1
|
Trouillon J, Attrée I, Elsen S. The regulation of bacterial two-partner secretion systems. Mol Microbiol 2023; 120:159-177. [PMID: 37340956 DOI: 10.1111/mmi.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Two-partner secretion (TPS) systems, also known as Type Vb secretion systems, allow the translocation of effector proteins across the outer membrane of Gram-negative bacteria. By secreting different classes of effectors, including cytolysins and adhesins, TPS systems play important roles in bacterial pathogenesis and host interactions. Here, we review the current knowledge on TPS systems regulation and highlight specific and common regulatory mechanisms across TPS functional classes. We discuss in detail the specific regulatory networks identified in various bacterial species and emphasize the importance of understanding the context-dependent regulation of TPS systems. Several regulatory cues reflecting host environment during infection, such as temperature and iron availability, are common determinants of expression for TPS systems, even across relatively distant species. These common regulatory pathways often affect TPS systems across subfamilies with different effector functions, representing conserved global infection-related regulatory mechanisms.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| |
Collapse
|
2
|
Kim D, Tracey J, Becerra Flores M, Chaudhry K, Nasim R, Correa-Medina A, Knipling L, Chen Q, Stibitz S, Jenkins LM, Moon K, Cardozo T, Hinton D. Conformational change of the Bordetella response regulator BvgA accompanies its activation of the B. pertussis virulence gene fhaB. Comput Struct Biotechnol J 2022; 20:6431-6442. [DOI: 10.1016/j.csbj.2022.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022] Open
|
3
|
Four single-basepair mutations in the ptx promoter of Bordetella bronchiseptica are sufficient to activate the expression of pertussis toxin. Sci Rep 2021; 11:9373. [PMID: 33931696 PMCID: PMC8087692 DOI: 10.1038/s41598-021-88852-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
Secretion of pertussis toxin (PT) is the preeminent virulence trait of the human pathogen Bordetella pertussis, causing whooping cough. Bordetella bronchiseptica, although it harbors an intact 12-kb ptx-ptl operon, does not express PT due to an inactive ptx promoter (Pptx), which contains 18 SNPs (single nucleotide polymorphisms) relative to B. pertussis Pptx. A systematic analysis of these SNPs was undertaken to define the degree of mutational divergence necessary to activate B. bronchiseptica Pptx. A single change (C-13T), which created a better - 10 element, was capable of activating B. bronchiseptica Pptx sufficiently to allow secretion of low but measureable levels of active PT. Three additional changes in the BvgA-binding region, only in the context of C-13T mutant, raised the expression of PT to B. pertussis levels. These results illuminate a logical evolutionary pathway for acquisition of this key virulence trait in the evolution of B. pertussis from a B. bronchiseptica-like common ancestor.
Collapse
|
4
|
Novák J, Jurnečka D, Linhartová I, Holubová J, Staněk O, Štipl D, Dienstbier A, Večerek B, Azevedo N, Provazník J, Beneš V, Šebo P. A Mutation Upstream of the rplN-rpsD Ribosomal Operon Downregulates Bordetella pertussis Virulence Factor Production without Compromising Bacterial Survival within Human Macrophages. mSystems 2020; 5:e00612-20. [PMID: 33293402 PMCID: PMC7742992 DOI: 10.1128/msystems.00612-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
The BvgS/BvgA two-component system controls expression of ∼550 genes of Bordetella pertussis, of which, ∼245 virulence-related genes are positively regulated by the BvgS-phosphorylated transcriptional regulator protein BvgA (BvgA∼P). We found that a single G-to-T nucleotide transversion in the 5'-untranslated region (5'-UTR) of the rplN gene enhanced transcription of the ribosomal protein operon and of the rpoA gene and provoked global dysregulation of B. pertussis genome expression. This comprised overproduction of the alpha subunit (RpoA) of the DNA-dependent RNA polymerase, downregulated BvgA and BvgS protein production, and impaired production and secretion of virulence factors by the mutant. Nonetheless, the mutant survived like the parental bacteria for >2 weeks inside infected primary human macrophages and persisted within infected mouse lungs for a longer period than wild-type B. pertussis These observations suggest that downregulation of virulence factor production by bacteria internalized into host cells may enable persistence of the whooping cough agent in the airways.IMPORTANCE We show that a spontaneous mutation that upregulates transcription of an operon encoding ribosomal proteins and causes overproduction of the downstream-encoded α subunit (RpoA) of RNA polymerase causes global effects on gene expression levels and proteome composition of Bordetella pertussis Nevertheless, the resulting important downregulation of the BvgAS-controlled expression of virulence factors of the whooping cough agent did not compromise its capacity to persist for prolonged periods inside primary human macrophage cells, and it even enhanced its capacity to persist in infected mouse lungs. These observations suggest that the modulation of BvgAS-controlled expression of virulence factors may occur also during natural infections of human airways by Bordetella pertussis and may possibly account for long-term persistence of the pathogen within infected cells of the airways.
Collapse
Affiliation(s)
- Jakub Novák
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnečka
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Irena Linhartová
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Holubová
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Staněk
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Štipl
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ana Dienstbier
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Branislav Večerek
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nayara Azevedo
- Genomics Core Facility, European Molecular Biology Laboratory, Services and Technology Unit, Heidelberg, Germany
| | - Jan Provazník
- Genomics Core Facility, European Molecular Biology Laboratory, Services and Technology Unit, Heidelberg, Germany
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Services and Technology Unit, Heidelberg, Germany
| | - Peter Šebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Chen Q, Boucher PE, Stibitz S. Multiple weak interactions between BvgA~P and ptx promoter DNA strongly activate transcription of pertussis toxin genes in Bordetella pertussis. PLoS Pathog 2020; 16:e1008500. [PMID: 32401811 PMCID: PMC7250471 DOI: 10.1371/journal.ppat.1008500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 05/26/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022] Open
Abstract
Pertussis toxin is the preeminent virulence factor and major protective antigen produced by Bordetella pertussis, the human respiratory pathogen and etiologic agent of whooping cough. Genes for its synthesis and export are encoded by the 12 kb ptx-ptl operon, which is under the control of the pertussis promoter, Pptx. Expression of this operon, like that of all other known protein virulence factors, is regulated by the BvgAS two-component global regulatory system. Although Pptx has been studied for years, characterization of its promoter architecture vis-à-vis BvgA-binding has lagged behind that of other promoters, mainly due to its lower affinity for BvgA~P. Here we take advantage of a mutant BvgA protein (Δ127-129), which enhances ptx transcription in B. pertussis and also demonstrates enhanced binding affinity to Pptx. By using this mutant protein labeled with FeBABE, binding of six head-to-head dimers of BvgA~P was observed, with a spacing of 22 bp, revealing a binding geometry similar to that of other BvgA-activated promoters carrying at least one strong binding site. All of these six BvgA-binding sites lack sequence features associated with strong binding. A genetic analysis indicated the degree to which each contributes to Pptx activity. Thus the weak/medium binding affinity of Pptx revealed in this study explains its lower responsiveness to phosphorylated BvgA, relative to other promoters containing a high affinity binding site, such as that of the fha operon.
Collapse
Affiliation(s)
- Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Philip E. Boucher
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| |
Collapse
|
6
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
7
|
Chen Q, Stibitz S. The BvgASR virulence regulon of Bordetella pertussis. Curr Opin Microbiol 2019; 47:74-81. [PMID: 30870653 DOI: 10.1016/j.mib.2019.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/22/2019] [Indexed: 01/26/2023]
Abstract
The BvgAS two-component system of Bordetella pertussis directly activates the expression of a large number of virulence genes in an environmentally responsive manner. The Bvg+ mode also promotes the expression of the phosphodiesterase BvgR, which turns off the expression of another set of genes, the vrgs, by reducing levels of c-di-GMP. Increased levels of c-di-GMP in the Bvg- mode are required, together with the phosphorylated response regulator protein RisA∼P, to activate vrg expression. Phosphorylation of RisA requires RisK, a non-co-operonic sensor kinase, but not its co-operonic sensor kinase RisS which is truncated in B. pertussis but intact in the ancestral B. bronchiseptica. The loss of RisS during evolution of B. pertussis led to the ability to express the vrgs, potentially enhancing aerosol transmission of B. pertussis.
Collapse
Affiliation(s)
- Qing Chen
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, United States
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, United States.
| |
Collapse
|
8
|
Activation of Bvg-Repressed Genes in Bordetella pertussis by RisA Requires Cross Talk from Noncooperonic Histidine Kinase RisK. J Bacteriol 2017; 199:JB.00475-17. [PMID: 28827216 DOI: 10.1128/jb.00475-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
The two-component response regulator RisA, encoded by open reading frame BP3554 in the Bordetella pertussis Tohama I genomic sequence, is a known activator of vrg genes, a set of genes whose expression is increased under the same environmental conditions (known as modulation) that result in repression of the bvgAS virulence regulon. Here we demonstrate that RisA is phosphorylated in vivo and that RisA phosphorylation is required for activation of vrg genes. An adjacent histidine kinase gene, risS, is truncated by frameshift mutation in B. pertussis but not in Bordetella bronchiseptica or Bordetella parapertussis Neither deletion of risS' or bvgAS nor phenotypic modulation with MgSO4 affected levels of phosphorylated RisA (RisA∼P) in B. pertussis However, RisA phosphorylation did require the histidine kinase encoded by BP3223, here named RisK (cognate histidine kinase of RisA). RisK was also required for expression of the vrg genes. This requirement could be obviated by the introduction of the phosphorylation-mimicking RisAD60E mutant, indicating that an active conformation of RisA, but not phosphorylation per se, is crucial for vrg activation. Interestingly, expression of vrg genes is still modulated by MgSO4 in cells harboring the RisAD60E mutation, suggesting that the activated RisA senses additional signals to control vrg expression in response to environmental stimuli.IMPORTANCE In B. pertussis, the BvgAS two-component system activates the expression of virulence genes by binding of BvgA∼P to their promoters. Expression of the reciprocally regulated vrg genes requires RisA and is also repressed by the Bvg-activated BvgR. RisA is an OmpR-like response regulator, but RisA phosphorylation was not expected because the gene for its presumed, cooperonic, histidine kinase is inactivated by mutation. In this study, we demonstrate phosphorylation of RisA in vivo by a noncooperonic histidine kinase. We also show that RisA phosphorylation is necessary but not sufficient for vrg activation but, importantly, is not affected by BvgAS status. Instead, we propose that vrg expression is controlled by BvgAS through its regulation of BvgR, a cyclic di-GMP (c-di-GMP) phosphodiesterase.
Collapse
|
9
|
Abstract
Nearly all virulence factors in Bordetella pertussis are activated by a master two-component system, BvgAS, composed of the sensor kinase BvgS and the response regulator BvgA. When BvgS is active, BvgA is phosphorylated (BvgA~P), and virulence-activated genes (vags) are expressed [Bvg(+) mode]. When BvgS is inactive and BvgA is not phosphorylated, virulence-repressed genes (vrgs) are induced [Bvg(−) mode]. Here, we have used transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR) to define the BvgAS-dependent regulon of B. pertussis Tohama I. Our analyses reveal more than 550 BvgA-regulated genes, of which 353 are newly identified. BvgA-activated genes include those encoding two-component systems (such as kdpED), multiple other transcriptional regulators, and the extracytoplasmic function (ECF) sigma factor brpL, which is needed for type 3 secretion system (T3SS) expression, further establishing the importance of BvgA~P as an apex regulator of transcriptional networks promoting virulence. Using in vitro transcription, we demonstrate that the promoter for brpL is directly activated by BvgA~P. BvgA-FeBABE cleavage reactions identify BvgA~P binding sites centered at positions −41.5 and −63.5 in bprL. Most importantly, we show for the first time that genes for multiple and varied metabolic pathways are significantly upregulated in the B. pertussis Bvg(−) mode. These include genes for fatty acid and lipid metabolism, sugar and amino acid transporters, pyruvate dehydrogenase, phenylacetic acid degradation, and the glycolate/glyoxylate utilization pathway. Our results suggest that metabolic changes in the Bvg(−) mode may be participating in bacterial survival, transmission, and/or persistence and identify over 200 new vrgs that can be tested for function. Within the past 20 years, outbreaks of whooping cough, caused by Bordetella pertussis, have led to respiratory disease and infant mortalities, despite good vaccination coverage. This is due, at least in part, to the introduction of a less effective acellular vaccine in the 1990s. It is crucial, then, to understand the molecular basis of B. pertussis growth and infection. The two-component system BvgA (response regulator)/BvgS (histidine kinase) is the master regulator of B. pertussis virulence genes. We report here the first RNA-seq analysis of the BvgAS regulon in B. pertussis, revealing that more than 550 genes are regulated by BvgAS. We show that genes for multiple and varied metabolic pathways are highly regulated in the Bvg(−) mode (absence of BvgA phosphorylation). Our results suggest that metabolic changes in the Bvg(−) mode may be participating in bacterial survival, transmission, and/or persistence.
Collapse
|
10
|
Scheller EV, Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis 2015; 73:ftv079. [PMID: 26416077 DOI: 10.1093/femspd/ftv079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines.
Collapse
Affiliation(s)
- Erich V Scheller
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
11
|
Davlieva M, Shi Y, Leonard PG, Johnson TA, Zianni MR, Arias CA, Ladbury JE, Shamoo Y. A variable DNA recognition site organization establishes the LiaR-mediated cell envelope stress response of enterococci to daptomycin. Nucleic Acids Res 2015; 43:4758-73. [PMID: 25897118 PMCID: PMC4482077 DOI: 10.1093/nar/gkv321] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/30/2015] [Indexed: 12/02/2022] Open
Abstract
LiaR is a ‘master regulator’ of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons. Using DNA footprinting of the regions upstream of the liaXYZ and liaFSR operons we show that LiaR binds an extended stretch of DNA that extends beyond the proposed canonical consensus sequence suggesting a more complex level of regulatory control of target operons. We go on to determine the biochemical and structural basis for increased resistance to daptomycin by the adaptive mutation to LiaR (D191N) first identified from the pathogen Enterococcus faecalis S613. LiaRD191N increases oligomerization of LiaR to form a constitutively activated tetramer that has high affinity for DNA even in the absence of phosphorylation leading to increased resistance. Crystal structures of the LiaR DNA binding domain complexed to the putative consensus sequence as well as an adjoining secondary sequence show that upon binding, LiaR induces DNA bending that is consistent with increased recruitment of RNA polymerase to the transcription start site and upregulation of target operons.
Collapse
Affiliation(s)
- Milya Davlieva
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Yiwen Shi
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Paul G Leonard
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Troy A Johnson
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael R Zianni
- Plant-Microbe Genomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, 110121, Colombia
| | - John E Ladbury
- Center for Biomolecular Structure and Function, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
12
|
Bordetella pertussis fim3 gene regulation by BvgA: phosphorylation controls the formation of inactive vs. active transcription complexes. Proc Natl Acad Sci U S A 2015; 112:E526-35. [PMID: 25624471 DOI: 10.1073/pnas.1421045112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Two-component systems [sensor kinase/response regulator (RR)] are major tools used by microorganisms to adapt to environmental conditions. RR phosphorylation is typically required for gene activation, but few studies have addressed how and if phosphorylation affects specific steps during transcription initiation. We characterized transcription complexes made with RNA polymerase and the Bordetella pertussis RR, BvgA, in its nonphosphorylated or phosphorylated (BvgA∼P) state at P(fim3), the promoter for the virulence gene fim3 (fimbrial subunit), using gel retardation, potassium permanganate and DNase I footprinting, cleavage reactions with protein conjugated with iron bromoacetamidobenzyl-EDTA, and in vitro transcription. Previous work has shown that the level of nonphosphorylated BvgA remains high in vivo under conditions in which BvgA is phosphorylated. Our results here indicate that surprisingly both BvgA and BvgA∼P form open and initiating complexes with RNA polymerase at P(fim3). However, phosphorylation of BvgA is needed to generate the correct conformation that can transition to competent elongation. Footprints obtained with the complexes made with nonphosphorylated BvgA are atypical; while the initiating complex with BvgA synthesizes short RNA, it does not generate full-length transcripts. Extended incubation of the BvgA/RNA polymerase initiated complex in the presence of heparin generates a stable, but defective species that depends on the initial transcribed sequence of fim3. We suggest that the presence of nonphosphorylated BvgA down-regulates P(fim3) activity when phosphorylated BvgA is present and may allow the bacterium to quickly adapt to the loss of inducing conditions by rapidly eliminating P(fim3) activation once the signal for BvgA phosphorylation is removed.
Collapse
|
13
|
James T, Hsieh ML, Knipling L, Hinton D. Determining the Architecture of a Protein-DNA Complex by Combining FeBABE Cleavage Analyses, 3-D Printed Structures, and the ICM Molsoft Program. Methods Mol Biol 2015; 1334:29-40. [PMID: 26404142 DOI: 10.1007/978-1-4939-2877-4_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Determining the structure of a protein-DNA complex can be difficult, particularly if the protein does not bind tightly to the DNA, if there are no homologous proteins from which the DNA binding can be inferred, and/or if only portions of the protein can be crystallized. If the protein comprises just a part of a large multi-subunit complex, other complications can arise such as the complex being too large for NMR studies, or it is not possible to obtain the amounts of protein and nucleic acids needed for crystallographic analyses. Here, we describe a technique we used to map the position of an activator protein relative to the DNA within a large transcription complex. We determined the position of the activator on the DNA from data generated using activator proteins that had been conjugated at specific residues with the chemical cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). These analyses were combined with 3-D models of the available structures of portions of the activator protein and B-form DNA to obtain a 3-D picture of the protein relative to the DNA. Finally, the Molsoft program was used to refine the position, revealing the architecture of the protein-DNA within the transcription complex.
Collapse
Affiliation(s)
- Tamara James
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Meng-Lun Hsieh
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Leslie Knipling
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Deborah Hinton
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8A, Room 2A13, 8 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Chen Q, Boulanger A, Hinton DM, Stibitz S. Strong inhibition of fimbrial 3 subunit gene transcription by a novel downstream repressive element in Bordetella pertussis. Mol Microbiol 2014; 93:748-58. [PMID: 24963821 DOI: 10.1111/mmi.12690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 11/27/2022]
Abstract
The Bvg-regulated promoters for the fimbrial subunit genes fim2 and fim3 of Bordetella pertussis behave differently from each other both in vivo and in vitro. In vivo Pfim2 is significantly stronger than Pfim3 , even though predictions based on the DNA sequences of BvgA-binding motifs and core promoter elements would indicate the opposite. In vitro Pfim3 demonstrated robust BvgA∼P-dependent transcriptional activation, while none was seen with Pfim2 . This apparent contradiction was investigated further. By swapping sequence elements we created a number of hybrid promoters and assayed their strength in vivo. We found that, while Pfim3 promoter elements upstream of the +1 transcriptional start site do indeed direct Bvg-activated transcription more efficiently than those of Pfim2 , the overall promoter strength of Pfim3 in vivo is reduced due to sequences downstream of +1 that inhibit transcription more than 250-fold. This element, the DRE (downstream repressive element), was mapped to the 15 bp immediately downstream of the Pfim3 +1. Placing the DRE in different promoter contexts indicated that its activity was not specific to fim promoters, or even to Bvg-regulated promoters. However it does appear to be specific to Bordetella species in that it did not function in Escherichia coli.
Collapse
Affiliation(s)
- Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
15
|
Bart MJ, Harris SR, Advani A, Arakawa Y, Bottero D, Bouchez V, Cassiday PK, Chiang CS, Dalby T, Fry NK, Gaillard ME, van Gent M, Guiso N, Hallander HO, Harvill ET, He Q, van der Heide HGJ, Heuvelman K, Hozbor DF, Kamachi K, Karataev GI, Lan R, Lutyńska A, Maharjan RP, Mertsola J, Miyamura T, Octavia S, Preston A, Quail MA, Sintchenko V, Stefanelli P, Tondella ML, Tsang RSW, Xu Y, Yao SM, Zhang S, Parkhill J, Mooi FR. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio 2014; 5:e01074. [PMID: 24757216 PMCID: PMC3994516 DOI: 10.1128/mbio.01074-14] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape.
Collapse
Affiliation(s)
| | - Simon R. Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Abdolreza Advani
- Swedish Institute for Communicable Disease Control (SMI), Solna, Sweden
| | | | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | | | - Pamela K. Cassiday
- National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | - Tine Dalby
- Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Norman K. Fry
- Public Health England—Respiratory and Vaccine Preventable Bacteria Reference Unit, Colindale, United Kingdom
| | - María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Marjolein van Gent
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Hans O. Hallander
- Swedish Institute for Communicable Disease Control (SMI), Solna, Sweden
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Qiushui He
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Finland
| | - Han G. J. van der Heide
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees Heuvelman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daniela F. Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Kazunari Kamachi
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Gennady I. Karataev
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Health Russian Federation, Moscow, Russian Federation
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Anna Lutyńska
- National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Ram P. Maharjan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jussi Mertsola
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Tatsuo Miyamura
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Andrew Preston
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Paola Stefanelli
- Department of Infectious, Parasitic & Immune-Mediated Diseases, Istituto Superiore di Sanita, Rome, Italy
| | - M. Lucia Tondella
- National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Raymond S. W. Tsang
- Laboratory for Syphilis Diagnostics and Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yinghua Xu
- National Institute for Food and Drug Control, Beijing, Republic of China
| | - Shu-Man Yao
- Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Shumin Zhang
- National Institute for Food and Drug Control, Beijing, Republic of China
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Abstract
Pertussis, also known as whooping cough, has recently re-emerged as a major public health threat despite high levels of vaccination against the aetiological agent Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into B. pertussis virulence-factor function. We also discuss the changing epidemiology of pertussis and the challenges facing vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.
Collapse
|
17
|
Mason E, Henderson MW, Scheller EV, Byrd MS, Cotter PA. Evidence for phenotypic bistability resulting from transcriptional interference of bvgAS in Bordetella bronchiseptica. Mol Microbiol 2013; 90:716-33. [PMID: 24007341 PMCID: PMC4216693 DOI: 10.1111/mmi.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Bordetella species cause respiratory infections in mammals. Their master regulatory system BvgAS controls expression of at least three distinct phenotypic phases in response to environmental cues. The Bvg⁺ phase is necessary and sufficient for respiratory infection while the Bvg⁻ phase is required for survival ex vivo. We obtained large colony variants (LCVs) from the lungs of mice infected with B. bronchiseptica strain RBX9, which contains an in-frame deletion mutation in fhaB, encoding filamentous haemagglutinin. RBX9 also yielded LCVs when switched from Bvg⁻ phase conditions to Bvg⁺ phase conditions in vitro. We determined that LCVs are composed of both Bvg⁺ and Bvg⁻ phase bacteria and that they result from defective bvgAS positive autoregulation. The LCV phenotype was linked to the presence of a divergent promoter 5' to bvgAS, suggesting a previously undescribed mechanism of transcriptional interference that, in this case, leads to feedback-based bistability (FBM). Our results also indicate that a small proportion of RBX9 bacteria modulates to the Bvg⁻ phase in vivo. In addition to providing insight into transcriptional interference and FBM, our data provide an example of an in-frame deletion mutation exerting a 'polar' effect on nearby genes.
Collapse
Affiliation(s)
- Eliza Mason
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Michael W. Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Erich V. Scheller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Matthew S. Byrd
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
18
|
Hsieh ML, James TD, Knipling L, Waddell MB, White S, Hinton DM. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation. J Biol Chem 2013; 288:27607-27618. [PMID: 23902794 DOI: 10.1074/jbc.m113.475434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892; Structural Biology Program, Sackler Institute, New York University Langone Medical Center, New York, New York 10016
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Stephen White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
19
|
Boulanger A, Chen Q, Hinton DM, Stibitz S. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA. Mol Microbiol 2013; 88:156-72. [PMID: 23489959 DOI: 10.1111/mmi.12177] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
Abstract
We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two-component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.
Collapse
Affiliation(s)
- Alice Boulanger
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Hester SE, Lui M, Nicholson T, Nowacki D, Harvill ET. Identification of a CO2 responsive regulon in Bordetella. PLoS One 2012; 7:e47635. [PMID: 23112828 PMCID: PMC3480411 DOI: 10.1371/journal.pone.0047635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/19/2012] [Indexed: 01/13/2023] Open
Abstract
Sensing the environment allows pathogenic bacteria to coordinately regulate gene expression to maximize survival within or outside of a host. Here we show that Bordetella species regulate virulence factor expression in response to carbon dioxide levels that mimic in vivo conditions within the respiratory tract. We found strains of Bordetella bronchiseptica that did not produce adenylate cyclase toxin (ACT) when grown in liquid or solid media with ambient air aeration, but produced ACT and additional antigens when grown in air supplemented to 5% CO(2). Transcriptome analysis and quantitative real time-PCR analysis revealed that strain 761, as well as strain RB50, increased transcription of genes encoding ACT, filamentous hemagglutinin (FHA), pertactin, fimbriae and the type III secretion system in 5% CO(2) conditions, relative to ambient air. Furthermore, transcription of cyaA and fhaB in response to 5% CO(2) was increased even in the absence of BvgS. In vitro analysis also revealed increases in cytotoxicity and adherence when strains were grown in 5% CO(2). The human pathogens B. pertussis and B. parapertussis also increased transcription of several virulence factors when grown in 5% CO(2), indicating that this response is conserved among the classical bordetellae. Together, our data indicate that Bordetella species can sense and respond to physiologically relevant changes in CO(2) concentrations by regulating virulence factors important for colonization, persistence and evasion of the host immune response.
Collapse
Affiliation(s)
- Sara E. Hester
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Minghsun Lui
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tracy Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United State of America
| | - Daryl Nowacki
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
21
|
Decker KB, James TD, Stibitz S, Hinton DM. The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. MICROBIOLOGY-SGM 2012; 158:1665-1676. [PMID: 22628479 DOI: 10.1099/mic.0.058941-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bordetella pertussis causes whooping cough, an infectious disease that is reemerging despite widespread vaccination. A more complete understanding of B. pertussis pathogenic mechanisms will involve unravelling the regulation of its impressive arsenal of virulence factors. Here we review the action of the B. pertussis response regulator BvgA in the context of what is known about bacterial RNA polymerase and various modes of transcription activation. At most virulence gene promoters, multiple dimers of phosphorylated BvgA (BvgA~P) bind upstream of the core promoter sequence, using a combination of high- and low-affinity sites that fill through cooperativity. Activation by BvgA~P is typically mediated by a novel form of class I/II mechanisms, but two virulence genes, fim2 and fim3, which encode serologically distinct fimbrial subunits, are regulated using a previously unrecognized RNA polymerase/activator architecture. In addition, the fim genes undergo phase variation because of an extended cytosine (C) tract within the promoter sequences that is subject to slipped-strand mispairing during replication. These sophisticated systems of regulation demonstrate one aspect whereby B. pertussis, which is highly clonal and lacks the extensive genetic diversity observed in many other bacterial pathogens, has been highly successful as an obligate human pathogen.
Collapse
Affiliation(s)
- Kimberly B Decker
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Roles of DNA sequence and sigma A factor in transcription of the vraSR operon. J Bacteriol 2011; 194:61-71. [PMID: 22020638 DOI: 10.1128/jb.06143-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell wall damage in Staphylococcus aureus induces a rapid genome-wide response, referred to as the cell wall stress stimulon. This response is mediated by a two-component system, the vancomycin resistance-associated sensor/regulator (VraSR). The response regulator protein VraR is a transcription factor. Here, we demonstrate that two VraR binding sites in the vraSR operon control region are involved in the regulation of the vraSR operon. The sites are centered at the -60 and -35 nucleotide positions and are referred to as R1 and R2, respectively. DNase I footprinting and lux operon reporter vector studies showed that both of these sites communicate intimately with each other to fine-tune the activity of the vraSR operon. Mutagenesis of the VraR binding sites showed that dimerization of unphosphorylated VraR at R1 is driven by a hierarchy in VraR binding and by the proximity of the two tandem VraR binding sequences at this site. On the other hand, these studies show that the lack of sequence conservation and the distance between the VraR binding sequences in R2 ensure that VraR is recruited to this site only when phosphorylated (hence, under stress conditions). Furthermore, we demonstrate that sigma A (SigA) factor is involved in the regulation of the vraSR operon. Our study shows that sigma A factor does not bind to the vraSR operon control region in the absence of VraR, suggesting that VraR may interact directly with this factor.
Collapse
|
23
|
Decker KB, Chen Q, Hsieh ML, Boucher P, Stibitz S, Hinton DM. Different requirements for σ Region 4 in BvgA activation of the Bordetella pertussis promoters P(fim3) and P(fhaB). J Mol Biol 2011; 409:692-709. [PMID: 21536048 PMCID: PMC3141349 DOI: 10.1016/j.jmb.2011.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/31/2022]
Abstract
Bordetella pertussis BvgA is a global response regulator that activates virulence genes, including adhesin-encoding fim3 and fhaB. At the fhaB promoter, P(fhaB), a BvgA binding site lies immediately upstream of the -35 promoter element recognized by Region 4 of the σ subunit of RNA polymerase (RNAP). We demonstrate that σ Region 4 is required for BvgA activation of P(fhaB), a hallmark of Class II activation. In contrast, the promoter-proximal BvgA binding site at P(fim3) includes the -35 region, which is composed of a tract of cytosines that lacks specific sequence information. We demonstrate that σ Region 4 is not required for BvgA activation at P(fim3). Nonetheless, Region 4 mutations that impair its typical interactions with core and with the -35 DNA affect P(fim3) transcription. Hydroxyl radical cleavage using RNAP with σD581C-FeBABE positions Region 4 near the -35 region of P(fim3); cleavage using RNAP with α276C-FeBABE or α302C-FeBABE also positions an α subunit C-terminal domain within the -35 region, on a different helical face from the promoter-proximal BvgA~P dimer. Our results suggest that the -35 region of P(fim3) accommodates a BvgA~P dimer, an α subunit C-terminal domain, and σ Region 4. Molecular modeling suggests how BvgA, σ Region 4, and α might coexist within this DNA in a conformation that suggests a novel mechanism of activation.
Collapse
Affiliation(s)
- Kimberly B. Decker
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip Boucher
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center For Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol 2011; 193:2081-8. [PMID: 21398554 DOI: 10.1128/jb.00071-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms.
Collapse
|
25
|
Chen Q, Decker KB, Boucher PE, Hinton D, Stibitz S. Novel architectural features of Bordetella pertussis fimbrial subunit promoters and their activation by the global virulence regulator BvgA. Mol Microbiol 2010; 77:1326-40. [PMID: 20662776 PMCID: PMC2975811 DOI: 10.1111/j.1365-2958.2010.07293.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A prominent feature of the promoters of Bordetella pertussis fimbrial subunit genes fim2, fim3 and fimX is the presence of a 'C-stretch', a monotonic run of C residues. The C-stretch renders these genes capable of phase variation, through spontaneous variations in its length. For each of these we determined the length of the C-stretch that gave maximal transcriptional activity, and found that the three optimized promoters align perfectly, with identical distances between conserved upstream sequences and the downstream -10 elements and transcriptional start sites. We also demonstrated, for Pfim3, that the conserved sequence corresponds to BvgA binding sites. The more upstream of the two binding sites is predicted to be high affinity, by comparison to a functionally derived consensus BvgA-binding sequence. The other binding site is a fairly poor match to this consensus, with 10 of 14 bp belonging to the C-stretch. Interestingly, the centre of this downstream site of BvgA binding coincides exactly with the centre of the expected typical location of a -35 sequence. However, the lack of a recognizable -35 element (CCCCCC versus TTGACA), and the occupation of this site by BvgA∼P suggest that activation of the fim promoters involves unusual interactions among BvgA, RNA polymerase and promoter DNA.
Collapse
Affiliation(s)
- Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
26
|
Resemblance and divergence: the “new” members of the genus Bordetella. Med Microbiol Immunol 2010; 199:155-63. [DOI: 10.1007/s00430-010-0148-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Indexed: 10/19/2022]
|
27
|
Costa ED, Cho H, Winans SC. Identification of amino acid residues of the pheromone-binding domain of the transcription factor TraR that are required for positive control. Mol Microbiol 2009; 73:341-51. [PMID: 19602141 PMCID: PMC2748755 DOI: 10.1111/j.1365-2958.2009.06755.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genes required for replication and for conjugal transfer of the Agrobacterium tumefaciens Ti plasmid are regulated by the quorum sensing transcription factor TraR, whose N-terminal domain binds to the pheromone 3-oxo-octanoylhomoserine lactone (OOHL) and whose C-terminal domain binds to specific DNA sequences called tra boxes. Here, we constructed 117 mutants, altering 103 surface-exposed amino acid residues of the TraR N-terminal domain. Each mutant was tested for activation of the traI promoter, where TraR binds to a site centred 45 nucleotides upstream of the transcription start site, and of the traM promoter, where TraR binds a site centred 66 nucleotides upstream. Alteration of 18 residues blocked activity at the traI promoter. Of these, alteration at three positions impaired TraR abundance or DNA binding, leaving 15 residues that are specifically needed for positive control. Of these 15 residues, nine also blocked or reduced activity at the traM promoter, while six had no effect. Amino acid residues required for activation of both promoters probably contact the C-terminal domain of the RNA polymerase alpha subunit, while residues required only for traI promoter activation may contact another RNA polymerase component.
Collapse
Affiliation(s)
- Esther D. Costa
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Hongbaek Cho
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Stephen C. Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
28
|
Seino Y, Takahashi T, Hihara Y. The response regulator RpaB binds to the upstream element of photosystem I genes to work for positive regulation under low-light conditions in Synechocystis sp. Strain PCC 6803. J Bacteriol 2009; 191:1581-6. [PMID: 19074384 PMCID: PMC2648220 DOI: 10.1128/jb.01588-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/05/2008] [Indexed: 11/20/2022] Open
Abstract
The coordinated high-light response of genes encoding subunits of photosystem I (PSI) is achieved by the AT-rich region located just upstream of the core promoter in Synechocystis sp. strain PCC 6803. The upstream element enhances the basal promoter activity under low-light conditions, whereas this positive regulation is lost immediately after the shift to high-light conditions. In this study, we focused on a high-light regulatory 1 (HLR1) sequence included in the upstream element of every PSI gene examined. A gel mobility shift assay revealed that a response regulator RpaB binds to the HLR1 sequence in PSI promoters. Base substitution in the HLR1 sequence or decrease in copy number of the rpaB gene resulted in decrease in the promoter activity of PSI genes under low-light conditions. These observations suggest that RpaB acts as a transcriptional activator for PSI genes. It is likely that RpaB binds to the HLR1 sequence under low-light conditions and works for positive regulation of PSI genes and for negative regulation of high-light-inducible genes depending on the location of the HLR1 sequence within target promoters.
Collapse
Affiliation(s)
- Yurie Seino
- Department of Biochemistry and Molecular Biology, Saitama University, Japan
| | | | | |
Collapse
|
29
|
Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 2008; 190:2023-30. [PMID: 18178737 DOI: 10.1128/jb.01623-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator AlgR is required for Pseudomonas aeruginosa type IV pilus-dependent twitching motility, a flagellum-independent mode of solid surface translocation. Prior work showed that AlgR is phosphorylated at aspartate 54, and cells expressing an AlgR variant that cannot undergo phosphorylation (AlgRD54N) lack twitching motility. However, the mechanism by which AlgR controls twitching motility is not completely understood. We hypothesized that AlgR functioned by activating genes within the prepilin fimU-pilVWXY1Y2E cluster that are necessary for type IV pilin biogenesis. Reverse transcriptase PCR analysis showed that the fimU-pilVWXY1Y2E genes are cotranscribed in an operon, which is under the control of AlgR. This supports prior transcriptional profiling studies of wild-type strains and algR mutants. Moreover, expression of the fimU-pilVWXY1Y2E operon was reduced in strains expressing AlgRD54N. DNase footprinting and electrophoretic mobility shift assays demonstrate that AlgR but not AlgRD54N bound with high affinity to two sites upstream of the fimU-pilVWXY1Y2E operon. Altogether, our findings indicate that AlgR is essential for proper pilin localization and that phosphorylation of AlgR results in direct activation of the fimU-pilVWXY1Y2E operon, which is required for the assembly and export of a functional type IV pilus.
Collapse
|
30
|
Link S, Schmitt K, Beier D, Gross R. Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii. BMC Microbiol 2007; 7:100. [PMID: 17988394 PMCID: PMC2225982 DOI: 10.1186/1471-2180-7-100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 11/07/2007] [Indexed: 11/11/2022] Open
Abstract
Background Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful. Results By use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA) of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii. Conclusion The data reported here show that B. holmesii is endowed with a factor highly related to filamentous hemagglutinin (FHA), a prominent virulence factor of the well characterized pathogenic Bordetellae. We show that like in the other Bordetellae the virulence regulatory BvgAS system is also involved in the regulation of fhaB expression in B. holmesii. Taken together these data indicate that in contrast to previous notions B. holmesii may in fact make use of virulence mechanisms related to those described for the other Bordetellae.
Collapse
Affiliation(s)
- Stefanie Link
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | |
Collapse
|
31
|
Vidakovics MLP, Paba J, Lamberti Y, Ricart CA, de Sousa MV, Rodriguez ME. Profiling theBordetellapertussisProteome during Iron Starvation. J Proteome Res 2007; 6:2518-28. [PMID: 17523612 DOI: 10.1021/pr060681i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulation of gene expression in response to local iron concentration is commonly observed in bacterial pathogens that face this nutrient limitation during host infection. In this study, a proteomic approach was used to analyze the differential protein expression of Bordetella pertussis under iron limitation. Whole cell lysates (WCL) and outer membrane fractions of bacteria grown either under iron-starvation or iron-excess conditions were analyzed by two-dimensional (2-D) gel electrophoresis. Statistical analysis revealed 36 proteins displaying differential expression, 9 with higher expression under iron-excess and 27 with increased expression under iron-starvation. These proteins were subjected to tryptic digestion and MALDI-TOF MS. Apart from those previously reported, we identified new low-iron-induced proteins that might help to explain the increased virulence of this phenotype. Additionally, we found evidence that at least one of the identified proteins, solely expressed under iron starvation, is highly immunogenic in infected individuals.
Collapse
|
32
|
Horvat A, Gross R. Molecular characterization of the BvgA response regulator of Bordetella holmesii. Microbiol Res 2007; 164:243-52. [PMID: 17400438 DOI: 10.1016/j.micres.2006.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 10/25/2006] [Accepted: 11/08/2006] [Indexed: 11/28/2022]
Abstract
The BvgAS system controls the expression of most virulence factors in Bordetella pertussis. Recently, we identified an orthologous system in the related human pathogen Bordetella holmesii. However, while we found that the orthologous histidine kinases BvgS could be functionally exchanged between the two species, the B. holmesii response regulator BvgA(BH) could not substitute for its B. pertussis counterpart in vivo and, accordingly, was not able to bind to B. pertussis virulence promoters in vitro. Here we show that a hybrid response regulator consisting of the B. pertussis derived DNA-binding output domain of BvgA(BP) combined with the B. holmesii receiver domain binds to BvgA(BP) regulated virulence promoters of B. pertussis in vitro and is functional in B. pertussis in vivo. This shows that the inability of BvgA(BH) to complement BvgA(BP) in B. pertussis is due to the small number of sequence variations present in its output domain. However, by mutation analysis we show that four amino acid exchanges present in the helix-turn-helix motif of BvgA(BH) as compared to BvgA(BP) are not the only reason for its inability to substitute for BvgA(BP) but additional mutations present in the output domain must play a role.
Collapse
Affiliation(s)
- Aleksandra Horvat
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany
| | | |
Collapse
|
33
|
Seredick SD, Spiegelman GB. Bacillus subtilis RNA Polymerase Recruits the Transcription Factor Spo0A∼P to Stabilize a Closed Complex during Transcription Initiation. J Mol Biol 2007; 366:19-35. [PMID: 17157871 DOI: 10.1016/j.jmb.2006.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The Bacillus subtilis response regulator Spo0A approximately P activates transcription from the spoIIG promoter by stimulating a rate-limiting transition between the initial interaction of RNA polymerase with the promoter and initiation of RNA synthesis. Previous work showed that Spo0A exerts its effect on RNA polymerase prior to the formation of an open complex in which the DNA strands at the initiation site have been separated. To isolate the effect of Spo0A approximately P on events prior to DNA strand separation at spoIIG we studied RNA polymerase binding to DNA fragments that were truncated to contain only promoter sequences 5' to the -10 element by electrophoretic mobility shift assays. RNA polymerase bound to these fragments readily though highly reversibly, and polymerase-promoter complexes recruited Spo0A approximately P. Sequence-independent interactions between the RNA polymerase and the DNA upstream of the core promoter were important for RNA polymerase binding and essential for Spo0A approximately P recruitment, while sequence-specific Spo0A approximately P-DNA interactions positioned and stabilized RNA polymerase binding to the DNA. Spo0A approximately P decreased the dissociation rate of the complexes formed with truncated promoter templates which could contribute to the means by which Spo0A approximately P stimulates spoIIG expression.
Collapse
Affiliation(s)
- Steve D Seredick
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|
34
|
Geng H, Zhu Y, Mullen K, Zuber CS, Nakano MM. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis. J Bacteriol 2006; 189:1745-55. [PMID: 17189364 PMCID: PMC1855754 DOI: 10.1128/jb.01502-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ResD-ResE signal transduction system is required for transcription of genes involved in aerobic and anaerobic respiration in Bacillus subtilis. Phosphorylated ResD (ResD approximately P) interacts with target DNA to activate transcription. A strong sequence similarity was detected in promoter regions of some ResD-controlled genes including fnr and resA. Single-base substitutions in the fnr and resA promoters were performed to determine a ResD-binding sequence. DNase I footprinting analysis indicated that ResD approximately P itself does not bind to fnr, but interaction of ResD approximately P with the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase (RNAP) facilitates cooperative binding of ResD approximately P and RNAP, thereby increasing fnr transcription initiation. Consistent with this result, amino acid substitutions in alphaCTD, such as Y263A, K267A, A269I, or N290A, sharply reduced fnr transcription in vivo, and the K267A alphaCTD protein, unlike the wild-type protein, did not increase ResD approximately P binding to the fnr promoter. Amino acid residues of alphaCTD required for ResD-dependent fnr transcription, with the exception of N290, which may interact with DNA, constitute a distinct surface, suggesting that these residues likely interact with ResD approximately P.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
35
|
Williams CL, Cotter PA. Autoregulation is essential for precise temporal and steady-state regulation by the Bordetella BvgAS phosphorelay. J Bacteriol 2006; 189:1974-82. [PMID: 17158656 PMCID: PMC1855725 DOI: 10.1128/jb.01684-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bordetella BvgAS virulence control system is prototypical of phosphorelays that use a polydomain sensor and a response regulator to control gene expression in response to environmental cues. BvgAS controls the expression of at least three distinct phenotypic phases (Bvg(-), Bvg(i), and Bvg(+)) by differentially regulating the expression of at least four classes of genes. Among the loci regulated by BvgAS is bvgAS itself. We investigated the role of autoregulation in the ability of BvgAS to control multiple gene expression patterns in a temporal and steady-state manner by constructing Bordetella bronchiseptica strains in which the bvgAS promoter was replaced with constitutively active promoters. Our results show that positive autoregulation of bvgAS transcription is required for the temporal expression of multiple phenotypic phases that occurs in response to a shift from Bvg(-)-phase conditions to Bvg(+)-phase conditions. Autoregulation was also shown to contribute to steady-state regulation; it influences the sensitivity of the system in response to subtle differences in signal intensity. In addition, considered in relation to BvgA and BvgS activities demonstrated in vitro, our results provide insight into how BvgA and BvgS function mechanistically.
Collapse
Affiliation(s)
- Corinne L Williams
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
36
|
Beier D, Gross R. Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 2006; 9:143-52. [PMID: 16481212 DOI: 10.1016/j.mib.2006.01.005] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 01/31/2006] [Indexed: 11/24/2022]
Abstract
In bacteria, two-component systems (TCS) are widely used signal transduction devices which are engaged in a multitude of gene regulatory systems that respond to changing growth conditions. Many pathogenic bacteria encounter different microenvironments during their infectious cycle and their ability to efficiently adapt to different niches inside and outside of their host organisms is frequently mediated by TCSs, which can, therefore, be considered as an essential prerequisite for their pathogenicity. Although significant progress has been made in the elucidation of basic principles of the signal transduction process itself, in many pathogens the contribution of TCS to bacterial virulence is insufficiently recognized.
Collapse
Affiliation(s)
- Dagmar Beier
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | | |
Collapse
|
37
|
Jones AM, Boucher PE, Williams CL, Stibitz S, Cotter PA. Role of BvgA phosphorylation and DNA binding affinity in control of Bvg-mediated phenotypic phase transition in Bordetella pertussis. Mol Microbiol 2006; 58:700-13. [PMID: 16238621 DOI: 10.1111/j.1365-2958.2005.04875.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the mechanism by which the Bordetella BvgAS phosphorelay controls expression of at least three distinct phenotypic phases, we isolated and characterized two B. pertussis mutants that were able to express Bvg- and Bvg(i) phase phenotypes but not Bvg+ phase phenotypes. In both cases, the mutant phenotype was due to a single nucleotide change in bvgA resulting in a single amino acid substitution in BvgA. In vitro phosphorylation assays showed that BvgA containing the T194M substitution was significantly impaired in its ability to use either BvgS or acetyl phosphate as a substrate for phosphorylation. Binding studies indicated that this mutant protein was able to bind an oligonucleotide containing a high-affinity BvgA binding site in a manner similar to wild-type BvgA, but was defective for binding the fhaB promoter in the absence of RNA polymerase (RNAP). By contrast, BvgA containing the R152H substitution had wild-type phosphorylation properties but was severely defective in its ability to bind either the high-affinity BvgA binding site-containing oligonucleotide or the fhaB promoter by itself. Both mutant BvgA proteins were able to bind the fhaB promoter in the presence of RNAP however, demonstrating the profound effect that RNAP has on stabilizing the ternary complexes between promoter DNA, BvgA and RNAP. Our results are consistent with the hypothesis that BvgAS controls expression of multiple phenotypic phases by adjusting the intracellular concentration of BvgA-P and they demonstrate the additive nature of BvgA binding site affinity and protein-protein interactions at different Bvg-regulated promoters.
Collapse
Affiliation(s)
- Allison M Jones
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93109-9610, USA
| | | | | | | | | |
Collapse
|
38
|
Mishra M, Deora R. Mode of action of the Bordetella BvgA protein: transcriptional activation and repression of the Bordetella bronchiseptica bipA promoter. J Bacteriol 2005; 187:6290-9. [PMID: 16159761 PMCID: PMC1236631 DOI: 10.1128/jb.187.18.6290-6299.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bordetella BvgAS signal transduction system controls the transition among at least three known phenotypic phases (Bvg+, Bvg(i), and Bvg-) and the expression of a number of genes which have distinct phase-specific expression profiles. This complex regulation of gene expression along the Bvg signaling continuum is best exemplified by the gene bipA, which is expressed at a low level in the Bvg+ phase, at a maximal level in the Bvg(i) phase, and at undetectable levels in the Bvg- phase. The bipA promoter has multiple BvgA binding sites which play distinct regulatory roles. We had previously speculated that the expression profile of bipA is a consequence of the differential occupancy of the various BvgA binding sites as a result of variation in the levels of phosphorylated BvgA (BvgA-P) inside the cell. In this report, we provide in vitro evidence for this model and show that bipA expression is activated at low concentrations of BvgA-P and is repressed at high concentrations. By using independent DNA binding assays, we demonstrate that under activating conditions there is a synergistic effect on the binding of BvgA and RNA polymerase (RNAP), leading to the formation of open complexes at the promoter. We further show that, under in vitro conditions, when bipA transcription is minimal, there is competition between the binding of RNAP and BvgA-P to the bipA promoter. Our results show that the BvgA binding site IR2 plays a central role in mediating this repression.
Collapse
Affiliation(s)
- Meenu Mishra
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Medical Center Blvd., Gray 5086, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
39
|
White CE, Winans SC. Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. Mol Microbiol 2005; 55:1473-86. [PMID: 15720554 DOI: 10.1111/j.1365-2958.2004.04482.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The LuxR-type quorum-sensing transcription factor TraR regulates replication and conjugal transfer of the tumour-inducing (Ti) plasmid in the plant pathogen Agrobacterium tumefaciens. TraR is a two-domain protein with an N-terminal domain that binds to the quorum-sensing signal N-3-oxooctanoyl- l-homoserine lactone (OOHL) and a C-terminal domain that binds to specific DNA sequences called tra boxes. TraR-OOHL complexes form homodimers that activate transcription of at least seven promoters on the Ti plasmid. At five promoters, a tra box overlaps the binding site of core RNA polymerase (class II promoters), while in the other two promoters, this site is located farther upstream (class I promoters). In this study, we performed saturating point mutagenesis of the surface residues of the TraR C-terminal domain. Each mutant was tested for proteolytic stability and transcription activity in vivo, and for DNA binding activity in vitro. Mutants of TraR with single substitutions at positions W184, V187, K189, E193Q, V197 and D217 have wild-type levels of accumulation and DNA binding, but are defective in transcription of both types of promoters. These residues constitute a patch on the surface of the DNA-binding domain. We propose that this patch is an activating region that recruits RNA polymerase to TraR-dependent promoters through direct contact. As residues of this patch are critical for activation at both a class I and a class II promoter, we predict that these residues may contact the C-terminal domain of the RNA polymerase alpha-subunit.
Collapse
Affiliation(s)
- Catharine E White
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
40
|
Gerlach G, Janzen S, Beier D, Gross R. Functional characterization of the BvgAS two-component system of Bordetella holmesii. MICROBIOLOGY-SGM 2005; 150:3715-3729. [PMID: 15528658 DOI: 10.1099/mic.0.27432-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The BvgAS two-component system is the master regulator of virulence gene expression in the mammalian pathogens Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. This paper reports the partial cloning and characterization of the bvgAS loci of the 'new' Bordetella species Bordetella holmesii, Bordetella trematum and Bordetella hinzii, which are increasingly recognized as opportunistic pathogens in humans. It is demonstrated that the cytoplasmic signalling domains of the BvgS histidine kinases of B. pertussis and B. holmesii are functionally interchangeable, while signal perception by the two sensor proteins seems to be different. Furthermore, it is shown that, despite the high similarity of the BvgA proteins of B. pertussis and B. holmesii, promoter recognition by the response regulator proteins differs substantially in these organisms.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Simone Janzen
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dagmar Beier
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Roy Gross
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
41
|
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326-82. [PMID: 15831828 PMCID: PMC1082800 DOI: 10.1128/cmr.18.2.326-382.2005] [Citation(s) in RCA: 812] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella respiratory infections are common in people (B. pertussis) and in animals (B. bronchiseptica). During the last two decades, much has been learned about the virulence determinants, pathogenesis, and immunity of Bordetella. Clinically, the full spectrum of disease due to B. pertussis infection is now understood, and infections in adolescents and adults are recognized as the reservoir for cyclic outbreaks of disease. DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussis. Future studies should seek to determine the cause of the unique cough which is associated with Bordetella respiratory infections. It is also hoped that data gathered from molecular Bordetella research will lead to a new generation of DTaP vaccines which provide greater efficacy than is provided by today's vaccines.
Collapse
Affiliation(s)
- Seema Mattoo
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1752, USA
| | | |
Collapse
|
42
|
Williams CL, Boucher PE, Stibitz S, Cotter PA. BvgA functions as both an activator and a repressor to control Bvgi phase expression of bipA in Bordetella pertussis. Mol Microbiol 2005; 56:175-88. [PMID: 15773988 DOI: 10.1111/j.1365-2958.2004.04526.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Bordetella bipA gene is expressed maximally when the BvgAS phosphorelay is semi-active, i.e. in the Bvg-intermediate (Bvg(i)) phase. We used a BvgA-FeBABE cleavage approach together with site-directed mutagenesis and bipA-lacZ fusion analyses to determine precisely where BvgA-phosphate (BvgA approximately P) binds at the bipA promoter and how that binding contributes to the complex transcription pattern displayed by bipA. BvgA approximately P bound with high affinity and cooperatively with RNAP to sequences at the bipA promoter immediately 5' to and overlapping those bound by RNAP to activate transcription under Bvg(i) phase conditions. bipA therefore, like fhaB, appears to be similar to classical class-II promoters with regard to the mechanism by which its transcription is activated. BvgA approximately P bound with relatively low affinity to sequences immediately 3' of those bound by RNAP at the bipA promoter and this binding mediated repression of bipA transcription under Bvg+ phase conditions. BvgA approximately P binding to these sequences occurred simultaneously, if not cooperatively, with RNAP, indicating that BvgA approximately P represses bipA expression by inhibiting transcription initiation and/or elongation, rather than by competing with RNAP for binding. As bipA is the first Bvg(i) phase gene to be characterized, and the first gene shown to be repressed by BvgA approximately P directly, our results will provide a basis for comparison as additional Bvg-regulated genes are identified and characterized.
Collapse
Affiliation(s)
- Corinne L Williams
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | | | |
Collapse
|
43
|
Grainger DC, Belyaeva TA, Lee DJ, Hyde EI, Busby SJW. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with the C-terminal domain of the RNA polymerase alpha subunit. Mol Microbiol 2004; 51:1311-20. [PMID: 14982626 DOI: 10.1111/j.1365-2958.2003.03930.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the role of the RNA polymerase alpha subunit during MelR-dependent activation of transcription at the Escherichia coli melAB promoter. To do this, we used a simplified melAB promoter derivative that is dependent on MelR binding at two 18 bp sites, located from position -34 to -51 and from position -54 to -71, upstream of the transcription start site. Results from experiments with hydroxyl radical footprinting, and with RNA polymerase, carrying alpha subunits that were tagged with a chemical nuclease, show that the C-terminal domains of the RNA polymerase alpha subunits are located near position -52 and near position -72 during transcription activation. We demonstrate that the C-terminal domain of the RNA polymerase alpha subunit is needed for open complex formation, and we describe two experiments showing that the RNA polymerase alpha subunit can interact with MelR. Finally, we used alanine scanning to identify determinants in the C-terminal domain of the RNA polymerase alpha subunit that are important for MelR-dependent activation of the melAB promoter.
Collapse
Affiliation(s)
- David C Grainger
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
44
|
Deora R. Multiple mechanisms of bipA gene regulation by the Bordetella BvgAS phosphorelay system. Trends Microbiol 2004; 12:63-5. [PMID: 15036321 DOI: 10.1016/j.tim.2003.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Medical Center Blvd. Gray Building, 5086 Winston-Salem, NC 27157, USA.
| |
Collapse
|
45
|
Kedzierska B, Lee DJ, Wegrzyn G, Busby SJW, Thomas MS. Role of the RNA polymerase alpha subunits in CII-dependent activation of the bacteriophage lambda pE promoter: identification of important residues and positioning of the alpha C-terminal domains. Nucleic Acids Res 2004; 32:834-41. [PMID: 14762211 PMCID: PMC373352 DOI: 10.1093/nar/gkh230] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacteriophage lambda CII protein stimulates the activity of three phage promoters, p(E), p(I) and p(aQ), upon binding to a site overlapping the -35 element at each promoter. Here we used preparations of RNA polymerase carrying a DNA cleavage reagent attached to specific residues in the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) to demonstrate that one alphaCTD binds near position -41 at p(E), whilst the other alphaCTD binds further upstream. The alphaCTD bound near position -41 is oriented such that its 261 determinant is in close proximity to sigma(70). The location of alphaCTD in CII-dependent complexes at the p(E) promoter is very similar to that found at many activator-independent promoters, and represents an alternative configuration for alphaCTD at promoters where activators bind sites overlapping the -35 region. We also used an in vivo alanine scan analysis to show that the DNA-binding determinant of alphaCTD is involved in stimulation of the p(E) promoter by CII, and this was confirmed by in vitro transcription assays. We also show that whereas the K271E substitution in alphaCTD results in a drastic decrease in CII-dependent activation of p(E), the p(I) and p(aQ) promoters are less sensitive to this substitution, suggesting that the role of alphaCTD at the three lysogenic promoters may be different.
Collapse
Affiliation(s)
- Barbara Kedzierska
- Division of Genomic Medicine, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK
| | | | | | | | | |
Collapse
|
46
|
Lee DJ, Busby SJW, Lloyd GS. Exploitation of a Chemical Nuclease to Investigate the Location and Orientation of the Escherichia coli RNA Polymerase α Subunit C-terminal Domains at Simple Promoters That Are Activated by Cyclic AMP Receptor Protein. J Biol Chem 2003; 278:52944-52. [PMID: 14530288 DOI: 10.1074/jbc.m308300200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal domain of the alpha subunit (alphaCTD) of bacterial RNA polymerase plays an important role in promoter recognition. It is known that alphaCTD binds to the DNA minor groove at different locations at different promoters via a surface-exposed determinant, the 265 determinant. Here we describe experiments that permit us to determine the location and orientation of binding of alphaCTD at any promoter. In these experiments, a DNA cleavage reagent is attached to specific locations on opposite faces of the RNA polymerase alpha subunit. After incorporation of the tagged alpha subunits into holo-RNA polymerase, patterns of DNA cleavage due to the reagent are determined in open complexes. The locations of DNA cleavage due to the reagent attached at different positions allow the position and orientation of alphaCTD to be deduced. Here we present data from experiments with simple Escherichia coli promoters that are activated by the cyclic AMP receptor protein.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, the University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
47
|
Merkel TJ, Boucher PE, Stibitz S, Grippe VK. Analysis of bvgR expression in Bordetella pertussis. J Bacteriol 2003; 185:6902-12. [PMID: 14617654 PMCID: PMC262712 DOI: 10.1128/jb.185.23.6902-6912.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 09/02/2003] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, produces a wide array of factors that are associated with its ability to cause disease. The expression and regulation of these virulence factors are dependent upon the bvg locus, which encodes three proteins: BvgA, a 23-kDa cytoplasmic protein; BvgS, a 135-kDa transmembrane protein; and BvgR, a 32-kDa protein. It is hypothesized that BvgS responds to environmental signals and interacts with BvgA, a transcriptional regulator, which upon modification by BvgS binds to specific promoters and activates transcription. An additional class of genes is repressed by the products of the bvg locus. The repression of these genes is dependent upon the third gene, bvgR. Expression of bvgR is dependent upon the function of BvgA and BvgS. This led to the hypothesis that the binding of phosphorylated BvgA to the bvgR promoter activates the expression of bvgR. We undertook an analysis of the transcriptional activation of bvgR expression. We identified the bvgR transcript by Northern blot analysis and identified the start site of transcription by primer extension. We determined that transcriptional activation of the bvgR promoter in an in vitro transcription system requires the addition of phosphorylated BvgA. Additionally, we have identified cis-acting regions that are required for BvgA activation of the bvgR promoter by in vitro footprinting and in vivo deletion and linker scanning analyses. A model of BvgA binding to the bvgR promoter is presented.
Collapse
Affiliation(s)
- Tod J Merkel
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Peggy A Cotter
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA.
| | | |
Collapse
|