1
|
Qiu L, Lu X, Xue W, Fu H, Deng S, Li L, Chen M, Wang Y. Ischemic stroke susceptibility associated with ALPK1 single nucleotide polymorphisms by inhibiting URAT1 in uric acid hemostasis. Gene 2025; 934:149017. [PMID: 39437898 DOI: 10.1016/j.gene.2024.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ischemic stroke (IS) prevalence rising annually, the necessity of discovering non-interventional genetic influences is progressing. Single nucleotide polymorphism (SNP) plays a pivotal role in stable inheritance of disease susceptibility. Based on the relationship between Alpha- Kinase 1 (ALPK1) and traditional IS risk factors especially hyperuricemia, our study investigated the association and function of ALPK1 SNPs with IS susceptibility. METHODS A case-control study of 1539 patients and 933 controls from northeast China was conducted. Genotyping information of ALPK1 rs2074379 and rs2074388 was collected. Four types of plasmids including rs2074379/rs2074388 G/G, A/G, G/A, and A/A were transfected into 293T cells to observe ALPK1 and SLC22A12 expression. Possible ALPK1 structures of different SNPs were predicted online. RESULTS Genotype GG (OR = 1.371, CI = 1.029-1.828, P = 0.031) and GA (OR = 1.326, CI = 1.110-1.584, P = 0.002) of rs2074379 and GA of rs2074388 (OR = 1.359, CI = 1.137-1.624, P = 0.001) were found significantly susceptible to IS, with G allele on sites to be a risk allele. Rs2074379 had a multiplicative interaction with hyperuricemia (OR = 1.637, CI = 1.157-2.315, P = 0.005). Uric acid levels differed in genotypes (P < 0.001). The expression of ALPK1 (P < 0.01) and SLC22A12 in membrane urate transporter 1 (URAT1) protein (P < 0.05) functionally changed with G allele on either site. With glycine changing into aspartic acid at rs2074388, the protein secondary structure changed, but the ALPK1 protein subtype remained still. CONCLUSIONS ALPK1 rs2074379 and rs2074388 SNPs were functionally associated with IS susceptibility. The wild allele progressed IS risk probably by reducing ALPK1 expression and inhibiting URAT1 raising the uric acid level, contributing to further exploration of pathogenetic mechanisms of stroke. Chinese Clinical Trial Registration number: ChiCTR-COC-17013559.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaoqin Lu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Hefei Fu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Meilin Chen
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Kaitsuka T. The Unique Roles of Ion Channels in Pluripotent Stem Cells in Response to Biological Stimuli. BIOLOGY 2024; 13:1043. [PMID: 39765710 PMCID: PMC11673299 DOI: 10.3390/biology13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Ion channels are essential for mineral ion homeostasis in mammalian cells, and these are activated or inhibited by environmental stimuli such as heat, cold, mechanical, acidic, or basic stresses. These expressions and functions are quite diverse between cell types. The function and importance of ion channels are well-studied in neurons and cardiac cells, while those functions in pluripotent stem cells (PSCs) were not fully understood. Some sodium, potassium, chloride, calcium, transient receptor potential channels and mechanosensitive Piezo channels are found to be expressed and implicated in pluripotency and self-renewal capacity in PSCs. This review summarizes present and previous reports about ion channels and their response to environmental stimuli in PSCs. Furthermore, we compare the expressions and roles between PSCs and their differentiated embryoid bodies. We then discuss those contributions to pluripotency and differentiation.
Collapse
Affiliation(s)
- Taku Kaitsuka
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa 831-8501, Fukuoka, Japan
| |
Collapse
|
3
|
Hellec E, Nunes F, Corporeau C, Cormier A. KiNext: a portable and scalable workflow for the identification and classification of protein kinases. BMC Bioinformatics 2024; 25:338. [PMID: 39455913 PMCID: PMC11515245 DOI: 10.1186/s12859-024-05953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Protein kinases are a diverse superfamily of proteins common to organisms across the tree of life that are typically involved in signal transduction, allowing organisms to sense and respond to biotic or abiotic environmental factors. They have important roles in organismal physiology, including development, reproduction, acclimation to environmental stress, while their dysregulation can lead to disease, including several forms of cancer. Identifying the complement of protein kinases (the kinome) of any organism is useful for understanding its physiological capabilities, limitations and adaptations to environmental stress. The increasing availability of genomes makes it now possible to examine and compare the kinomes across a broad diversity of organisms. Here we present a pipeline respecting the FAIR principles (findable, accessible, interoperable and reusable) that facilitates the search and identification of protein kinases from a predicted proteome, and classifies them according to group of serine/threonine/tyrosine protein kinases present in eukaryotes. RESULTS KiNext is a Nextflow pipeline that regroups a number of existing bioinformatic tools to search for and classify the protein kinases of an organism in a reproducible manner, starting from a set of amino acid sequences. Conventional eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs) are identified by using Hidden Markov Models (HMMs) generated from the catalytic domains of kinases. Furthermore, KiNext categorizes ePKs into the eight kinase groups by employing dedicated Hidden Markov Models (HMMs) tailored for each group. The performance of the KiNext pipeline was validated against previously identified kinomes obtained with other tools that were already published for two marine species, the Pacific oyster Crassostrea gigas and the unicellular green alga Ostreoccocus tauri. KiNext outperformed previous results by finding previously unidentified kinases and by attributing a large proportion of previously unclassified kinases to a group in both species. These results demonstrate improvements in kinase identification and classification, all while providing traceability and reproducibility of results in a FAIR pipeline. The default HMM models provided with KiNext are most suitable for eukaryotes, but the pipeline can be easily modified to include HMM models for other taxa of interest. CONCLUSION The KiNext pipeline enables efficient and reproducible identification of kinomes based on predicted amino acid sequences (i.e. proteomes). KiNext was designed to be easy to use, automated, portable and scalable.
Collapse
Affiliation(s)
- Elisabeth Hellec
- Ifremer, IRSI-SeBiMER, Plouzané, France
- Ifremer, DYNECO-LEBCO, Plouzané, France
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F -29280, Plouzané, France
| | | | | | | |
Collapse
|
4
|
Zhao X, Zhong C, Zhu R, Gong R, Liu B, He L, Tian S, Jin J, Jiang T, Chen JL, Wan X, Liu W, Jiang S, Deng P, Cheng Y, Ye N. Structure-Activity Relationship Studies of Substituted 2-Phenyl-1,2,4-triazine-3,5(2 H,4 H)-dione Analogues: Development of Potent eEF2K Degraders against Triple-Negative Breast Cancer. J Med Chem 2024; 67:15837-15861. [PMID: 39208364 DOI: 10.1021/acs.jmedchem.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
eEF2K, an atypical alpha-kinase, is responsible for regulating protein synthesis and energy homeostasis. Aberrant eEF2K function has been linked to various human cancers, including triple-negative breast cancer (TNBC). However, limited cellular activity of current eEF2K modulators impedes their clinical application. Based on the 2-phenyl-1,2,4-triazine-3,5(2H,4H)-dione scaffold of our hits I4 and C1, structure-activity relationship analysis led to the discovery of several more active derivatives (e.g., 19, 34, and 36) in inhibiting the viability of TNBC cell line MDA-MB-231. Moreover, the most potent compound 36 significantly suppresses the viability, proliferation, and migration of both MDA-MB-231 and HCC1806 cell lines. Mechanistically, compound 36 has a high binding affinity for the eEF2K protein and effectively induces its degradation. Additionally, 36 exerts a comparable tumor-suppressive effect to paclitaxel in an MDA-MB-231 cell xenograft mouse model with no obvious toxicity, demonstrating that compound 36 could be developed as a potential novel therapeutic for TNBC treatment.
Collapse
Affiliation(s)
- Xiaobao Zhao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Changxin Zhong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Rongfeng Zhu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Rong Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Bingyan Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linhao He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Sheng Tian
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Jing Jin
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Jing-Lei Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaoya Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
| | - Wenjing Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shilong Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Pan Deng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha 410011, China
- Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Dai M, Li J, Hao X, Li N, Zheng M, He M, Gu Y. High Magnesium Promotes the Recovery of Binocular Vision from Amblyopia via TRPM7. Neurosci Bull 2024; 40:1245-1260. [PMID: 38833201 PMCID: PMC11365890 DOI: 10.1007/s12264-024-01242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/06/2024] [Indexed: 06/06/2024] Open
Abstract
Abnormal visual experience during the critical period can cause deficits in visual function, such as amblyopia. High magnesium (Mg2+) supplementary can restore ocular dominance (OD) plasticity, which promotes the recovery of amblyopic eye acuity in adults. However, it remains unsolved whether Mg2+ could recover binocular vision in amblyopic adults and what the molecular mechanism is for the recovery. We found that in addition to the recovery of OD plasticity, binocular integration can be restored under the treatment of high Mg2+ in amblyopic mice. Behaviorally, Mg2+-treated amblyopic mice showed better depth perception. Moreover, the effect of high Mg2+ can be suppressed with transient receptor potential melastatin-like 7 (TRPM7) knockdown. Collectively, our results demonstrate that high Mg2+ could restore binocular visual functions from amblyopia. TRPM7 is required for the restoration of plasticity in the visual cortex after high Mg2+ treatment, which can provide possible clinical applications for future research and treatment of amblyopia.
Collapse
Affiliation(s)
- Menghan Dai
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jie Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiangwen Hao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Na Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Mingfang Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu Gu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Luo Z, Zhang X, Fleig A, Romo D, Hull KG, Horgen FD, Sun HS, Feng ZP. TRPM7 in neurodevelopment and therapeutic prospects for neurodegenerative disease. Cell Calcium 2024; 120:102886. [PMID: 38631163 DOI: 10.1016/j.ceca.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.
Collapse
Affiliation(s)
- Zhengwei Luo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Xinyang Zhang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798-7348, USA; The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76798, USA
| | - Kenneth G Hull
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
7
|
Holderby KG, Kozak JA. Use of tetraethylammonium (TEA) and Tris loading for blocking TRPM7 channels in intact cells. Front Pharmacol 2024; 15:1341799. [PMID: 38659572 PMCID: PMC11039802 DOI: 10.3389/fphar.2024.1341799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Tetraethylammonium (TEA), a quaternary ammonium compound, is a well-known blocker of potassium channels belonging to various subfamilies, such as KV1-3, KCa1, 2 and prokaryotic KcsA. In many cases, TEA acts from the extracellular side by open pore blockade. TEA can also block transient receptor potential (TRP) cation channels, such as TRPM7, in a voltage-dependent manner. In human T lymphocytes, intracellular (cytosolic) TEA and its analog TMA (tetramethylammonium) inhibit TRPM7 channel currents in the outward but not inward direction. By contrast, intracellular Mg2+, protons and polyamines inhibit both outward and inward current components equally. Likewise, the majority of available pharmacological tools inhibit TRPM7 channels in a voltage-independent manner. Since TRPM7 is a steeply outwardly rectifying conductance, voltage-dependent blockers can be useful for studying the cellular functions of this channel. TRPM7 protein is endogenously expressed in diverse cell lines, including HEK, HeLa, CHO, RBL and Jurkat. Using patch-clamp electrophysiology, we found that incubating HEK293 and Jurkat T cells overnight in the presence of 20 mM TEA-Cl, resulted in the nearly complete blockade of whole-cell TRPM7 outward current, measured at break-in. By contrast, the inward current was unchanged in TEA-loaded cells. The blockade was fully reversible after washout of intracellular solution in whole-cell but not in perforated-patch recording configurations. Overnight incubation with 20 mM TMA-Cl resulted in a more modest blockade of the outward TRPM7 current. Internal 129 mM TMA and TEA eliminated most of the outward current. TEA uptake in transfected HEK293 cells led to blockade of recombinant murine TRPM7 and the Mg2+ and pH insensitive Ser1107Arg variant. Unexpectedly, Tris-HCl, a widely used pH buffer, could similarly be loaded into Jurkat and HEK cells, and preferentially blocked outward TRPM7 currents. 20 mM and 129 mM Tris in the internal solution blocked TRPM7 current in outward but not inward direction. Voltage-dependent channel blockade by TEA, TMA and Tris loading will be useful for studying the properties and functions of TRPM7-mediated ion transport in intact cells.
Collapse
Affiliation(s)
- Katherine G. Holderby
- Undergraduate Program in Physiology and Neuroscience, Dayton, OH, United States
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - J. Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States
| |
Collapse
|
8
|
Chubanov V, Köttgen M, Touyz RM, Gudermann T. TRPM channels in health and disease. Nat Rev Nephrol 2024; 20:175-187. [PMID: 37853091 DOI: 10.1038/s41581-023-00777-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca2+, Mg2+ and Zn2+ (TRPM1, TRPM3, TRPM6 and TRPM7), non-selective cation channels (TRPM2 and TRPM8) and monovalent cation-selective channels (TRPM4 and TRPM5). Three family members contain an enzymatic protein moiety: TRPM6 and TRPM7 are fused to α-kinase domains, whereas TRPM2 is linked to an ADP-ribose-binding NUDT9 homology domain. TRPM channels also function as crucial cellular sensors involved in many physiological processes, including mineral homeostasis, blood pressure, cardiac rhythm and immunity, as well as photoreception, taste reception and thermoreception. TRPM channels are abundantly expressed in the kidney. Mutations in TRPM genes cause several inherited human diseases, and preclinical studies in animal models of human disease have highlighted TRPM channels as promising new therapeutic targets. Here, we provide an overview of this rapidly evolving research area and delineate the emerging role of TRPM channels in kidney pathophysiology.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Rhian M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
9
|
Piserchio A, Dalby KN, Ghose R. Revealing eEF-2 kinase: recent structural insights into function. Trends Biochem Sci 2024; 49:169-182. [PMID: 38103971 PMCID: PMC10950556 DOI: 10.1016/j.tibs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas, Austin, TX 78712, USA.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; The Graduate Center of The City University of New York (CUNY), New York, NY 10016, USA.
| |
Collapse
|
10
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
11
|
Piserchio A, Long K, Browning L, Bohanon A, Isiorho E, Dalby K, Ghose R. ADP enhances the allosteric activation of eukaryotic elongation factor 2 kinase by calmodulin. Proc Natl Acad Sci U S A 2023; 120:e2300902120. [PMID: 37068230 PMCID: PMC10151598 DOI: 10.1073/pnas.2300902120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 04/19/2023] Open
Abstract
Protein translation, one of the most energy-consumptive processes in a eukaryotic cell, requires robust regulation, especially under energy-deprived conditions. A critical component of this regulation is the suppression of translational elongation through reduced ribosome association of the GTPase eukaryotic elongation factor 2 (eEF-2) resulting from its specific phosphorylation by the calmodulin (CaM)-activated α-kinase eEF-2 kinase (eEF-2K). It has been suggested that the eEF-2K response to reduced cellular energy levels is indirect and mediated by the universal energy sensor AMP-activated protein kinase (AMPK) through direct stimulatory phosphorylation and/or downregulation of the eEF-2K-inhibitory nutrient-sensing mTOR pathway. Here, we provide structural, biochemical, and cell-biological evidence of a direct energy-sensing role of eEF-2K through its stimulation by ADP. A crystal structure of the nucleotide-bound complex between CaM and the functional core of eEF-2K phosphorylated at its primary stimulatory site (T348) reveals ADP bound at a unique pocket located on the face opposite that housing the kinase active site. Within this basic pocket (BP), created at the CaM/eEF-2K interface upon complex formation, ADP is stabilized through numerous interactions with both interacting partners. Biochemical analyses using wild-type eEF-2K and specific BP mutants indicate that ADP stabilizes CaM within the active complex, increasing the sensitivity of the kinase to CaM. Induction of energy stress through glycolysis inhibition results in significantly reduced enhancement of phosphorylated eEF-2 levels in cells expressing ADP-binding compromised BP mutants compared to cells expressing wild-type eEF-2K. These results suggest a direct energy-sensing role for eEF-2K through its cooperative interaction with CaM and ADP.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY10031
| | - Kimberly J. Long
- Division of Chemical Biology and Medicinal Chemistry, the University of Texas, Austin, TX78712
| | - Luke S. Browning
- Interdisciplinary Life Sciences Graduate Program, the University of Texas, Austin, TX78712
| | - Amanda L. Bohanon
- Interdisciplinary Life Sciences Graduate Program, the University of Texas, Austin, TX78712
| | - Eta A. Isiorho
- Macromolecular Crystallization Facility CUNY Advanced Science Research Center, New York, NY10031
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, the University of Texas, Austin, TX78712
- Interdisciplinary Life Sciences Graduate Program, the University of Texas, Austin, TX78712
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY10031
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY10016
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY10016
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY10016
| |
Collapse
|
12
|
Shin M, Matsushima A, Kajiya H, Okamoto F, Ogata K, Oka K, Ohshima H, Bartlett JD, Okabe K. Conditional knockout of transient receptor potential melastatin 7 in the enamel epithelium: Effects on enamel formation. Eur J Oral Sci 2023; 131:e12920. [PMID: 36794562 DOI: 10.1111/eos.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique ion channel connected to a kinase domain. We previously demonstrated that Trpm7 expression is high in mouse ameloblasts and odontoblasts, and that amelogenesis is impaired in TRPM7 kinase-dead mice. Here, we analyzed TRPM7 function during amelogenesis in Keratin 14-Cre;Trpm7fl/fl conditional knockout (cKO) mice and Trpm7 knockdown cell lines. cKO mice showed lesser tooth pigmentation than control mice and broken incisor tips. Enamel calcification and microhardness were lower in cKO mice. Electron probe microanalysis (EPMA) showed that the calcium and phosphorus contents in the enamel were lower in cKO mouse than in control mice. The ameloblast layer in cKO mice showed ameloblast dysplasia at the maturation stage. The morphological defects were observed in rat SF2 cells with Trpm7 knockdown. Compared with mock transfectants, the Trpm7 knockdown cell lines showed lower levels of calcification with Alizarin Red-positive staining and an impaired intercellular adhesion structures. These findings suggest that TRPM7 is a critical ion channel in enamel calcification for the effective morphogenesis of ameloblasts during amelogenesis.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Aya Matsushima
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kayoko Ogata
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Kyoko Oka
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
- Section of Pediatric Dentistry, Department of Oral Growth and development, Fukuoka Dental College, Fukuoka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - John D Bartlett
- Division of Biosciences, Ohio State University, College of Dentistry, Columbus, Ohio, USA
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
13
|
Khajavi N, Beck A, Riçku K, Beyerle P, Jacob K, Syamsul SF, Belkacemi A, Reinach PS, Schreier PC, Salah H, Popp T, Novikoff A, Breit A, Chubanov V, Müller TD, Zierler S, Gudermann T. TRPM7 kinase is required for insulin production and compensatory islet responses during obesity. JCI Insight 2023; 8:163397. [PMID: 36574297 PMCID: PMC9977431 DOI: 10.1172/jci.insight.163397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β cell compensation are potential targets for treatment of diabetes. The transient receptor potential cation channel subfamily M member 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β cells disrupted insulin secretion and led to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β cell-specific Trpm7-knockout mice was caused by decreased insulin production because of impaired enzymatic activity of this protein. Accordingly, high-fat-fed mice with a genetic loss of TRPM7 kinase activity displayed a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects were engendered by reduced compensatory β cell responses because of mitigated protein kinase B (AKT)/ERK signaling. Collectively, our data identify TRPM7 kinase as a potentially novel regulator of insulin synthesis, β cell dynamics, and glucose homeostasis under obesogenic diet.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Klea Riçku
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Philipp Beyerle
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Sabrina F. Syamsul
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Peter S. Reinach
- Wenzhou Medical University, Ophthalmology Department, Wenzhou, China
| | - Pascale C.F. Schreier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Houssein Salah
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
14
|
Klupt KA, Jia Z. eEF2K Inhibitor Design: The Progression of Exemplary Structure-Based Drug Design. Molecules 2023; 28:molecules28031095. [PMID: 36770760 PMCID: PMC9921739 DOI: 10.3390/molecules28031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The α-kinase, eEF2K, phosphorylates the threonine 56 residue of eEF2 to inhibit global peptide elongation (protein translation). As a master regulator of protein synthesis, in combination with its unique atypical kinase active site, investigations into the targeting of eEF2K represents a case of intense structure-based drug design that includes the use of modern computational techniques. The role of eEF2K is incredibly diverse and has been scrutinized in several different diseases including cancer and neurological disorders-with numerous studies inhibiting eEF2K as a potential treatment option, as described in this paper. Using available crystal structures of related α-kinases, particularly MHCKA, we report how homology modeling has been used to improve inhibitor design and efficacy. This review presents an overview of eEF2K related drug discovery efforts predating from the 1990's, to more recent in vivo studies in rat models. We also provide the reader with a basic introduction to several approaches and software programs used to undertake such drug discovery campaigns. With the recent exciting publication of an eEF2K crystal structure, we present our view regarding the future of eEF2K drug discovery.
Collapse
|
15
|
Shin M, Mori S, Mizoguchi T, Arai A, Kajiya H, Okamoto F, Bartlett JD, Matsushita M, Udagawa N, Okabe K. Mesenchymal cell TRPM7 expression is required for bone formation via the regulation of chondrogenesis. Bone 2023; 166:116579. [PMID: 36210025 DOI: 10.1016/j.bone.2022.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Transient receptor potential melastatin-subfamily member 7 (TRPM7) is a bifunctional protein containing a kinase fused to an ion channel permeated with cations, including Ca2+ and Mg2+. Trpm7-null mice show embryonic lethality. Paired related homeobox 1 (Prx1) is expressed in undifferentiated mesenchymal cells such as the progenitor cells of both chondrocytes and osteoblasts involved in limb skeleton formation. Prx1-Cre-dependent Trpm7 mesenchymal-deleted mice were generated to examine the role of TRPM7 in bone development. We found that Prx1-Cre;Trpm7fl/fl mice had shortened bones and impaired trabecular bone formation. Trabecular bone parameters, such as the bone volume (BV/TV), and trabecular number (Tb.N), were decreased in Prx1-Cre;Trpm7fl/fl mice. The cortical bone parameters of cortical bone area (Ct.Ar) and cortical bone thickness (Ct.Th) were also down-regulated in these mice. The bone formation rate in Prx1-Cre;Trpm7fl/fl mice was unchanged, but the hypertrophic area and cell size of the zone were smaller, and the expression of Col2a1, Col10a1 and Mmp13 was downregulated compared with control mice. These findings suggest impaired chondrogenesis in Prx1-Cre;Trpm7fl/fl mice compared to control mice. The receptor activator of nuclear factor-kappa B ligand (RANKL) expression was increased, and RANKL-positive cells and osteoclasts were markedly accumulated in the boundary region between the growth plate and trabecular bone. In contrast, TRPM7 KR mice, which are kinase-dead mutants in which the TRPM7 ion channel function has not been altered, showed no marked differences in trabecular or cortical bone parameters compared to wild-type mice. These findings suggest that TRPM7 is critical as a cation channel rather than as a kinase in bone development via the regulation of chondrogenesis.
Collapse
Affiliation(s)
- Masashi Shin
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Shihomi Mori
- Section of Oral Surgery, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Atsushi Arai
- Department of Orthodontics, Matsumoto Dental University, Nagano, Japan
| | - Hiroshi Kajiya
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Fujio Okamoto
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - John D Bartlett
- Division of Biosciences, Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, University of the Ryukyus, Okinawa, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, Japan
| | - Koji Okabe
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| |
Collapse
|
16
|
Agarwal R, Wakimoto H, Paulo JA, Zhang Q, Reichart D, Toepfer C, Sharma A, Tai AC, Lun M, Gorham J, DePalma SR, Gygi SP, Seidman J, Seidman CE. Pathogenesis of Cardiomyopathy Caused by Variants in ALPK3, an Essential Pseudokinase in the Cardiomyocyte Nucleus and Sarcomere. Circulation 2022; 146:1674-1693. [PMID: 36321451 PMCID: PMC9698156 DOI: 10.1161/circulationaha.122.059688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND ALPK3 encodes α-kinase 3, a muscle-specific protein of unknown function. ALPK3 loss-of-function variants cause cardiomyopathy with distinctive clinical manifestations in both children and adults, but the molecular functions of ALPK3 remain poorly understood. METHODS We explored the putative kinase activity of ALPK3 and the consequences of damaging variants using isogenic human induced pluripotent stem cell-derived cardiomyocytes, mice, and human patient tissues. RESULTS Multiple sequence alignment of all human α-kinase domains and their orthologs revealed 4 conserved residues that were variant only in ALPK3, demonstrating evolutionary divergence of the ALPK3 α-kinase domain sequence. Phosphoproteomic evaluation of both ALPK3 kinase domain inhibition and overexpression failed to detect significant changes in catalytic activity, establishing ALPK3 as a pseudokinase. Investigations into alternative functions revealed that ALPK3 colocalized with myomesin proteins (MYOM1, MYOM2) at both the nuclear envelope and the sarcomere M-band. ALPK3 loss-of-function variants caused myomesin proteins to mislocalize and also dysregulated several additional M-band proteins involved in sarcomere protein turnover, which ultimately impaired cardiomyocyte structure and function. CONCLUSIONS ALPK3 is an essential cardiac pseudokinase that inserts in the nuclear envelope and the sarcomere M-band. Loss of ALPK3 causes mislocalization of myomesins, critical force-buffering proteins in cardiomyocytes, and also dysregulates M-band proteins necessary for sarcomere protein turnover. We conclude that ALPK3 cardiomyopathy induces ventricular dilatation caused by insufficient myomesin-mediated force buffering and hypertrophy by impairment of sarcomere proteostasis.
Collapse
Affiliation(s)
- Radhika Agarwal
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Hiroko Wakimoto
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Joao A. Paulo
- Department of Cell Biology (J.A.P., S.P.G.), Harvard Medical School, Boston, MA
| | - Qi Zhang
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Daniel Reichart
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christopher Toepfer
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA.,Radcliffe Department of Medicine (C.T.), University of Oxford, United Kingdom.,Wellcome Centre for Human Genetics (C.T.), University of Oxford, United Kingdom
| | - Arun Sharma
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA.,Board of Governors Regenerative Medicine Institute (A.S.), Cedars-Sinai Medical Center, Los Angeles, CA.,Smidt Heart Institute (A.S.), Cedars-Sinai Medical Center, Los Angeles, CA.,Department of Biomedical Sciences (A.S.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Angela C. Tai
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Mingyue Lun
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Joshua Gorham
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Steven R. DePalma
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Steven P. Gygi
- Department of Cell Biology (J.A.P., S.P.G.), Harvard Medical School, Boston, MA
| | - J.G. Seidman
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- Department of Genetics (R.A., H.W., Q.Z., D.R., C.T., A.S., A.C.T., M.L., J.G., S.R.D., J.G.S., C.E.S.), Harvard Medical School, Boston, MA.,Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.).,Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
17
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
18
|
Jin F, Huang Y, Hattori M. Recent Advances in the Structural Biology of Mg 2+ Channels and Transporters. J Mol Biol 2022; 434:167729. [PMID: 35841930 DOI: 10.1016/j.jmb.2022.167729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Magnesium ions (Mg2+) are the most abundant divalent cations in living organisms and are essential for various physiological processes, including ATP utilization and the catalytic activity of numerous enzymes. Therefore, the homeostatic mechanisms associated with cellular Mg2+ are crucial for both eukaryotic and prokaryotic organisms and are thus strictly controlled by Mg2+ channels and transporters. Technological advances in structural biology, such as the expression screening of membrane proteins, in meso phase crystallization, and recent cryo-EM techniques, have enabled the structure determination of numerous Mg2+ channels and transporters. In this review article, we provide an overview of the families of Mg2+ channels and transporters (MgtE/SLC41, TRPM6/7, CorA/Mrs2, CorC/CNNM), and discuss the structural biology prospects based on the known structures of MgtE, TRPM7, CorA and CorC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yichen Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
19
|
Piserchio A, Isiorho EA, Long K, Bohanon AL, Kumar EA, Will N, Jeruzalmi D, Dalby KN, Ghose R. Structural basis for the calmodulin-mediated activation of eukaryotic elongation factor 2 kinase. SCIENCE ADVANCES 2022; 8:eabo2039. [PMID: 35857468 PMCID: PMC9258954 DOI: 10.1126/sciadv.abo2039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 05/27/2023]
Abstract
Translation is a tightly regulated process that ensures optimal protein quality and enables adaptation to energy/nutrient availability. The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K), a key regulator of translation, specifically phosphorylates the guanosine triphosphatase eEF-2, thereby reducing its affinity for the ribosome and suppressing the elongation phase of protein synthesis. eEF-2K activation requires calmodulin binding and autophosphorylation at the primary stimulatory site, T348. Biochemical studies predict a calmodulin-mediated activation mechanism for eEF-2K distinct from other calmodulin-dependent kinases. Here, we resolve the atomic details of this mechanism through a 2.3-Å crystal structure of the heterodimeric complex of calmodulin and the functional core of eEF-2K (eEF-2KTR). This structure, which represents the activated T348-phosphorylated state of eEF-2KTR, highlights an intimate association of the kinase with the calmodulin C-lobe, creating an "activation spine" that connects its amino-terminal calmodulin-targeting motif to its active site through a conserved regulatory element.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Eta A. Isiorho
- Macromolecular Crystallization Facility, CUNY ASRC, New York, NY 10031, USA
| | - Kimberly Long
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Amanda L. Bohanon
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Eric A. Kumar
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Nathan Will
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
20
|
Liang HY, Chen Y, Wei X, Ma GG, Ding J, Lu C, Zhou RP, Hu W. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases. Immunology 2021; 165:3-21. [PMID: 34558663 DOI: 10.1111/imm.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
An autoimmune disease is an inappropriate response to one's tissues due to a break in immune tolerance and exposure to self-antigens. It often leads to structural and functional damage to organs and systemic disorders. To date, there are no effective interventions to prevent the progression of autoimmune diseases. Hence, there is an urgent need for new treatment targets. TRPM7 is an enzyme-coupled, transient receptor ion channel of the subfamily M that plays a vital role in pathologic and physiologic conditions. While TRPM7 is constitutively activated under certain conditions, it can regulate cell migration, polarization, proliferation and cytokine secretion. However, a growing body of evidence highlights the critical role of TRPM7 in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and diabetes. Herein, we present (a) a review of the channel kinase properties of TRPM7 and its pharmacological properties, (b) discuss the role of TRPM7 in immune cells (neutrophils, macrophages, lymphocytes and mast cells) and its upstream immunoreactive substances, and (c) highlight TRPM7 as a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
TRPM7 is an essential regulator for volume-sensitive outwardly rectifying anion channel. Commun Biol 2021; 4:599. [PMID: 34017036 PMCID: PMC8137958 DOI: 10.1038/s42003-021-02127-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Animal cells can regulate their volume after swelling by the regulatory volume decrease (RVD) mechanism. In epithelial cells, RVD is attained through KCl release mediated via volume-sensitive outwardly rectifying Cl- channels (VSOR) and Ca2+-activated K+ channels. Swelling-induced activation of TRPM7 cation channels leads to Ca2+ influx, thereby stimulating the K+ channels. Here, we examined whether TRPM7 plays any role in VSOR activation. When TRPM7 was knocked down in human HeLa cells or knocked out in chicken DT40 cells, not only TRPM7 activity and RVD efficacy but also VSOR activity were suppressed. Heterologous expression of TRPM7 in TRPM7-deficient DT40 cells rescued both VSOR activity and RVD, accompanied by an increase in the expression of LRRC8A, a core molecule of VSOR. TRPM7 exerts the facilitating action on VSOR activity first by enhancing molecular expression of LRRC8A mRNA through the mediation of steady-state Ca2+ influx and second by stabilizing the plasmalemmal expression of LRRC8A protein through the interaction between LRRC8A and the C-terminal domain of TRPM7. Therefore, TRPM7 functions as an essential regulator of VSOR activity and LRRC8A expression.
Collapse
|
22
|
Inoue H, Murayama T, Kobayashi T, Konishi M, Yokoyama U. The zinc-binding motif of TRPM7 acts as an oxidative stress sensor to regulate its channel activity. J Gen Physiol 2021; 153:212116. [PMID: 33999118 PMCID: PMC8129778 DOI: 10.1085/jgp.202012708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
The activity of the TRPM7 channel is negatively regulated by intracellular Mg2+. We previously reported that oxidative stress enhances the inhibition of TRPM7 by intracellular Mg2+. Here, we aimed to clarify the mechanism underlying TRPM7 inhibition by hydrogen peroxide (H2O2). Site-directed mutagenesis of full-length TRPM7 revealed that none of the cysteines other than C1809 and C1813 within the zinc-binding motif of the TRPM7 kinase domain were involved in the H2O2-induced TRPM7 inhibition. Mutation of C1809 or C1813 prevented expression of full-length TRPM7 on the plasma membrane. We therefore developed an assay to functionally reconstitute full-length TRPM7 by coexpressing the TRPM7 channel domain (M7cd) and the TRPM7 kinase domain (M7kd) as separate proteins in HEK293 cells. When M7cd was expressed alone, the current was inhibited by intracellular Mg2+ more strongly than that of full-length TRPM7 and was insensitive to oxidative stress. Coexpression of M7cd and M7kd attenuated the inhibition by intracellular Mg2+ and restored sensitivity to oxidative stress, indicating successful reconstitution of a full-length TRPM7-like current. We observed a similar effect when M7cd was coexpressed with the kinase-inactive mutant M7kd-K1645R, suggesting that the kinase activity is not essential for the reconstitution. However, coexpression of M7cd and M7kd carrying a mutation at either C1809 or C1813 failed to restore the full-length TRPM7-like current. No reconstitution was observed when using M7kd carrying a mutation at H1750 and H1807, which are involved in the zinc-binding motif formation with C1809 and C1813. These data suggest that the zinc-binding motif is essential for the intracellular Mg2+-dependent regulation of the TRPM7 channel activity by its kinase domain and that the cysteines in the zinc-binding motif play a role in the oxidative stress response of TRPM7.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Piserchio A, Long K, Lee K, Kumar EA, Abzalimov R, Dalby KN, Ghose R. Structural dynamics of the complex of calmodulin with a minimal functional construct of eukaryotic elongation factor 2 kinase and the role of Thr348 autophosphorylation. Protein Sci 2021; 30:1221-1234. [PMID: 33890716 DOI: 10.1002/pro.4087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/15/2021] [Indexed: 12/31/2022]
Abstract
The calmodulin (CaM) activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), plays a central role in regulating translational elongation by phosphorylating eukaryotic elongation factor 2 (eEF-2), thereby reducing its ability to associate with the ribosome and suppressing global protein synthesis. Using TR (for truncated), a minimal functional construct of eEF-2K, and utilizing hydrogen/deuterium exchange mass spectrometry (HXMS), solution-state nuclear magnetic resonance (NMR) and biochemical approaches, we investigate the conformational changes accompanying complex formation between Ca2+ -CaM and TR and the effects of autophosphorylation of the latter at Thr348, its primary regulatory site. Our results suggest that a CaM C-lobe surface, complementary to the one involved in recognizing the calmodulin-binding domain (CBD) of TR, provides a secondary TR-interaction platform. CaM helix F, which is part of this secondary surface, responds to both Thr348 phosphorylation and pH changes, indicating its integration into an allosteric network that encompasses both components of the Ca2+ -CaM•TR complex. Solution NMR data suggest that CaMH107K , which carries a helix F mutation, is compromised in its ability to drive the conformational changes in TR necessary to enable efficient Thr348 phosphorylation. Biochemical studies confirm the diminished capacity of CaMH107K to induce TR autophosphorylation compared to wild-type CaM.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA
| | - Kimberly Long
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas, USA
| | - Kwangwoon Lee
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.,Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Kumar
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas, USA
| | - Rinat Abzalimov
- Biomolecular Mass Spectrometry Facility, CUNY ASRC, New York, New York, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas, USA.,Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, New York, USA.,Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, New York, USA.,Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, New York, USA.,Graduate Programs in Physics, The Graduate Center of CUNY, New York, New York, USA
| |
Collapse
|
24
|
Meng S, Alanazi R, Ji D, Bandura J, Luo ZW, Fleig A, Feng ZP, Sun HS. Role of TRPM7 kinase in cancer. Cell Calcium 2021; 96:102400. [PMID: 33784560 DOI: 10.1016/j.ceca.2021.102400] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide and accounted for an estimated 9.6 million deaths, or 1 in 6 deaths, in 2018. Despite recent advances in cancer prevention, diagnosis, and treatment strategies, the burden of this disease continues to grow with each year, with dire physical, emotional, and economic consequences for all levels of society. Classic characteristics of cancer include rapid, uncontrolled cell proliferation and spread of cancerous cells to other parts of the body, a process known as metastasis. Transient receptor potential melastatin 7 (TRPM7), a Ca2+- and Mg2+-permeable nonselective divalent cation channel defined by the atypical presence of an α-kinase within its C-terminal domain, has been implicated, due to its modulation of Ca2+ and Mg2+ influx, in a wide variety of physiological and pathological processes, including cancer. TRPM7 is overexpressed in several cancer types and has been shown to variably increase cellular proliferation, migration, and invasion of tumour cells. However, the relative contribution of TRPM7 kinase domain activity to cancer as opposed to ion flux through its channel pore remains an area of active discovery. In this review, we describe the specific role of the TRPM7 kinase domain in cancer processes as well as mechanisms of regulation and inhibition of the kinase domain.
Collapse
Affiliation(s)
- Selena Meng
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Rahmah Alanazi
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Julia Bandura
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Zheng-Wei Luo
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy. Int J Mol Sci 2021; 22:ijms22052408. [PMID: 33673713 PMCID: PMC7957638 DOI: 10.3390/ijms22052408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient depletion, and acidosis. The physiological function of eEF2K and its role in the development and progression of cancer are here reviewed in detail. In addition, a summary of progress for in vitro eEF2K inhibitors from anti-cancer drug discovery research in recent years, along with their structure-activity relationships (SARs) and synthetic routes or natural sources, is also described. Special attention is given to those inhibitors that have been already validated in vivo, with the overall aim to provide reference context for the further development of new first-in-class anti-cancer drugs that target eEF2K.
Collapse
|
26
|
Nadolni W, Immler R, Hoelting K, Fraticelli M, Ripphahn M, Rothmiller S, Matsushita M, Boekhoff I, Gudermann T, Sperandio M, Zierler S. TRPM7 Kinase Is Essential for Neutrophil Recruitment and Function via Regulation of Akt/mTOR Signaling. Front Immunol 2021; 11:606893. [PMID: 33658993 PMCID: PMC7917126 DOI: 10.3389/fimmu.2020.606893] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
During inflammation, neutrophils are one of the first responding cells of innate immunity, contributing to a fast clearance of infection and return to homeostasis. However, excessive neutrophil infiltration accelerates unsolicited disproportionate inflammation for instance in autoimmune diseases such as rheumatoid arthritis. The transient-receptor-potential channel-kinase TRPM7 is an essential regulator of immune system homeostasis. Naïve murine T cells with genetic inactivation of the TRPM7 enzyme, due to a point mutation at the active site, are unable to differentiate into pro-inflammatory T cells, whereas regulatory T cells develop normally. Moreover, TRPM7 is vital for lipopolysaccharides (LPS)-induced activation of murine macrophages. Within this study, we show that the channel-kinase TRPM7 is functionally expressed in neutrophils and has an important impact on neutrophil recruitment during inflammation. We find that human neutrophils cannot transmigrate along a CXCL8 chemokine gradient or produce reactive oxygen species in response to gram-negative bacterial lipopolysaccharide LPS, if TRPM7 channel or kinase activity are blocked. Using a recently identified TRPM7 kinase inhibitor, TG100-115, as well as murine neutrophils with genetic ablation of the kinase activity, we confirm the importance of both TRPM7 channel and kinase function in murine neutrophil transmigration and unravel that TRPM7 kinase affects Akt1/mTOR signaling thereby regulating neutrophil transmigration and effector function. Hence, TRPM7 represents an interesting potential target to treat unwanted excessive neutrophil invasion.
Collapse
Affiliation(s)
- Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kilian Hoelting
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Fraticelli
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Myriam Ripphahn
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
27
|
Beesetty P, Rockwood J, Kaitsuka T, Zhelay T, Hourani S, Matsushita M, Kozak JA. Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice. FEBS J 2021; 288:3585-3601. [PMID: 33354894 DOI: 10.1111/febs.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique protein functioning as a cation channel as well as a serine/threonine kinase and is highly expressed in immune cells such as lymphocytes and macrophages. TRPM7 kinase-dead (KD) mouse model has been used to investigate the role of this protein in immune cells; these animals display moderate splenomegaly and ectopic hemopoiesis. The basal TRPM7 current magnitudes in peritoneal macrophages isolated from KD mice were higher; however, the maximum currents, achieved after cytoplasmic Mg2+ washout, were not different. In the present study, we investigated the consequences of TRPM7 kinase inactivation in splenic and peritoneal macrophages. We measured the basal phagocytic activity of splenic macrophages using fluorescent latex beads, pHrodo zymosan bioparticles, and opsonized red blood cells. KD macrophages phagocytized more efficiently and had slightly higher baseline calcium levels compared to WT cells. We found no obvious differences in store-operated Ca2+ entry between WT and KD macrophages. By contrast, the resting cytosolic pH in KD macrophages was significantly more alkaline than in WT. Pharmacological blockade of sodium hydrogen exchanger 1 (NHE1) reversed the cytosolic alkalinization and reduced phagocytosis in KD macrophages. Basal TRPM7 channel activity in KD macrophages was also reduced after NHE1 blockade. Cytosolic Mg2+ sensitivity of TRPM7 channels measured in peritoneal macrophages was similar in WT and KD mice. The higher basal TRPM7 channel activity in KD macrophages is likely due to alkalinization. Our results identify a novel role for TRPM7 kinase as a suppressor of basal phagocytosis and a regulator of cellular pH.
Collapse
Affiliation(s)
- Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Siham Hourani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| |
Collapse
|
28
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
29
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
30
|
Karakas D, Ozpolat B. Eukaryotic elongation factor-2 kinase (eEF2K) signaling in tumor and microenvironment as a novel molecular target. J Mol Med (Berl) 2020; 98:775-787. [PMID: 32377852 DOI: 10.1007/s00109-020-01917-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
Eukaryotic elongation factor-2 kinase (eEF2K), an atypical member of alpha-kinase family, is highly overexpressed in breast, pancreatic, brain, and lung cancers, and associated with poor survival in patients. eEF2K promotes cell proliferation, survival, and aggressive tumor characteristics, leading to tumor growth and progression. While initial studies indicated that eEF2K acts as a negative regulator of protein synthesis by suppressing peptide elongation phase, later studies demonstrated that it has multiple functions and promotes cell cycle, angiogenesis, migration, and invasion as well as induction of epithelial-mesenchymal transition through induction of integrin β1, SRC/FAK, PI3K/AKT, cyclin D1, VEGF, ZEB1, Snail, and MMP-2. Under stress conditions such as hypoxia and metabolic distress, eEF2K is activated by several signaling pathways and slows down protein synthesis and helping cells to save energy and survive. In vivo therapeutic targeting of eEF2K by genetic methods inhibits tumor growth in various tumor models, validating it as a potential molecular target. Recent studies suggest that eEF2K plays a role in tumor microenvironment cells by monocyte chemoattractant protein-1 (MCP-1) and accumulation of tumor-associated macrophages. Due to its clinical significance and the pivotal role in tumorigenesis and progression, eEF2K is considered as an important therapeutic target in solid tumors. However, currently, there is no specific and potent inhibitor for translation into clinical studies. Here, we aim to systematically review current knowledge regarding eEF2K in tumor biology, microenvironment, and development of eEF2K targeted inhibitors and therapeutics.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul, Turkey
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Beretta S, Gritti L, Verpelli C, Sala C. Eukaryotic Elongation Factor 2 Kinase a Pharmacological Target to Regulate Protein Translation Dysfunction in Neurological Diseases. Neuroscience 2020; 445:42-49. [PMID: 32088293 DOI: 10.1016/j.neuroscience.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023]
Abstract
Two major processes tightly regulate protein synthesis, the initiation of mRNA translation and elongation phase that mediates the movement of ribosomes along the mRNA. The elongation phase is a high energy-consuming process, and is mainly regulated by the eukaryotic elongation factor 2 kinase (eEF2K) activity that phosphorylates and inhibits eEF2, the only known substrate of the kinase. eEF2K activity is closely regulated by several signaling pathways because the translation elongation phase strongly influences the cellular energy demand and can change the expression of specific proteins in different tissues. An increasing number of recent findings link eEF2k over activation to an array of human diseases, such as atherosclerosis, pulmonary arterial hypertension, progression of solid tumors, and some major neurological disorders. Several neurological studies suggest that eEF2K is a valuable target in treating epilepsy, depression and major neurodegenerative diseases. Despite eEF2k is an ubiquitous and conserved protein, it has been proved that its deletion does not affect development in animal models and in general cell viability. Therefore, it is possible to postulate that inhibiting its function may not cause serious side effects. In addition, eEF2K is a peculiar kinase molecularly different from most of other mammalian kinases and new compounds that inhibit eEF2K should not necessarily interfere with other important protein kinases. In this review we will critically summarize the evidence supporting the role of the altered eEF2K/eEF2 pathway in defined neurological diseases and its implications in curing these diseases in animal models, and possibly in humans, by targeting eEF2K activity.
Collapse
Affiliation(s)
| | | | | | - Carlo Sala
- CNR Neuroscience Institute, Milano, Italy.
| |
Collapse
|
32
|
Modi V, Dunbrack RL. A Structurally-Validated Multiple Sequence Alignment of 497 Human Protein Kinase Domains. Sci Rep 2019; 9:19790. [PMID: 31875044 PMCID: PMC6930252 DOI: 10.1038/s41598-019-56499-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Studies on the structures and functions of individual kinases have been used to understand the biological properties of other kinases that do not yet have experimental structures. The key factor in accurate inference by homology is an accurate sequence alignment. We present a parsimonious, structure-based multiple sequence alignment (MSA) of 497 human protein kinase domains excluding atypical kinases. The alignment is arranged in 17 blocks of conserved regions and unaligned blocks in between that contain insertions of varying lengths present in only a subset of kinases. The aligned blocks contain well-conserved elements of secondary structure and well-known functional motifs, such as the DFG and HRD motifs. From pairwise, all-against-all alignment of 272 human kinase structures, we estimate the accuracy of our MSA to be 97%. The remaining inaccuracy comes from a few structures with shifted elements of secondary structure, and from the boundaries of aligned and unaligned regions, where compromises need to be made to encompass the majority of kinases. A new phylogeny of the protein kinase domains in the human genome based on our alignment indicates that ten kinases previously labeled as "OTHER" can be confidently placed into the CAMK group. These kinases comprise the Aurora kinases, Polo kinases, and calcium/calmodulin-dependent kinase kinases.
Collapse
Affiliation(s)
- Vivek Modi
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Roland L Dunbrack
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
33
|
Kanev GK, de Graaf C, de Esch IJP, Leurs R, Würdinger T, Westerman BA, Kooistra AJ. The Landscape of Atypical and Eukaryotic Protein Kinases. Trends Pharmacol Sci 2019; 40:818-832. [PMID: 31677919 DOI: 10.1016/j.tips.2019.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Kinases are attractive anticancer targets due to their central role in the growth, survival, and therapy resistance of tumor cells. This review explores the two primary kinase classes, the eukaryotic protein kinases (ePKs) and the atypical protein kinases (aPKs), and provides a structure-centered comparison of their sequences, structures, hydrophobic spines, mutation and SNP hotspots, and inhibitor interaction patterns. Despite the limited sequence similarity between these two classes, atypical kinases commonly share the archetypical kinase fold but lack conserved eukaryotic kinase motifs and possess altered hydrophobic spines. Furthermore, atypical kinase inhibitors explore only a limited number of binding modes both inside and outside the orthosteric binding site. The distribution of genetic variations in both classes shows multiple ways they can interfere with kinase inhibitor binding. This multilayered review provides a research framework bridging the eukaryotic and atypical kinase classes.
Collapse
Affiliation(s)
- Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Thomas Würdinger
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Amsterdam University Medical Centers, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Abstract
Transient receptor potential (TRP) ion channels are molecular sensors of a large variety of stimuli including temperature, mechanical stress, voltage, small molecules including capsaicin and menthol, and lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). Since the same TRP channels may respond to different physical and chemical stimuli, they can serve as signal integrators. Many TRP channels are calcium permeable and contribute to Ca2+ homeostasis and signaling. Although the TRP channel family was discovered decades ago, only recently have the structures of many of these channels been solved, largely by cryo-electron microscopy (cryo-EM). Complimentary to cryo-EM, X-ray crystallography provides unique tools to unambiguously identify specific atoms and can be used to study ion binding in channel pores. In this review we describe crystallographic studies of the TRP channel TRPV6. The methodology used in these studies may serve as a template for future structural analyses of different types of TRP and other ion channels.
Collapse
Affiliation(s)
- Appu K Singh
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Luke L McGoldrick
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY.,b Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University , New York , NY
| | - Kei Saotome
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Alexander I Sobolevsky
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| |
Collapse
|
35
|
Nguyen TTA, Li W, Park TJ, Gong LW, Cologna SM. Investigating Phosphorylation Patterns of the Ion Channel TRPM7 Using Multiple Extraction and Enrichment Techniques Reveals New Phosphosites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1359-1367. [PMID: 31140077 PMCID: PMC10026262 DOI: 10.1007/s13361-019-02223-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The study of membrane proteins, and in particular ion channels, is crucial to understanding cellular function. Mass spectrometry-based approaches including bottom-up strategies to study membrane proteins have been successful yet still can remain challenging. In this study, we sought to evaluate the phosphorylation patterns of the ion channel TRPM7 which is involved in a range of critical physiological functions. To overcome extraction obstacles associated with analyzing membrane proteins, we incorporated the use of 5% SDS solubilization coupled with SCAD and S-Trap digestion methods to eliminate detergent interference in downstream LC-MS/MS analysis. We found that the SCAD method was more efficient, yielding 84% of the overall identified proteins; however, the variability was greater than the S-Trap method. Using both methods together with TiO2 and Fe-NTA phospho-enrichment protocols, we successfully observed the phosphorylation pattern of TRPM7 in a transfected cell line. An average of 22 ± 6% of the TRPM7 amino acid sequence was observed. In addition to several previously reported phosphorylation sites, we identified six new phosphosites (S5, S233, S554, S824, T1265, and S1401), providing new targets for further functional analyses of TRPM7.
Collapse
Affiliation(s)
- Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Wenping Li
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thomas J Park
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Liang-Wei Gong
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Laboratory for Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
36
|
Logashina YA, Korolkova YV, Kozlov SA, Andreev YA. TRPA1 Channel as a Regulator of Neurogenic Inflammation and Pain: Structure, Function, Role in Pathophysiology, and Therapeutic Potential of Ligands. BIOCHEMISTRY (MOSCOW) 2019; 84:101-118. [PMID: 31216970 DOI: 10.1134/s0006297919020020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRPA1 is a cation channel located on the plasma membrane of many types of human and animal cells, including skin sensory neurons and epithelial cells of the intestine, lungs, urinary bladder, etc. TRPA1 is the major chemosensor that also responds to thermal and mechanical stimuli. Substances that activate TRPA1, e.g., allyl isothiocyanates (pungent components of mustard, horseradish, and wasabi), cinnamaldehyde from cinnamon, organosulfur compounds from garlic and onion, tear gas, acrolein and crotonaldehyde from cigarette smoke, etc., cause burning, mechanical and thermal hypersensitivity, cough, eye irritation, sneezing, mucus secretion, and neurogenic inflammation. An increased activity of TRPA1 leads to the emergence of chronic pruritus and allergic dermatitis and is associated with episodic pain syndrome, a hereditary disease characterized by episodes of debilitating pain triggered by stress. TRPA1 is now considered as one of the targets for developing new anti-inflammatory and analgesic drugs. This review summarizes information on the structure, function, and physiological role of this channel, as well as describes known TRPA1 ligands and their significance as therapeutic agents in the treatment of inflammation-associated pain.
Collapse
Affiliation(s)
- Yu A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - Yu V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ya A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
37
|
Piserchio A, Will N, Giles DH, Hajredini F, Dalby KN, Ghose R. Solution Structure of the Carboxy-Terminal Tandem Repeat Domain of Eukaryotic Elongation Factor 2 Kinase and Its Role in Substrate Recognition. J Mol Biol 2019; 431:2700-2717. [PMID: 31108082 PMCID: PMC6599559 DOI: 10.1016/j.jmb.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF-2K), an atypical calmodulin-activated protein kinase, regulates translational elongation by phosphorylating its substrate, eukaryotic elongation factor 2 (eEF-2), thereby reducing its affinity for the ribosome. The activation and activity of eEF-2K are critical for survival under energy-deprived conditions and is implicated in a variety of essential physiological processes. Previous biochemical experiments have indicated that the binding site for the substrate eEF-2 is located in the C-terminal domain of eEF-2K, a region predicted to harbor several α-helical repeats. Here, using NMR methodology, we have determined the solution structure of a C-terminal fragment of eEF-2K, eEF-2K562-725 that encodes two α-helical repeats. The structure of eEF-2K562-725 shows signatures characteristic of TPR domains and of their SEL1-like sub-family. Furthermore, using the analyses of NMR spectral perturbations and ITC measurements, we have localized the eEF-2 binding site on eEF-2K562-725. We find that eEF-2K562-725 engages eEF-2 with an affinity comparable to that of the full-length enzyme. Furthermore, eEF-2K562-725 is able to inhibit the phosphorylation of eEF-2 by full-length eEF-2K in trans. Our present studies establish that eEF-2K562-725 encodes the major elements necessary to enable the eEF-2K/eEF-2 interactions.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA
| | - Nathan Will
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - David H Giles
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Kevin N Dalby
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA.
| |
Collapse
|
38
|
Proud CG. Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033050. [PMID: 29959191 DOI: 10.1101/cshperspect.a033050] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein synthesis, including the translation of specific messenger RNAs (mRNAs), is regulated by extracellular stimuli such as hormones and by the levels of certain nutrients within cells. This control involves several well-understood signaling pathways and protein kinases, which regulate the phosphorylation of proteins that control the translational machinery. These pathways include the mechanistic target of rapamycin complex 1 (mTORC1), its downstream effectors, and the mitogen-activated protein (MAP) kinase (extracellular ligand-regulated kinase [ERK]) signaling pathway. This review describes the regulatory mechanisms that control translation initiation and elongation factors, in particular the effects of phosphorylation on their interactions or activities. It also discusses current knowledge concerning the impact of these control systems on the translation of specific mRNAs or subsets of mRNAs, both in physiological processes and in diseases such as cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia; and School of Biological Sciences, University of Adelaide, Adelaide SA5000, Australia
| |
Collapse
|
39
|
Wen H, Zheng W. Decrypting the Heat Activation Mechanism of TRPV1 Channel by Molecular Dynamics Simulation. Biophys J 2019; 114:40-52. [PMID: 29320695 DOI: 10.1016/j.bpj.2017.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
As a prototype cellular sensor, the TRPV1 cation channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including noxious heat. Despite recent progress, the molecular mechanism of heat activation of TRPV1 gating remains enigmatic. Toward decrypting the structural basis of TRPV1 heat activation, we performed extensive molecular dynamics simulations (with cumulative simulation time of ∼11 μs) for the wild-type channel and a constitutively active double mutant at different temperatures (30, 60, and 72°C), starting from a high-resolution closed-channel structure of TRPV1 solved by cryo-electron microscopy. In the wild-type simulations, we observed heat-activated conformational changes (e.g., expansion or contraction) in various key domains of TRPV1 (e.g., the S2-S3 and S4-S5 linkers) to prime the channel for gating. These conformational changes involve a number of dynamic hydrogen-bond interactions that were validated with previous mutational studies. Next, our mutant simulations observed channel opening after a series of conformational changes that propagate from the channel periphery to the channel pore via key intermediate domains (including the S2-S3 and S4-S5 linkers). The gating transition is accompanied by a large increase in the protein-water electrostatic interaction energy, which supports the contribution of desolvation of polar/charged residues to the temperature-sensitive TRPV1 gating. Taken together, our molecular dynamics simulations and analyses offered, to our knowledge, new structural, dynamic, and energetic information to guide future mutagenesis and functional studies of the TRPV1 channels and development of TRPV1-targeting drugs.
Collapse
Affiliation(s)
- Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
40
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
41
|
Vangeel L, Voets T. Transient Receptor Potential Channels and Calcium Signaling. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035048. [PMID: 30910771 DOI: 10.1101/cshperspect.a035048] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transient receptor potential (TRP) cation channels play diverse roles in cellular Ca2+ signaling. First, as Ca2+-permeable channels that respond to a variety of stimuli, TRP channels can directly initiate cellular Ca2+ signals. Second, as nonselective cation channels, TRP channel activation leads to membrane depolarization, influencing Ca2+ influx via voltage-gated and store-operated Ca2+ channels. Finally, Ca2+ modulates the activity of most TRP channels, allowing them to function as molecular effectors downstream of intracellular Ca2+ signals. Whereas the TRP channel field has long been devoid of detailed channel structures, recent advances, particularly in cryo-electron microscopy-based structural approaches, have yielded a flurry of TRP channel structures, including members from all seven subfamilies. These structures, in conjunction with mutagenesis-based functional approaches, provided important new insights into the mechanisms whereby TRP channels permeate and sense Ca2+ These insights will be highly instrumental in the rational design of novel treatments for the multitude of TRP channel-related diseases.
Collapse
Affiliation(s)
- Laura Vangeel
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research & Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB Center for Brain and Disease Research & Department of Cellular and Molecular Medicine, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
42
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
43
|
Williams LB, Javed A, Sabri A, Morgan DJ, Huff CD, Grigg JR, Heng XT, Khng AJ, Hollink IHIM, Morrison MA, Owen LA, Anderson K, Kinard K, Greenlees R, Novacic D, Nida Sen H, Zein WM, Rodgers GM, Vitale AT, Haider NB, Hillmer AM, Ng PC, Shankaracharya, Cheng A, Zheng L, Gillies MC, van Slegtenhorst M, van Hagen PM, Missotten TOAR, Farley GL, Polo M, Malatack J, Curtin J, Martin F, Arbuckle S, Alexander SI, Chircop M, Davila S, Digre KB, Jamieson RV, DeAngelis MM. ALPK1 missense pathogenic variant in five families leads to ROSAH syndrome, an ocular multisystem autosomal dominant disorder. Genet Med 2019; 21:2103-2115. [PMID: 30967659 PMCID: PMC6752478 DOI: 10.1038/s41436-019-0476-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 01/07/2023] Open
Abstract
Purpose To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. Methods Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines. Ciliary assays in fibroblasts from affected and unaffected family members. Results We found the heterozygous missense variant in the ɑ-kinase gene, ALPK1, (c.710C>T, [p.Thr237Met]), segregated with disease in all five families. All patients shared the ROSAH phenotype with additional low-grade ocular inflammation, pancytopenia, recurrent infections, and mild renal impairment in some. ALPK1 was notably expressed in retina, retinal pigment epithelium, and optic nerve, with immunofluorescence indicating localization to the basal body of the connecting cilium of the photoreceptors, and presence in the sweat glands. Immunocytofluorescence revealed expression at the centrioles and spindle poles during metaphase, and at the base of the primary cilium. Affected family member fibroblasts demonstrated defective ciliogenesis. Conclusion Heterozygosity for ALPK1, p.Thr237Met leads to ROSAH syndrome, an autosomal dominant ocular systemic disorder.
Collapse
Affiliation(s)
- Lloyd B Williams
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Asif Javed
- Genome Institute of Singapore, Singapore, Singapore.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Amin Sabri
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Chad D Huff
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John R Grigg
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | - Margaux A Morrison
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leah A Owen
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Krista Kinard
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rebecca Greenlees
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Danica Novacic
- National Institutes of Health, National Human Genome Research Institute, Undiagnosed Diseases Network, Bethesda, MD, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - George M Rodgers
- Department of Hematology, Utah Health Sciences Center, Salt Lake City, UT, USA
| | - Albert T Vitale
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | | | - Pauline C Ng
- Genome Institute of Singapore, Singapore, Singapore
| | - Shankaracharya
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anson Cheng
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Linda Zheng
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Mark C Gillies
- Discipline of Ophthalmology, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | - Michael Polo
- Drs. Farley, Polo and Ho, Colonial Heights, VA, USA
| | - James Malatack
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Julie Curtin
- Department of Haematology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Frank Martin
- Department of Ophthalmology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Susan Arbuckle
- Department of Pathology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Stephen I Alexander
- Department of Nephrology, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Megan Chircop
- Cell Cycle Unit, Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Sonia Davila
- Genome Institute of Singapore, Singapore, Singapore
| | - Kathleen B Digre
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Save Sight Institute, University of Sydney, Sydney, NSW, Australia. .,Disciplines of Genomic Medicine, and Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. .,Department of Clinical Genetics, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, NSW, Australia.
| | - Margaret M DeAngelis
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA. .,Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
44
|
Beraki T, Hu X, Broncel M, Young JC, O'Shaughnessy WJ, Borek D, Treeck M, Reese ML. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole. Proc Natl Acad Sci U S A 2019; 116:6361-6370. [PMID: 30850550 PMCID: PMC6442604 DOI: 10.1073/pnas.1816161116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network's functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection.
Collapse
Affiliation(s)
- Tsebaot Beraki
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoyu Hu
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Malgorzata Broncel
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - William J O'Shaughnessy
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390
| | - Dominika Borek
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, NW1 1AT London United Kingdom
| | - Michael L Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390;
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
45
|
Zheng W, Wen H. Heat activation mechanism of TRPV1: New insights from molecular dynamics simulation. Temperature (Austin) 2019; 6:120-131. [PMID: 31286023 DOI: 10.1080/23328940.2019.1578634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/30/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
As a member of the transient receptor potential (TRP) channels superfamily, the TRPV1 channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including heat. Thanks to recent progress in cryo-electron microscopy, high-resolution structures are becoming available for various TRP channels including TRPV1. This has enabled us to study the molecular mechanism of TRPV1 channel gating by using molecular simulation. Here we review recent progress in molecular simulations of TRPV1 channel by us and others, with focus on our molecular dynamics (MD) simulations of TRPV1 at different temperatures. While no consensus has been reached on the heat activation mechanism of TRPV1, the simulations have offered specific predictions and models for future experimental studies to test.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
46
|
Singh AK, McGoldrick LL, Sobolevsky AI. Expression, Purification, and Crystallization of the Transient Receptor Potential Channel TRPV6. Methods Mol Biol 2019; 1987:23-37. [PMID: 31028671 DOI: 10.1007/978-1-4939-9446-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are polymodal sensory transducers that respond to chemicals, temperature, mechanical stress, and membrane voltage and are involved in vision, taste, olfaction, hearing, touch, thermal perception, and nociception. TRP channels are implicated in numerous devastating diseases, including various forms of cancer, and represent important drug targets. The large sizes, low expression levels, and conformational dynamics of TRP channels make them challenging targets for structural biology. Here, we present the methodology used in structural studies of TRPV6, a TRP channel that is highly selective for calcium and mediates Ca2+ uptake in epithelial tissues. We provide a protocol for the expression, purification, and crystallization of TRPV6. Similar approaches can be used to determine crystal structures of other membrane proteins, including different members of the TRP channel family.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
47
|
Chubanov V, Mittermeier L, Gudermann T. TRPM7 reflected in Cryo-EMirror. Cell Calcium 2018; 76:129-131. [PMID: 30470536 DOI: 10.1016/j.ceca.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
TRPM7 is an atypical type of ion channel because its pore-forming moiety is covalently linked to a protein kinase domain. The channel-kinase TRPM7 controls a wide range of biological processes such as mineral homeostasis, immune responses, cell motility, proliferation and differentiation. Earlier this year, Duan J & co-workers [1] published three TRPM7 structures resolved by cryo-electron microscopy (cryo-EM). This study tremendously advances our mechanistic understanding of TRPM7 channel function and forms the basis for informed structure-function assessment of this extraordinary protein.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany.
| | - Lorenz Mittermeier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany; German Center for Lung Research, Munich, Germany; German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
48
|
Cornillot M, Giacco V, Hamilton NB. The role of TRP channels in white matter function and ischaemia. Neurosci Lett 2018; 690:202-209. [PMID: 30366011 DOI: 10.1016/j.neulet.2018.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 01/15/2023]
Abstract
Transient receptor potential (TRP) proteins are a large family of tetrameric non-selective cation channels that are widely expressed in the grey and white matter of the CNS, and are increasingly considered as potential therapeutic targets in brain disorders. Here we briefly review the evidence for TRP channel expression in glial cells and their possible role in both glial cell physiology and stroke. Despite their contribution to important functions, our understanding of the roles of TRP channels in glia is still in its infancy. The evidence reviewed here indicates that further investigation is needed to determine whether TRP channel inhibition can decrease damage or increase repair in stroke and other diseases affecting the white matter.
Collapse
Affiliation(s)
- Marion Cornillot
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Vincenzo Giacco
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Nicola B Hamilton
- Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
49
|
Zhelay T, Wieczerzak KB, Beesetty P, Alter GM, Matsushita M, Kozak JA. Depletion of plasma membrane-associated phosphoinositides mimics inhibition of TRPM7 channels by cytosolic Mg 2+, spermine, and pH. J Biol Chem 2018; 293:18151-18167. [PMID: 30305398 PMCID: PMC6254349 DOI: 10.1074/jbc.ra118.004066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is an ion channel/protein kinase belonging to the TRP melastatin and eEF2 kinase families. Under physiological conditions, most native TRPM7 channels are inhibited by cytoplasmic Mg2+, protons, and polyamines. Currents through these channels (ITRPM7) are robustly potentiated when the cell interior is exchanged with low Mg2+-containing buffers. ITRPM7 is also potentiated by phosphatidyl inositol bisphosphate (PI(4,5)P2) and suppressed by its hydrolysis. Here we characterized internal Mg2+- and pH-mediated inhibition of TRPM7 channels in HEK293 cells overexpressing WT voltage-sensing phospholipid phosphatase (VSP) or its catalytically inactive variant VSP-C363S. VSP-mediated depletion of membrane phosphoinositides significantly increased channel sensitivity to Mg2+ and pH. Proton concentrations that were too low to inhibit ITRPM7 when the VSP-C363S variant was expressed (pH 8.2) became inhibitory in WT VSP-expressing cells. At pH 6.5, protons inhibited ITRPM7 both in WT and VSP C363S-expressing cells but with a faster time course in the WT VSP-expressing cells. Inhibition by 150 μm Mg2+ was also significantly faster in the WT VSP-expressing cells. Cellular PI(4,5)P2 depletion increased the sensitivity of TRPM7 channels to the inhibitor 2-aminoethyl diphenyl borinate, which acidifies the cytosol. Single substitutions at Ser-1107 of TRPM7, reducing its sensitivity to Mg2+, also decreased its inhibition by spermine and acidic pH. Furthermore, these channel variants were markedly less sensitive to VSP-mediated PI(4,5)P2 depletion than the WT. We conclude that the internal Mg2+-, polyamine-, and pH-mediated inhibition of TRPM7 channels is not direct but, rather, reflects electrostatic screening and resultant disruption of PI(4,5)P2-channel interactions.
Collapse
Affiliation(s)
- Tetyana Zhelay
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | | | - Pavani Beesetty
- From the Departments of Neuroscience, Cell Biology, and Physiology and
| | - Gerald M Alter
- Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435 and
| | - Masayuki Matsushita
- the Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - J Ashot Kozak
- From the Departments of Neuroscience, Cell Biology, and Physiology and.
| |
Collapse
|
50
|
Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J, Clapham DE. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci U S A 2018; 115:E8201-E8210. [PMID: 30108148 PMCID: PMC6126765 DOI: 10.1073/pnas.1810719115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential ion channel subfamily M, member 7 (TRPM7), is a ubiquitously expressed protein that is required for mouse embryonic development. TRPM7 contains both an ion channel and an α-kinase. The channel domain comprises a nonselective cation channel with notable permeability to Mg2+ and Zn2+ Here, we report the closed state structures of the mouse TRPM7 channel domain in three different ionic conditions to overall resolutions of 3.3, 3.7, and 4.1 Å. The structures reveal key residues for an ion binding site in the selectivity filter, with proposed partially hydrated Mg2+ ions occupying the center of the conduction pore. In high [Mg2+], a prominent external disulfide bond is found in the pore helix, which is essential for ion channel function. Our results provide a structural framework for understanding the TRPM1/3/6/7 subfamily and extend the knowledge base upon which to study the diversity and evolution of TRP channels.
Collapse
Affiliation(s)
- Jingjing Duan
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Zongli Li
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Jian Li
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031 Jiangxi, China
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Raymond E Hulse
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Ana Santa-Cruz
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - William C Valinsky
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Sunday A Abiria
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | | | - Jin Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115;
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031 Jiangxi, China
| | - David E Clapham
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|