1
|
An empirical analysis of mtSSRs: could microsatellite distribution patterns explain the evolution of mitogenomes in plants? Funct Integr Genomics 2021; 22:35-53. [PMID: 34751851 DOI: 10.1007/s10142-021-00815-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
Abstract
Microsatellites (SSRs) are tandem repeat sequences in eukaryote genomes, including plant cytoplasmic genomes. The mitochondrial genome (mtDNA) has been shown to vary in size, number, and distribution of SSRs among different plant groups. Thus, SSRs contribute with genomic diversity in mtDNAs. However, the abundance, distribution, and evolutionary significance of SSRs in mtDNA from a wide range of algae and plants have not been explored. In this study, the mtDNAs of 204 plant and algal species were investigated related to the presence of SSRs. The number of SSRs was positively correlated with genome size. Its distribution is dependent on plant and algal groups analyzed, although the cluster analysis indicates the conservation of some common motifs in algal and terrestrial plants that reflect common ancestry of groups. Many SSRs in coding and non-coding regions can be useful for molecular markers. Moreover, mitochondrial SSRs are highly abundant, representing an important source for natural or induced genetic variation, i.e., for biotechnological approaches that can modulate mtDNA gene regulation. Thus, this comparative study increases the understanding of the plant and algal SSR evolution and brings perspectives for further studies.
Collapse
|
2
|
Krajka A, Panasiuk I, Misiura A, Wójcik GM. On the mutation model used in the fingerprinting DNA. BIO-ALGORITHMS AND MED-SYSTEMS 2020. [DOI: 10.1515/bams-2020-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractObjectivesThe most common technique of determining biological paternity or another relationship among people are the investigations of DNA polymorphism called Fingerprinting DNA. The key concept of these investigations is the statistical analysis, which leads to obtain the likelihood ratio (LR), sometimes called the paternity index.MethodsAmong the different assumptions stated in these computations is a mutation model (this model is used for all the computations).Results and conclusionsAlthough its influence on LR is usually negligible, there are some situations (when the mother–child mutation arises) when it is crucial.
Collapse
Affiliation(s)
- Andrzej Krajka
- Chair of Intelligent Systems , Maria Curie-Sklodowska University , Lublin , Poland
| | - Ireneusz Panasiuk
- Chair of Neuroinformatics and Biomedical Engineering , Maria Curie-Sklodowska University , Lublin , Poland
| | - Adam Misiura
- Chair of Neuroinformatics and Biomedical Engineering , Maria Curie-Sklodowska University , Lublin , Poland
| | - Grzegorz M. Wójcik
- Chair of Neuroinformatics and Biomedical Engineering , Maria Curie-Sklodowska University , Lublin , Poland
| |
Collapse
|
3
|
Negishi T, Yamada K, Miyamoto K, Mori E, Taira K, Fujii A, Goto Y, Arimoto-Kobayashi S, Okamoto K. Mismatch repair systems might facilitate the chromosomal recombination induced by N-nitrosodimethylamine, but not by N-nitrosodiethylamine, in Drosophila. Mutagenesis 2020; 35:197-206. [PMID: 32109288 DOI: 10.1093/mutage/geaa008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/03/2020] [Indexed: 11/14/2022] Open
Abstract
Mismatch repair (MMR) systems play important roles in maintaining the high fidelity of genomic DNA. It is well documented that a lack of MMR increases the mutation rate, including base exchanges and small insertion/deletion loops; however, it is unknown whether MMR deficiency affects the frequency of chromosomal recombination in somatic cells. To investigate the effects of MMR on chromosomal recombination, we used the Drosophila wing-spot test, which efficiently detects chromosomal recombination. We prepared MMR (MutS)-deficient flies (spel1(-/-)) using a fly line generated in this study. The spontaneous mutation rate as measured by the wing-spot test was slightly higher in MutS-deficient flies than in wild-type (spel1(+/-)) flies. Previously, we showed that N-nitrosodimethylamine (NDMA)-induced chromosomal recombination more frequently than N-nitrosodiethylamine (NDEA) in Drosophila. When the wing-spot test was performed using MMR-deficient flies, unexpectedly, the rate of NDMA-induced mutation was significantly lower in spel1(-/-) flies than in spel1(+/-) flies. In contrast, the rate of mutation induced by NDEA was higher in spel1(-/-) flies than in spel1(+/-) flies. These results suggest that in Drosophila, the MutS homologue protein recognises methylated DNA lesions more efficiently than ethylated ones, and that MMR might facilitate mutational chromosomal recombination due to DNA double-strand breaks via the futile cycle induced by MutS recognition of methylated lesions.
Collapse
Affiliation(s)
- Tomoe Negishi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan.,Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Ina, Kita-Adachi-gun, Saitama, Japan
| | - Kenji Yamada
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Keiko Miyamoto
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Emiko Mori
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Kentaro Taira
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Asei Fujii
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Yuki Goto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Sakae Arimoto-Kobayashi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| | - Keinosuke Okamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima-naka, Kita-ku, Okayama, Japan
| |
Collapse
|
4
|
Qi WH, Jiang XM, Yan CC, Zhang WQ, Xiao GS, Yue BS, Zhou CQ. Distribution patterns and variation analysis of simple sequence repeats in different genomic regions of bovid genomes. Sci Rep 2018; 8:14407. [PMID: 30258087 PMCID: PMC6158176 DOI: 10.1038/s41598-018-32286-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023] Open
Abstract
As the first examination of distribution, guanine-cytosine (GC) pattern, and variation analysis of microsatellites (SSRs) in different genomic regions of six bovid species, SSRs displayed nonrandomly distribution in different regions. SSR abundances are much higher in the introns, transposable elements (TEs), and intergenic regions compared to the 3′-untranslated regions (3′UTRs), 5′UTRs and coding regions. Trinucleotide perfect SSRs (P-SSRs) were the most frequent in the coding regions, whereas, mononucleotide P-SSRs were the most in the introns, 3′UTRs, TEs, and intergenic regions. Trifold P-SSRs had more GC-contents in the 5′UTRs and coding regions than that in the introns, 3′UTRs, TEs, and intergenic regions, whereas mononucleotide P-SSRs had the least GC-contents in all genomic regions. The repeat copy numbers (RCN) of the same mono- to hexanucleotide P-SSRs showed significantly different distributions in different regions (P < 0.01). Except for the coding regions, mononucleotide P-SSRs had the most RCNs, followed by the pattern: di- > tri- > tetra- > penta- > hexanucleotide P-SSRs in the same regions. The analysis of coefficient of variability (CV) of SSRs showed that the CV variations of RCN of the same mono- to hexanucleotide SSRs were relative higher in the intronic and intergenic regions, followed by the CV variation of RCN in the TEs, and the relative lower was in the 5′UTRs, 3′UTRs, and coding regions. Wide SSR analysis of different genomic regions has helped to reveal biological significances of their distributions.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, P. R. China
| | - Xue-Mei Jiang
- College of Environmental and Chemistry Engineering, Chongqing Three Gorges University, Chongqing, 404100, P. R. China
| | - Chao-Chao Yan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Wan-Qing Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, P. R. China
| | - Guo-Sheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, P. R. China
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Cai-Quan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, P. R. China.
| |
Collapse
|
5
|
Chapuis MP, Plantamp C, Streiff R, Blondin L, Piou C. Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. Mol Ecol 2015; 24:6107-19. [PMID: 26562076 DOI: 10.1111/mec.13465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023]
Abstract
Unravelling variation among taxonomic orders regarding the rate of evolution in microsatellites is crucial for evolutionary biology and population genetics research. The mean mutation rate of microsatellites tends to be lower in arthropods than in vertebrates, but data are scarce and mostly concern accumulation of mutations in model species. Based on parent-offspring segregations and a hierarchical Bayesian model, the mean rate of mutation in the orthopteran insect Schistocerca gregaria was estimated at 2.1e(-4) per generation per untranscribed dinucleotide locus. This is close to vertebrate estimates and one order of magnitude higher than estimates from species of other arthropod orders, such as Drosophila melanogaster and Daphnia pulex. We also found evidence of a directional bias towards expansions even for long alleles and exceptionally large ranges of allele sizes. Finally, at transcribed microsatellites, the mean rate of mutation was half the rate found at untranscribed loci and the mutational model deviated from that usually considered, with most mutations involving multistep changes that avoid disrupting the reading frame. Our direct estimates of mutation rate were discussed in the light of peculiar biological and genomic features of S. gregaria, including specificities in mismatch repair and the dependence of its activity to allele length. Shedding new light on the mutational dynamics of grasshopper microsatellites is of critical importance for a number of research fields. As an illustration, we showed how our findings improve microsatellite application in population genetics, by obtaining a more precise estimation of S. gregaria effective population size from a published data set based on the same microsatellites.
Collapse
Affiliation(s)
- M-P Chapuis
- CIRAD, UMR CBGP, Montpellier, F-34398, France
| | - C Plantamp
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Villeurbanne, 69622, France
| | - R Streiff
- INRA, UMR CBGP, Montpellier, F-34398, France.,INRA, UMR DGIMI, Montpellier, F-34000, France
| | - L Blondin
- CIRAD, UPR B-AMR, Montpellier, F-34398, France
| | - C Piou
- CIRAD, UMR CBGP, Montpellier, F-34398, France
| |
Collapse
|
6
|
Qin Z, Wang Y, Wang Q, Li A, Hou F, Zhang L. Evolution Analysis of Simple Sequence Repeats in Plant Genome. PLoS One 2015; 10:e0144108. [PMID: 26630570 PMCID: PMC4668000 DOI: 10.1371/journal.pone.0144108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 11/13/2015] [Indexed: 01/30/2023] Open
Abstract
Simple sequence repeats (SSRs) are widespread units on genome sequences, and play many important roles in plants. In order to reveal the evolution of plant genomes, we investigated the evolutionary regularities of SSRs during the evolution of plant species and the plant kingdom by analysis of twelve sequenced plant genome sequences. First, in the twelve studied plant genomes, the main SSRs were those which contain repeats of 1–3 nucleotides combination. Second, in mononucleotide SSRs, the A/T percentage gradually increased along with the evolution of plants (except for P. patens). With the increase of SSRs repeat number the percentage of A/T in C. reinhardtii had no significant change, while the percentage of A/T in terrestrial plants species gradually declined. Third, in dinucleotide SSRs, the percentage of AT/TA increased along with the evolution of plant kingdom and the repeat number increased in terrestrial plants species. This trend was more obvious in dicotyledon than monocotyledon. The percentage of CG/GC showed the opposite pattern to the AT/TA. Forth, in trinucleotide SSRs, the percentages of combinations including two or three A/T were in a rising trend along with the evolution of plant kingdom; meanwhile with the increase of SSRs repeat number in plants species, different species chose different combinations as dominant SSRs. SSRs in C. reinhardtii, P. patens, Z. mays and A. thaliana showed their specific patterns related to evolutionary position or specific changes of genome sequences. The results showed that, SSRs not only had the general pattern in the evolution of plant kingdom, but also were associated with the evolution of the specific genome sequence. The study of the evolutionary regularities of SSRs provided new insights for the analysis of the plant genome evolution.
Collapse
Affiliation(s)
- Zhen Qin
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qingmei Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aixian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fuyun Hou
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liming Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail:
| |
Collapse
|
7
|
Simpson MC, Wilken PM, Coetzee MPA, Wingfield MJ, Wingfield BD. Analysis of microsatellite markers in the genome of the plant pathogen Ceratocystis fimbriata. Fungal Biol 2013; 117:545-55. [PMID: 23931120 DOI: 10.1016/j.funbio.2013.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Ceratocystis fimbriata sensu lato represents a complex of cryptic and commonly plant pathogenic species that are morphologically similar. Species in this complex have been described using morphological characteristics, intersterility tests and phylogenetics. Microsatellite markers have been useful to study the population structure and origin of some species in the complex. In this study we sequenced the genome of C. fimbriata. This provided an opportunity to mine the genome for microsatellites, to develop new microsatellite markers, and map previously developed markers onto the genome. Over 6000 microsatellites were identified in the genome and their abundance and distribution was determined. Ceratocystis fimbriata has a medium level of microsatellite density and slightly smaller genome when compared with other fungi for which similar microsatellite analyses have been performed. This is the first report of a microsatellite analysis conducted on a genome sequence of a fungal species in the order Microascales. Forty-seven microsatellite markers have been published for population genetic studies, of which 35 could be mapped onto the C. fimbriata genome sequence. We developed an additional ten microsatellite markers within putative genes to differentiate between species in the C. fimbriata s.l. complex. These markers were used to distinguish between 12 species in the complex.
Collapse
Affiliation(s)
- Melissa C Simpson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| | | | | | | | | |
Collapse
|
8
|
Mahfooz S, Singh P, Maurya DK, Yadav MC, Tahoor A, Sahay H, Srivastava A, Prakash A. Microsatellite repeat dynamics in mitochondrial genomes of phytopathogenic fungi: frequency and distribution in the genic and intergenic regions. Bioinformation 2012; 8:1171-5. [PMID: 23275715 PMCID: PMC3530887 DOI: 10.6026/97320630081171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/23/2022] Open
Abstract
The frequency and distribution of microsatellites were analyzed in the 19 mitogenomes of phytopathogenic fungi covering five phyla. Our analysis revealed that in all the mitogenomes studied, the frequency and relative abundance varied, and it was neither influenced by genome size nor by GC content. SSRs were found to be differential distributed in genic and intergenic regions. An average of 5.14 (23.6%) SSRs were present in genic sequences and 21.7 (76.4%) SSRs were located in the intergenic sequences. Relative abundance of SSRs in mitogenomes was the highest in Aspergillus tubigensis, whereas, it was the least in Phaeosphaeria nodurum, the average being 0.45. Trinucleotide repeats were the most abundant motifs in the genic and intergenic regions of the mitogenomes of the phytopathogenic fungi. Among the genes, cox1 harbors the maximum SSRs, whereas cox3 and nad 7 contain the least. Based on the presence of SSRs in a particular gene, genetic relationships among individual organisms were also established.
Collapse
Affiliation(s)
- Sahil Mahfooz
- Department of Biotechnology and Bioinformatics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Pallavi Singh
- National Bureau of Agriculturally Important Microorganisms, Mau 275 101, Uttar Pradesh, India
| | - Deepak K Maurya
- National Bureau of Agriculturally Important Microorganisms, Mau 275 101, Uttar Pradesh, India
| | - Mahesh C Yadav
- National Research Centre on DNA Fingerprinting, National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110 012, India
| | - Azram Tahoor
- Department of Wildlife Science, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Harmesh Sahay
- National Bureau of Agriculturally Important Microorganisms, Mau 275 101, Uttar Pradesh, India
| | - Arpita Srivastava
- National Bureau of Agriculturally Important Microorganisms, Mau 275 101, Uttar Pradesh, India
| | - Anil Prakash
- Department of Biotechnology and Bioinformatics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| |
Collapse
|
9
|
Kumar P, Nagarajaram HA. A study on mutational dynamics of simple sequence repeats in relation to mismatch repair system in prokaryotic genomes. J Mol Evol 2012; 74:127-39. [PMID: 22415400 DOI: 10.1007/s00239-012-9491-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 02/15/2012] [Indexed: 11/30/2022]
Abstract
Mutational bias toward expansion or contraction of simple sequence repeats (SSRs) is referred to as directionality of SSR evolution. In this communication, we report the mutational bias exhibited by mononucleotide SSRs occurring in the non-coding regions of several prokaryotic genomes. Our investigations revealed that the strains or species lacking mismatch repair (MMR) system generally show higher number of polymorphic SSRs than those species/strains having MMR system. An exception to this observation was seen in the mycobacterial genomes that are MMR deficient where only a few SSR tracts were seen with mutations. This low incidence of SSR mutations even in the MMR-deficient background could be attributed to the high fidelity of the DNA polymerases as a consequence of high generation time of the mycobacteria. MMR system-deficient species generally did not show any bias toward mononucleotide SSR expansions or contractions indicating a neutral evolution of SSRs in these species. The MMR-proficient species in which the observed mutations correspond to secondary mutations showed bias toward contraction of polymononucleotide tracts, perhaps, indicating low efficiency of MMR system to repair SSR-induced slippage errors on template strands. This bias toward deletion in the mononucleotide SSR tracts might be a probable reason behind scarcity for long poly A|T and G|C tracts in prokaryotic systems which are mostly MMR proficient. In conclusion, our study clearly demonstrates mutational dynamics of SSRs in relation to the presence/absence of MMR system in the prokaryotic system.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, 4-1-714, Mozamjahi Rd, Nampally, Hyderabad, 500 001, India
| | | |
Collapse
|
10
|
Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 2011; 6:e21298. [PMID: 21713003 PMCID: PMC3119692 DOI: 10.1371/journal.pone.0021298] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/25/2011] [Indexed: 11/29/2022] Open
Abstract
Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database ‘BraMi’ (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot–dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related grass species, especially for the map based cloning of the candidate gene(s).
Collapse
|
11
|
Anmarkrud JA, Kleven O, Augustin J, Bentz KH, Blomqvist D, Fernie KJ, Magrath MJL, Pärn H, Quinn JS, Robertson RJ, Szép T, Tarof S, Wagner RH, Lifjeld JT. Factors affecting germline mutations in a hypervariable microsatellite: a comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat Res 2011; 708:37-43. [PMID: 21291898 DOI: 10.1016/j.mrfmmm.2011.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
Microsatellites mutate frequently by replication slippage. Empirical evidence shows that the probability of such slippage mutations may increase with the length of the repeat region as well as exposure to environmental mutagens, but the mutation rate can also differ between the male and female germline. It has been hypothesized that more intense sexual selection or sperm competition can also lead to elevated mutation rates, but the empirical evidence is inconclusive. Here, we analyzed the occurrence of germline slippage mutations in the hypervariable pentanucleotide microsatellite locus HrU10 across six species of swallow (Aves: Hirundinidae). These species exhibit marked differences in the length range of the microsatellite, as well as differences in the intensity of sperm competition. We found a strong effect of microsatellite length on the probability of mutation, but no residual effect of species or their level of sperm competition when the length effect was accounted for. Neither could we detect any difference in mutation rate between tree swallows (Tachycineta bicolor) breeding in Hamilton Harbour, Ontario, an industrial site with previous documentation of elevated mutation rates for minisatellite DNA, and a rural reference population. However, our cross-species analysis revealed two significant patterns of sex differences in HrU10 germline mutations: (1) mutations in longer alleles occurred typically in the male germline, those in shorter alleles in the female germline, and (2) male germline mutations were more often expansions than contractions, whereas no directional bias was evident in the female germline. These results indicate some fundamental differences in male and female gametogenesis affecting the probability of slippage mutations. Our study also reflects the value of a comparative, multi-species approach for locus-specific mutation analyses, through which a wider range of influential factors can be assessed than in single-species studies.
Collapse
Affiliation(s)
- Jarl A Anmarkrud
- National Centre for Biosystematics, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haerty W, Golding GB. Low-complexity sequences and single amino acid repeats: not just "junk" peptide sequences. Genome 2011; 53:753-62. [PMID: 20962881 DOI: 10.1139/g10-063] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For decades proteins were thought to interact in a "lock and key" system, which led to the definition of a paradigm linking stable three-dimensional structure to biological function. As a consequence, any non-structured peptide was considered to be nonfunctional and to evolve neutrally. Surprisingly, the most commonly shared peptides between eukaryotic proteomes are low-complexity sequences that in most conditions do not present a stable three-dimensional structure. However, because these sequences evolve rapidly and because the size variation of a few of them can have deleterious effects, low-complexity sequences have been suggested to be the target of selection. Here we review evidence that supports the idea that these simple sequences should not be considered just "junk" peptides and that selection drives the evolution of many of them.
Collapse
Affiliation(s)
- Wilfried Haerty
- Biology Department, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
13
|
Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Curr Genet 2010; 57:75-88. [DOI: 10.1007/s00294-010-0328-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/02/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
|
14
|
Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW. Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 2010. [PMID: 20637113 DOI: 10.1186/1471‐2164‐11‐436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 x G19833. RESULTS We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones. CONCLUSIONS Class II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.
Collapse
Affiliation(s)
- Juana M Córdoba
- International Center for Tropical Agriculture (CIAT) Bean Project; A.A. 6713, Cali, Colombia
| | | | | | | | | |
Collapse
|
15
|
Córdoba JM, Chavarro C, Schlueter JA, Jackson SA, Blair MW. Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 2010; 11:436. [PMID: 20637113 PMCID: PMC3091635 DOI: 10.1186/1471-2164-11-436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 07/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 × G19833. Results We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones. Conclusions Class II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.
Collapse
Affiliation(s)
- Juana M Córdoba
- International Center for Tropical Agriculture (CIAT) Bean Project; A.A. 6713, Cali, Colombia
| | | | | | | | | |
Collapse
|
16
|
Falster DS, Nakken S, Bergem-Ohr M, Rødland EA, Breivik J. Unstable DNA repair genes shaped by their own sequence modifying phenotypes. J Mol Evol 2010; 70:266-74. [PMID: 20213140 PMCID: PMC2846273 DOI: 10.1007/s00239-010-9328-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/10/2010] [Indexed: 11/27/2022]
Abstract
The question of whether natural selection favors genetic stability or genetic variability is a fundamental problem in evolutionary biology. Bioinformatic analyses demonstrate that selection favors genetic stability by avoiding unstable nucleotide sequences in protein encoding DNA. Yet, such unstable sequences are maintained in several DNA repair genes, thereby promoting breakdown of repair and destabilizing the genome. Several studies have therefore argued that selection favors genetic variability at the expense of stability. Here we propose a new evolutionary mechanism, with supporting bioinformatic evidence, that resolves this paradox. Combining the concepts of gene-dependent mutation biases and meiotic recombination, we argue that unstable sequences in the DNA mismatch repair (MMR) genes are maintained by their own phenotype. In particular, we predict that human MMR maintains an overrepresentation of mononucleotide repeats (monorepeats) within and around the MMR genes. In support of this hypothesis, we report a 31% excess in monorepeats in 250 kb regions surrounding the seven MMR genes compared to all other RefSeq genes (1.75 vs. 1.34%, P = 0.0047), with a particularly high content in PMS2 (2.41%, P = 0.0047) and MSH6 (2.07%, P = 0.043). Based on a mathematical model of monorepeat frequency, we argue that the proposed mechanism may suffice to explain the observed excess of repeats around MMR genes. Our findings thus indicate that unstable sequences in MMR genes are maintained through evolution by the MMR mechanism. The evolutionary paradox of genetically unstable DNA repair genes may thus be explained by an equilibrium in which the phenotype acts back on its own genotype.
Collapse
Affiliation(s)
- Daniel S. Falster
- Institute of Basic Medical Science, University of Oslo, P.O. Box 1018 Blindern, 0315 Oslo, Norway
- Present Address: Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigve Nakken
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Rikshospitalet University Hospital, 0027 Oslo, Norway
- Present Address: Bioinformatics Core Facility, Institute of Medical Informatics, Rikshospitalet, 0310 Oslo, Norway
| | - Marie Bergem-Ohr
- Institute of Basic Medical Science, University of Oslo, P.O. Box 1018 Blindern, 0315 Oslo, Norway
| | - Einar Andreas Rødland
- Department of Informatics and Center for Cancer Biomedicine, University of Oslo, 0316 Oslo, Norway
- Norwegian Computing Center, 0314 Oslo, Norway
| | - Jarle Breivik
- Institute of Basic Medical Science, University of Oslo, P.O. Box 1018 Blindern, 0315 Oslo, Norway
| |
Collapse
|
17
|
|
18
|
Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol Biol 2008; 8:138. [PMID: 18471288 PMCID: PMC2396632 DOI: 10.1186/1471-2148-8-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/09/2008] [Indexed: 02/01/2023] Open
Abstract
Background Microsatellites are frequently used genetic markers in a wide range of applications, primarily due to their high length polymorphism levels that can easily be genotyped by fragment length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the role of interrupting motifs for the stability of microsatellites remains to be explored in more detail. Here we present a sequence analysis of mutation events and a description of the structure of repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows (Hirundo rustica) and tree swallows (Tachycineta bicolor). Results In a large-scale parentage analysis in barn swallows and tree swallows, broods were screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the tree swallows, mutations corresponding to the loss or gain of one or two repeat units were detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in barn swallows and 7 in tree swallows). Replication slippage was considered the most likely mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size range, has an increased probability of introductions of interruptive motifs (IMs) with increasing length of the repeated region. Indeed, the number and length of the IMs was strongly positively correlated with the total length of the microsatellite. However, there was no significant correlation with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%) produced alleles that were size homoplasic to other alleles in the data set. Conclusion Our results give further insights into the mode of microsatellite evolution, and support the assumption of increased slippage rate with increased microsatellite length and a stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In addition, the observed extent of size homoplasy may impose a general caution against using hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment length analysis only.
Collapse
|
19
|
Abstract
Unstable repeats are associated with various types of cancer and have been implicated in more than 40 neurodegenerative disorders. Trinucleotide repeats are located in non-coding and coding regions of the genome. Studies of bacteria, yeast, mice and man have helped to unravel some features of the mechanism of trinucleotide expansion. Looped DNA structures comprising trinucleotide repeats are processed during replication and/or repair to generate deletions or expansions. Most in vivo data are consistent with a model in which expansion and deletion occur by different mechanisms. In mammals, microsatellite instability is complex and appears to be influenced by genetic, epigenetic and developmental factors.
Collapse
|
20
|
Abstract
Three decades ago Gilbert posited that novel proteins arise by re-shuffling genomic sequences encoding polypeptide domains. Today, with numerous genomes and countless genes sequenced, it is well established that recombination of sequences encoding polypeptide domains plays a major role in protein evolution. There is, however, less evidence to suggest how the novel polypeptide domains, themselves, arise. Recent comparisons of genomes from closely related species have revealed numerous species-specific exons, supporting models of domain origin based on "exonization" of intron sequences. Also, a mechanism for the origin of novel polypeptide domains has been proposed based on analyses of insertion-based polymorphisms between orthologous genes across broad phylogenetic spectra and between allelic variants of genes within species. This review discusses these processes and how each might participate in the evolutionary emergence of novel polypeptide domains.
Collapse
Affiliation(s)
- Edward E Schmidt
- Molecular Biosciences, Montana State University, Bozeman, MT 59717, USA.
| | | |
Collapse
|
21
|
Schlötterer C, Imhof M, Wang H, Nolte V, Harr B. Low abundance of Escherichia coli microsatellites is associated with an extremely low mutation rate. J Evol Biol 2006; 19:1671-6. [PMID: 16910996 DOI: 10.1111/j.1420-9101.2006.01108.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is widely assumed that microsatellites are generated by replication slippage, a mutation process specific to repetitive DNA. Consistent with their high mutation rate, microsatellites are highly abundant in most eukaryotic genomes. In Escherichia coli, however, microsatellites are rare and short despite the fact that a high microsatellite mutation rate was described. We show that this high microsatellite instability depends on the presence of the F-plasmid. E. coli cells lacking the F-plasmid have extremely low microsatellite mutation rates. This result provides a possible explanation for the genome-wide low density of microsatellites in E. coli. Furthermore, we show that the F-plasmid induced microsatellite instability is independent of the mismatch repair pathway.
Collapse
Affiliation(s)
- C Schlötterer
- Institut für Tierzucht und Genetik, VMU Wien, Josef-Baumann-Gasse 1, 1210 Vienna, Austria.
| | | | | | | | | |
Collapse
|
22
|
Buschiazzo E, Gemmell NJ. The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 2006; 28:1040-50. [PMID: 16998838 DOI: 10.1002/bies.20470] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation.
Collapse
Affiliation(s)
- Emmanuel Buschiazzo
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
23
|
López-Giráldez F, Andrés O, Domingo-Roura X, Bosch M. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs. BMC Genomics 2006; 7:269. [PMID: 17059596 PMCID: PMC1634856 DOI: 10.1186/1471-2164-7-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/23/2006] [Indexed: 12/05/2022] Open
Abstract
Background The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. Results We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the insterspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Conclusion Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes. Finally, due to their higher complexity and lower potential informative content of microsatellites associated with tRNALys-derived SINEs, we recommend avoiding their use as genetic markers.
Collapse
Affiliation(s)
- Francesc López-Giráldez
- Genètica de la Conservació, Institut de Recerca i Tecnologia Agroalimentàries, Ctra. de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | - Olga Andrés
- Genètica de la Conservació, Institut de Recerca i Tecnologia Agroalimentàries, Ctra. de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | - Xavier Domingo-Roura
- Genètica de la Conservació, Institut de Recerca i Tecnologia Agroalimentàries, Ctra. de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
- Deceased author
| | - Montserrat Bosch
- Genètica de la Conservació, Institut de Recerca i Tecnologia Agroalimentàries, Ctra. de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| |
Collapse
|
24
|
Shanker A, Singh A, Sharma V. In silico mining in expressed sequences of Neurospora crassa for identification and abundance of microsatellites. Microbiol Res 2006; 162:250-6. [PMID: 16875812 DOI: 10.1016/j.micres.2006.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 05/05/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
In the present study, 3217 UniGene sequences of Neurospora crassa downloaded from the National Center for Biotechnology Information (NCBI) were mined for the identification of microsatellites or simple sequence repeats (SSRs). A total of 287 SSRs detected gives density of 1SSR/14.6 kb of 4187.86 kb sequences mined suggests that only 250 (7.8%) of sequences contained SSRs. Depending on the repeat units, the length of SSRs ranged from 14 to 17 bp for mono-, 14 to 48 bp for di-, 18 to 90 bp for tri-, 24 to 48 bp for tetra-, 30 for penta- and 42 to 48 bp for hexa-nucleotide repeats. Tri-nucleotide repeats were the most frequent repeat type (88.8%) followed by di-nucleotide repeats (5.9%). An attempt was also made with the help of bioinformatics approach to find out primer pairs for identified SSRs and primers were found only for 239 sequences. But, this part needs experimental validation. Annotation of SSRs containing sequences was also carried out.
Collapse
Affiliation(s)
- Asheesh Shanker
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India.
| | | | | |
Collapse
|
25
|
Weetman D, Hauser L, Carvalho GR. Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum. Genetica 2006; 127:285-93. [PMID: 16850232 DOI: 10.1007/s10709-005-4847-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 11/07/2005] [Indexed: 10/24/2022]
Abstract
Heterogeneous patterns of microsatellite evolution present a major challenge for the development of mutation models, and an improved understanding of the determinants of variation in mutation rates and patterns among loci, alleles and taxa is required. A 19th Century bottleneck associated with the introduction of clones of the snail Potamopyrgus antipodarum to Britain presented an opportunity to reconstruct recent microsatellite evolution within the most common apomictic lineage. There was significant variation in both the number and step size of mutations among the seven loci studied. Patterns of mutability were consistent with higher mutation rates for di- than trinucleotides and for longer alleles at a locus. Mutation size was influenced in a more complex way, decreasing with relative allele length much more strongly for tri-, than dinucleotides. We found support for this latter, highly novel result in the literature via reanalysis of data in a recent genome-scan study of human microsatellites, which showed a similarly disparate pattern of length-dependence between di- and trinucleotides. In spite of the apomictic form of reproduction and an unusually strong excess of microsatellite contractions in P. antipodarum, there were notable similarities with mutation processes of human microsatellites, supporting the wider taxonomic generality of such evolutionary mechanisms.
Collapse
Affiliation(s)
- David Weetman
- Department of Biological Sciences, University of Hull, HU6 7RX, Hull, UK.
| | | | | |
Collapse
|
26
|
Ustinova J, Achmann R, Cremer S, Mayer F. Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus. J Mol Evol 2006; 62:158-67. [PMID: 16474983 DOI: 10.1007/s00239-005-0022-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
It is commonly believed that both the average length and the frequency of microsatellites correlate with genome size. We have estimated the frequency and the average length for 69 perfect dinucleotide microsatellites in an insect with an exceptionally large genome: Chorthippus biguttulus (Orthoptera, Acrididae). Dinucleotide microsatellites are not more frequent in C. biguttulus, but repeat arrays are 1.4 to 2 times longer than in other insect species. The average repeat number in C. biguttulus lies in the range of higher vertebrates. Natural populations are highly variable. At least 30 alleles per locus were found and the expected heterozygosity is above 0.95 at all three loci studied. In contrast, the observed heterozygosity is much lower (< or = 0.51), which could be caused by long null alleles.
Collapse
Affiliation(s)
- Jana Ustinova
- Institute of Zoology II, University of Erlangen, Staudtstrasse 5, Erlangen, D-91058, Germany.
| | | | | | | |
Collapse
|
27
|
Cruz F, Pérez M, Presa P. Distribution and abundance of microsatellites in the genome of bivalves. Gene 2005; 346:241-7. [PMID: 15716000 DOI: 10.1016/j.gene.2004.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 09/24/2004] [Accepted: 11/17/2004] [Indexed: 11/15/2022]
Abstract
Understanding how microsatellites are distributed in eukaryotic genomes is important to clarify the differential abundance of these repeats under an evolutionary scenario. We have concatenated data from 3165 DNA sequences of 326 Bivalvia species to search for taxonomic patterns of microsatellite distribution in genomic regions of markedly different functionality. Some microsatellite motifs in bivalves showed one of the lowest genomic densities observed among eukaryotes. Contrary to the expectation of a random distribution of microsatellites, they were overrepresented in introns (245 loci/Mb) compared to their frequency in exons (85 loci/Mb). Closely related species showed remarkable differences in microsatellite density suggesting species-specific properties as for mutation/repair efficiency on replication slippage. There was no evidence of a positive correlation between the density of microsatellites in intergenic DNA and the DNA-content. This research is relevant to better understand the forces shaping the distribution of microsatellites in the genome of bivalves.
Collapse
Affiliation(s)
- Fernando Cruz
- University of Vigo, Faculty of Biology, Department of Biochemistry, Genetics and Immunology, 36310 Vigo, Spain
| | | | | |
Collapse
|
28
|
Gow JL, Noble LR, Rollinson D, Jones CS. A high incidence of clustered microsatellite mutations revealed by parent-offspring analysis in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata). Genetica 2005; 124:77-83. [PMID: 16011005 DOI: 10.1007/s10709-005-0204-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genotyping of 11 microsatellites in 432 offspring from 28 families of the hermaphroditic, freshwater snail Bulinusforskalii detected 10 de novo mutant alleles. This gave an estimated mutation rate of 1.1 x 10(-3) per locus per gamete per generation. There was a trend towards repeat length expansion and, unlike most studies, multi-step mutations predominated, suggesting that the microsatellite mutation process does not conform to a strict stepwise mutation model. Interestingly, the ten mutant alleles appear to have arisen from only six independent germline mutation events within the microsatellite array, with seven of them residing in three mutational clusters. Our results extend observations of clustered microsatellite mutations to another taxonomic group and type of mating system, self-fertile gastropods, and provide compelling evidence of premeiotic germline mutations, a phenomenon that could greatly impact upon our understanding of mutation dynamics but which has received little attention.
Collapse
Affiliation(s)
- Jennifer L Gow
- Department of Zoology, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | | | | | | |
Collapse
|
29
|
Sainudiin R, Durrett RT, Aquadro CF, Nielsen R. Microsatellite mutation models: insights from a comparison of humans and chimpanzees. Genetics 2005; 168:383-95. [PMID: 15454551 PMCID: PMC1448085 DOI: 10.1534/genetics.103.022665] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using genomic data from homologous microsatellite loci of pure AC repeats in humans and chimpanzees, several models of microsatellite evolution are tested and compared using likelihood-ratio tests and the Akaike information criterion. A proportional-rate, linear-biased, one-phase model emerges as the best model. A focal length toward which the mutational and/or substitutional process is linearly biased is a crucial feature of microsatellite evolution. We find that two-phase models do not lead to a significantly better fit than their one-phase counterparts. The performance of models based on the fit of their stationary distributions to the empirical distribution of microsatellite lengths in the human genome is consistent with that based on the human-chimp comparison. Microsatellites interrupted by even a single point mutation exhibit a twofold decrease in their mutation rate when compared to pure AC repeats. In general, models that allow chimps to have a larger per-repeat unit slippage rate and/or a shorter focal length compared to humans give a better fit to the human-chimp data as well as the human genomic data.
Collapse
Affiliation(s)
- Raazesh Sainudiin
- Department of Statistical Science, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
30
|
Denver DR, Feinberg S, Estes S, Thomas WK, Lynch M. Mutation rates, spectra and hotspots in mismatch repair-deficient Caenorhabditis elegans. Genetics 2005; 170:107-13. [PMID: 15716493 PMCID: PMC1449714 DOI: 10.1534/genetics.104.038521] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is clear that postreplicative DNA mismatch repair (MMR) plays a critical role in maintaining genomic stability in nearly all forms of life surveyed, much remains to be understood about the genome-wide impact of MMR on spontaneous mutation processes and the extent to which MMR-deficient mutation patterns vary among species. We analyzed spontaneous mutation processes across multiple genomic regions using two sets of mismatch repair-deficient (msh-2 and msh-6) Caenorhabditis elegans mutation-accumulation (MA) lines and compared our observations to mutation spectra in a set of wild-type (WT), repair-proficient C. elegans MA lines. Across most sequences surveyed in the MMR-deficient MA lines, mutation rates were approximately 100-fold higher than rates in the WT MA lines, although homopolymeric nucleotide-run (HP) loci composed of A:T base pairs mutated at an approximately 500-fold greater rate. In contrast to yeast and humans where mutation spectra vary substantially with respect to different specific MMR-deficient genotypes, mutation rates and patterns were overall highly similar between the msh-2 and msh-6 C. elegans MA lines. This, along with the apparent absence of a Saccharomyces cerevisiae MSH3 ortholog in the C. elegans genome, suggests that C. elegans MMR surveillance is carried out by a single Msh-2/Msh-6 heterodimer.
Collapse
Affiliation(s)
- Dee R Denver
- Department of Biology, Indiana University, Bloomington, 47405, USA.
| | | | | | | | | |
Collapse
|
31
|
Pérez M, Cruz F, Presa P. Distribution properties of polymononucleotide repeats in molluscan genomes. ACTA ACUST UNITED AC 2004; 96:40-51. [PMID: 15598714 DOI: 10.1093/jhered/esi005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A total of 635 DNA sequences from 35 species of mollusks were used as taxonomic support to investigate several distribution features of polymononucleotides in genomic regions of different functionality. We show that all polymononucleotide types in mollusks fit to expectations in exons but not in nonexonic regions, in agreement with a leading role of negative selection on expansions/contractions of transcription-linked poly-(A/T) repeats. The fit of all repeat length types to an exponential decay precludes the existence of a threshold size for replication slippage, a popular but unsatisfactorily explained concept in mutation models for single repeats. The genomic density of poly-(A/T) repeats is not correlated with the DNA content of species, suggesting that the differential density of repeats between species could be better explained by the species-specific performance of its repair mechanisms. This research allows a better understanding of the distribution patterns of single repeats in eukaryotes.
Collapse
Affiliation(s)
- M Pérez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36810 Spain
| | | | | |
Collapse
|
32
|
Karaoglu H, Lee CMY, Meyer W. Survey of Simple Sequence Repeats in Completed Fungal Genomes. Mol Biol Evol 2004; 22:639-49. [PMID: 15563717 DOI: 10.1093/molbev/msi057] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The use of simple sequence repeats or microsatellites as genetic markers has become very popular because of their abundance and length variation between different individuals. SSRs are tandem repeat units of 1 to 6 base pairs that are found abundantly in many prokaryotic and eukaryotic genomes. This is the first study examining and comparing SSRs in completely sequenced fungal genomes. We analyzed and compared the occurrences, relative abundance, relative density, most common, and longest SSRs in nine taxonomically different fungal species: Aspergillus nidulans, Cryptococcus neoformans, Encephalitozoon cuniculi, Fusarium graminearum, Magnaporthe grisea, Neurospora crassa, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Ustilago maydis. Our analysis revealed that, in all of the genomes studied, the occurrence, abundance, and relative density of SSRs varied and was not influenced by the genome sizes. No correlation between relative abundance and the genome sizes was observed, but it was shown that N. crassa, the largest genome analyzed had the highest relative abundance of SSRs. In most genomes, mononucleotide, dinucleotide, and trinucleotide repeats were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. Our analysis showed that the relative abundance of SSRs in fungi is low compared with the human genome and that longer SSRs in fungi are rare. In addition to providing new information concerning the abundance of SSRs for each of these fungi, the results provide a general source of molecular markers that could be useful for a variety of applications such as population genetics and strain identification of fungal organisms.
Collapse
Affiliation(s)
- Haydar Karaoglu
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
33
|
Kovtun IV, Thornhill AR, McMurray CT. Somatic deletion events occur during early embryonic development and modify the extent of CAG expansion in subsequent generations. Hum Mol Genet 2004; 13:3057-68. [PMID: 15496421 DOI: 10.1093/hmg/ddh325] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alterations in trinucleotide repeat length during transmission are important in the pathophysiology of Huntington's disease (HD). However, it is not well understood where, when and by what mechanism expansion occurs. We have followed the fate of CAG repeats during development in mice that can [hHD(-/+)/Msh2(+/+)] or cannot [hHD(-/+)/Msh2(-/-)] expand their repeats. Here we show that long repeats are shortened during somatic replication early in the embryo of the progeny. Our data point to different mechanisms for expansion and deletion. Deletions arise during replication, do not depend on the presence of Msh2 and are largely restricted to early development. In contrast, expansions depend on strand break repair, require the presence of Msh2 and occur later in development. Overall, these results suggest that deletions in early development serve as a safeguard of the genome and protect against expansion of the disease-range repeats during transmission.
Collapse
Affiliation(s)
- I V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
35
|
Dieringer D, Schlötterer C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 2003; 13:2242-51. [PMID: 14525926 PMCID: PMC403688 DOI: 10.1101/gr.1416703] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 08/11/2003] [Indexed: 11/24/2022]
Abstract
We surveyed microsatellite distribution in 10 completely sequenced genomes. Using a permutation-based statistic, we assessed for all 10 genomes whether the microsatellite distribution significantly differed from expectations. Consistent with previous reports, we observed a highly significant excess of long microsatellites. Focusing on short microsatellites containing only a few repeat units, we demonstrate that this repeat class is significantly underrepresented in most genomes. This pattern was observed across different repeat types. Computer simulations indicated that neither base substitutions nor a combination of length-dependent slippage and base substitutions could explain the observed pattern of microsatellite distribution. When we introduced one additional mutation process, a length-independent slippage (indel slippage) operating at repeats with few repetitions, our computer simulations captured the observed pattern of microsatellite distribution.
Collapse
|
36
|
|