1
|
Kamerkar SC, Liu A, Higgs HN. Mitochondrial fission - changing perspectives for future progress. J Cell Sci 2025; 138:jcs263640. [PMID: 40104946 DOI: 10.1242/jcs.263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial fission is important for many aspects of cellular homeostasis, including mitochondrial distribution, stress response, mitophagy, mitochondrially derived vesicle production and metabolic regulation. Several decades of research has revealed much about fission, including identification of a key division protein - the dynamin Drp1 (also known as DNM1L) - receptors for Drp1 on the outer mitochondrial membrane (OMM), including Mff, MiD49 and MiD51 (also known as MIEF2 and MIEF1, respectively) and Fis1, and important Drp1 regulators, including post-translational modifications, actin filaments and the phospholipid cardiolipin. In addition, it is now appreciated that other organelles, including the endoplasmic reticulum, lysosomes and Golgi-derived vesicles, can participate in mitochondrial fission. However, a more holistic understanding of the process is lacking. In this Review, we address three questions that highlight knowledge gaps. First, how do we quantify mitochondrial fission? Second, how does the inner mitochondrial membrane (IMM) divide? Third, how many 'types' of fission exist? We also introduce a model that integrates multiple regulatory factors in mammalian mitochondrial fission. In this model, three possible pathways (cellular stimulation, metabolic switching or mitochondrial dysfunction) independently initiate Drp1 recruitment at the fission site, followed by a shared second step in which Mff mediates subsequent assembly of a contractile Drp1 ring. We conclude by discussing some perplexing issues in fission regulation, including the effects of Drp1 phosphorylation and the multiple Drp1 isoforms.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
3
|
Kirchweger P, Wolf SG, Varsano N, Dadosh T, Resch GP, Elbaum M. Snapshots of mitochondrial fission imaged by cryo-scanning transmission electron tomography. J Cell Sci 2025; 138:jcs263639. [PMID: 40365741 DOI: 10.1242/jcs.263639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondria undergo constant remodeling via fission, fusion, extension and degradation. Fission, in particular, depends on the accumulation of mitochondrial fission factor (MFF) and subsequent recruitment of the dynamin-related protein DRP1 (also known as DNM1L). We used cryo-scanning transmission electron tomography (cryo-STET) to investigate mitochondrial morphologies in MFF mutant (MFF-/-) mouse embryonic fibroblast (MEF) cells in ATP-depleting conditions that normally induce fission. The capability of cryo-STET to image through the cytoplasmic volume to a depth of 1 µm facilitated visualization of intact mitochondria and their surroundings. We imaged changes in mitochondrial morphology and cristae structure, as well as contacts with the endoplasmic reticulum (ER), degradative organelles and the cytoskeleton at stalled fission sites. We found disruption of the outer mitochondrial membrane at contact sites with the ER and degradative organelles at sites of mitophagy. We identified fission sites where the inner mitochondrial membrane is already separated while the outer membrane is still continuous. Although MFF is a general fission factor, these observations demonstrate that mitochondrial fission can proceed to the final stage in its absence. The use of cryo-STET allays concerns about the loss of structures due to sample thinning required for tomography using cryo-transmission electron microscopy.
Collapse
Affiliation(s)
- Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
- Department of Chemical and Structural Biology, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Guenter P Resch
- Nexperion e.U.-Solutions for Electron Microscopy, 1220 Vienna, Austria
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| |
Collapse
|
4
|
Sarkar M, Pucadyil TJ. Division of Labor among Fission Dynamins Based on Substrate Size. Biochemistry 2025. [PMID: 40305847 DOI: 10.1021/acs.biochem.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Membrane fission is necessary for the formation of vesicles in the endolysosomal system and for the division of organelles like peroxisomes, mitochondria, and chloroplasts. In these processes, fission is managed by certain members of the dynamin superfamily of proteins (DSPs). These DSPs are soluble proteins that self-assemble into helical scaffolds that hydrolyze GTP and force the constriction of tubular membrane substrates, leading to their fission. Based on where they function, fission DSPs can be operationally categorized into vesicle dynamins (VDs) or organelle dynamins (ODs). Even though they share conserved domains and display largely similar enzymatic properties, recent results reveal fundamental differences with respect to the size of the tubular membrane substrate that certain VDs and ODs can sever. Substrate sizes encountered during vesicle formation and organelle division are quite different and could have served as physical constraints that forced the evolution of VDs and ODs. Here, we briefly review and rationalize mechanisms for the division of labor among DSPs.The structural basis for substrate size-dependent fission activity among VDs and ODs remains unclear and represents an attractive area for future research.
Collapse
Affiliation(s)
- Meghadeepa Sarkar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
5
|
Yang X, Wei R, Meng F, Liu D, Gong X, Ruvkun G, Wei W. Mitochondrial fission surveillance is coupled to Caenorhabditis elegans DNA and chromosome segregation integrity. PLoS Genet 2025; 21:e1011678. [PMID: 40279356 PMCID: PMC12064022 DOI: 10.1371/journal.pgen.1011678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 05/09/2025] [Accepted: 04/05/2025] [Indexed: 04/27/2025] Open
Abstract
Mitochondrial fission and fusion are tightly regulated to specify mitochondrial abundance, localization, and arrangement during cell division as well as in the diverse differentiated cell types and physiological states. However, the regulatory pathways for such mitochondrial dynamics are less explored than the mitochondrial fission and fusion components. Here we report a large-scale screen for genes that regulate mitochondrial fission. Mitochondrial fission defects cause a characteristic uneven fluorescent pattern in embryos carrying mitochondrial stress reporter genes. Using this uneven activation, we performed RNAi screens that identified 3 kinase genes from a ~ 500-kinase library and another 11 genes from 3,300 random genes that function in mitochondrial fission. Many of these identified genes play roles in chromosome segregation. We found that chromosome missegregation and genome instability lead to dysregulation of mitochondrial fission, possibly independent of DRP-1. ATL-1, the C. elegans ATR orthologue, plays a potentially protective role in alleviating the mitochondrial fission defect caused by chromosome missegregation. This establishes a screening paradigm for identifying mitochondrial fission regulators, which reveals the potential role of ATR in surveilling mitochondrial fission to mitigate dysregulation caused by improper chromosome segregation.
Collapse
Affiliation(s)
- Xiaomeng Yang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruichen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fanfan Meng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Dianchen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xuan Gong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
6
|
Xu L, Zhang T, Zhu B, Tao H, Liu Y, Liu X, Zhang Y, Meng X. Mitochondrial quality control disorder in neurodegenerative disorders: Potential and advantages of traditional Chinese medicines. J Pharm Anal 2025; 15:101146. [PMID: 40291018 PMCID: PMC12032916 DOI: 10.1016/j.jpha.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 04/30/2025] Open
Abstract
Neurodegenerative disorders (NDDs) are prevalent chronic conditions characterized by progressive synaptic loss and pathological protein alterations. Increasing evidence suggested that mitochondrial quality control (MQC) serves as the key cellular process responsible for clearing misfolded proteins and impaired mitochondria. Herein, we provided a comprehensive analysis of the mechanisms through which MQC mediates the onset and progression of NDDs, emphasizing mitochondrial dynamic stability, the clearance of damaged mitochondria, and the generation of new mitochondria. In addition, traditional Chinese medicines (TCMs) and their active monomers targeting MQC in NDD treatment have been demonstrated. Consequently, we compiled the TCMs that show great potential in the treatment of NDDs by targeting MQC, aiming to offer novel insights and a scientific foundation for the use of MQC stabilizers in NDD prevention and treatment.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Baojie Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
7
|
You L, Huang Z, He W, Zhang L, Yu H, Zeng Y, Huang Y, Zeng S, Zheng L. Dietary alpha-lipoic acid alleviates heat stress by modulating insulin-like signaling to maintain homeostasis in C. elegans. Food Funct 2025; 16:2824-2839. [PMID: 40095598 DOI: 10.1039/d4fo05301j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prolonged exposure to high temperatures can cause oxidative stress in the body, negatively impacting human health. Alpha-lipoic acid (ALA) is a naturally occurring antioxidant prevalent in both plant and animal foods, exhibiting bioactivity comparable to that of vitamins. Although its roles in antioxidant defense and metabolic regulation have been extensively studied, its potential to mitigate heat stress in organisms is less explored and deserves further study. Our research demonstrates that ALA significantly improves the survival rates of Caenorhabditis elegans under heat stress. ALA achieves this by activating heat shock factor 1 (HSF-1) and promoting mitochondrial fission and mitophagy through the transcription factor HLH-30. These processes help alleviate oxidative damage from heat stress, maintain mitochondrial function, and stabilize cellular energy metabolism. Furthermore, the activation of HSF-1 and enhanced mitophagy by dietary ALA depend on the insulin-like signaling peptide 19 (INS-19), suggesting that ALA may target the insulin-like signaling pathway to combat heat stress and maintain homeostasis. These findings indicate that ALA could serve as a valuable dietary supplement for enhancing heat stress resistance in organisms and may inspire the development of novel food ingredients with protective properties against thermal challenges.
Collapse
Affiliation(s)
- Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zirui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenyuan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lizhu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Haiyang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaoyong Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Tsukamura A, Ariyama H, Hayashi N, Miyatake S, Okado S, Sultana S, Terakado I, Yamamoto T, Yamanaka S, Fujii S, Hamanoue H, Asano R, Mizushima T, Matsumoto N, Maruo Y, Mori M. KNTC1 introduces segmental heterogeneity to mitochondria. Dis Model Mech 2025; 18:DMM052063. [PMID: 39829138 PMCID: PMC11911638 DOI: 10.1242/dmm.052063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Mitochondria contribute to cellular metabolism by providing a specialised milieu for energising cells by incorporating and processing the metabolites. However, heterogeneity between mitochondria has only partially been elucidated. Mitochondria dynamically alter their morphology and function during the life of an animal, when cells proliferate and grow. We here show that Kntc1, a highly evolutionarily conserved protein, translocates from the Golgi apparatus to linear mitochondrial segments (LMSs) upon glutamine deprivation and plays an essential role in maintaining LMSs. The LMSs to which Kntc1 localised exhibited an increase in the mitochondrial membrane potential, suggesting the role of Kntc1 in functioning as a reservoir for the energy-generating potential. Suppression of Kntc1 led to glutamine consumption and lactate production, thus impacting cellular metabolism, eventually leading to anchorage-independent growth of cells. Indeed, a KNTC1 variant was identified in a patient with ovarian cancer, suggesting that segmental regulation of the mitochondrial function is essential for maintaining tissue integrity.
Collapse
Affiliation(s)
- Atsushi Tsukamura
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hirotaka Ariyama
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
| | - Natsuki Hayashi
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
- Advanced Pediatric Medicine, Tohoku University School of Medicine, Miyagi 980-0872, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University (YCU) Graduate School of Medicine, Kanagawa 236-0004, Japan
- Department of Clinical Genetics, YCU Hospital, Kanagawa 236-0004, Japan
| | - Satoko Okado
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
| | - Sara Sultana
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
| | - Ichiro Terakado
- Research Center for Animal Life Science (RCALS), Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Takefumi Yamamoto
- Central Research Laboratory, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Shoji Yamanaka
- Department of Pathology, YCU Hospital, Kanagawa 236-0004, Japan
| | - Satoshi Fujii
- Department of Pathology, YCU Hospital, Kanagawa 236-0004, Japan
- Department of Molecular Pathology, YCU Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Haruka Hamanoue
- Department of Clinical Genetics, YCU Hospital, Kanagawa 236-0004, Japan
| | - Ryoko Asano
- Department of Obstetrics and Gynecology, YCU Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Taichi Mizushima
- Department of Obstetrics and Gynecology, YCU Graduate School of Medicine, Kanagawa 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University (YCU) Graduate School of Medicine, Kanagawa 236-0004, Japan
- Department of Clinical Genetics, YCU Hospital, Kanagawa 236-0004, Japan
- Department of Rare Disease Genomics, YCU Hospital, Kanagawa 236-0004, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masaki Mori
- Department of Pediatrics, Shiga University of Medical Science, Shiga 520-2192, Japan
- Department of Pediatric Physiology, National Center for Child Health and Development (NCCHD), Tokyo 157-8535, Japan
- Advanced Pediatric Medicine, Tohoku University School of Medicine, Miyagi 980-0872, Japan
| |
Collapse
|
9
|
Balachandar Thendral S, Bacot S, Morton KS, Chi Q, Kenny-Ganzert IW, Meyer JN, Sherwood DR. Mitophagy at the oocyte-to-zygote transition promotes species immortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636045. [PMID: 39975396 PMCID: PMC11838424 DOI: 10.1101/2025.02.01.636045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The quality of inherited mitochondria determines embryonic viability 1 , metabolic health during adulthood and future generation endurance. The oocyte is the source of all zygotic mitochondria 2 , and mitochondrial health is under strict developmental regulation during early oogenesis 3-5 . Yet, fully developed oocytes exhibit the presence of deleterious mitochondrial DNA (mtDNA) 6,7 and mitochondrial dysfunction from high levels of endogenous reactive oxygen species 8 and exogenous toxicants 9 . How fully developed oocytes prevent transmission of damaged mitochondria to the zygotes is unknown. Here we discover that the onset of oocyte-to-zygote transition (OZT) developmentally triggers a robust and rapid mitophagy event that we term mitophagy at OZT (MOZT). We show that MOZT requires mitochondrial fragmentation, activation of the macroautophagy system and the mitophagy receptor FUNDC1, but not the prevalent mitophagy factors PINK1 and BNIP3. Oocytes upregulate expression of FUNDC1 in response to diverse mitochondrial insults, including mtDNA mutations and damage, uncoupling stress, and mitochondrial dysfunction, thereby promoting selection against damaged mitochondria. Loss of MOZT leads to increased inheritance of deleterious mtDNA and impaired bioenergetic health in the progeny, resulting in diminished embryonic viability and the extinction of descendent populations. Our findings reveal FUNDC1-mediated MOZT as a mechanism that preserves mitochondrial health during the mother-to-offspring transmission and promotes species continuity. These results may explain how mature oocytes from many species harboring mutant mtDNA give rise to healthy embryos with reduced deleterious mtDNA.
Collapse
|
10
|
Traa A, Tamez González AA, Van Raamsdonk JM. Developmental disruption of the mitochondrial fission gene drp-1 extends the longevity of daf-2 insulin/IGF-1 receptor mutant. GeroScience 2025; 47:877-902. [PMID: 39028454 PMCID: PMC11872967 DOI: 10.1007/s11357-024-01276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell's ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Aura A Tamez González
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Wang S, Xue D. Asymmetric partitioning of persistent paternal mitochondria during cell divisions safeguards embryo development and mitochondrial inheritance. Dev Cell 2025:S1534-5807(25)00033-4. [PMID: 39904343 DOI: 10.1016/j.devcel.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Most eukaryotes inherit only maternal mitochondria. The reasons for paternal mitochondrial elimination and the impacts of persistent paternal mitochondria on animals remain elusive. We show that undegraded paternal mitochondria in autophagy-deficient C. elegans embryos are gradually excluded from germ blastomeres through asymmetric partitioning during cell divisions. The embryonic cortical flow drives anterior-directed movements of paternal mitochondria and contributes to their asymmetric apportioning between two daughter blastomeres. By contrast, autophagosome-enclosed paternal mitochondria cluster around and segregate with centrosomes during mitosis and are rapidly degraded through lysosomes concentrated near centrosomes. Failure to exclude persistent paternal mitochondria from the germ blastomere at first cleavage causes their enrichment in the descendant endomesodermal (EMS) blastomere, leading to elevated reactive oxygen species levels, elongated EMS lineage durations, and increased embryonic lethality, which antioxidant treatments can suppress. Thus, regulated paternal mitochondrial distribution away from germ blastomeres is a fail-safe mechanism, protecting embryo development and maternal mitochondrial inheritance.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
13
|
Kim J, Dutta N, Vega M, Bong A, Averbuhk M, Barahona RA, Alcala A, Holmes JT, Garcia G, Higuchi-Sanabria R. Cross comparison of imaging strategies of mitochondria in C. elegans during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630282. [PMID: 39763886 PMCID: PMC11703187 DOI: 10.1101/2024.12.24.630282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Mitochondria are double membrane-bound organelles with pleiotropic roles in the cell, including energy production through aerobic respiration, calcium signaling, metabolism, proliferation, immune signaling, and apoptosis. Dysfunction of mitochondria is associated with numerous physiological consequences and drives various diseases, and is one of twelve biological hallmarks of aging, linked to aging pathology. There are many distinct changes that occur to the mitochondria during aging including changes in mitochondrial morphology, which can be used as a robust and simple readout of mitochondrial quality and function. Although mitochondrial morphology alone cannot be used to conclude the quality of mitochondria, it is highly correlated with mitochondrial function whereby mitochondria exhibit increased fragmentation with age in multiple cell types of the nematode C. elegans. Thus, C. elegans serve as a robust model for rapidly measuring mitochondrial morphology changes during aging. To standardize imaging methods for mitochondrial morphology in C. elegans, we provide a detailed comparative characterization of several transgenic constructs, highlighting benefits and caveats for aging biology studies.
Collapse
Affiliation(s)
- Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Maxim Averbuhk
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Rebecca Aviles Barahona
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Jacob T. Holmes
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
14
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
15
|
Erinjeri AP, Wang X, Williams R, Chiozzi RZ, Thalassinos K, Labbadia J. HSF-1 promotes longevity through ubiquilin-1-dependent mitochondrial network remodelling. Nat Commun 2024; 15:9797. [PMID: 39532882 PMCID: PMC11557981 DOI: 10.1038/s41467-024-54136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Increased activity of the heat shock factor, HSF-1, suppresses proteotoxicity and enhances longevity. However, the precise mechanisms by which HSF-1 promotes lifespan are unclear. Using an RNAi screen, we identify ubiquilin-1 (ubql-1) as an essential mediator of lifespan extension in worms overexpressing hsf-1. We find that hsf-1 overexpression leads to transcriptional downregulation of all components of the CDC-48-UFD-1-NPL-4 complex, which is central to both endoplasmic reticulum and mitochondria associated protein degradation, and that this is complemented by UBQL-1-dependent turnover of NPL-4.1. As a consequence, mitochondrial network dynamics are altered, leading to increased lifespan. Together, our data establish that HSF-1 mediates lifespan extension through mitochondrial network adaptations that occur in response to down-tuning of components associated with organellar protein degradation pathways.
Collapse
Affiliation(s)
- Annmary Paul Erinjeri
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Xunyan Wang
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Rhianna Williams
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK
| | - Riccardo Zenezini Chiozzi
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- UCL Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- UCL Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Johnathan Labbadia
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
16
|
Valera-Alberni M, Yao P, Romero-Sanz S, Lanjuin A, Mair WB. Novel imaging tools to study mitochondrial morphology in Caenorhabditis elegans. Life Sci Alliance 2024; 7:e202402918. [PMID: 39260886 PMCID: PMC11391045 DOI: 10.26508/lsa.202402918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondria exhibit a close interplay between their structure and function. Understanding this intricate relationship requires advanced imaging techniques that can capture the dynamic nature of mitochondria and their impact on cellular processes. However, much of the work on mitochondrial dynamics has been performed in single celled organisms or in vitro cell culture. Here, we introduce novel genetic tools for live imaging of mitochondrial morphology in the nematode Caenorhabditis elegans, addressing a pressing need for advanced techniques in studying organelle dynamics within live intact multicellular organisms. Through a comprehensive analysis, we directly compare our tools with existing methods, demonstrating their advantages for visualizing mitochondrial morphology and contrasting their impact on organismal physiology. We reveal limitations of conventional techniques, whereas showcasing the utility and versatility of our approaches, including endogenous CRISPR tags and ectopic labeling. By providing a guide for selecting the most suitable tools based on experimental goals, our work advances mitochondrial research in C. elegans and enhances the strategic integration of diverse imaging modalities for a holistic understanding of organelle dynamics in living organisms.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Pallas Yao
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Silvia Romero-Sanz
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Anne Lanjuin
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
17
|
Taylor SKB, Hartman JH, Gupta BP. The neurotrophic factor MANF regulates autophagy and lysosome function to promote proteostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2403906121. [PMID: 39418305 PMCID: PMC11513987 DOI: 10.1073/pnas.2403906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) is known for protecting dopaminergic neurons and functioning in various other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants exhibit defects such as increased endoplasmic reticulum (ER) stress, dopaminergic neurodegeneration, and abnormal protein aggregation. These findings suggest an essential role for MANF in cellular processes. However, the mechanisms by which intracellular and extracellular MANF regulate broader cellular functions remain unclear. We report a unique mechanism of action for MANF-1 that involves the transcription factor HLH-30/TFEB-mediated signaling to regulate autophagy and lysosomal function. Multiple transgenic strains overexpressing MANF-1 showed extended lifespan of animals, reduced protein aggregation, and improved neuronal survival. Using fluorescently tagged MANF-1, we observed tissue-specific localization of the protein, which was dependent on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes and utilizes the endosomal pathway. Consistent with the lysosomal localization, our transcriptomic study of MANF-1 and analyses of autophagy regulators demonstrated that MANF-1 promotes proteostasis by regulating autophagic flux and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of stress response, proteostasis, and aging.
Collapse
Affiliation(s)
| | - Jessica H. Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC29425
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC29425
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
18
|
Li LF, Yu J, Li R, Li SS, Huang JY, Wang MD, Jiang LN, Xu JH, Wang Z. Apoptosis, Mitochondrial Autophagy, Fission, and Fusion Maintain Mitochondrial Homeostasis in Mouse Liver Under Tail Suspension Conditions. Int J Mol Sci 2024; 25:11196. [PMID: 39456978 PMCID: PMC11508632 DOI: 10.3390/ijms252011196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microgravity can induce alterations in liver morphology, structure, and function, with mitochondria playing an important role in these changes. Tail suspension (TS) is a well-established model for simulating the effects of microgravity on muscles and bones, but its impact on liver function remains unclear. In the current study, we explored the regulatory mechanisms of apoptosis, autophagy, fission, and fusion in maintaining liver mitochondrial homeostasis in mice subjected to TS for 2 or 4 weeks (TS2 and TS4). The results showed the following: (1) No significant differences were observed in nuclear ultrastructure or DNA fragmentation between the control and TS-treated groups. (2) No significant differences were detected in the mitochondrial area ratio among the three groups. (3) Cysteine aspartic acid-specific protease 3 (Caspase3) activity and the Bcl-2-associated X protein (bax)/B-cell lymphoma-2 (bcl2) ratio were not higher in the TS2 and TS4 groups compared to the control group. (4) dynamin-related protein 1 (DRP1) protein expression was increased, while mitochondrial fission factor (MFF) protein levels were decreased in the TS2 and TS4 groups compared to the control, suggesting stable mitochondrial fission. (5) No significant differences were observed in the optic atrophy 1 (OPA1), mitofusin 1 and 2 (MFN1 and MFN2) protein expression levels across the three groups. (6) Mitochondrial autophagy vesicles were present in the TS2 and TS4 groups, with a significant increase in Parkin phosphorylation corresponding to the duration of the TS treatment. (7) ATP synthase and citrate synthase activities were significantly elevated in the TS2 group compared to the control group but were significantly reduced in the TS4 group compared to the TS2 group. In summary, the coordinated regulation of apoptosis, mitochondrial fission and fusion, and particularly mitochondrial autophagy preserved mitochondrial morphology and contributed to the restoration of the activities of these two key mitochondrial enzymes, thereby maintaining liver mitochondrial homeostasis in mice under TS conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Hui Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| | - Zhe Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (L.-F.L.); (J.Y.); (R.L.); (S.-S.L.); (J.-Y.H.); (M.-D.W.); (L.-N.J.)
| |
Collapse
|
19
|
Xia Q, Li P, Casas-Martinez JC, Miranda-Vizuete A, McDermott E, Dockery P, Goljanek-Whysall K, McDonagh B. Peroxiredoxin 2 regulates DAF-16/FOXO mediated mitochondrial remodelling in response to exercise that is disrupted in ageing. Mol Metab 2024; 88:102003. [PMID: 39117041 PMCID: PMC11388264 DOI: 10.1016/j.molmet.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES A decline in mitochondrial function and increased susceptibility to oxidative stress is a hallmark of ageing. Exercise endogenously generates reactive oxygen species (ROS) in skeletal muscle and promotes mitochondrial remodelling resulting in improved mitochondrial function. It is unclear how exercise induced redox signalling results in alterations in mitochondrial dynamics and morphology. METHODS In this study, a Caenorhabditis elegans model of exercise and ageing was used to determine the mechanistic role of Peroxiredoxin 2 (PRDX-2) in regulating mitochondrial morphology. Mitochondrial morphology was analysed using transgenic reporter strains and transmission electron microscopy, complimented with the analysis of the effects of ageing and exercise on physiological activity. RESULTS The redox state of PRDX-2 was altered with exercise and ageing, hyperoxidised peroxiredoxins were detected in old worms along with basally elevated intracellular ROS. Exercise generated intracellular ROS and rapid mitochondrial remodelling, which was disrupted with age. The exercise intervention promoted mitochondrial ER contact sites (MERCS) assembly and increased DAF-16/FOXO nuclear localisation. The prdx-2 mutant strain had a disrupted mitochondrial network as evidenced by increased mitochondrial fragmentation. In the prdx-2 mutant strain, exercise did not activate DAF-16/FOXO, mitophagy or increase MERCS assembly. The results demonstrate that exercise generated ROS increased DAF-16/FOXO transcription factor nuclear localisation required for activation of mitochondrial fusion events that were blunted with age. CONCLUSIONS The data demonstrate the critical role of PRDX-2 in orchestrating mitochondrial remodelling in response to a physiological stress by regulating redox dependent DAF-16/FOXO nuclear localisation.
Collapse
Affiliation(s)
- Qin Xia
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Penglin Li
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - José C Casas-Martinez
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Emma McDermott
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Discipline of Anatomy, School of Medicine, University of Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland; Institute of Lifecourse and Medical Sciences, University of Liverpool, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, Ireland; Apoptosis Research Centre, University of Galway, Ireland.
| |
Collapse
|
20
|
Zhou DH, Zhang QG. Warmer is better for evolutionary rescue, driving a warm-to-cold bias in habitat colonization dynamics. Proc Biol Sci 2024; 291:20241605. [PMID: 39353560 PMCID: PMC11444777 DOI: 10.1098/rspb.2024.1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Evolutionary rescue occurs when populations survive lethal environmental stresses through the rising and fixation of tolerant genotypes. Temperature has long been believed to determine the evolutionary speed of populations and species. Here, we suggest that warmer temperatures can facilitate evolutionary rescue. Moreover, with dispersal among habitats, the advantage in evolutionary rescue for warmer populations may cause a bias in habitat colonization dynamics towards the warm-to-cold direction. We experimentally tested these hypotheses with a model microbial system. Our first experiment showed that bacterial populations at warmer temperatures had a greater chance to evolve resistance and escape the fate of extinction under an antibiotic treatment. In the second experiment, metapopulations that consisted of warm and cold habitats were exposed to the antibiotic stress; local populations that went extinct might be recolonized, and such recolonization events were biased to the warm-to-cold direction. We also examined possible mechanisms underlying the temperature effect on the rapid evolution of resistance in our study system. Our results may help to understand the mechanisms of maintenance of biodiversity and patterns of gene flow among climatic regions, particularly in pest species subject to chemical control treatments.
Collapse
Affiliation(s)
- Dong-Hao Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
21
|
Li Y, Zhang H, Yu C, Dong X, Yang F, Wang M, Wen Z, Su M, Li B, Yang L. New Insights into Mitochondria in Health and Diseases. Int J Mol Sci 2024; 25:9975. [PMID: 39337461 PMCID: PMC11432609 DOI: 10.3390/ijms25189975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria are a unique type of semi-autonomous organelle within the cell that carry out essential functions crucial for the cell's survival and well-being. They are the location where eukaryotic cells carry out energy metabolism. Aside from producing the majority of ATP through oxidative phosphorylation, which provides essential energy for cellular functions, mitochondria also participate in other metabolic processes within the cell, such as the electron transport chain, citric acid cycle, and β-oxidation of fatty acids. Furthermore, mitochondria regulate the production and elimination of ROS, the synthesis of nucleotides and amino acids, the balance of calcium ions, and the process of cell death. Therefore, it is widely accepted that mitochondrial dysfunction is a factor that causes or contributes to the development and advancement of various diseases. These include common systemic diseases, such as aging, diabetes, Parkinson's disease, and cancer, as well as rare metabolic disorders, like Kearns-Sayre syndrome, Leigh disease, and mitochondrial myopathy. This overview outlines the various mechanisms by which mitochondria are involved in numerous illnesses and cellular physiological activities. Additionally, it provides new discoveries regarding the involvement of mitochondria in both disorders and the maintenance of good health.
Collapse
Affiliation(s)
- Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
22
|
Power KM, Nguyen KC, Silva A, Singh S, Hall DH, Rongo C, Barr MM. NEKL-4 regulates microtubule stability and mitochondrial health in ciliated neurons. J Cell Biol 2024; 223:e202402006. [PMID: 38767515 PMCID: PMC11104396 DOI: 10.1083/jcb.202402006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by a mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet it negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. Additionally, nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1∆ mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1∆ cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PEST∆) mutant resembled the ccpp-1∆ mutant with dye-filling defects and B-tubule breaks. The nekl-4(PEST∆) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andriele Silva
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
23
|
Raven KD, Kapetanovic R. Mitochondrial dynamics: Regulating cell metabolism, homoeostasis, health and disease. Semin Cell Dev Biol 2024; 161-162:20-21. [PMID: 38507970 DOI: 10.1016/j.semcdb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Affiliation(s)
- Karoline D Raven
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia; IMB Centre for Cell Biology of Chronic Disease, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ronan Kapetanovic
- Friedrich MiescherInstitute for Biomedical Research, Basel 4058, Switzerland; INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly 37380, France.
| |
Collapse
|
24
|
Mallick A, Haynes CM. Methods to analyze the mitochondrial unfolded protein response (UPR mt). Methods Enzymol 2024; 707:543-564. [PMID: 39488390 DOI: 10.1016/bs.mie.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a mitochondria-to-nuclear signaling pathway that mediates the transcription of genes required to maintain mitochondrial function during development as well as during aging. In this chapter, we describe the approaches and techniques that we and others have used to elucidate the mechanism(s) by which cells detect mitochondrial stress or dysfunction and communicate with the nucleus to induce transcription of a protective stress response. We also describe approaches to evaluate the impact of UPRmt activation on mitochondrial function and mitochondrial biogenesis including imaging-based approaches as well as approaches to evaluate mitochondrial genome (mtDNA) copy number.
Collapse
Affiliation(s)
- Avijit Mallick
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States.
| |
Collapse
|
25
|
Froehlich T, Jenner A, Cavarischia-Rega C, Fagbadebo FO, Lurz Y, Frecot DI, Kaiser PD, Nueske S, Scholz AM, Schäffer E, Garcia-Saez AJ, Macek B, Rothbauer U. Nanobodies as novel tools to monitor the mitochondrial fission factor Drp1. Life Sci Alliance 2024; 7:e202402608. [PMID: 38816213 PMCID: PMC11140114 DOI: 10.26508/lsa.202402608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.
Collapse
Affiliation(s)
- Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Yannic Lurz
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Philipp D Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Nueske
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Armin M Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Cai P, Li W, Xu Y, Wang H. Drp1 and neuroinflammation: Deciphering the interplay between mitochondrial dynamics imbalance and inflammation in neurodegenerative diseases. Neurobiol Dis 2024; 198:106561. [PMID: 38857809 DOI: 10.1016/j.nbd.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Neuroinflammation and mitochondrial dysfunction are closely intertwined with the pathophysiology of neurological disorders. Recent studies have elucidated profound alterations in mitochondrial dynamics across a spectrum of neurological disorders. Dynamin-related protein 1 (DRP1) emerges as a pivotal regulator of mitochondrial fission, with its dysregulation disrupting mitochondrial homeostasis and fueling neuroinflammation, thereby exacerbating disease severity. In addition to its role in mitochondrial dynamics, DRP1 plays a crucial role in modulating inflammation-related pathways. This review synthesizes important functions of DRP1 in the central nervous system (CNS) and the impact of epigenetic modification on the progression of neurodegenerative diseases. The intricate interplay between neuroinflammation and DRP1 in microglia and astrocytes, central contributors to neuroinflammation, is expounded upon. Furthermore, the use of DRP1 inhibitors to influence the activation of microglia and astrocytes, as well as their involvement in processes such as mitophagy, mitochondrial oxidative stress, and calcium ion transport in CNS-mediated neuroinflammation, is scrutinized. The modulation of microglia to astrocyte crosstalk by DRP1 and its role in inflammatory neurodegeneration is also highlighted. Overall, targeting DRP1 presents a promising avenue for ameliorating neuroinflammation and enhancing the therapeutic management of neurological disorders.
Collapse
Affiliation(s)
- Peiyang Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wuhao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ye Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China..
| |
Collapse
|
27
|
Valera-Alberni M, Yao P, Romero-Sanz S, Lanjuin A, Mair WB. Novel Imaging Tools to Study Mitochondrial Dynamics in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603730. [PMID: 39071403 PMCID: PMC11275731 DOI: 10.1101/2024.07.16.603730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mitochondria exhibit a close interplay between their structure and function. Understanding this intricate relationship requires advanced imaging techniques that can capture the dynamic nature of mitochondria and their impact on cellular processes. However, much of the work on mitochondrial dynamics has been done in single celled organisms or in vitro cell culture. Here, we introduce novel genetic tools for live imaging of mitochondrial networks in the nematode Caenorhabditis elegans , addressing a pressing need for advanced techniques in studying organelle dynamics within live intact multicellular organisms. Through a comprehensive analysis, we directly compare our tools with existing methods, demonstrating their advantages for visualizing mitochondrial morphology and contrasting their impact on organismal physiology. We reveal limitations of conventional techniques, while showcasing the utility and versatility of our approaches, including endogenous CRISPR tags and ectopic labeling. By providing a guide for selecting the most suitable tools based on experimental goals, our work advances mitochondrial research in C. elegans and enhances the strategic integration of diverse imaging modalities for a holistic understanding of organelle dynamics in living organisms.
Collapse
|
28
|
Zhou C, Li Z, Li Y, Li Y, Wang W, Shang W, Liu JP, Wang L, Tong C. TRABD modulates mitochondrial homeostasis and tissue integrity. Cell Rep 2024; 43:114304. [PMID: 38843396 DOI: 10.1016/j.celrep.2024.114304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
High TRABD expression is associated with tau pathology in patients with Alzheimer's disease; however, the function of TRABD is unknown. Human TRABD encodes a mitochondrial outer-membrane protein. The loss of TRABD resulted in mitochondrial fragmentation, and TRABD overexpression led to mitochondrial clustering and fusion. The C-terminal tail of the TRABD anchored to the mitochondrial outer membrane and the TraB domain could form homocomplexes. Additionally, TRABD forms complexes with MFN2, MIGA2, and PLD6 to facilitate mitochondrial fusion. Flies lacking dTRABD are viable and have normal lifespans. However, aging flies exhibit reduced climbing ability and abnormal mitochondrial morphology in their muscles. The expression of dTRABD is increased in aged flies. dTRABD overexpression leads to neurodegeneration and enhances tau toxicity in fly eyes. The overexpression of dTRABD also increased reactive oxygen species (ROS), ATP production, and protein turnover in the mitochondria. This study suggested that TRABD-induced mitochondrial malfunctions contribute to age-related neurodegeneration.
Collapse
Affiliation(s)
- Caixia Zhou
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhirong Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yawen Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yaoyao Li
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Weina Shang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun-Ping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liquan Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China; Institute of Aging Research, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
29
|
Giovannetti M, Rodríguez-Palero MJ, Fabrizio P, Nicolle O, Bedet C, Michaux G, Witting M, Artal-Sanz M, Palladino F. SIN-3 transcriptional coregulator maintains mitochondrial homeostasis and polyamine flux. iScience 2024; 27:109789. [PMID: 38746662 PMCID: PMC11091686 DOI: 10.1016/j.isci.2024.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.
Collapse
Affiliation(s)
- Marina Giovannetti
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - María-Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Paola Fabrizio
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ophélie Nicolle
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Cécile Bedet
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Grégoire Michaux
- University Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof Forum 2, 85354 Freising, Weihenstephan, Germany
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas/Junta de Andalucía/Universidad Pablo de Olavide and Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| |
Collapse
|
30
|
Crane AB, Jetti SK, Littleton JT. A stochastic RNA editing process targets a limited number of sites in individual Drosophila glutamatergic motoneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594696. [PMID: 38798345 PMCID: PMC11118563 DOI: 10.1101/2024.05.17.594696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
RNA editing is a post-transcriptional source of protein diversity and occurs across the animal kingdom. Given the complete profile of mRNA targets and their editing rate in individual cells is unclear, we analyzed single cell RNA transcriptomes from Drosophila larval tonic and phasic glutamatergic motoneuron subtypes to determine the most highly edited targets and identify cell-type specific editing. From ∼15,000 genes encoded in the genome, 316 high confidence A-to-I canonical RNA edit sites were identified, with 102 causing missense amino acid changes in proteins regulating membrane excitability, synaptic transmission, and cellular function. Some sites showed 100% editing in single neurons as observed with mRNAs encoding mammalian AMPA receptors. However, most sites were edited at lower levels and generated variable expression of edited and unedited mRNAs within individual neurons. Together, these data provide insights into how the RNA editing landscape alters protein function to modulate the properties of two well-characterized neuronal populations in Drosophila .
Collapse
|
31
|
Lee J, Han Y, Kim S, Jo H, Wang W, Cho U, Kim SI, Kim B, Song YS. Mitochondrial fission enhances IL-6-induced metastatic potential in ovarian cancer via ERK1/2 activation. Cancer Sci 2024; 115:1536-1550. [PMID: 38433313 PMCID: PMC11093201 DOI: 10.1111/cas.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 03/05/2024] Open
Abstract
Ovarian cancer is a lethal gynecologic cancer mostly diagnosed in an advanced stage with an accumulation of ascites. Interleukin-6 (IL-6), a pro-inflammatory cytokine is highly elevated in malignant ascites and plays a pleiotropic role in cancer progression. Mitochondria are dynamic organelles that undergo fission and fusion in response to external stimuli and dysregulation in their dynamics has been implicated in cancer progression and metastasis. Here, we investigate the effect of IL-6 on mitochondrial dynamics in ovarian cancer cells (OVCs) and its impact on metastatic potential. Treatment with IL-6 on ovarian cancer cell lines (SKOV3 and PA-1) led to an elevation in the metastatic potential of OVCs. Interestingly, a positive association was observed between dynamin-related protein 1 (Drp1), a regulator of mitochondrial fission, and IL-6R in metastatic ovarian cancer tissues. Additionally, IL-6 treatment on OVCs was linked to the activation of Drp1, with a notable increase in the ratio of the inhibitory form p-Drp1(S637) to the active form p-Drp1(S616), indicating enhanced mitochondrial fission. Moreover, IL-6 treatment triggered the activation of ERK1/2, and inhibiting ERK1/2 mitigated IL-6-induced mitochondrial fission. Suppressing mitochondrial fission through siRNA transfection and a pharmacological inhibitor reduced the IL-6-induced migration and invasion of OVCs. This was further supported by 3D invasion assays using patient-derived spheroids. Altogether, our study suggests the role of mitochondrial fission in the metastatic potential of OVCs induced by IL-6. The inhibition of mitochondrial fission could be a potential therapeutic approach to suppress the metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Juwon Lee
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Youngjin Han
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Soochi Kim
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Paul F. Glenn Laboratories for the Biology of AgingStanford University School of MedicineStanfordCaliforniaUSA
| | - HyunA Jo
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Wenyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Untack Cho
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, College of MedicineSeoul National UniversitySeoulKorea
| | - Boyun Kim
- Department of SmartBio, College of Life and Health ScienceKyungsung UniversityBusanKorea
| | - Yong Sang Song
- WCU Biomodulation, Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
- Cancer Research Institute, College of MedicineSeoul National UniversitySeoulKorea
- Department of Obstetrics and Gynecology, College of MedicineSeoul National UniversitySeoulKorea
| |
Collapse
|
32
|
Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol 2024; 156:266-275. [PMID: 37919144 DOI: 10.1016/j.semcdb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
Collapse
Affiliation(s)
- Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
33
|
Dodge JD, Browder NJ, Pellegrino MW. Mitochondrial recovery by the UPR mt: Insights from C. elegans. Semin Cell Dev Biol 2024; 154:59-68. [PMID: 36792440 PMCID: PMC11684877 DOI: 10.1016/j.semcdb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Mitochondria are multifaceted organelles, with such functions as the production of cellular energy to the regulation of cell death. However, mitochondria incur various sources of damage from the accumulation of reactive oxygen species and DNA mutations that can impact the protein folding environment and impair their function. Since mitochondrial dysfunction is often associated with reductions in organismal fitness and possibly disease, cells must have safeguards in place to protect mitochondrial function and promote recovery during times of stress. The mitochondrial unfolded protein response (UPRmt) is a transcriptional adaptation that promotes mitochondrial repair to aid in cell survival during stress. While the earlier discoveries into the regulation of the UPRmt stemmed from studies using mammalian cell culture, much of our understanding about this stress response has been bestowed to us by the model organism Caenorhabditis elegans. Indeed, the facile but powerful genetics of this relatively simple nematode has uncovered multiple regulators of the UPRmt, as well as several physiological roles of this stress response. In this review, we will summarize these major advancements originating from studies using C. elegans.
Collapse
Affiliation(s)
- Joshua D Dodge
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Nicholas J Browder
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA
| | - Mark W Pellegrino
- The University of Texas at Arlington, Department of Biology, Arlington, TX 76019, USA.
| |
Collapse
|
34
|
Power KM, Nguyen KC, Silva A, Singh S, Hall DH, Rongo C, Barr MM. NEKL-4 regulates microtubule stability and mitochondrial health in C. elegans ciliated neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580304. [PMID: 38405845 PMCID: PMC10888866 DOI: 10.1101/2024.02.14.580304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Ciliopathies are often caused by defects in the ciliary microtubule core. Glutamylation is abundant in cilia, and its dysregulation may contribute to ciliopathies and neurodegeneration. Mutation of the deglutamylase CCP1 causes infantile-onset neurodegeneration. In C. elegans, ccpp-1 loss causes age-related ciliary degradation that is suppressed by mutation in the conserved NEK10 homolog nekl-4. NEKL-4 is absent from cilia, yet negatively regulates ciliary stability via an unknown, glutamylation-independent mechanism. We show that NEKL-4 was mitochondria-associated. nekl-4 mutants had longer mitochondria, a higher baseline mitochondrial oxidation state, and suppressed ccpp-1 mutant lifespan extension in response to oxidative stress. A kinase-dead nekl-4(KD) mutant ectopically localized to ccpp-1 cilia and rescued degenerating microtubule doublet B-tubules. A nondegradable nekl-4(PESTΔ) mutant resembled the ccpp-1 mutant with dye filling defects and B-tubule breaks. The nekl-4(PESTΔ) Dyf phenotype was suppressed by mutation in the depolymerizing kinesin-8 KLP-13/KIF19A. We conclude that NEKL-4 influences ciliary stability by activating ciliary kinesins and promoting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Andriele Silva
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States of America
| | - Shaneen Singh
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY, United States of America
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Christopher Rongo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States of America
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
35
|
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay MÈ, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 2024; 26:194-206. [PMID: 38332353 PMCID: PMC11026068 DOI: 10.1038/s41556-023-01343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Gladys R Rojas
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | - Matthew P Donnelly
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sagnika Ghosh
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sienna Rocha
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Joshua A Chevez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Lemersal
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Uri Manor
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
36
|
Taylor SKB, Hartman JH, Gupta BP. Neurotrophic factor MANF regulates autophagy and lysosome function to promote proteostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551399. [PMID: 38260421 PMCID: PMC10802257 DOI: 10.1101/2023.07.31.551399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons but also functions in several other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants have increased ER stress, dopaminergic neurodegeneration, protein aggregation, slower growth, and a reduced lifespan. The multiple requirements of MANF in different systems suggest its essential role in regulating cellular processes. However, how intracellular and extracellular MANF regulates broader cellular function remains unknown. Here, we report a novel mechanism of action for manf-1 that involves the autophagy transcription factor HLH-30/TFEB-mediated signaling to regulate lysosomal function and aging. We generated multiple transgenic strains overexpressing MANF-1 and found that animals had extended lifespan, reduced protein aggregation, and improved neuronal health. Using a fluorescently tagged MANF-1, we observed different tissue localization of MANF-1 depending on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes. These findings were consistent with our transcriptomic studies and, together with analysis of autophagy regulators, demonstrate that MANF-1 regulates protein homeostasis through increased autophagy and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of the stress response, proteostasis, and aging.
Collapse
Affiliation(s)
- Shane K. B. Taylor
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jessica H. Hartman
- Department of Biochemistry & Molecular Biology and Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
37
|
Connor OM, Matta SK, Friedman JR. Completion of mitochondrial division requires the intermembrane space protein Mdi1/Atg44. J Cell Biol 2023; 222:e202303147. [PMID: 37540145 PMCID: PMC10403340 DOI: 10.1083/jcb.202303147] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by a dynamin-related protein, Dnm1 (Drp1 in humans), that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity is sufficient to complete the fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1 (also named Atg44). Loss of Mdi1 causes mitochondrial hyperfusion due to defects in fission, but not the lack of Dnm1 recruitment to mitochondria. Mdi1 is conserved in fungal species, and its homologs contain an amphipathic α-helix, mutations of which disrupt mitochondrial morphology. One model is that Mdi1 distorts mitochondrial membranes to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of Mdi1 inside mitochondria.
Collapse
Affiliation(s)
- Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srujan K. Matta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Su É, Villard C, Manneville JB. Mitochondria: At the crossroads between mechanobiology and cell metabolism. Biol Cell 2023; 115:e2300010. [PMID: 37326132 DOI: 10.1111/boc.202300010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Metabolism and mechanics are two key facets of structural and functional processes in cells, such as growth, proliferation, homeostasis and regeneration. Their reciprocal regulation has been increasingly acknowledged in recent years: external physical and mechanical cues entail metabolic changes, which in return regulate cell mechanosensing and mechanotransduction. Since mitochondria are pivotal regulators of metabolism, we review here the reciprocal links between mitochondrial morphodynamics, mechanics and metabolism. Mitochondria are highly dynamic organelles which sense and integrate mechanical, physical and metabolic cues to adapt their morphology, the organization of their network and their metabolic functions. While some of the links between mitochondrial morphodynamics, mechanics and metabolism are already well established, others are still poorly documented and open new fields of research. First, cell metabolism is known to correlate with mitochondrial morphodynamics. For instance, mitochondrial fission, fusion and cristae remodeling allow the cell to fine-tune its energy production through the contribution of mitochondrial oxidative phosphorylation and cytosolic glycolysis. Second, mechanical cues and alterations in mitochondrial mechanical properties reshape and reorganize the mitochondrial network. Mitochondrial membrane tension emerges as a decisive physical property which regulates mitochondrial morphodynamics. However, the converse link hypothesizing a contribution of morphodynamics to mitochondria mechanics and/or mechanosensitivity has not yet been demonstrated. Third, we highlight that mitochondrial mechanics and metabolism are reciprocally regulated, although little is known about the mechanical adaptation of mitochondria in response to metabolic cues. Deciphering the links between mitochondrial morphodynamics, mechanics and metabolism still presents significant technical and conceptual challenges but is crucial both for a better understanding of mechanobiology and for potential novel therapeutic approaches in diseases such as cancer.
Collapse
Affiliation(s)
- Émilie Su
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Université Paris Cité - CNRS, UMR 8236, Paris, France
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Cité - CNRS, UMR 7057, Paris, France
| |
Collapse
|
39
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
40
|
Fang J, Wang J, Wang Y, Liu X, Chen B, Zou W. Ribo-On and Ribo-Off tools using a self-cleaving ribozyme allow manipulation of endogenous gene expression in C. elegans. Commun Biol 2023; 6:816. [PMID: 37542105 PMCID: PMC10403566 DOI: 10.1038/s42003-023-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Investigating gene function relies on the efficient manipulation of endogenous gene expression. Currently, a limited number of tools are available to robustly manipulate endogenous gene expression between "on" and "off" states. In this study, we insert a 63 bp coding sequence of T3H38 ribozyme into the 3' untranslated region (UTR) of C. elegans endogenous genes using the CRISPR/Cas9 technology, which reduces the endogenous gene expression to a nearly undetectable level and generated loss-of-function phenotypes similar to that of the genetic null animals. To achieve conditional knockout, a cassette of loxP-flanked transcriptional termination signal and ribozyme is inserted into the 3' UTR of endogenous genes, which eliminates gene expression spatially or temporally via the controllable expression of the Cre recombinase. Conditional endogenous gene turn-on can be achieved by either injecting morpholino, which blocks the ribozyme self-cleavage activity or using the Cre recombinase to remove the loxP-flanked ribozyme. Together, our results demonstrate that these ribozyme-based tools can efficiently manipulate endogenous gene expression both in space and time and expand the toolkit for studying the functions of endogenous genes.
Collapse
Affiliation(s)
- Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jie Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Baohui Chen
- Department of Cell Biology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, China.
- Institute of Translational Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
41
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
42
|
Ahn D, Go RE, Choi KC. Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes. Toxicol Res 2023; 39:333-339. [PMID: 37398565 PMCID: PMC10313613 DOI: 10.1007/s43188-023-00183-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
The increase in the types and complexity of diseases has led to significant advances in diagnostic techniques and the availability of effective therapies. Recent studies have focused on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases (CVDs). Mitochondria are important organelles in cells that generate energy. Besides the production of adenosine triphosphate (ATP), the energy currency of cells, mitochondria are also involved in thermogenesis, control of intracellular calcium ions (Ca2+), apoptosis, regulation of reactive oxygen species (ROS), and inflammation. Mitochondrial dysfunction has been implicated in several diseases including cancer, diabetes, some genetic diseases, and neurogenerative and metabolic diseases. Furthermore, the cardiomyocytes of the heart are rich in mitochondria due to the large energy requirement for optimal cardiac function. One of the main causes of cardiac tissue injuries is believed to be mitochondrial dysfunction, which occurs via complicated pathways which have not yet been completely elucidated. There are various types of mitochondrial dysfunction including mitochondrial morphological change, unbalanced levels of substances to maintain mitochondria, mitochondrial damage by drugs, and mitochondrial deletion and synthesis errors. Most of mitochondrial dysfunctions are linked with symptoms and diseases, thus we focus on parts of mitochondrial dysfunction about fission and fusion in cardiomyocytes, and ways to understand the mechanism of cardiomyocyte damage by detecting oxygen consumption levels in the mitochondria.
Collapse
Affiliation(s)
- Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
43
|
Khalimonchuk O, Becker DF. Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxid Redox Signal 2023; 38:896-919. [PMID: 36301938 PMCID: PMC10171965 DOI: 10.1089/ars.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/12/2023]
Abstract
Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production, redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction, metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases, including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such as parkinsonism, amyotrophic lateral sclerosis, and glaucoma. Recent Advances: New evidence supports that increased energy metabolism protects neuron function during aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria. Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such as glaucoma, Alzheimer's disease, and Parkinson's disease is important for developing new therapies. Functional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and metabolic stress is a major challenge. Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial architecture. Future work will need to delineate the molecular details of these processes.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Fred & Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
44
|
Lee Y, Choi S, Kim KW. Dithianon exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114752. [PMID: 36924561 DOI: 10.1016/j.ecoenv.2023.114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Dithianon is a conventional broad-spectrum protectant fungicide widely used in agriculture, but its potential neurotoxic risk to animals remains largely unknown. In this study, neurotoxic effects of Dithianon and its underlying cellular and molecular mechanisms were investigated using the nematode, Caenorhabditis elegans, as a model system. Upon chronic exposure of C. elegans to Dithianon, dopaminergic neurons were found to be vulnerable, with significant degeneration in terms of structure and function in a concentration-dependent manner. In examining toxicity mechanisms, we observed significant Dithianon-induced increases in oxidative stress and mitochondrial fragmentation, both of which are often associated with cellular stress. The present study suggests that Dithianon exposure causes dopaminergic neurotoxicity in C. elegans, by inducing oxidative stress and mitochondrial dysfunction. These findings contribute to a better understanding of Dithianon's neurotoxic potential.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Sooji Choi
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea; Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
45
|
Connor OM, Matta SK, Friedman JR. An intermembrane space protein facilitates completion of mitochondrial division in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535139. [PMID: 37034761 PMCID: PMC10081322 DOI: 10.1101/2023.03.31.535139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by the dynamin-related protein Dnm1 (Drp1 in humans), a large GTPase that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity alone is sufficient to complete fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1. Loss of Mdi1 leads to hyper-fused mitochondria networks due to defects in mitochondrial fission, but not lack of Dnm1 recruitment to mitochondria. Mdi1 plays a conserved role in fungal species and its homologs contain a putative amphipathic α-helix, mutations in which disrupt mitochondrial morphology. One model to explain these findings is that Mdi1 associates with and distorts the mitochondrial inner membrane to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of a protein that resides inside mitochondria.
Collapse
Affiliation(s)
- Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Srujan K. Matta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
46
|
The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. Int J Mol Sci 2023; 24:ijms24065785. [PMID: 36982862 PMCID: PMC10057413 DOI: 10.3390/ijms24065785] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Mitochondria, the membrane-bound cell organelles that supply most of the energy needed for cell function, are highly regulated, dynamic organelles bearing the ability to alter both form and functionality rapidly to maintain normal physiological events and challenge stress to the cell. This amazingly vibrant movement and distribution of mitochondria within cells is controlled by the highly coordinated interplay between mitochondrial dynamic processes and fission and fusion events, as well as mitochondrial quality-control processes, mainly mitochondrial autophagy (also known as mitophagy). Fusion connects and unites neighboring depolarized mitochondria to derive a healthy and distinct mitochondrion. In contrast, fission segregates damaged mitochondria from intact and healthy counterparts and is followed by selective clearance of the damaged mitochondria via mitochondrial specific autophagy, i.e., mitophagy. Hence, the mitochondrial processes encompass all coordinated events of fusion, fission, mitophagy, and biogenesis for sustaining mitochondrial homeostasis. Accumulated evidence strongly suggests that mitochondrial impairment has already emerged as a core player in the pathogenesis, progression, and development of various human diseases, including cardiovascular ailments, the leading causes of death globally, which take an estimated 17.9 million lives each year. The crucial factor governing the fission process is the recruitment of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, from the cytosol to the outer mitochondrial membrane in a guanosine triphosphate (GTP)-dependent manner, where it is oligomerized and self-assembles into spiral structures. In this review, we first aim to describe the structural elements, functionality, and regulatory mechanisms of the key mitochondrial fission protein, Drp1, and other mitochondrial fission adaptor proteins, including mitochondrial fission 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics 49 (Mid49), and mitochondrial dynamics 51 (Mid51). The core area of the review focuses on the recent advances in understanding the role of the Drp1-mediated mitochondrial fission adaptor protein interactome to unravel the missing links of mitochondrial fission events. Lastly, we discuss the promising mitochondria-targeted therapeutic approaches that involve fission, as well as current evidence on Drp1-mediated fission protein interactions and their critical roles in the pathogeneses of cardiovascular diseases (CVDs).
Collapse
|
47
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
48
|
Chen J, Chen C, Wang N, Wang C, Gong Z, Du J, Lai H, Lin X, Wang W, Chang X, Aschner M, Guo Z, Wu S, Li H, Zheng F. Cobalt nanoparticles induce mitochondrial damage and β-amyloid toxicity via the generation of reactive oxygen species. Neurotoxicology 2023; 95:155-163. [PMID: 36716931 DOI: 10.1016/j.neuro.2023.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
Exposure to cobalt nanoparticles (CoNPs) has been associated with neurodegenerative disorders, while the mitochondrial-associated mechanisms that mediate their neurotoxicity have yet to be fully characterized. In this study, we reported that CoNPs exposure reduced the survival and lifespan in the nematodes, Caenorhabditis elegans (C. elegans). Moreover, exposure to CoNPs aggravated the induction of paralysis and the aggregation of β-amyloid (Aβ). These effects were accompanied by reactive oxygen species (ROS) overproduction, ATP reduction as well as mitochondrial fragmentation. Dynamin-related protein 1 (drp-1) activation and ensuing mitochondrial fragmentation have been shown to be associated with CoNPs-reduced survival. In order to address the role of mitochondrial damage and ROS production in CoNPs-induced Aβ toxicity, the mitochondrial reactive oxygen species scavenger mitoquinone (Mito Q) was used. Our results showed that Mito Q pretreatment alleviated CoNPs-induced ROS generation, rescuing mitochondrial dysfunction, thereby lessening the CoNPs-induced Aβ toxicity. Taken together, we show for the first time, that increasing of ROS and the upregulation of drp-1 lead to CoNPs-induced Aβ toxicity. Our novel findings provide in vivo evidence for the mechanisms of environmental toxicant-induced Aβ toxicity, and can afford new modalities for the prevention and treatment of CoNPs-induced neurodegeneration.
Collapse
Affiliation(s)
- Jingrong Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Cheng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Na Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Chunyu Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Zhaohui Gong
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Jingxian Du
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Honglin Lai
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Wei Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Xiangyu Chang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zhenkun Guo
- The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China; The key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian Province, China.
| |
Collapse
|
49
|
Coscia SM, Thompson CP, Tang Q, Baltrusaitis EE, Rhodenhiser JA, Quintero-Carmona OA, Ostap EM, Lakadamyali M, Holzbaur ELF. Myo19 tethers mitochondria to endoplasmic reticulum-associated actin to promote mitochondrial fission. J Cell Sci 2023; 136:jcs260612. [PMID: 36744380 PMCID: PMC10022680 DOI: 10.1242/jcs.260612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial homeostasis requires a dynamic balance of fission and fusion. The actin cytoskeleton promotes fission, and we found that the mitochondrially localized myosin, myosin 19 (Myo19), is integral to this process. Myo19 knockdown induced mitochondrial elongation, whereas Myo19 overexpression induced fragmentation. This mitochondrial fragmentation was blocked by a Myo19 mutation predicted to inhibit ATPase activity and strong actin binding but not by mutations predicted to affect the working stroke of the motor that preserve ATPase activity. Super-resolution imaging indicated a dispersed localization of Myo19 on mitochondria, which we found to be dependent on metaxins. These observations suggest that Myo19 acts as a dynamic actin-binding tether that facilitates mitochondrial fragmentation. Myo19-driven fragmentation was blocked by depletion of either the CAAX splice variant of the endoplasmic reticulum (ER)-anchored formin INF2 or the mitochondrially localized F-actin nucleator Spire1C (a splice variant of Spire1), which together polymerize actin at sites of mitochondria-ER contact for fission. These observations imply that Myo19 promotes fission by stabilizing mitochondria-ER contacts; we used a split-luciferase system to demonstrate a reduction in these contacts following Myo19 depletion. Our data support a model in which Myo19 tethers mitochondria to ER-associated actin to promote mitochondrial fission.
Collapse
Affiliation(s)
- Stephen M. Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cameron P. Thompson
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qing Tang
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elana E. Baltrusaitis
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | - E. Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Erika L. F. Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
The Imbalance of Astrocytic Mitochondrial Dynamics Following Blast-Induced Traumatic Brain Injury. Biomedicines 2023; 11:biomedicines11020329. [PMID: 36830865 PMCID: PMC9953570 DOI: 10.3390/biomedicines11020329] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Mild blast-induced traumatic brain injury (bTBI) is a modality of injury that has been of major concern considering a large number of military personnel exposed to explosive blast waves. bTBI results from the propagation of high-pressure static blast forces and their subsequent energy transmission within brain tissue. Exposure to this overpressure energy causes a diffuse injury that leads to acute cell damage and, if chronic, leads to detrimental long-term cognitive deficits. The literature presents a neuro-centric approach to the role of mitochondria dynamics dysfunction in bTBI, and changes in astrocyte-specific mitochondrial dynamics have not been characterized. The balance between fission and fusion events is known as mitochondrial dynamics. As a result of fission and fusion, the mitochondrial structure is constantly altering its shape to respond to physiological stimuli or stress, which in turn affects mitochondrial function. Astrocytic mitochondria are recognized to play an essential role in overall brain metabolism, synaptic transmission, and neuron protection. Mitochondria are vulnerable to injury insults, leading to the increase in mitochondrial fission, a mechanism controlled by the GTPase dynamin-related protein (Drp1) and the phosphorylation of Drp1 at serine 616 (p-Drp1s616). This site is critical to mediate the Drp1 translocation to mitochondria to promote fission events and consequently leads to fragmentation. An increase in mitochondrial fragmentation could have negative consequences, such as promoting an excessive generation of reactive oxygen species or triggering cytochrome c release. The aim of the present study was to characterize the unique pattern of astrocytic mitochondrial dynamics by exploring the role of DRP1 with a combination of in vitro and in vivo bTBI models. Differential remodeling of the astrocytic mitochondrial network was observed, corresponding with increases in p-Drp1S616 four hours and seven days post-injury. Further, results showed a time-dependent reactive astrocyte phenotype transition in the rat hippocampus. This discovery can lead to innovative therapeutics targets to help prevent the secondary injury cascade after blast injury that involves mitochondria dysfunction.
Collapse
|