1
|
Karmakar S, Chatterjee M, Basu M, Ghosh MK. CK2: The master regulator in tumor immune-microenvironment - A crucial target in oncotherapy. Eur J Pharmacol 2025; 994:177376. [PMID: 39952582 DOI: 10.1016/j.ejphar.2025.177376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
A constitutively active serine/threonine kinase, casein kinase 2 (CK2) is involved in several physiological functions, such as DNA repair, apoptosis, and cell cycle control. New research emphasizes how critical CK2 is to the immune system's dysregulation in the tumor immune-microenvironment (TIME). The inhibition of immunological responses, including the downregulation of immune effector cells and the elevation of immunosuppressive proteins that aid in the development of tumor and immune evasion, has been linked to CK2 overexpression. CK2 maintains an immunosuppressive milieu that impedes anti-tumor immunity by encouraging the expressions and activities of immune checkpoint markers, regulating cytokines release, and boosting immune-suppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) to maintain immune evasion. It is a promising target for cancer treatment due to its complex role in immune regulation and oncogenic pathways. In this study, we address the therapeutic perspectives of targeting CK2 in oncotherapy and investigate the mechanisms by which it controls immunological responses in the TME. This review, comprehending the function of CK2 in immune suppression can facilitate the creation of innovative treatment approaches aimed at augmenting anti-tumor immunity and enhancing immunotherapy effectiveness.
Collapse
Affiliation(s)
- Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mouli Chatterjee
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Dakshin Barasat, WB, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700032, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India; 4, Raja S.C, Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
2
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
3
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
4
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
5
|
Quotti Tubi L, Canovas Nunes S, Mandato E, Pizzi M, Vitulo N, D’Agnolo M, Colombatti R, Martella M, Boaro MP, Doriguzzi Breatta E, Fregnani A, Spinello Z, Nabergoj M, Filhol O, Boldyreff B, Albiero M, Fadini GP, Gurrieri C, Vianello F, Semenzato G, Manni S, Trentin L, Piazza F. CK2β Regulates Hematopoietic Stem Cell Biology and Erythropoiesis. Hemasphere 2023; 7:e978. [PMID: 38026791 PMCID: PMC10673422 DOI: 10.1097/hs9.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the β regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2β knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2β were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Canovas Nunes
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Mandato
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy
| | - Mirco D’Agnolo
- Department of Women’s and Child’s Health, University of Padova, Italy
| | | | | | - Maria Paola Boaro
- Department of Women’s and Child’s Health, University of Padova, Italy
| | - Elena Doriguzzi Breatta
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Zaira Spinello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mitja Nabergoj
- Hematology Service, Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Reserches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Mattia Albiero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
| | - Gian Paolo Fadini
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
- Department of Medicine, University of Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
6
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Lamarque M, Gautier EF, Rodrigues F, Guillem F, Bayard E, Broussard C, Maciel Trovati T, Arlet JB, Mayeux P, Hermine O, Courtois G. Role of Caspase-10-P13tBID axis in erythropoiesis regulation. Cell Death Differ 2023; 30:208-220. [PMID: 36202990 PMCID: PMC9883265 DOI: 10.1038/s41418-022-01066-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023] Open
Abstract
Red blood cell production is negatively controlled by the rate of apoptosis at the stage of CFU-E/pro-erythroblast differentiation, depending on the balance between erythropoietin (EPO) levels and activation of the Fas/FasL pathway. At this stage, activation of transient caspases through depolarization via mitochondrial outer membrane permeabilization (MOMP) is also required for terminal erythroid differentiation. Molecular mechanisms regulating the differential levels of MOMP during differentiation and apoptosis, however, remain poorly understood. Here we show a novel and essential role for the caspase-10-P13-tBID axis in erythroid terminal differentiation. Caspase-10 (but not caspase-8, which is activated during apoptosis) is activated at the early stages of erythroid terminal differentiation leading to the cleavage of P22-BID into P18-tBID, and later into P13-tBID. Erythropoietin (EPO) by inducing casein kinase I alpha (CKIα) expression, which in turn phosphorylates P18-tBID, prevents the generation of MYR-P15-tBID (leading to apoptosis) and allows the generation of P13-tBID by caspase-10. Unlike P15-tBID, P13-tBID is not myristoylated and as such, does not irreversibly anchor the mitochondrial membrane resulting in a transient MOMP. Likewise, transduction of a P13-tBID fragment induces rapid and strong erythroid terminal differentiation. Thus, EPO modulates the pattern of BID cleavage to control the level of MOMP and determines the fate of erythroblasts between apoptosis and differentiation. This pathway is impaired in 5q- myelodysplastic syndromes because of CK1α haplo-insufficiency and may contribute to erythroid differentiation arrest and high sensitivity of this disease to lenalidomide (LEN).
Collapse
Affiliation(s)
- Mathilde Lamarque
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Emilie-Fleur Gautier
- grid.484422.cLaboratory of Excellence GR-Ex, Paris, France ,grid.7429.80000000121866389Institut Cochin, Département Développement, Reproduction, Cancer, CNRS INSERM UMR, 8104 Paris, France
| | - François Rodrigues
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Flavia Guillem
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Elisa Bayard
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Cédric Broussard
- grid.462098.10000 0004 0643 431X3P5 Proteom’IC facility, Université Paris-Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | - Thiago Maciel Trovati
- grid.508487.60000 0004 7885 7602INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France ,grid.484422.cLaboratory of Excellence GR-Ex, Paris, France
| | - Jean-Benoît Arlet
- grid.508487.60000 0004 7885 7602Service de Médecine Interne, Hôpital européen Georges-Pompidou APHP, Faculté de Médecine Paris Descartes, Université Paris-Cité, Paris, France
| | - Patrick Mayeux
- grid.484422.cLaboratory of Excellence GR-Ex, Paris, France ,grid.7429.80000000121866389Institut Cochin, Département Développement, Reproduction, Cancer, CNRS INSERM UMR, 8104 Paris, France
| | - Olivier Hermine
- INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France. .,Department of Hematology, Hôpital Necker Enfants Malades, AP-HP, Faculté de Médecine Paris Descartes, Université Paris-Cité, Paris, France.
| | - Geneviève Courtois
- INSERM U1163, Institut Imagine, Université Paris-Cité, Paris, France. .,Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
8
|
Nicolaou ST, Kannan S, Warwicker J, Verma CS. Activation of p53: How phosphorylated Ser15 triggers sequential phosphorylation of p53 at Thr18 by CK1δ. Proteins 2022; 90:2009-2022. [PMID: 35752942 PMCID: PMC9796392 DOI: 10.1002/prot.26393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023]
Abstract
The N-terminal transactivation domain (TAD) of p53 is a disordered region with multiple phosphorylation sites. Phosphorylation at Thr18 is crucial for the release of p53 from its negative regulator, MDM2. In stressed cells, CK1δ is responsible for phosphorylating Thr18, but requires Ser15 to be phosphorylated. To understand the mechanistic underpinnings of this sequential phosphorylation, molecular modeling and molecular dynamics simulation studies of these phosphorylation events were carried out. Our models suggest that a positively charged region on CK1δ near the adenosine triphosphate (ATP) binding pocket, which is conserved across species, sequesters the negatively charged pSer15, thereby constraining the positioning of the rest of the peptide, such that the side chain of Thr18 is positioned close to the γ-phosphate of ATP. Furthermore, our studies show that the phosphorylated p53 TAD1 (p53pSer15) peptide binds more strongly to CK1δ than does p53. p53 adopts a helical structure when bound to CK1δ, which is lost upon phosphorylation at Ser15, thus gaining higher flexibility and ability to morph into the binding site. We propose that upon phosphorylation at Ser15 the p53 TAD1 peptide binds to CK1δ through an electrostatically driven induced fit mechanism resulting in a flanking fuzzy complex.
Collapse
Affiliation(s)
- Sonia T. Nicolaou
- Faculty of Biology, Medicine and Health, School of Biological SciencesManchester Institute of Biotechnology, University of ManchesterManchesterUK,Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| | - Jim Warwicker
- Faculty of Biology, Medicine and Health, School of Biological SciencesManchester Institute of Biotechnology, University of ManchesterManchesterUK
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR)SingaporeSingapore,School of Biological SciencesNanyang Technological UniversitySingaporeSingapore,Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
9
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
11
|
Manni S, Pesavento M, Spinello Z, Saggin L, Arjomand A, Fregnani A, Quotti Tubi L, Scapinello G, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK2 represents a new target to boost Ibrutinib and Venetoclax induced cytotoxicity in mantle cell lymphoma. Front Cell Dev Biol 2022; 10:935023. [PMID: 36035991 PMCID: PMC9403710 DOI: 10.3389/fcell.2022.935023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B cell non-Hodgkin lymphoma, characterized by frequent relapses. In the last decade, the pro-survival pathways related to BCR signaling and Bcl-2 have been considered rational therapeutic targets in B cell derived lymphomas. The BTK inhibitor Ibrutinib and the Bcl-2 inhibitor Venetoclax are emerging as effective drugs for MCL. However, primary and acquired resistance also to these agents may occur. Protein Kinase CK2 is a S/T kinase overexpressed in many solid and blood-derived tumours. CK2 promotes cancer cell growth and clonal expansion, sustaining pivotal survival signaling cascades, such as the ones dependent on AKT, NF-κB, STAT3 and others, counteracting apoptosis through a “non-oncogene” addiction mechanism. We previously showed that CK2 is overexpressed in MCL and regulates the levels of activating phosphorylation on S529 of the NF-κB family member p65/RelA. In the present study, we investigated the effects of CK2 inactivation on MCL cell proliferation, survival and apoptosis and this kinase’s involvement in the BCR and Bcl-2 related signaling. By employing CK2 loss of function MCL cell models, we demonstrated that CK2 sustains BCR signaling (such as BTK, NF-κB and AKT) and the Bcl-2-related Mcl-1 expression. CK2 inactivation enhanced Ibrutinib and Venetoclax-induced cytotoxicity. The demonstration of a CK2-dependent upregulation of pathways that may antagonize the effect of these drugs may offer a novel strategy to overcome primary and secondary resistance.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Sabrina Manni, ; Francesco Piazza,
| | - Maria Pesavento
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Lara Saggin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Arash Arjomand
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Sabrina Manni, ; Francesco Piazza,
| |
Collapse
|
12
|
Traub B, Roth A, Kornmann M, Knippschild U, Bischof J. Stress-activated kinases as therapeutic targets in pancreatic cancer. World J Gastroenterol 2021; 27:4963-4984. [PMID: 34497429 PMCID: PMC8384741 DOI: 10.3748/wjg.v27.i30.4963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a dismal disease with high incidence and poor survival rates. With the aim to improve overall survival of pancreatic cancer patients, new therapeutic approaches are urgently needed. Protein kinases are key regulatory players in basically all stages of development, maintaining physiologic functions but also being involved in pathogenic processes. c-Jun N-terminal kinases (JNK) and p38 kinases, representatives of the mitogen-activated protein kinases, as well as the casein kinase 1 (CK1) family of protein kinases are important mediators of adequate response to cellular stress following inflammatory and metabolic stressors, DNA damage, and others. In their physiologic roles, they are responsible for the regulation of cell cycle progression, cell proliferation and differentiation, and apoptosis. Dysregulation of the underlying pathways consequently has been identified in various cancer types, including pancreatic cancer. Pharmacological targeting of those pathways has been the field of interest for several years. While success in earlier studies was limited due to lacking specificity and off-target effects, more recent improvements in small molecule inhibitor design against stress-activated protein kinases and their use in combination therapies have shown promising in vitro results. Consequently, targeting of JNK, p38, and CK1 protein kinase family members may actually be of particular interest in the field of precision medicine in patients with highly deregulated kinase pathways related to these kinases. However, further studies are warranted, especially involving in vivo investigation and clinical trials, in order to advance inhibition of stress-activated kinases to the field of translational medicine.
Collapse
Affiliation(s)
- Benno Traub
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Marko Kornmann
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| | - Joachim Bischof
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm 89081, Germany
| |
Collapse
|
13
|
Evaluation of the effects of phosphorylation of synthetic peptide substrates on their cleavage by caspase-3 and -7. Biochem J 2021; 478:2233-2245. [PMID: 34037204 DOI: 10.1042/bcj20210255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
Caspases are a family of enzymes that play roles in cell death and inflammation. It has been suggested that in the execution phase of the apoptotic pathway, caspase-3, -6 and -7 are involved. The substrate specificities of two proteases (caspases 3 and 7) are highly similar, which complicates the design of compounds that selectively interact with a single enzyme exclusively. The recognition of residues other than Asp in the P1 position of the substrate by caspase-3/-7 has been reported, promoting interest in the effects of phosphorylation of amino acids in the direct vicinity of the scissile bond. To evaluate conflicting reports on this subject, we synthesized a series of known caspase-3 and -7 substrates and phosphorylated analogs, performed enzyme kinetic assays and mapped the peptide cleavage sites using internally quenched fluorescent peptide substrates. Caspases 3 and 7 will tolerate pSer at the P1 position but only poorly at the P2' position. Our investigation demonstrates the importance of peptide length and composition in interpreting sequence/activity relationships. Based on the results, we conclude that the relationship between caspase-3/-7 and their substrates containing phosphorylated amino acids might depend on the steric conditions and not be directly connected with ionic interactions. Thus, the precise effect of phospho-amino acid residues located in the vicinity of the cleaved bond on the regulation of the substrate specificity of caspases remains difficult to predict. Our observations allow to predict that natural phosphorylated proteins may be cleaved by caspases, but only when extended substrate binding site interactions are satisfied.
Collapse
|
14
|
Winiewska-Szajewska M, Maciejewska AM, Speina E, Poznański J, Paprocki D. Synthesis of Novel Halogenated Heterocycles Based on o-Phenylenediamine and Their Interactions with the Catalytic Subunit of Protein Kinase CK2. Molecules 2021; 26:molecules26113163. [PMID: 34070615 PMCID: PMC8198750 DOI: 10.3390/molecules26113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/07/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay.
Collapse
|
15
|
Li SS, Dong YH, Liu ZP. Recent Advances in the Development of Casein Kinase 1 Inhibitors. Curr Med Chem 2021; 28:1585-1604. [PMID: 32660395 DOI: 10.2174/0929867327666200713185413] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The casein kinase 1 (CK1) family is involved in regulating many cellular processes, including membrane trafficking, DNA damage repair, cytoskeleton dynamics, cytoskeleton maintenance and apoptosis. CK1 isoforms, especially CK1δ and CK1ε have emerged as important therapeutic targets for severe disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), familial advanced sleep phase syndrome and cancer. Due to the importance of CK1 for the pathogenesis of disorders, there are great interests in the development of CK1 inhibitors. METHODS Using SciFinder® as a tool, the publications about the biology of CK1 and the recent developments of CK1 inhibitors were surveyed with an exclusion of those published as patents. RESULTS This review presents the current state of knowledge on the development of CK1 inhibitors, including both synthetic small molecular inhibitors that were divided into 7 categories according to structural features, and the natural compounds. An overview of the advancement of CK1 inhibitors was given, with the introduction of various existing CK1 inhibitors, their inhibitory activities, and the structure-activity relationships. CONCLUSION Through physicochemical characterization and biological investigations, it is possible to understand the structure-activity relationship of CK1 inhibitors, which will contribute to better design and discovery of potent and selective CK1 inhibitors as potential agents for severe disorders such as AD, ALS and cancer.
Collapse
Affiliation(s)
- Sha-Sha Li
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yue-Hui Dong
- Jinan Vocational College of Nursing, Jinan 250102, China
| | - Zhao-Peng Liu
- Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
16
|
Kotrasová V, Keresztesová B, Ondrovičová G, Bauer JA, Havalová H, Pevala V, Kutejová E, Kunová N. Mitochondrial Kinases and the Role of Mitochondrial Protein Phosphorylation in Health and Disease. Life (Basel) 2021; 11:life11020082. [PMID: 33498615 PMCID: PMC7912454 DOI: 10.3390/life11020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Collapse
Affiliation(s)
- Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Barbora Keresztesová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
| | - Gabriela Ondrovičová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Henrieta Havalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- Correspondence: (E.K.); (N.K.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
- Correspondence: (E.K.); (N.K.)
| |
Collapse
|
17
|
Shabani F, Mahdavi M, Imani M, Hosseinpour-Feizi MA, Gheibi N. Calprotectin (S100A8/S100A9)-induced cytotoxicity and apoptosis in human gastric cancer AGS cells: Alteration in expression levels of Bax, Bcl-2, and ERK2. Hum Exp Toxicol 2020; 39:1031-1045. [PMID: 32167384 DOI: 10.1177/0960327120909530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calprotectin is a heterodimeric EF-hand Ca2+ binding protein that is typically released by infiltrating polymorphonuclear leukocytes and macrophages. This protein is a key player linking inflammation and cancer. Due to the increased levels of calprotectin in different inflammatory diseases and cancer, it is considered as a marker for diagnostic purposes. In this study, we evaluated the mechanism of cell viability and apoptotic-inducing effects of recombinant human calprotectin (rhS100A8/S100A9) on the gastric adenocarcinoma (AGS), the most common type of gastric cancer cell line. AGS cells were exposed to the different concentrations (5-100 μg/ml) of calprotectin for 24, 48, and 72 h, and cell viability was assessed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic-inducing effects of calprotectin were evaluated by sub-G1 cell cycle assay and Annexin V/propidium iodide double staining. Furthermore, real-time polymerase chain reaction and Western blot analysis were performed to evaluate the mechanism of action of calprotectin. Our findings indicated that calprotectin inhibits growth and viability of AGS cells in a time- and dose-dependent manner. The half-maximal inhibitory concentration values were measured as 85.77, 79.14, and 65.39 μg/ml for 24, 48, and 72 h, respectively. Additionally, we found that calprotectin downregulated the expression of antiapoptotic protein Bcl-2 and upregulated proapoptotic protein Bax in a time- and concentration-dependent fashion. Calprotectin also slightly upregulated the expression of extracellular signal-regulated protein kinase 2 (ERK2), while it significantly decreased the levels of phospho-ERK in a time-dependent manner. Overall, these findings indicated that calprotectin has cytotoxicity and apoptosis-inducing effects on AGS cell lines in high concentration by modulating Bax/Bcl-2 expression ratio accompanied by inhibition of ERK activation.
Collapse
Affiliation(s)
- F Shabani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - M A Hosseinpour-Feizi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - N Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
18
|
Piazza F, Manni S, Arjomand A, Visentin A, Trentin L, Semenzato G. New responsibilities for aged kinases in B-lymphomas. Hematol Oncol 2019; 38:3-11. [PMID: 31782972 DOI: 10.1002/hon.2694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The knowledge accumulated over the last decade on B-cell-derived non-Hodgkin lymphoma (B-NHL) pathogenesis has led to the identification of several molecular abnormalities, opening new perspectives in the design of novel therapies. Indeed, drugs targeting specific biochemical pathways critical for B-NHL cell survival, proliferation, and fitness within the malignant microenvironment are now available to the clinician: the B-cell receptor signaling inhibitors of BTK, PI3Kδ, ζ, γ, and SYK or the pro-apoptotic BH3-mimetics are clear examples of it. Moreover, it is emerging that malignant B-cell growth is sustained not only by mutations in oncogenes/tumor suppressors but also by the "addiction" to nononcogene (ie, nonstructurally altered) molecules. In this regard, a consistent body of data has established that the Ser/Thr kinases CK1, CK2, and GSK3 are involved in malignant lymphocyte biology and act as pro-survival and signaling-boosting molecules, both in precursor and mature B-cell tumors. Currently, an experimental and clinical groundwork is available, upon which to design CK1-, CK2-, and GSK3-directed antilymphoma/leukemia therapies. In this review, we have examined the main features of CK1, CK2, and GSK3 kinases, summarized the data in B-NHL supporting them as suitable therapeutic targets, and proposed a perspective on potential future research development.
Collapse
Affiliation(s)
- Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Arash Arjomand
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| |
Collapse
|
19
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
20
|
Mato A, Rodríguez-Vázquez R, López-Pedrouso M, Bravo S, Franco D, Zapata C. The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress. BMC Genomics 2019; 20:590. [PMID: 31315554 PMCID: PMC6637562 DOI: 10.1186/s12864-019-5943-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pre-slaughter stress (PSS) impairs animal welfare and meat quality. Dark, firm and dry (DFD) are terms used to designate poor quality meats induced by PSS. Protein phosphorylation can be a potentially significant mechanism to explain rapid and multiple physiological and biochemical changes linked to PSS-dependent muscle-to-meat conversion. However, the role of reversible phosphorylation in the response to PSS is still little known. In this study, we report a comparative phosphoproteomic analysis of DFD and normal meats at 24 h post-mortem from the longissimus thoracis (LT) bovine muscle of male calves of the Rubia Gallega breed. For this purpose, two-dimensional gel electrophoresis (2-DE), in-gel multiplex identification of phosphoproteins with PRO-Q Diamond phosphoprotein-specific stain, tandem (MALDI-TOF/TOF) mass spectrometry (MS), novel quantitative phosphoproteomic statistics and bioinformatic tools were used. RESULTS Noticeable and statistically significant differences in the extent of protein phosphorylation were detected between sample groups at the qualitative and quantitative levels. Overall phosphorylation rates across significantly changed phosphoproteins were about three times higher in DFD than in normal meat. Significantly changed phosphoproteins involved a variable number of isoforms of 13 myofibrillar and sarcoplasmic nonredundant proteins. However, fast skeletal myosin light chain 2 followed by troponin T, F-actin-capping and small heat shock proteins showed the greatest phosphorylation change, and therefore they were the most important phosphoproteins underlying LT muscle conversion to DFD meat in the Rubia Gallega breed. CONCLUSIONS This is the first study reporting global meat phosphoproteome changes in response to PSS. The results show that reversible phosphorylation is a relevant mechanism underlying PSS response and downstream effects on meat quality. This research opens up novel horizons to unravel the complex molecular puzzle underlying muscle-to-meat conversion in response to PSS.
Collapse
Affiliation(s)
- Ariadna Mato
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Rodríguez-Vázquez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Susana Bravo
- Proteomics Laboratory, CHUS, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Meat Technology Center of Galicia, 32900 Ourense, Spain
| | - Carlos Zapata
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Rodríguez-Ulloa A, Ramos Y, Sánchez-Puente A, Perera Y, Musacchio-Lasa A, Fernández-de-Cossio J, Padrón G, López LJ, Besada V, Perea SE. The Combination of the CIGB-300 Anticancer Peptide and Cisplatin Modulates Proteins Related to Cell Survival, DNA Repair and Metastasis in a Lung Cancer Cell Line Model. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190126104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
CIGB-300 is a pro-apoptotic peptide that abrogates CK2-mediated phosphorylation,
and can elicit synergistic interaction in vitro and in vivo when combined with certain anticancer
drugs.
Objective:
The combination of CIGB-300 with cisplatin is studied through data mining and expressionbased
proteomics to reveal the molecular basis of this interaction. Cisplatin resistance-associated proteins,
which have also been reported as CK2 substrates, were first identified by bioinformatic analyses.
Methods:
Data from these analyses suggested that the cisplatin resistance phenotype could be directly
improved by inhibiting CK2 phosphorylation on specific substrates. Furthermore, 157 proteins were
differentially modulated on the NCI-H125 lung cancer cell line in response to CIGB-300, cisplatin or
both drugs as determined by LC-MS/MS.
Results:
The expression of 28 cisplatin resistance-associated proteins was changed when cisplatin was
combined with CIGB-300. Overall, the proteins identified are also related to cell survival, cell proliferation
and metastasis. Furthermore, the CIGB-300 regulated proteome revealed proteins that were initially
involved in the mechanism of action of CIGB-300 and cisplatin as single agents.
Conclusion:
This is the first report describing the protein array modulated by combining CIGB-300
and cisplatin that will support the rationale for future clinical settings based on a multi-target cancer
therapy.
Collapse
Affiliation(s)
| | - Yassel Ramos
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Aniel Sánchez-Puente
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Alexis Musacchio-Lasa
- Department of Bioinformatics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Gabriel Padrón
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Luis J.G. López
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vladimir Besada
- Department of Proteomics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Silvio E. Perea
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
22
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
23
|
Phosphorylation-mediated activation of mouse Xkr8 scramblase for phosphatidylserine exposure. Proc Natl Acad Sci U S A 2019; 116:2907-2912. [PMID: 30718401 DOI: 10.1073/pnas.1820499116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The exposure of phosphatidylserine (PtdSer) to the cell surface is regulated by the down-regulation of flippases and the activation of scramblases. Xkr8 has been identified as a scramblase that is activated during apoptosis, but its exogenous expression in the mouse Ba/F3 pro B cell line induces constitutive PtdSer exposure. Here we found that this Xkr8-mediated PtdSer exposure occurred at 4 °C, but not at 20 °C, although its scramblase activity was observed at 20 °C. The Xkr8-mediated PtdSer exposure was inhibited by a kinase inhibitor and enhanced by phosphatase inhibitors. Phosphorylated Xkr8 was detected by Phos-tag PAGE, and a mass spectrometric and mutational analysis identified three phosphorylation sites. Their phosphomimic mutation rendered Xkr8 resistant to the kinase inhibitor for PtdSer exposure at 4 °C, but unlike phosphatase inhibitors, it did not induce constitutive PtdSer exposure at 20 °C. On the other hand, when the flippase genes were deleted, the Xkr8 induced constitutive PtdSer exposure at high temperature, indicating that the flippase activity normally counteracted Xkr8's ability to expose PtdSer. These results indicate that PtdSer exposure can be increased by the phosphorylation-mediated activation of Xkr8 scramblase and flippase down-regulation.
Collapse
|
24
|
The metacaspase Yca1 maintains proteostasis through multiple interactions with the ubiquitin system. Cell Discov 2019; 5:6. [PMID: 30675380 PMCID: PMC6341073 DOI: 10.1038/s41421-018-0071-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/07/2023] Open
Abstract
Metacaspase enzymes are critical regulatory factors that paradoxically engage apoptosis and also maintain cell viability. For example, the Saccharomyces cerevisiae metacaspase Yca1 has been shown to be important for maintaining cellular proteostasis during stress, and the loss of this enzyme results in increased retention of aggregated material within the insoluble proteome. However, the molecular mechanism(s) by which Yca1 maintains cellular proteostasis remains unknown. Here, using proteomic analysis coupled with protein interaction studies we identified a direct interplay between Yca1 and the ubiquitin-proteasome system. We noted multiple ubiquitination sites on Yca1 and established Rsp5 as the candidate E3 ligase involved in this process. Further characterization of the ubiquitination sites identified the K355 residue on Yca1 as a critical modification for proteostasis function, managing both insoluble protein content and vacuolar response. We also identified a Yca1 phosphorylation site at S346, which promoted interaction with Rsp5 and the aggregate dispersal function of the metacaspase. Interestingly, proteomic analysis also revealed that Yca1 interacts with the ubiquitin precursor protein Rps31, cleaving the protein to release free ubiquitin. In turn, loss of Yca1 or its catalytic activity reduced the levels of monomeric ubiquitin in vivo, concurrent to increased protein aggregation. The K355 and S346 residues were also observed to influence the abundance of low-molecular weight ubiquitin. Together, these observations suggest that Yca1 maintains proteostasis and limits protein aggregation by ensuring a free flow of monoubiquitin, an essential precursor for ligase-enhanced Yca1 enzymatic activity and general proteasome-mediated protein degradation.
Collapse
|
25
|
Tsoy TD, Kruglova NA, Filatov AV. Lymphocyte Phosphatase-Associated Phosphoprotein Is a Substrate of Protein Kinase CK2. BIOCHEMISTRY (MOSCOW) 2018; 83:1380-1387. [PMID: 30482149 DOI: 10.1134/s0006297918110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lymphocyte phosphatase-associated phosphoprotein (LPAP) is a molecular partner of CD45 phosphatase that plays a key role in the regulation of antigen-specific activation of lymphocytes. The functions of LPAP still remain unknown. We believe that studying LPAP phosphorylation pathways could shed light on its functions. In this work, we studied the phosphorylation of LPAP ectopically expressed in non-lymphoid cells in order to determine the effect of LPAP interaction partners on its phosphorylation. We found that phosphorylation at Ser153 and Ser163 in non-hematopoietic HEK293 cells was conserved, while phosphorylation at Ser99 and Ser172 was almost absent. The pattern of LPAP phosphorylation in K562 erythroid and U937 myeloid cells expressing endogenous CD45 protein was similar to that observed in T and B lymphocytes. We demonstrated for the first time that LPAP is a substrate for protein kinase CK2 that phosphorylates it at Ser153, presumably ensuring LPAP resistance to degradation.
Collapse
Affiliation(s)
- T D Tsoy
- Institute of Immunology National Research Center, Federal Medical-Biological Agency, Moscow, 115522, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - N A Kruglova
- Institute of Immunology National Research Center, Federal Medical-Biological Agency, Moscow, 115522, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - A V Filatov
- Institute of Immunology National Research Center, Federal Medical-Biological Agency, Moscow, 115522, Russia. .,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
26
|
Salisbury-Ruf CT, Bertram CC, Vergeade A, Lark DS, Shi Q, Heberling ML, Fortune NL, Okoye GD, Jerome WG, Wells QS, Fessel J, Moslehi J, Chen H, Roberts LJ, Boutaud O, Gamazon ER, Zinkel SS. Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study. eLife 2018; 7:40907. [PMID: 30281024 PMCID: PMC6234033 DOI: 10.7554/elife.40907] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. Bid-/- mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid’s membrane binding domain, BidM148T, associates with MI predisposition. Furthermore, Bid but not BidM148T associates with Mcl-1Matrix, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease. Cells contain specialized structures called mitochondria, which help to convert fuel into energy. These tiny energy factories have a unique double membrane, with a smooth outer and a folded inner lining. The folds, called cristae, provide a scaffold for the molecular machinery that produces chemical energy that the cell can use. The cristae are dynamic, and can change shape, condensing to increase energy output. Mitochondria also play a role in cell death. In certain situations, cristae can widen and release the proteins held within their folds. This can trigger a program of self-destruction in the cell. A family of proteins called Bcl-2 control such a ‘programmed cell death’ through the release of mitochondrial proteins. Some family members, including a protein called Bid, can reorganize cristae to regulate this cell-death program. When cells die, Bid proteins that had been split move to the mitochondria. But, even when cells are healthy, Bid molecules that are intact are always there, suggesting that this form of the protein may have another purpose. To investigate this further, Salisbury-Ruf, Bertram et al. used mice with Bid, and mice that lacked the protein. Without Bid, cells – including heart cells – struggled to work properly and used less oxygen than their normal counterparts. A closer look using electron microscopy revealed abnormalities in the cristae. However, adding ‘intact’ Bid proteins back in to the deficient cells restored them to normal. Moreover, without Bid, the mice hearts were less able to respond to an increased demand for energy. This decreased their performance and caused the formation of scars in the heart muscle called fibrosis, similar to a pattern observed in human patients following a heart attack. DNA data from an electronic health record database revealed a link between low levels of Bid genes and heart attack in humans, which was confirmed in further studies. In addition, a specific mutation in the Bid gene was found to affect its ability to regulate the formation of proper cristae. Combining evidence from mice with human genetics revealed new information about heart diseases. Mitochondrial health may be affected by a combination of specific variations in genes and changes in the Bid protein, which could affect heart attack risk. Understanding more about this association could help to identify and potentially reduce certain risk factors for heart attack.
Collapse
Affiliation(s)
- Christi T Salisbury-Ruf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Clinton C Bertram
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Aurelia Vergeade
- Department of Pharmacology, Vanderbilt University, Nashville, United States
| | - Daniel S Lark
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Qiong Shi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Marlene L Heberling
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Niki L Fortune
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - G Donald Okoye
- Division of Cardiovascular Medicine and Cardio-oncology Program, Vanderbilt University Medical Center, Nashville, United States
| | - W Gray Jerome
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Josh Fessel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Javid Moslehi
- Division of Cardiovascular Medicine and Cardio-oncology Program, Vanderbilt University Medical Center, Nashville, United States
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, United States
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, United States
| | - Eric R Gamazon
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, United States.,Clare Hall, University of Cambridge, Cambridge, United Kingdom
| | - Sandra S Zinkel
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
27
|
Tichý A. Apoptotic Machinery: The Bcl-2 Family Proteins in the Role of Inspectors and Superintendents. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Programmed cell death, apoptosis, plays an integral role in a variety of biological events, e.g. morphogenesis, removal of unwanted or harmful cells, tissue homeostasis etc. Members of the Bcl-2 family have been described as the key players in the regulation of the apoptotic process. This family consists of proteins that prevent apoptosis (Bcl-2–like) and two structurally distinct subgroups (Bax-like and BH3–only) that on the contrary promote cell death. Majority of their response is concentrated to the mitochondrial level. In this paper, besides reviewing some new information in this field we focused on how they interact among each other and on the way they sense and influence the death signals from the environment. Here, we compare Bcl-2 family to inspectors and superintendents since they supervise the manufacturing process of cell death and they determine whether the cell will die or it will resist and survive.
Collapse
|
28
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
29
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
30
|
Perea SE, Baladrón I, Valenzuela C, Perera Y. CIGB-300: A peptide-based drug that impairs the Protein Kinase CK2-mediated phosphorylation. Semin Oncol 2018; 45:58-67. [PMID: 30318085 DOI: 10.1053/j.seminoncol.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023]
Abstract
Protein kinase CK2, formerly referred to as casein kinase II, is a serine/threonine kinase often found overexpressed in solid tumors and hematologic malignancies that phosphorylates many substrates integral to the hallmarks of cancer. CK2 has emerged as a viable oncology target having been experimentally validated with different kinase inhibitors, including small molecule ATP-competitors, synthetic peptides, and antisense oligonucleotides. To date only two CK2 inhibitors, CIGB-300 and CX-4945, have entered the clinic in phase 1-2 trials. This review provides information on CIGB-300, a cell-permeable cyclic peptide that inhibits CK2-mediated phosphorylation by targeting the substrate phosphoacceptor domain. We review data that support the concept of CK2 as an anticancer target, address the mechanism of action, and summarize preclinical studies showing antiangiogenic and antimetastatic effects as well as synergism with anticancer drugs in preclinical models. We also summarize early clinical research (phase 1/2 trials) of CIGB-300 in cervical cancer, including data in combination with chemoradiotherapy. The clinical data demonstrate the safety, tolerability, and clinical effects of intratumoral injections of CIGB-300 and provide the foundation for future phase 3 clinical trials in locally advanced cervical cancer in combination with standard chemoradiotherapy.
Collapse
Affiliation(s)
- Silvio E Perea
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Idania Baladrón
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Carmen Valenzuela
- Clinical Research Division, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera
- Molecular Oncology Laboratory, Biomedical Research Area, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
31
|
Kumar S, Cieplak P. Effect of phosphorylation and single nucleotide polymorphisms on caspase substrates processing. Apoptosis 2018; 23:194-200. [DOI: 10.1007/s10495-018-1442-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Rabalski AJ, Gyenis L, Litchfield DW. Molecular Pathways: Emergence of Protein Kinase CK2 (CSNK2) as a Potential Target to Inhibit Survival and DNA Damage Response and Repair Pathways in Cancer Cells. Clin Cancer Res 2018; 22:2840-7. [PMID: 27306791 DOI: 10.1158/1078-0432.ccr-15-1314] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
Protein kinase CK2 (designated CSNK2) is a constitutively active protein kinase with a vast repertoire of putative substrates that has been implicated in several human cancers, including cancer of the breast, lung, colon, and prostate, as well as hematologic malignancies. On the basis of these observations, CSNK2 has emerged as a candidate for targeted therapy, with two CSNK2 inhibitors in ongoing clinical trials. CX-4945 is a bioavailable small-molecule ATP-competitive inhibitor targeting its active site, and CIGB-300 is a cell-permeable cyclic peptide that prevents phosphorylation of the E7 protein of HPV16 by CSNK2. In preclinical models, either of these inhibitors exhibit antitumor efficacy. Furthermore, in combinations with chemotherapeutics such as cisplatin or gemcitabine, either CX-4945 or CIGB-300 promote synergistic induction of apoptosis. While CSNK2 is a regulatory participant in many processes related to cancer, its potential to modulate caspase action may be particularly pertinent to its emergence as a therapeutic target. Because the substrate recognition motifs for CSNK2 and caspases are remarkably similar, CSNK2 can block the cleavage of many caspase substrates through the phosphorylation of sites adjacent to cleavage sites. Phosphoproteomic strategies have also revealed previously underappreciated roles for CSNK2 in the phosphorylation of several key constituents of DNA damage and DNA repair pathways. Going forward, applications of proteomic strategies to interrogate responses to CSNK2 inhibitors are expected to reveal signatures for CSNK2 inhibition and molecular insights to guide new strategies to interfere with its potential to inhibit caspase action or enhance the susceptibility of cancer cells to DNA damage. Clin Cancer Res; 22(12); 2840-7. ©2016 AACR.
Collapse
Affiliation(s)
- Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada. Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
33
|
Naserzadeh P, Ghanbary F, Ashtari P, Seydi E, Ashtari K, Akbari M. Biocompatibility assessment of titanium dioxide nanoparticles in mice fetoplacental unit. J Biomed Mater Res A 2017; 106:580-589. [PMID: 28884517 DOI: 10.1002/jbm.a.36221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
Abstract
As the applications of titanium dioxide nanomaterials (nTiO2 ) are growing with an ever-increasing speed, the hazardous risks of this material have become a major concern. Several recent studies have reported that nTiO2 can cross the placental barrier in pregnant mice and cause neurotoxicity in their offspring. However, the influence of these nanoparticles on the fetoplacental unit during the pregnancy is yet to be studied. The present study reports on the effects of nTiO2 on the anatomical structure of fetal brain and liver in a pregnant mice model. Moreover, changes in the size and weight of the fetus and placenta are investigated as markers of fetal growth. Lastly, the toxicity of nTiO2 in primary brain and liver is quantified. Animals treated with nTiO2 showed a disrupted anatomical structure of the fetal brain and liver. Furthermore, the fetus and placental unit in the mice treated with these nanoparticles were smaller compared to untreated controls. Toxicity analyses revealed that nTiO2 was toxic to the brain and liver cells and the mechanism of cell death was mostly necrosis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 580-589, 2018.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran.,Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghanbary
- Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran
| | - Parviz Ashtari
- Radiation Application Research School, NSTRI, Tehran, Iran
| | - Enayatollah Seydi
- Research Center for Health, Safety and Environment (RCHSE), Department of Occupational Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada, V8P 5C2.,Center for Biomedical Research, University of Victoria, Victoria, Canada, V8P 5C2.,Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, Canada, V8P 5C2
| |
Collapse
|
34
|
Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T. Caught in the act - protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. J Cell Sci 2017; 130:1865-1876. [PMID: 28476937 PMCID: PMC5482974 DOI: 10.1242/jcs.199463] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vertebrate proteins that fulfill multiple and seemingly disparate functions are increasingly recognized as vital solutions to maintaining homeostasis in the face of the complex cell and tissue physiology of higher metazoans. However, the molecular adaptations that underpin this increased functionality remain elusive. In this Commentary, we review the PACS proteins - which first appeared in lower metazoans as protein traffic modulators and evolved in vertebrates to integrate cytoplasmic protein traffic and interorganellar communication with nuclear gene expression - as examples of protein adaptation 'caught in the act'. Vertebrate PACS-1 and PACS-2 increased their functional density and roles as metabolic switches by acquiring phosphorylation sites and nuclear trafficking signals within disordered regions of the proteins. These findings illustrate one mechanism by which vertebrates accommodate their complex cell physiology with a limited set of proteins. We will also highlight how pathogenic viruses exploit the PACS sorting pathways as well as recent studies on PACS genes with mutations or altered expression that result in diverse diseases. These discoveries suggest that investigation of the evolving PACS protein family provides a rich opportunity for insight into vertebrate cell and organ homeostasis.
Collapse
Affiliation(s)
- Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15239, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15239, USA
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15239, USA
| | - Pushkar Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G2H7
| |
Collapse
|
35
|
Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res 2017; 57:1-25. [PMID: 28064040 DOI: 10.1016/j.preteyeres.2017.01.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
36
|
Klein S, Meng R, Montenarh M, Götz C. The Phosphorylation of PDX-1 by Protein Kinase CK2 Is Crucial for Its Stability. Pharmaceuticals (Basel) 2016; 10:ph10010002. [PMID: 28036027 PMCID: PMC5374406 DOI: 10.3390/ph10010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The homeodomain protein PDX-1 is a critical regulator of pancreatic development and insulin production in pancreatic β-cells. We have recently shown that PDX-1 is a substrate of protein kinase CK2; a multifunctional protein kinase which is implicated in the regulation of various cellular aspects, such as differentiation, proliferation, and survival. The CK2 phosphorylation site of PDX-1 is located within the binding region of the E3 ubiquitin ligase adaptor protein PCIF1. To study the interaction between PDX-1 and PCIF1 we used immunofluorescence analysis, co-immunoprecipitation, GST-pull-down studies, and proximity ligation assay (PLA). For the analysis of the stability of PDX-1 we performed a cycloheximide chase. We used PDX-1 in its wild-type form as well as phosphomutants of the CK2 phosphorylation site. In pancreatic β-cells PDX-1 binds to PCIF1. The phosphorylation of PDX-1 by CK2 increases the ratio of PCIF1 bound to PDX-1. The stability of PDX-1 is extended in the absence of CK2 phosphorylation. Our results identified protein kinase CK2 as new important modulator of the stability of PDX-1.
Collapse
Affiliation(s)
- Sabrina Klein
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
| | - Rui Meng
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 156 Wujiadun, Hankou, Wuhan 430045, China.
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66424 Homburg, Germany.
| |
Collapse
|
37
|
Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure 2016; 25:16-26. [PMID: 27889209 PMCID: PMC5222587 DOI: 10.1016/j.str.2016.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38α (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38α has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38α inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38α. Toxoplasmosis controls its host immune response via a protein effector, GRA24 A recombinant complex of GRA24 and MAPK p38α demonstrates how the protein works An adapted KIM domain ensures activation and a sustained inflammatory response The recombinant complex is useful in the evaluation of p38 inhibitors
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrés Palencia
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Laurence Braun
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Bougdour
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France.
| |
Collapse
|
38
|
Berger S, Procko E, Margineantu D, Lee EF, Shen BW, Zelter A, Silva DA, Chawla K, Herold MJ, Garnier JM, Johnson R, MacCoss MJ, Lessene G, Davis TN, Stayton PS, Stoddard BL, Fairlie WD, Hockenbery DM, Baker D. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife 2016; 5. [PMID: 27805565 PMCID: PMC5127641 DOI: 10.7554/elife.20352] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.
Collapse
Affiliation(s)
- Stephanie Berger
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Erik Procko
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Biochemistry, University of Illinois, Urbana, United States
| | - Daciana Margineantu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Erinna F Lee
- Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia.,Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Betty W Shen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States
| | - Kusum Chawla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jean-Marc Garnier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Barry L Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - W Douglas Fairlie
- Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia.,Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David M Hockenbery
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
39
|
Abstract
Apoptotic cell death is widely considered a positive process that both prevents and treats cancer. Although undoubtedly having a beneficial role, paradoxically, apoptosis can also cause unwanted effects that may even promote cancer. In this Opinion article we highlight some of the ways by which apoptosis can exert oncogenic functions. We argue that fully understanding this dark side will be required to optimally engage apoptosis, thereby maximizing tumour cell kill while minimizing unwanted pro-tumorigenic effects.
Collapse
Affiliation(s)
- Gabriel Ichim
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
40
|
Cullen JK, Abdul Murad N, Yeo A, McKenzie M, Ward M, Chong KL, Schieber NL, Parton RG, Lim YC, Wolvetang E, Maghzal GJ, Stocker R, Lavin MF. AarF Domain Containing Kinase 3 (ADCK3) Mutant Cells Display Signs of Oxidative Stress, Defects in Mitochondrial Homeostasis and Lysosomal Accumulation. PLoS One 2016; 11:e0148213. [PMID: 26866375 PMCID: PMC4751082 DOI: 10.1371/journal.pone.0148213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Autosomal recessive ataxias are a clinically diverse group of syndromes that in some cases are caused by mutations in genes with roles in the DNA damage response, transcriptional regulation or mitochondrial function. One of these ataxias, known as Autosomal Recessive Cerebellar Ataxia Type-2 (ARCA-2, also known as SCAR9/COQ10D4; OMIM: #612016), arises due to mutations in the ADCK3 gene. The product of this gene (ADCK3) is an atypical kinase that is thought to play a regulatory role in coenzyme Q10 (CoQ10) biosynthesis. Although much work has been performed on the S. cerevisiae orthologue of ADCK3, the cellular and biochemical role of its mammalian counterpart, and why mutations in this gene lead to human disease is poorly understood. Here, we demonstrate that ADCK3 localises to mitochondrial cristae and is targeted to this organelle via the presence of an N-terminal localisation signal. Consistent with a role in CoQ10 biosynthesis, ADCK3 deficiency decreased cellular CoQ10 content. In addition, endogenous ADCK3 was found to associate in vitro with recombinant Coq3, Coq5, Coq7 and Coq9, components of the CoQ10 biosynthetic machinery. Furthermore, cell lines derived from ARCA-2 patients display signs of oxidative stress, defects in mitochondrial homeostasis and increases in lysosomal content. Together, these data shed light on the possible molecular role of ADCK3 and provide insight into the cellular pathways affected in ARCA-2 patients.
Collapse
Affiliation(s)
- Jason K. Cullen
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- * E-mail: (JKC); (MFL)
| | - Norazian Abdul Murad
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- UKM Medical Molecular Biology Institute, Kuala Lumpur, Malaysia
| | - Abrey Yeo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Matthew McKenzie
- Hudson Institute of Medical Research, Centre for Genetic Diseases, Melbourne, VIC, Australia
| | - Micheal Ward
- Mater Medical Research Institute, Glycation and Diabetic Complications Group, Translational Research Institute, Brisbane, QLD, Australia
| | - Kok Leong Chong
- Queensland University of Technology, ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Brisbane, QLD, Australia
| | - Nicole L. Schieber
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St. Lucia, QLD, Australia
| | - Robert G. Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, St. Lucia, QLD, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ernst Wolvetang
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, Australia
| | - Ghassan J. Maghzal
- Victor Chang Cardiac Research Institute, Vascular Biology Division, Darlinghurst, Australia
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Vascular Biology Division, Darlinghurst, Australia
| | - Martin F. Lavin
- The University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
- * E-mail: (JKC); (MFL)
| |
Collapse
|
41
|
Arbulo-Echevarria MM, Muñoz-Miranda JP, Caballero-García A, Poveda-Díaz JL, Fernández-Ponce C, Durán-Ruiz MC, Miazek A, García-Cózar F, Aguado E. Non-T cell activation linker (NTAL) proteolytic cleavage as a terminator of activatory intracellular signals. J Leukoc Biol 2016; 100:351-60. [PMID: 26830332 DOI: 10.1189/jlb.2a0715-318r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022] Open
Abstract
Non-T cell activation linker is an adaptor protein that is tyrosine phosphorylated upon cross-linking of immune receptors expressed on B lymphocytes, NK cells, macrophages, basophils, or mast cells, allowing the recruitment of cytosolic mediators for downstream signaling pathways. Fas receptor acts mainly as a death receptor, and when cross-linked with Fas ligand, many proteins are proteolytically cleaved, including several signaling molecules in T and B cells. Fas receptor triggering also interferes with TCR intracellular signals, probably by means of proteolytic cleavage of several adaptor proteins. We have previously found that the adaptor linker for activation of T cells, evolutionarily related to non-T cell activation linker, is cleaved upon proapoptotic stimuli in T lymphocytes and thymocytes, in a tyrosine phosphorylation-dependent fashion. Here, we describe non-T cell activation linker proteolytic cleavage triggered in human B cells and monocytes by Fas cross-linking and staurosporine treatment. Non-T cell activation linker is cleaved, producing an N-terminal fragment of ∼22 kDa, and such cleavage is abrogated in the presence of caspase 8/granzyme B and caspase 3 inhibitors. Moreover, we have identified an aspartic acid residue at which non-T cell activation linker is cleaved, which similar to linker for activation of T cells, this aspartic acid residue is located close to tyrosine and serine residues, suggesting an interdependence of phosphorylation and proteolytic cleavage. Consistently, induction of non-T cell activation linker phosphorylation by pervanadate inhibits its cleavage. Interestingly, the truncated isoform of non-T cell activation linker, generated after cleavage, has a decreased signaling ability when compared with the full-length molecule. Altogether, our results suggest that cleavage of transmembrane adaptors constitutes a general mechanism for signal termination of immune receptors.
Collapse
Affiliation(s)
- Mikel M Arbulo-Echevarria
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Juan Pedro Muñoz-Miranda
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Andrés Caballero-García
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - José L Poveda-Díaz
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Cecilia Fernández-Ponce
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - M Carmen Durán-Ruiz
- Department of Biomedicine, Biotechnology and Public Health (Biochemistry), University of Cádiz, Cádiz, Spain
| | - Arkadiusz Miazek
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Francisco García-Cózar
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain
| | - Enrique Aguado
- Core Research Facility for Health Sciences, University of Cádiz and Puerto Real University Hospital Research Unit, Department of Biomedicine, Biotechnology and Public Health (Immunology), Cádiz, Spain,
| |
Collapse
|
42
|
Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 2015; 6:461-471. [PMID: 26418626 PMCID: PMC4588415 DOI: 10.1016/j.redox.2015.08.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
To investigate the effects ofellagic acid (EA) on the cytotoxicity, B-lymphocytes isolated from CLL patients and healthy individuals. Flow cytometric assay was used to measure the percentage of apoptosis versus necrosis, intracellular active oxygen radicals (ROS), mitochondrial membrane potential (MMP) and the caspase-3 activity and then mitochondria were isolated from both groups B-lymphocytes and parameters of mitochondrial toxicity was investigated. Based on our results EA decreased the percentage of viable cells and induced apoptosis. EA increased ROS formation, mitochondria swelling, MMP decrease and cytochrome c release in mitochondria isolated from CLL BUT NOT healthy B-lymphocytes while pre-treatment with cyclosporine A and Butylated hydroxyl toluene (BHT) prevented these effects. Our results suggest that EA can act as an anti cancer candidate by directly and selectively targeting mitochondria could induce apoptosis through mitochondria pathway with increasing ROS production which finally ends in cytochrome c release, caspase 3 activation and apoptosis in cancerous B-lymphocytes isolated from CLL patients.
Collapse
Affiliation(s)
- Ahmad Salimi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Sadeghi
- Shohadaye Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Enayatollah Seydi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Pirahmadi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Shiraz University, Shiraz, Iran
| | - Jalal Pourahmad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Yue J, Ben Messaoud N, López JM. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem 2015; 290:30375-89. [PMID: 26511318 DOI: 10.1074/jbc.m115.660506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Jicheng Yue
- From the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Nabil Ben Messaoud
- From the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M López
- From the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
44
|
Modulatory role of the anti-apoptotic protein kinase CK2 in the sub-cellular localization of Fas associated death domain protein (FADD). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2885-96. [PMID: 26253696 DOI: 10.1016/j.bbamcr.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/28/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022]
Abstract
The Fas associated death domain protein (FADD) is the key adaptor molecule of the apoptotic signal triggered by death receptors of the TNF-R1 superfamily. Besides its crucial role in the apoptotic machinery, FADD has proved to be important in many biological processes like tumorigenesis, embryonic development or cell cycle progression. In a process to decipher the regulatory mechanisms underlying FADD regulation, we identified the anti-apoptotic kinase, CK2, as a new partner and regulator of FADD sub-cellular localization. The blockade of CK2 activity induced FADD re-localization within the cell. Moreover, cytoplasmic FADD was increased when CK2β was knocked down. In vitro kinase and pull down assays confirmed that FADD could be phosphorylated by the CK2 holoenzyme. We found that phosphorylation is weak with CK2α alone and optimal in the presence of stoichiometric amounts of CK2α catalytic and CK2β regulatory subunit, showing that FADD phosphorylation is undertaken by the CK2 holoenzyme in a CK2β-driven fashion. We found that CK2 can phosphorylate FADD on the serine 200 and that this phosphorylation is important for nuclear localization of FADD. Altogether, our results show for the first time that multifaceted kinase, CK2, phosphorylates FADD and is involved in its sub-cellular localization. This work uncovered an important role of CK2 in stable FADD nuclear localization.
Collapse
|
45
|
Penas C, Govek EE, Fang Y, Ramachandran V, Daniel M, Wang W, Maloof ME, Rahaim RJ, Bibian M, Kawauchi D, Finkelstein D, Han JL, Long J, Li B, Robbins DJ, Malumbres M, Roussel MF, Roush WR, Hatten ME, Ayad NG. Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis. Cell Rep 2015; 11:249-60. [PMID: 25843713 DOI: 10.1016/j.celrep.2015.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/23/2014] [Accepted: 03/05/2015] [Indexed: 02/07/2023] Open
Abstract
Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.
Collapse
Affiliation(s)
- Clara Penas
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Yin Fang
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Vimal Ramachandran
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Mark Daniel
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Weiping Wang
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marie E Maloof
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Ronald J Rahaim
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Mathieu Bibian
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Daisuke Kawauchi
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeng-Liang Han
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Jun Long
- Departments of Surgery and Biochemistry and Molecular Biology, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bin Li
- Departments of Surgery and Biochemistry and Molecular Biology, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David J Robbins
- Departments of Surgery and Biochemistry and Molecular Biology, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William R Roush
- Department of Chemistry, Scripps Florida, Jupiter, FL 33458, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Nagi G Ayad
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
46
|
Yanagi T, Shi R, Aza-Blanc P, Reed JC, Matsuzawa SI. PCTAIRE1-knockdown sensitizes cancer cells to TNF family cytokines. PLoS One 2015; 10:e0119404. [PMID: 25790448 PMCID: PMC4366397 DOI: 10.1371/journal.pone.0119404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022] Open
Abstract
While PCTAIRE1/PCTK1/Cdk16 is overexpressed in malignant cells and is crucial in tumorigenesis, its function in apoptosis remains unclear. Here we investigated the role of PCTAIRE1 in apoptosis, especially in the extrinsic cell death pathway. Gene-knockdown of PCTAIRE1 sensitized prostate cancer PPC1 and Du145 cells, and breast cancer MDA-MB-468 cells to TNF-family cytokines, including TNF-related apoptosis-inducing ligand (TRAIL). Meanwhile, PCTAIRE1-knockdown did not sensitize non-malignant cells, including diploid fibroblasts IMR-90 and the immortalized prostate epithelial cell line 267B1. PCTAIRE1-knockdown did not up-regulate death receptor expression on the cell surface or affect caspase-8, FADD and FLIP expression levels. PCTAIRE1-knockdown did promote caspase-8 cleavage and RIPK1 degradation, while RIPK1 mRNA knockdown sensitized PPC1 cells to TNF-family cytokines. Furthermore, the kinase inhibitor SNS-032, which inhibits PCTAIRE1 kinase activity, sensitized PPC1 cells to TRAIL-induced apoptosis. Together these results suggest that PCTAIRE1 contributes to the resistance of cancer cell lines to apoptosis induced by TNF-family cytokines, which implies that PCTAIRE1 inhibitors could have synergistic effects with TNF-family cytokines for cytodestruction of cancer cells.
Collapse
Affiliation(s)
- Teruki Yanagi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - Ranxin Shi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - Pedro Aza-Blanc
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
| | - John C. Reed
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
- * E-mail: (JR); (SM)
| | - Shu-ichi Matsuzawa
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, United States of America
- * E-mail: (JR); (SM)
| |
Collapse
|
47
|
Orzechowska EJ, Girstun A, Staron K, Trzcinska-Danielewicz J. Synergy of BID with doxorubicin in the killing of cancer cells. Oncol Rep 2015; 33:2143-50. [PMID: 25760094 PMCID: PMC4391587 DOI: 10.3892/or.2015.3841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
Overexpression of the BH3-interacting domain death agonist (BID) protein sensitizes certain cancer cell lines to apoptosis induced by anticancer agents, particularly by those acting through death receptors (e.g. TRAIL). Previously, we showed that recombinant BID fused with TAT cell penetrating peptide (TAT-BID) allowed for controlled delivery of BID to different cancer cell lines and moderately sensitized some of them to TRAIL or slightly to camptothecin. In the present study, we showed that TAT-BID delivered to HeLa cells strongly sensitized them to doxorubicin, as identified by cell viability and apoptosis assays. Another cell line sensitized to doxorubicin was PC3, whereas A549 and LNCaP cells were sensitized moderately or not at all, respectively. Sensitization was more pronounced at 1 μM doxorubicin administered for 48 h than for lower doses and shorter treatments. TAT-BID and doxorubicin may thus be considered as a potential therapeutic combination for cervical carcinoma and advanced prostate cancer treatment.
Collapse
Affiliation(s)
- Emilia Joanna Orzechowska
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Krzysztof Staron
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Joanna Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
48
|
Jiang D, Dumur CI, Massey HD, Ramakrishnan V, Subler MA, Windle JJ. Comparison of effects of p53 null and gain-of-function mutations on salivary tumors in MMTV-Hras transgenic mice. PLoS One 2015; 10:e0118029. [PMID: 25695772 PMCID: PMC4335025 DOI: 10.1371/journal.pone.0118029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/04/2015] [Indexed: 12/19/2022] Open
Abstract
p53 is an important tumor suppressor gene which is mutated in ~50% of all human cancers. Some of these mutants appear to have acquired novel functions beyond merely losing wild-type functions. To investigate these gain-of-function effects in vivo, we generated mice of three different genotypes: MMTV-Hras/p53(+/+), MMTV-Hras/p53(-/-), and MMTV-Hras/p53R172H/R172H. Salivary tumors from these mice were characterized with regard to age of tumor onset, tumor growth rates, cell cycle distribution, apoptotic levels, tumor histopathology, as well as response to doxorubicin treatment. Microarray analysis was also performed to profile gene expression. The MMTV-Hras/p53(-/-) and MMTV-Hras/p53R172H/R172H mice displayed similar properties with regard to age of tumor onset, tumor growth rates, tumor histopathology, and response to doxorubicin, while both groups were clearly distinct from the MMTV-Hras/p53(+/+) mice by these measurements. In addition, the gene expression profiles of the MMTV-Hras/p53(-/-) and MMTV-Hras/p53(R172H/R172H) tumors were tightly clustered, and clearly distinct from the profiles of the MMTV-Hras/p53(+/+) tumors. Only a small group of genes showing differential expression between the MMTV-Hras/p53(-/-) and MMTV-Hras/p53(R172H/R172H) tumors, that did not appear to be regulated by wild-type p53, were identified. Taken together, these results indicate that in this MMTV-Hras-driven salivary tumor model, the major effect of the p53 R172H mutant is due to the loss of wild-type p53 function, with little or no gain-of-function effect on tumorigenesis, which may be explained by the tissue- and tumor type-specific properties of this gain-of-function mutant of p53.
Collapse
Affiliation(s)
- Dadi Jiang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Catherine I. Dumur
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - H. Davis Massey
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) ORF57 protein (also known as mRNA transcript accumulation (Mta)) is a potent posttranscriptional regulator essential for the efficient expression of KSHV lytic genes and productive KSHV replication. ORF57 possesses numerous activities that promote the expression of viral genes, including the three major functions of enhancement of RNA stability, promotion of RNA splicing, and stimulation of protein translation. The multifunctional nature of ORF57 is driven by its ability to interact with an array of cellular cofactors. These interactions are required for the formation of ORF57-containing ribonucleoprotein complexes at specific binding sites in the target transcripts, referred as Mta-responsive elements (MREs). Understanding of the ORF57 protein conformation has led to the identification of two structurally-distinct domains within the ORF57 polypeptide: an unstructured intrinsically disordered N-terminal domain and a structured α-helix-rich C-terminal domain. The distinct structures of the domains serve as the foundation for their unique binding affinities: the N-terminal domain mediates ORF57 interactions with cellular cofactors and target RNAs, and the C-terminal domain mediates ORF57 homodimerization. In addition, each domain has been found to contribute to the stability of ORF57 protein in infected cells by counteracting caspase- and proteasome-mediated degradation pathways. Together, these new findings provide insight into the function and biological properties of ORF57 in the KSHV life cycle and pathogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, USA.
| |
Collapse
|
50
|
Stability of structured Kaposi's sarcoma-associated herpesvirus ORF57 protein is regulated by protein phosphorylation and homodimerization. J Virol 2015; 89:3256-74. [PMID: 25568207 DOI: 10.1128/jvi.03721-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 plays an essential role in KSHV lytic infection by promoting viral gene expression at the posttranscriptional level. Using bioinformatic and biochemical approaches, we determined that ORF57 contains two structurally and functionally distinct domains: a disordered nonstructural N-terminal domain (amino acids [aa] 1 to 152) and a structured α-helix-rich C-terminal domain (aa 153 to 455). The N-terminal domain mediates ORF57 interaction with several RNA-protein complexes essential for ORF57 to function. The N-terminal phosphorylation by cellular casein kinase II (CKII) at S21, T32, and S43, and other cellular kinases at S95 and S97 residues in proximity of the caspase-7 cleavage site, 30-DETD-33, inhibits caspase-7 digestion of ORF57. The structured C-terminal domain mediates homodimerization of ORF57, and the critical region for this function was mapped carefully to α-helices 7 to 9. Introduction of point mutations into α-helix 7 at ORF57 aa 280 to 299, a region highly conserved among ORF57 homologues from other herpesviruses, inhibited ORF57 homodimerization and led to proteasome-mediated degradation of ORF57 protein. Thus, homodimerization of ORF57 via its C terminus prevents ORF57 from degrading and allows two structure-free N termini of the dimerized ORF57 to work coordinately for host factor interactions, leading to productive KSHV lytic infection and pathogenesis. IMPORTANCE KSHV is a human oncogenic virus linked to the development of several malignancies. KSHV-mediated oncogenesis requires both latent and lytic infection. The KSHV ORF57 protein is essential for KSHV lytic replication, as it regulates the expression of viral lytic genes at the posttranscriptional level. This report provides evidence that the structural conformation of the ORF57 protein plays a critical role in regulation of ORF57 stability. Phosphorylation by CKII on the identified serine/threonine residues at the N-terminal unstructured domain of ORF57 prevents its digestion by caspase-7. The C-terminal domain of ORF57, which is rich in α-helices, contributes to homodimerization of ORF57 to prevent proteasome-mediated protein degradation. Elucidation of the ORF57 structure not only enables us to better understand ORF57 stability and functions but also provides an important tool for us to modulate ORF57's activity with the aim to inhibit KSHV lytic replication.
Collapse
|