dötsch V. Fuzzy interactions between the auto-phosphorylated C-terminus and the kinase domain of CK1δ inhibits activation of TAp63α. Sci Rep 2023; 13:16423. [PMID: 37777570 PMCID: PMC10542812 DOI: 10.1038/s41598-023-43515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
The p53 family member TAp63α plays an important role in maintaining the genetic integrity in oocytes. DNA damage, in particular DNA double strand breaks, lead to the transformation of the inhibited, only dimeric conformation into the active tetrameric one that results in the initiation of an apoptotic program. Activation requires phosphorylation by the kinase CK1 which phosphorylates TAp63α at four positions. The third phosphorylation event is the decisive step that transforms TAp63α into the active state. This third phosphorylation, however, is ~ 20 times slower than the first two phosphorylation events. This difference in the phosphorylation kinetics constitutes a safety mechanism that allows oocytes with a low degree of DNA damage to survive. So far these kinetic investigations of the phosphorylation steps have been performed with the isolated CK1 kinase domain. However, all CK1 enzymes contain C-terminal extensions that become auto-phosphorylated and inhibit the activity of the kinase. Here we have investigated the effect of auto-phosphorylation of the C-terminus in the kinase CK1δ and show that it slows down phosphorylation of the first two sites in TAp63α but basically inhibits the phosphorylation of the third site. We have identified up to ten auto-phosphorylation sites in the CK1δ C-terminal domain and show that all of them interact with the kinase domain in a "fuzzy" way in which not a single site is particularly important. Through mutation analysis we further show that hydrophobic amino acids following the phosphorylation site are important for a substrate to be able to successfully compete with the auto-inhibitory effect of the C-terminal domain. This auto-phosphorylation adds a new layer to the regulation of apoptosis in oocytes.
Collapse
Affiliation(s)
- Mahil Lambert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Jakob Gebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Charlotte Trejtnar
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Martin Adrian-Allgood
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute, Frankfurt/Main, Germany
- Cardio-Pulmonary Institute, Frankfurt/Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
40
|
Bonnet C, González S, Deng SX, Zheng JJ. Wnt activation as a potential therapeutic approach to treat partial limbal stem cell deficiency. Sci Rep 2023; 13:15670. [PMID: 37735479 PMCID: PMC10514048 DOI: 10.1038/s41598-023-42794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) are adult stem cells located at the limbus, tightly regulated by their niche involving numerous signaling pathways, such as Wnt. Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration, and remodeling in adults. It has been shown that a small molecule Wnt mimic could improve LSCs expansion ex vivo. Damage to the LSCs and/or their niche can lead to limbal stem cell deficiency (LSCD), a condition that can cause corneal blindness and is difficult to treat. This study explored if repopulating residual LSCs in partial LSCD through Wnt activation could be a novel therapeutic approach. To mimic LSCD due to a chemical injury, single cultured LSCs were exposed to various concentrations of sodium hydroxide. A progressive loss of the LSCs phenotype was observed: the percentage of p63bright cells and cytokeratin (K)14+ cells decreased while the percentage of K12+ increased. Wnt activation was attained by treating the LSCs with lithium chloride (LiCl) and a small-molecule Wnt mimic, respectively. After 18 h of treatment, LSCs proliferation was increased, and the LSCs phenotype was recovered, while the untreated cells did not proliferate and lost their phenotype. The percentage of p63bright cells was significantly higher in the Wnt mimic-treated cells compared with untreated cells, while the percentage of K12+ cells was significantly lower. These findings suggest that local Wnt activation may rescue LSCs upon alkaline injury.
Collapse
Affiliation(s)
- Clémence Bonnet
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Cordeliers Research Center, Ophthalmology Department, Cochin Hospital, AP-HP, Université Paris Cité, 75005, Paris, France
| | - Sheyla González
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie J Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, 100 Stein Plaza, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
41
|
Zuo M, Chen H, Liao Y, He P, Xu T, Tang J, Zhang N. Sulforaphane and bladder cancer: a potential novel antitumor compound. Front Pharmacol 2023; 14:1254236. [PMID: 37781700 PMCID: PMC10540234 DOI: 10.3389/fphar.2023.1254236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Bladder cancer (BC) is a common form of urinary tract tumor, and its incidence is increasing annually. Unfortunately, an increasing number of newly diagnosed BC patients are found to have advanced or metastatic BC. Although current treatment options for BC are diverse and standardized, it is still challenging to achieve ideal curative results. However, Sulforaphane, an isothiocyanate present in cruciferous plants, has emerged as a promising anticancer agent that has shown significant efficacy against various cancers, including bladder cancer. Recent studies have demonstrated that Sulforaphane not only induces apoptosis and cell cycle arrest in BC cells, but also inhibits the growth, invasion, and metastasis of BC cells. Additionally, it can inhibit BC gluconeogenesis and demonstrate definite effects when combined with chemotherapeutic drugs/carcinogens. Sulforaphane has also been found to exert anticancer activity and inhibit bladder cancer stem cells by mediating multiple pathways in BC, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-B (NF-κB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), zonula occludens-1 (ZO-1)/beta-catenin (β-Catenin), miR-124/cytokines interleukin-6 receptor (IL-6R)/transcription 3 (STAT3). This article provides a comprehensive review of the current evidence and molecular mechanisms of Sulforaphane against BC. Furthermore, we explore the effects of Sulforaphane on potential risk factors for BC, such as bladder outlet obstruction, and investigate the possible targets of Sulforaphane against BC using network pharmacological analysis. This review is expected to provide a new theoretical basis for future research and the development of new drugs to treat BC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
42
|
Salois MN, Gugger JA, Webb S, Sheldon CE, Parraga SP, Lewitt GM, Grange DK, Koch PJ, Koster MI. Effects of TP63 mutations on keratinocyte adhesion and migration. Exp Dermatol 2023; 32:1575-1581. [PMID: 37432020 PMCID: PMC10529328 DOI: 10.1111/exd.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
The goal of this study was to investigate the molecular mechanisms responsible for the formation of skin erosions in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). This ectodermal dysplasia is caused by mutations in the TP63 gene, which encodes several transcription factors that control epidermal development and homeostasis. We generated induced pluripotent stem cells (iPSC) from AEC patients and corrected the TP63 mutations using genome editing tools. Three pairs of the resulting conisogenic iPSC lines were differentiated into keratinocytes (iPSC-K). We identified a significant downregulation of key components of hemidesmosomes and focal adhesions in AEC iPSC-K compared to their gene-corrected counterparts. Further, we demonstrated reduced AEC iPSC-K migration, suggesting the possibility that a process critical for cutaneous wound healing might be impaired in AEC patients. Next, we generated chimeric mice expressing a TP63-AEC transgene and confirmed a downregulation of these genes in transgene-expressing cells in vivo. Finally, we also observed these abnormalities in AEC patient skin. Our findings suggest that integrin defects in AEC patients might weaken the adhesion of keratinocytes to the basement membrane. We propose that reduced expression of extracellular matrix adhesion receptors, potentially in conjunction with previously identified desmosomal protein defects, contribute to skin erosions in AEC.
Collapse
Affiliation(s)
- Maddison N. Salois
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Jessica A. Gugger
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Saiphone Webb
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Christina E. Sheldon
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Shirley P. Parraga
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | | | - Dorothy K. Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO
| | - Peter J. Koch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Maranke I. Koster
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC
| |
Collapse
|
43
|
Vanderschelden RK, Rodriguez-Escriba M, Chan SH, Berman AJ, Rajkovic A, Yatsenko SA. Heterozygous TP63 pathogenic variants in isolated primary ovarian insufficiency. J Assist Reprod Genet 2023; 40:2211-2218. [PMID: 37453019 PMCID: PMC10440319 DOI: 10.1007/s10815-023-02886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
PURPOSE Our study aimed to identify the genetic causes of non-syndromic primary ovarian insufficiency (POI) in female patients. METHODS We performed whole exome sequencing in females suffering from isolated POI and in their available family members. Copy number variations were validated by long-range PCR and Sanger sequencing, and conservation analysis was used to evaluate the impact of sequence variants on protein composition. RESULTS We detected two pathogenic TP63 heterozygous deleterious single nucleotide variants and a novel TP63 intragenic copy number alteration in three unrelated women with isolated POI. Two of these genetic variants are predicted to result in loss of transactivation inhibition of p63, whereas the third one affects the first exon of the ΔNp63 isoforms. CONCLUSION Our results broaden the spectrum of TP63-related disorders, which now includes sporadic and familial, isolated, and syndromic POI. Genomic variants that impair the transactivation inhibitory domain of the TAp63α isoform are the cause of non-syndromic POI. Additionally, variants affecting only the ΔNp63 isoforms may result in isolated POI. In patients with isolated POI, careful evaluation of genomic variants in pleiotropic genes such as TP63 will be essential to establish a full clinical spectrum and atypical presentation of a disorder.
Collapse
Affiliation(s)
| | | | - Serena H Chan
- Division of Pediatric and Adolescent Gynecology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
- Magee-Womens Research Institute, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Alsaegh MA, Mahmoud O, Varma SR, Mathew A, Altaie AM, Zhu S. P63 and Ki-67 expression in radicular cyst. J Oral Biol Craniofac Res 2023; 13:575-580. [PMID: 37545663 PMCID: PMC10403738 DOI: 10.1016/j.jobcr.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Objectives The aim of the current study was to identify the expression of P63 and its relation to odontogenic epithelial cell proliferation, severity of the inflammatory infiltrate and size of radicular cysts (RCs). Methods In this retrospective cross-sectional study, 30 cases of paraffin-embedded RCs were randomly selected from the archive. P63 and Ki-67 expression was assessed by immunohistochemistry. Results Epithelial P63 expression was absent in four (13.3%), weak in 10 (33.3%), and moderate in 16 (53.3%) cases. In the connective tissue wall of RC, P63 expression was absent in two (6.7%) cases, weak in 24 (80.0%) cases, and moderate in four (13.3%) cases. Ki-67 was found to be weakly expressed in 12 (40.0%) cases, moderately expressed in 13 (43.3%), and strongly expressed in five (16.7%) cases. No correlation was found between Ki-67 expression in odontogenic epithelium and P63 expression in the odontogenic epithelium (rho = 0.110, p = .563) or fibrous capsule (rho = 0.160, p = .399). Nevertheless, we found a positive correlation between Ki-67 expression in the odontogenic epithelium and the size of the RC (rho = 0.450, p = .013). The inflammatory infiltrate was negatively correlated with P63 expression in the odontogenic epithelium (rho = -0.428, p = .018), and with the size of cysts (rho = -0.728, p < .001). Conclusions There is a high expression of P63 throughout the odontogenic epithelium and connective tissue capsule of the RC. P63 expression in the odontogenic epithelium is negatively correlated with the degree of the inflammatory infiltrate but not with epithelial cell proliferation or the size of the cyst.
Collapse
Affiliation(s)
- Mohammed Amjed Alsaegh
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Okba Mahmoud
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Asok Mathew
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center for Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Alaa Muayad Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Shengrong Zhu
- Department of Oral and Maxillofacial Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| |
Collapse
|
45
|
Arancibia-Opazo S, Contreras-Riquelme JS, Sánchez M, Cisternas-Olmedo M, Vidal RL, Martin AJM, Sáez MA. Transcriptional and Histone Acetylation Changes Associated with CRE Elements Expose Key Factors Governing the Regulatory Circuit in the Early Stage of Huntington's Disease Models. Int J Mol Sci 2023; 24:10848. [PMID: 37446028 DOI: 10.3390/ijms241310848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.
Collapse
Affiliation(s)
- Sandra Arancibia-Opazo
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, Santiago 8580745, Chile
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
| | - J Sebastián Contreras-Riquelme
- Plant Genome Regulation Lab, Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370186, Chile
| | - Mario Sánchez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Marisol Cisternas-Olmedo
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
| | - René L Vidal
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago 8380455, Chile
- Center for Geroscience, Brain Health, and Metabolism, Santiago 8380453, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Universidad San Sebastián, Santiago 8580704, Chile
- Escuela de Ingeniería, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 7500000, Chile
| | - Mauricio A Sáez
- Chromatin, Epigenetic, and Neuroscience Laboratory, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Centro de Oncología de Precisión, Facultad de Medicina Universidad Mayor, Santiago 7560908, Chile
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile
| |
Collapse
|
46
|
Salois MN, Gugger JA, Webb S, Sheldon CE, Parraga SP, Lewitt GM, Grange DK, Koch PJ, Koster MI. Effects of TP63 Mutations on Keratinocyte Adhesion and Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539104. [PMID: 37205354 PMCID: PMC10187256 DOI: 10.1101/2023.05.04.539104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The goal of this study was to investigate the molecular mechanisms responsible for the formation of skin erosions in patients affected by Ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC). This ectodermal dysplasia is caused by mutations in the TP63 gene, which encodes several transcription factors that control epidermal development and homeostasis. We generated induced pluripotent stem cells (iPSC) from AEC patients and corrected the TP63 mutations using genome editing tools. Three pairs of the resulting conisogenic iPSC lines were differentiated into keratinocytes (iPSC-K). We identified a significant downregulation of key components of hemidesmosomes and focal adhesions in AEC iPSC-K compared to their gene-corrected counterparts. Further, we demonstrated reduced iPSC-K migration, suggesting the possibility that a process critical for cutaneous wound healing might be impaired in AEC patients. Next, we generated chimeric mice expressing a TP63-AEC transgene and confirmed a downregulation of these genes in transgene-expressing cells in vivo. Finally, we also observed these abnormalities in AEC patient skin. Our findings suggest that integrin defects in AEC patients might weaken the adhesion of keratinocytes to the basement membrane. We propose that reduced expression of extracellular matrix adhesion receptors, potentially in conjunction with previously identified desmosomal protein defects, contribute to skin erosions in AEC.
Collapse
|
47
|
Suga K, Suto A, Tanaka S, Sugawara Y, Kageyama T, Ishikawa J, Sanayama Y, Ikeda K, Furuta S, Kagami SI, Iwata A, Hirose K, Suzuki K, Ohara O, Nakajima H. TAp63, a methotrexate target in CD4+ T cells, suppresses Foxp3 expression and exacerbates autoimmune arthritis. JCI Insight 2023; 8:164778. [PMID: 37212280 PMCID: PMC10322677 DOI: 10.1172/jci.insight.164778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/07/2023] [Indexed: 05/23/2023] Open
Abstract
Methotrexate (MTX) is a standard, first-line therapy for rheumatoid arthritis (RA); however, its precise mechanisms of action other than antifolate activity are largely unknown. We performed DNA microarray analyses of CD4+ T cells in patients with RA before and after MTX treatment and found that TP63 was the most significantly downregulated gene after MTX treatment. TAp63, an isoform of TP63, was highly expressed in human IL-17-producing Th (Th17) cells and was suppressed by MTX in vitro. Murine TAp63 was expressed at high levels in Th cells and at lower levels in thymus-derived Treg cells. Importantly, TAp63 knockdown in murine Th17 cells ameliorated the adoptive transfer arthritis model. RNA-Seq analyses of human Th17 cells overexpressing TAp63 and those with TAp63 knockdown identified FOXP3 as a possible TAp63 target gene. TAp63 knockdown in CD4+ T cells cultured under Th17 conditions with low-dose IL-6 increased Foxp3 expression, suggesting that TAp63 balances Th17 cells and Treg cells. Mechanistically, TAp63 knockdown in murine induced Treg (iTreg) cells promoted hypomethylation of conserved noncoding sequence 2 (CNS2) of the Foxp3 gene and enhanced the suppressive function of iTreg cells. Reporter analyses revealed that TAp63 suppressed the activation of the Foxp3 CNS2 enhancer. Collectively, TAp63 suppresses Foxp3 expression and exacerbates autoimmune arthritis.
Collapse
Affiliation(s)
- Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yutaka Sugawara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Junichi Ishikawa
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Yoshie Sanayama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Shin-Ichiro Kagami
- Research Center for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Chiba, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, and
| |
Collapse
|
48
|
Hsueh YJ, Meir YJJ, Hsiao HY, Cheng CM, Ma HKD, Wu WC, Chen HC. Transcription Factor ATF3 Participates in DeltaNp63-Mediated Proliferation of Corneal Epithelial Cells. J Pers Med 2023; 13:jpm13040700. [PMID: 37109086 PMCID: PMC10142479 DOI: 10.3390/jpm13040700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the regulatory mechanisms underlying corneal epithelial cell (CEC) proliferation in vitro may provide the means to boost CEC production in cell therapy for ocular disorders. The transcription factor ΔNp63 plays a crucial role in the proliferation of CECs, but the underlying mechanisms is yet to be elucidated. TP63 and ΔNp63 are encoded by the TP63 gene via alternative promoters. We previously reported that both ΔNp63 and activating transcription factor (ATF3) are substantially expressed in cultured CECs, but the regulatory relationship between ΔNp63 and ATF3 is unknown. In the present study, we found that ΔNp63 increased ATF3 expression and ATF3 promoter activity in cultured CECs. The deletion of the p63 binding core site reduced ATF3 promoter activity. CECs overexpressing ATF3 exhibited significantly greater proliferation than control CECs. ATF3 knockdown suppressed the ΔNp63-induced increase in cell proliferation. Overexpression of ATF3 in CECs significantly elevated protein and mRNA levels of cyclin D. The protein levels of keratin 3/14, integrin β1, and involucrin did not differ between ATF3-overexpressing CECs, ATF3-downregulated CECs, and control cells. In conclusion, our results suggest that ΔNp63 increases CEC proliferation via the ΔNp63/ATF3/CDK pathway.
Collapse
Affiliation(s)
- Yi-Jen Hsueh
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yaa-Jyuhn James Meir
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Kang David Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chi Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
49
|
De Rosa L, Enzo E, Palamenghi M, Sercia L, De Luca M. Stairways to Advanced Therapies for Epidermolysis Bullosa. Cold Spring Harb Perspect Biol 2023; 15:a041229. [PMID: 36167646 PMCID: PMC10071437 DOI: 10.1101/cshperspect.a041229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidermolysis bullosa (EB) is a devastating genetic skin disease typified by a plethora of different phenotypes and ranking from severe, early lethal, to mild localized forms. Although there is no cure for EB, recent progress in pharmacology and molecular and cellular biology is boosting the development of new advanced therapeutic strategies. Here we will focus on two main categories of such therapies: (1) those aimed at controlling inflammation and inducing reepithelialization of the wounds, and (2) those, perhaps more challenging and ambitious, that aim to permanently regenerate a fully functional epidermis, which requires targeting of epidermal stem cells. In both cases, the genetic variants underlying the different EB forms and factors, such as genetic background, modifier genes, comorbidities, and lifestyle, all of which impinge on EB genotype-phenotype correlation, need to be defined.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate, S.r.l., 41125 Modena, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Sercia
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
50
|
Chun YY, Tan KS, Yu L, Pang M, Wong MHM, Nakamoto R, Chua WZ, Huee-Ping Wong A, Lew ZZR, Ong HH, Chow VT, Tran T, Yun Wang D, Sham LT. Influence of glycan structure on the colonization of Streptococcus pneumoniae on human respiratory epithelial cells. Proc Natl Acad Sci U S A 2023; 120:e2213584120. [PMID: 36943879 PMCID: PMC10068763 DOI: 10.1073/pnas.2213584120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.
Collapse
Affiliation(s)
- Ye-Yu Chun
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597
| | - Lisa Yu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- College of Art and Sciences, Cornell University, Ithaca, NY14853
| | - Michelle Pang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Ming Hui Millie Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Amanda Huee-Ping Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - Zhe Zhang Ryan Lew
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Hsiao Hui Ong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Vincent T. Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - De Yun Wang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| |
Collapse
|