1
|
Izert-Nowakowska MA, Klimecka MM, Antosiewicz A, Wróblewski K, Kowalski JJ, Bandyra KJ, Góral T, Kmiecik S, Serwa RA, Górna MW. Targeted protein degradation in Escherichia coli using CLIPPERs. EMBO Rep 2025:10.1038/s44319-025-00510-9. [PMID: 40562793 DOI: 10.1038/s44319-025-00510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2025] [Accepted: 06/05/2025] [Indexed: 06/28/2025] Open
Abstract
New, universal tools for targeted protein degradation in bacteria can help to accelerate protein function studies and antimicrobial research. We describe a new method for degrading bacterial proteins using plasmid-encoded degrader peptides which deliver target proteins for degradation by a highly conserved ClpXP protease. We demonstrate the mode of action of the degraders on a challenging essential target, GroEL. The studies in bacteria are complemented by in vitro binding and structural studies. Expression of degrader peptides results in a temperature-dependent growth inhibition and depletion of GroEL levels over time. The reduction of GroEL levels is accompanied by dramatic proteome alterations. The presented method offers a new alternative approach for regulating protein levels in bacteria without genomic modifications or tag fusions. Our studies demonstrate that ClpXP is an attractive protease for the future use in bacterial-targeted protein degradation.
Collapse
Affiliation(s)
- Matylda Anna Izert-Nowakowska
- Structural Biology Group, Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maria Magdalena Klimecka
- Structural Biology Group, Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anna Antosiewicz
- Structural Biology Group, Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Karol Wróblewski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jakub Józef Kowalski
- Structural Biology Group, Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Katarzyna Justyna Bandyra
- Structural Biology Group, Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Tomasz Góral
- Cryomicroscopy and Electron Diffraction Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | | | - Maria Wiktoria Górna
- Structural Biology Group, Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Gaur D, Acquaviva B, Wohlever ML. An Msp1-Protease Chimera Captures Transient AAA+ Interactions and Unveils Ost4 Mislocalization Errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646376. [PMID: 40236206 PMCID: PMC11996533 DOI: 10.1101/2025.03.31.646376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Membrane protein homeostasis (proteostasis) is essential for maintaining the integrity of eukaryotic organelles. Msp1 is a membrane anchored AAA+ (ATPase Associated with cellular Activities) protein that maintains mitochondrial proteostasis by extracting aberrant proteins from the outer mitochondrial membrane. A comprehensive understanding of the physiological roles of Msp1 has been hindered because AAA+ proteins interact with substrates transiently and common strategies to stabilize this interaction lead to undesirable mitochondrial phenotypes. To circumvent these drawbacks, we fused catalytically active Msp1 to the inactivated protease domain of the AAA+ protease Yme1. The resulting chimera sequesters substrates in the catalytically inactive degradation chamber formed by the protease domain. We performed mass spectrometry analysis with the Msp1-protease chimera and identified the signal anchored protein Ost4 as a novel Msp1 substrate. Topology experiments show that Ost4 adopts mixed orientations when mislocalized to mitochondria and that Msp1 extracts mislocalized Ost4 regardless of orientation. Together, this work develops new tools for capturing transient interactions with AAA+ proteins, identifies new Msp1 substrates, and shows a surprising error in targeting of Ost4.
Collapse
|
3
|
Feng Y, Goncalves MM, Jitkova Y, Keszei AFA, Yan Y, Sarathy C, St-Germain J, Kenney TMG, Tcheng M, Trudel V, Mancini RS, Upadhyay R, Hurren R, Gronda M, Schultz M, Soriano K, Lees K, Pomroy NC, Currie SQW, Privé GG, Reed MA, Yudin AK, Penn LZ, Arrowsmith CH, Raught B, Mazhab-Jafari MT, Vahidi S, Schimmer AD. Serine phosphorylation facilitates protein degradation by the human mitochondrial ClpXP protease. Proc Natl Acad Sci U S A 2025; 122:e2422447122. [PMID: 39879245 PMCID: PMC11804671 DOI: 10.1073/pnas.2422447122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival. Despite the critical role of ClpXP in mitochondrial protein quality control, the specific degrons, or modifications that tag substrate proteins for degradation by human ClpXP, are still unknown. We demonstrated that phosphorylated serine (pSer) targets substrates to ClpX and facilitates their degradation by ClpXP in biochemical assays. In contrast, ClpP hyperactivated by the small-molecule drug ONC201 lost the preference for phosphorylated substrates. Hydrogen deuterium exchange mass spectrometry combined with biochemical assays showed that pSer binds the RKL loop of ClpX. ClpX variants with substitutions in the RKL loop failed to recognize phosphorylated substrates. In intact cells, ClpXP also preferentially degraded substrates with pSer. Moreover, ClpX substrates with the pSer were selectively found in aggregated mitochondrial proteins. Our work uncovers a mechanism for substrate recognition by ClpXP, with implications for targeting acute myeloid leukemia and other disorders involving ClpXP dysfunction.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Monica M. Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | | | - Yongran Yan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Chaitra Sarathy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Tristan M. G. Kenney
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Matthew Tcheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Vincent Trudel
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Ross S. Mancini
- Krembil Brain Institute, University Health Network, Toronto, ONM5T 1M8, Canada
| | - Rahul Upadhyay
- Krembil Brain Institute, University Health Network, Toronto, ONM5T 1M8, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Matthew Schultz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Kaylen Soriano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Kaitlin Lees
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - Neil C. Pomroy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
| | - S. Quinn W. Currie
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Gilbert G. Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Mark A. Reed
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
- Krembil Brain Institute, University Health Network, Toronto, ONM5T 1M8, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Andrei K. Yudin
- Department of Chemistry, University of Toronto, Toronto, ONM5S 3H6, Canada
| | - Linda Z. Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| |
Collapse
|
4
|
Vassallo CN, Doering CR, Laub MT. Anti-viral defence by an mRNA ADP-ribosyltransferase that blocks translation. Nature 2024; 636:190-197. [PMID: 39443800 PMCID: PMC11618068 DOI: 10.1038/s41586-024-08102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Host-pathogen conflicts are crucibles of molecular innovation1,2. Selection for immunity to pathogens has driven the evolution of sophisticated immunity mechanisms throughout biology, including in bacterial defence against bacteriophages3. Here we characterize the widely distributed anti-phage defence system CmdTAC, which provides robust defence against infection by the T-even family of phages4. Our results support a model in which CmdC detects infection by sensing viral capsid proteins, ultimately leading to the activation of a toxic ADP-ribosyltransferase effector protein, CmdT. We show that newly synthesized capsid protein triggers dissociation of the chaperone CmdC from the CmdTAC complex, leading to destabilization and degradation of the antitoxin CmdA, with consequent liberation of the CmdT ADP-ribosyltransferase. Notably, CmdT does not target a protein, DNA or structured RNA, the known targets of other ADP-ribosyltransferases. Instead, CmdT modifies the N6 position of adenine in GA dinucleotides within single-stranded RNAs, leading to arrest of mRNA translation and inhibition of viral replication. Our work reveals a novel mechanism of anti-viral defence and a previously unknown but broadly distributed class of ADP-ribosyltransferases that target mRNA.
Collapse
Affiliation(s)
| | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
5
|
Gronauer TF, Eck LK, Ludwig C, Sieber SA. A Photocrosslinking Probe to Capture the Substrates of Caseinolytic Protease P. Angew Chem Int Ed Engl 2024; 63:e202409220. [PMID: 39073273 DOI: 10.1002/anie.202409220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Protein homeostasis in bacteria is regulated by proteases such as the tetradecameric caseinolytic protease P (ClpP). Although substrates of ClpP have been successfully deciphered in genetically engineered cells, methods which directly trap processed proteins within native cells remain elusive. Here, we introduce an in situ trapping strategy which utilizes trifunctional probes that bind to the active site serine of ClpP and capture adjacent substrates with an attached photocrosslinking moiety. After enrichment using an alkyne handle, substrate deconvolution by mass spectrometry (MS) is performed. We show that our two traps bind substoichiometrically to ClpP, retain protease activity, exhibit unprecedented selectivity for Staphylococcus aureus ClpP in living cells and capture numerous known and novel substrates. The exemplary validation of trapped hits using a targeted proteomics approach confirmed the fidelity of this technology. In conclusion, we provide a novel chemical platform suited for the discovery of serine protease substrates beyond genetic engineering.
Collapse
Affiliation(s)
- Thomas F Gronauer
- TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
- Current affiliation: Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Laura K Eck
- TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich (TUM), Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Stephan A Sieber
- TUM School of Natural Sciences, Department of Biosciences, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
6
|
Ghanbarpour A, Sauer RT, Davis JH. A proteolytic AAA+ machine poised to unfold protein substrates. Nat Commun 2024; 15:9681. [PMID: 39516482 PMCID: PMC11549327 DOI: 10.1038/s41467-024-53681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
AAA+ proteolytic machines unfold proteins before degrading them. Here, we present cryoEM structures of ClpXP-substrate complexes that reveal a postulated but heretofore unseen intermediate in substrate unfolding/degradation. A ClpX hexamer draws natively folded substrates tightly against its axial channel via interactions with a fused C-terminal degron tail and ClpX-RKH loops that flexibly conform to the globular substrate. The specific ClpX-substrate contacts observed vary depending on the substrate degron and affinity tags, helping to explain ClpXP's ability to unfold/degrade a wide array of different cellular substrates. Some ClpX contacts with native substrates are enabled by upward movement of the seam subunit in the AAA+ spiral, a motion coupled to a rearrangement of contacts between the ClpX unfoldase and ClpP peptidase. Our structures additionally highlight ClpX's ability to translocate a diverse array of substrate topologies, including the co-translocation of two polypeptide chains.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St Louis, 63130, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| |
Collapse
|
7
|
Smalakyte D, Ruksenaite A, Sasnauskas G, Tamulaitiene G, Tamulaitis G. Filament formation activates protease and ring nuclease activities of CRISPR Lon-SAVED. Mol Cell 2024; 84:4239-4255.e8. [PMID: 39362215 DOI: 10.1016/j.molcel.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024]
Abstract
To combat phage infection, type III CRISPR-Cas systems utilize cyclic oligoadenylates (cAn) signaling to activate various auxiliary effectors, including the CRISPR-associated Lon-SAVED protease CalpL, which forms a tripartite effector system together with an anti-σ factor, CalpT, and an ECF-like σ factor, CalpS. Here, we report the characterization of the Candidatus Cloacimonas acidaminovorans CalpL-CalpT-CalpS. We demonstrate that cA4 binding triggers CalpL filament formation and activates it to cleave CalpT within the CalpT-CalpS dimer. This cleavage exposes the CalpT C-degron, which targets it for further degradation by cellular proteases. Consequently, CalpS is released to bind to RNA polymerase, causing growth arrest in E. coli. Furthermore, the CalpL-CalpT-CalpS system is regulated by the SAVED domain of CalpL, which is a ring nuclease that cleaves cA4 in a sequential three-step mechanism. These findings provide key mechanistic details for the activation, proteolytic events, and regulation of the signaling cascade in the type III CRISPR-Cas immunity.
Collapse
Affiliation(s)
- Dalia Smalakyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania.
| |
Collapse
|
8
|
Ero R, Qiao Z, Tan KA, Gao YG. Structural insights into the membrane-bound proteolytic machinery of bacterial protein quality control. Biochem Soc Trans 2024; 52:2077-2086. [PMID: 39417347 DOI: 10.1042/bst20231250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
In bacteria and eukaryotic organelles of prokaryotic origin, ATP-dependent proteases are crucial for regulating protein quality control through substrate unfolding and degradation. Understanding the mechanism and regulation of this key cellular process could prove instrumental in developing therapeutic strategies. Very recently, cryo-electron microscopy structural studies have shed light on the functioning of AAA+ proteases, including membrane-bound proteolytic complexes. This review summarizes the structure and function relationship of bacterial AAA+ proteases, with a special focus on the sole membrane-bound AAA+ protease in Escherichia coli, FtsH. FtsH substrates include both soluble cytoplasmic and membrane-incorporated proteins, highlighting its intricate substrate recognition and processing mechanisms. Notably, 12 copies of regulatory HflK and HflC proteins, arranged in a cage-like structure embedded in the bacterial inner membrane, can encase up to 4 FtsH hexamers, thereby regulating their role in membrane protein quality control. FtsH represents an intriguing example, highlighting both its similarity to cytosolic AAA+ proteases with respect to overall architecture and oligomerization as well as its unique features, foremost its incorporation into a membrane-bound complex formed by HflK and HflC to mediate its function in protein quality control.
Collapse
Affiliation(s)
- Rya Ero
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Kwan Ann Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| |
Collapse
|
9
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
10
|
Takada H, Paternoga H, Fujiwara K, Nakamoto J, Park E, Dimitrova-Paternoga L, Beckert B, Saarma M, Tenson T, Buskirk A, Atkinson G, Chiba S, Wilson D, Hauryliuk V. A role for the S4-domain containing protein YlmH in ribosome-associated quality control in Bacillus subtilis. Nucleic Acids Res 2024; 52:8483-8499. [PMID: 38811035 PMCID: PMC11317155 DOI: 10.1093/nar/gkae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.
Collapse
Affiliation(s)
- Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Department of Biotechnology, Toyama Prefectural University,5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Bertrand Beckert
- Dubochet Center for Imaging (DCI) at EPFL, EPFL SB IPHYS DCI, Lausanne, Switzerland
| | - Merilin Saarma
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University and Institute for Protein Dynamics, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
- Virus Centre, Lund University, Lund, Sweden
- Science for Life Laboratory, Lund, Sweden
| |
Collapse
|
11
|
Mettert EL, Kiley PJ. Fe-S cluster homeostasis and beyond: The multifaceted roles of IscR. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119749. [PMID: 38763301 PMCID: PMC11309008 DOI: 10.1016/j.bbamcr.2024.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
The role of IscR in regulating the transcription of genes involved in Fe-S cluster homeostasis has been well established for the model organism Escherichia coli K12. In this bacterium, IscR coordinates expression of the Isc and Suf Fe-S cluster assembly pathways to meet cellular Fe-S cluster demands shaped by a variety of environmental cues. However, since its initial discovery nearly 25 years ago, there has been growing evidence that IscR function extends well beyond Fe-S cluster homeostasis, not only in E. coli, but in bacteria of diverse lifestyles. Notably, pathogenic bacteria have exploited the ability of IscR to respond to changes in oxygen tension, oxidative and nitrosative stress, and iron availability to navigate their trajectory in their respective hosts as changes in these cues are frequently encountered during host infection. In this review, we highlight these broader roles of IscR in different cellular processes and, in particular, discuss the importance of IscR as a virulence factor for many bacterial pathogens.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Gupta M, Johnson ANT, Cruz ER, Costa EJ, Guest RL, Li SHJ, Hart EM, Nguyen T, Stadlmeier M, Bratton BP, Silhavy TJ, Wingreen NS, Gitai Z, Wühr M. Global protein turnover quantification in Escherichia coli reveals cytoplasmic recycling under nitrogen limitation. Nat Commun 2024; 15:5890. [PMID: 39003262 PMCID: PMC11246515 DOI: 10.1038/s41467-024-49920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
Protein turnover is critical for proteostasis, but turnover quantification is challenging, and even in well-studied E. coli, proteome-wide measurements remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins under 13 conditions by combining heavy isotope labeling with complement reporter ion quantification and find that cytoplasmic proteins are recycled when nitrogen is limited. We use knockout experiments to assign substrates to the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these proteases are responsible for the observed cytoplasmic protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in E. coli remains to be discovered. Lastly, we show that protein degradation rates are generally independent of cell division rates. Thus, we present broadly applicable technology for protein turnover measurements and provide a rich resource for protein half-lives and protease substrates in E. coli, complementary to genomics data, that will allow researchers to study the control of proteostasis.
Collapse
Affiliation(s)
- Meera Gupta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Alex N T Johnson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Edward R Cruz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eli J Costa
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Elizabeth M Hart
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Thao Nguyen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael Stadlmeier
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin P Bratton
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Mets T, Kurata T, Ernits K, Johansson MJO, Craig SZ, Evora GM, Buttress JA, Odai R, Wallant KC, Nakamoto JA, Shyrokova L, Egorov AA, Doering CR, Brodiazhenko T, Laub MT, Tenson T, Strahl H, Martens C, Harms A, Garcia-Pino A, Atkinson GC, Hauryliuk V. Mechanism of phage sensing and restriction by toxin-antitoxin-chaperone systems. Cell Host Microbe 2024; 32:1059-1073.e8. [PMID: 38821063 DOI: 10.1016/j.chom.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.
Collapse
Affiliation(s)
- Toomas Mets
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Karin Ernits
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Marcus J O Johansson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Sophie Z Craig
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Gabriel Medina Evora
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Jessica A Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Roni Odai
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kyo Coppieters't Wallant
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Jose A Nakamoto
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Lena Shyrokova
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Artyom A Egorov
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | | | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Chloe Martens
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, 1050 Bruxelles, Belgium
| | - Alexander Harms
- ETH Zurich, Institute of Food, Nutrition and Health, 8092 Zürich, Switzerland
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Gemma C Atkinson
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; Virus Centre, Lund University, Lund, Sweden.
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia; Virus Centre, Lund University, Lund, Sweden; Science for Life Laboratory, Lund, Sweden.
| |
Collapse
|
14
|
Beardslee PC, Schmitz KR. Toxin-based screening of C-terminal tags in Escherichia coli reveals the exceptional potency of ssrA-like degrons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.576913. [PMID: 38352471 PMCID: PMC10862746 DOI: 10.1101/2024.01.29.576913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
All bacteria possess ATP-dependent proteases that destroy cytosolic proteins. These enzymes help cells mitigate proteotoxic stress, adapt to changing nutrient availability, regulate virulence phenotypes, and transition to pathogenic lifestyles. Moreover, ATP-dependent proteases have emerged as promising antibacterial and antivirulence targets in a variety of pathogens. The physiological roles of these proteases are largely defined by the complement of proteins that they degrade. Substrates are typically recognized in a highly selective manner, often via short unstructured sequences termed degrons. While a few degrons have been identified and rigorously characterized, we lack a systematic understanding of how proteases select valid degrons from the vast complexity of protein sequence space. Here, we describe a novel high-throughput screening approach in Escherichia coli that couples proteolysis of a protein toxin to cell survival. We used this method to screen a combinatorial library of C-terminal pentapeptide sequences for functionality as proteolytic degrons in wild type E. coli, and in strains lacking components of the ClpXP and ClpAP proteases. By examining the competitive enrichment of sequences over time, we found that about one percent of pentapeptide tags lead to toxin proteolysis. Interestingly, the most enriched degrons were ClpXP-dependent and highly similar to the ssrA tag, one of the most extensively characterized degrons in bacteria. Among ssrA-like sequences, we observed that specific upstream residues correlate with successful recognition. The lack of diversity among strongly enriched sequences suggests that ssrA-like tags comprise a uniquely potent class of short C-terminal degron in E. coli. Efficient proteolysis of substrates lacking such degrons likely requires adaptors or multivalent interactions. These findings broaden our understanding of the constraints that shape the bacterial proteolytic landscape. Our screening approach may be broadly applicable to probing aspects of proteolytic substrate selection in other bacterial systems.
Collapse
Affiliation(s)
- Patrick C. Beardslee
- Department of Chemistry & Biochemistry, University of Delaware, Newark DE, 19716
| | - Karl R. Schmitz
- Department of Chemistry & Biochemistry, University of Delaware, Newark DE, 19716
- Department of Biological Sciences, University of Delaware, Newark DE, 19716
| |
Collapse
|
15
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. PNAS NEXUS 2024; 3:pgae154. [PMID: 38650860 PMCID: PMC11034885 DOI: 10.1093/pnasnexus/pgae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important are unclear. In this study, we show that CdnL is down-regulated posttranslationally during starvation in a manner dependent on SpoT and the ClpXP protease. Artificial stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Cronan GE, Kuzminov A. Degron-Controlled Protein Degradation in Escherichia coli: New Approaches and Parameters. ACS Synth Biol 2024; 13:669-682. [PMID: 38317378 DOI: 10.1021/acssynbio.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.
Collapse
Affiliation(s)
- Glen E Cronan
- Department of Microbiology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Gurung V, Biswas S, Biswas I. Diverse nature of ClpX degradation motifs in Streptococcus mutans. Microbiol Spectr 2024; 12:e0345723. [PMID: 38051052 PMCID: PMC10782952 DOI: 10.1128/spectrum.03457-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cytoplasmic Clp-related proteases play a major role in maintaining cellular proteome in bacteria. ClpX/P is one such proteolytic complex that is important for conserving protein homeostasis. In this study, we investigated the role of ClpX/P in Streptococcus mutans, an important oral pathogen. We identified several putative substrates whose cellular levels are regulated by ClpX/P in S. mutans and subsequently discovered several recognition motifs that are critical for degradation. Our study is the first comprehensive analysis of determining ClpX/P motifs in streptococci. We believe that identifying the substrates that are regulated by ClpX/P will enhance our understanding about virulence regulation in this important group of pathogens.
Collapse
Affiliation(s)
- Vivek Gurung
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
18
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
19
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572625. [PMID: 38187569 PMCID: PMC10769358 DOI: 10.1101/2023.12.20.572625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers (p)ppGpp, which affect transcription by binding RNA polymerase to downregulate anabolic genes. (p)ppGpp also impacts expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important is unclear. Here, we show that CdnL is downregulated post-translationally during starvation in a manner dependent on SpoT and the ClpXP protease. Inappropriate stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Gaäl Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland, 1211
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- BlueRock Therapeutics, Cambridge, Massachusetts, 02142 (current)
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland, 1211
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| |
Collapse
|
20
|
Ghanbarpour A, Sauer RT, Davis JH. A proteolytic AAA+ machine poised to unfold a protein substrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571662. [PMID: 38168193 PMCID: PMC10760120 DOI: 10.1101/2023.12.14.571662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
AAA+ proteolytic machines unfold proteins prior to degradation. Cryo-EM of a ClpXP-substrate complex reveals a postulated but heretofore unseen intermediate in substrate unfolding/degradation. The natively folded substrate is drawn tightly against the ClpX channel by interactions between axial pore loops and the substrate degron tail, and by contacts with the native substrate that are, in part, enabled by movement of one ClpX subunit out of the typically observed hexameric spiral.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
21
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
22
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
23
|
Cronan GE, Kuzminov A. Degron-controlled protein degradation in Escherichia coli: New Approaches and Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566101. [PMID: 37986802 PMCID: PMC10659297 DOI: 10.1101/2023.11.08.566101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Protein degron tags have proven uniquely useful for characterization of gene function. Degrons mediate quick depletion, usually within minutes, of a protein of interest - allowing researchers to characterize cellular responses to the loss of function. To develop a general purpose degron tool in E. coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect "off-to-on" induction response. Using this system, we demonstrated control over several enzymes of DNA metabolism, but also found with other substates apparent limitations of a SspB-dependent system. Several degron target proteins were degraded too slowly to affect their complete depletion during active growth, whereas others appeared completely refractory to degron-promoted degradation. We demonstrated that a model substrate, beta-galactosidase, was positively recognized as a degron substrate, but failed to be degraded by the ClpXP protease - demonstrating an apparently unknown mechanism of protease resistance. Thus, only a minority of our, admittedly biased, selection of degron substates proved amenable to rapid SspB-catalyzed degradation. We conclude that substrate-dependence of the SspB system remains a critical factor for the success of this degron system. For substrates that prove degradable, we provide a series of titratable SspB-expression vehicles.
Collapse
Affiliation(s)
- Glen E. Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Suzuki K, Kubota Y, Kaneko K, Kamata CC, Furuyama K. CLPX regulates mitochondrial fatty acid β-oxidation in liver cells. J Biol Chem 2023; 299:105210. [PMID: 37660922 PMCID: PMC10556790 DOI: 10.1016/j.jbc.2023.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial fatty acid oxidation (β-oxidation) is an essential metabolic process for energy production in eukaryotic cells, but the regulatory mechanisms of this pathway are largely unknown. In the present study, we found that several enzymes involved in β-oxidation are associated with CLPX, the AAA+ unfoldase that is a component of the mitochondrial matrix protease ClpXP. The suppression of CLPX expression increased β-oxidation activity in the HepG2 cell line and in primary human hepatocytes without glucagon treatment. However, the protein levels of enzymes involved in β-oxidation did not significantly increase in CLPX-deleted HepG2 cells (CLPX-KO cells). Coimmunoprecipitation experiments revealed that the protein level in the immunoprecipitates of each antibody changed after the treatment of WT cells with glucagon, and a part of these changes was also observed in the comparison of WT and CLPX-KO cells without glucagon treatment. Although the exogenous expression of WT or ATP-hydrolysis mutant CLPX suppressed β-oxidation activity in CLPX-KO cells, glucagon treatment induced β-oxidation activity only in CLPX-KO cells expressing WT CLPX. These results suggest that the dissociation of CLPX from its target proteins is essential for the induction of β-oxidation in HepG2 cells. Moreover, specific phosphorylation of AMP-activated protein kinase and a decrease in the expression of acetyl-CoA carboxylase 2 were observed in CLPX-KO cells, suggesting that CLPX might participate in the regulation of the cytosolic signaling pathway for β-oxidation. The mechanism for AMP-activated protein kinase phosphorylation remains elusive; however, our results uncovered the hitherto unknown role of CLPX in mitochondrial β-oxidation in human liver cells.
Collapse
Affiliation(s)
- Ko Suzuki
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoshiko Kubota
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kiriko Kaneko
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan
| | | | - Kazumichi Furuyama
- Department of Molecular Biochemistry, Iwate Medical University, Yahaba, Iwate, Japan.
| |
Collapse
|
25
|
Ogbonna EC, Anderson HR, Beardslee PC, Bheemreddy P, Schmitz KR. Interactome Analysis Identifies MSMEI_3879 as a Substrate of Mycolicibacterium smegmatis ClpC1. Microbiol Spectr 2023; 11:e0454822. [PMID: 37341639 PMCID: PMC10433963 DOI: 10.1128/spectrum.04548-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
The prevalence of drug-resistant Mycobacterium tuberculosis infections has prompted extensive efforts to exploit new drug targets in this globally important pathogen. ClpC1, the unfoldase component of the essential ClpC1P1P2 protease, has emerged as one particularly promising antibacterial target. However, efforts to identify and characterize compounds that impinge on ClpC1 activity are constrained by our limited knowledge of Clp protease function and regulation. To expand our understanding of ClpC1 physiology, we employed a coimmunoprecipitation and mass spectrometry workflow to identify proteins that interact with ClpC1 in Mycolicibacterium smegmatis, a surrogate for M. tuberculosis. We identify a diverse panel of interaction partners, many of which coimmunoprecipitate with both the regulatory N-terminal domain and the ATPase core of ClpC1. Notably, our interactome analysis establishes MSMEI_3879, a truncated gene product unique to M. smegmatis, as a novel proteolytic substrate. Degradation of MSMEI_3879 by ClpC1P1P2 in vitro requires exposure of its N-terminal sequence, reinforcing the idea that ClpC1 selectively recognizes disordered motifs on substrates. Fluorescent substrates incorporating MSMEI_3879 may be useful in screening for novel ClpC1-targeting antibiotics to help address the challenge of M. tuberculosis drug resistance. IMPORTANCE Drug-resistant tuberculosis infections are a major challenge to global public health. Much effort has been invested in identifying new drug targets in the causative pathogen, Mycobacterium tuberculosis. One such target is the ClpC1 unfoldase. Compounds have been identified that kill M. tuberculosis by disrupting ClpC1 activity, yet the physiological function of ClpC1 in cells has remained poorly defined. Here, we identify interaction partners of ClpC1 in a model mycobacterium. By building a broader understanding of the role of this prospective drug target, we can more effectively develop compounds that inhibit its essential cellular activities.
Collapse
Affiliation(s)
- Emmanuel C. Ogbonna
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Henry R. Anderson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Patrick C. Beardslee
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Priyanka Bheemreddy
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Karl R. Schmitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
26
|
Ku RH, Li LH, Liu YF, Hu EW, Lin YT, Lu HF, Yang TC. Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA299-356-Mediated Decrease of Oxidative Stress Tolerance in Stenotrophomonas maltophilia. Microbiol Spectr 2023; 11:e0108023. [PMID: 37284772 PMCID: PMC10433810 DOI: 10.1128/spectrum.01080-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal β-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to β-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.
Collapse
Affiliation(s)
- Ren-Hsuan Ku
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fu Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - En-Wei Hu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
27
|
Makaros Y, Raiff A, Timms RT, Wagh AR, Gueta MI, Bekturova A, Guez-Haddad J, Brodsky S, Opatowsky Y, Glickman MH, Elledge SJ, Koren I. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol Cell 2023; 83:1921-1935.e7. [PMID: 37201526 PMCID: PMC10237035 DOI: 10.1016/j.molcel.2023.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Although most eukaryotic proteins are targeted for proteasomal degradation by ubiquitination, a subset have been demonstrated to undergo ubiquitin-independent proteasomal degradation (UbInPD). However, little is known about the molecular mechanisms driving UbInPD and the degrons involved. Utilizing the GPS-peptidome approach, a systematic method for degron discovery, we found thousands of sequences that promote UbInPD; thus, UbInPD is more prevalent than currently appreciated. Furthermore, mutagenesis experiments revealed specific C-terminal degrons required for UbInPD. Stability profiling of a genome-wide collection of human open reading frames identified 69 full-length proteins subject to UbInPD. These included REC8 and CDCA4, proteins which control proliferation and survival, as well as mislocalized secretory proteins, suggesting that UbInPD performs both regulatory and protein quality control functions. In the context of full-length proteins, C termini also play a role in promoting UbInPD. Finally, we found that Ubiquilin family proteins mediate the proteasomal targeting of a subset of UbInPD substrates.
Collapse
Affiliation(s)
- Yaara Makaros
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Richard T Timms
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, Cambridgeshire CB2 0AW, UK
| | - Ajay R Wagh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Mor Israel Gueta
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aizat Bekturova
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Julia Guez-Haddad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yarden Opatowsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
28
|
Xu W, Sun C, Gao W, Scharf DH, Zhu C, Bu Q, Zhao Q, Li Y. Degradation mechanism of AtrA mediated by ClpXP and its application in daptomycin production in Streptomyces roseosporus. Protein Sci 2023; 32:e4617. [PMID: 36882943 PMCID: PMC10031807 DOI: 10.1002/pro.4617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The efficiency of drug biosynthesis depends on different transcriptional regulatory pathways in Streptomyces, and the protein degradation system adds another layer of complexity to the regulatory processes. AtrA, a transcriptional regulator in the A-factor regulatory cascade, stimulates the production of daptomycin by binding to the dptE promoter in Streptomyces roseosporus. Using pull-down assays, bacterial two-hybrid system and knockout verification, we demonstrated that AtrA is a substrate for ClpP protease. Furthermore, we showed that ClpX is necessary for AtrA recognition and subsequent degradation. Bioinformatics analysis, truncating mutation, and overexpression proved that the AAA motifs of AtrA were essential for initial recognition in the degradation process. Finally, overexpression of mutated atrA (AAA-QQQ) in S. roseosporus increased the yield of daptomycin by 225% in shake flask and by 164% in the 15 L bioreactor. Thus, improving the stability of key regulators is an effective method to promote the ability of antibiotic synthesis.
Collapse
Affiliation(s)
- Wei‐Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Chen‐Fan Sun
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Wen‐Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Daniel H. Scharf
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Chen‐Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Qing‐Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Qing‐Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
| | - Yong‐Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| |
Collapse
|
29
|
Dougan DA, Truscott KN. Affinity isolation and biochemical characterization of N-degron ligands using the N-recognin, ClpS. Methods Enzymol 2023. [PMID: 37532398 DOI: 10.1016/bs.mie.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherichia coli the principal N-degron pathway is known as the Leu/N-degron pathway. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr). All Leu/N-degron substrates are recognized by the adaptor protein, ClpS and delivered to the ClpAP protease for degradation. Although many components of the pathway are well defined, the physiological role of this pathway remains poorly understood. To address this gap in knowledge we developed a biospecific affinity chromatography technique to isolate physiological substrates of the Leu/N-degron pathway. In this chapter we describe the use of peptide arrays to determine the binding specificity of ClpS. We demonstrate how the information obtained from the peptide array, when coupled with ClpS affinity chromatography, can be used to specifically elute physiological Leu/N-degron ligands from a bacterial lysate. These techniques are illustrated using E. coli ClpS (EcClpS), but both are broadly suitable for application to related N-recognins and systems, not only for the determination of N-recognin specificity, but also for the identification of natural Leu/N-degron ligands from various bacterial and plant species that contain ClpS homologs.
Collapse
|
30
|
Hari SB, Morehouse JP, Baker TA, Sauer RT. FtsH degrades kinetically stable dimers of cyclopropane fatty acid synthase via an internal degron. Mol Microbiol 2023; 119:101-111. [PMID: 36456794 PMCID: PMC9851988 DOI: 10.1111/mmi.15009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Targeted protein degradation plays important roles in stress responses in all cells. In E. coli, the membrane-bound AAA+ FtsH protease degrades cytoplasmic and membrane proteins. Here, we demonstrate that FtsH degrades cyclopropane fatty acid (CFA) synthase, whose synthesis is induced upon nutrient deprivation and entry into stationary phase. We find that neither the disordered N-terminal residues nor the structured C-terminal residues of the kinetically stable CFA-synthase dimer are required for FtsH recognition and degradation. Experiments with fusion proteins support a model in which an internal degron mediates FtsH recognition as a prelude to unfolding and proteolysis. These findings elucidate the terminal step in the life cycle of CFA synthase and provide new insight into FtsH function.
Collapse
|
31
|
Azadmanesh J, Seleem MA, Struble L, Wood NA, Fisher DJ, Lovelace JJ, Artigues A, Fenton AW, Borgstahl GEO, Ouellette SP, Conda-Sheridan M. The structure of caseinolytic protease subunit ClpP2 reveals a functional model of the caseinolytic protease system from Chlamydia trachomatis. J Biol Chem 2023; 299:102762. [PMID: 36463962 PMCID: PMC9823225 DOI: 10.1016/j.jbc.2022.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted. Although crucial for chlamydial development and the design of agents to treat chlamydia, the structures of ctClpP1 and ctClpP2 have yet to be solved. Here, we report the first crystal structure of full-length ClpP2 as an inactive homotetradecamer in a complex with a candidate antibiotic at 2.66 Å resolution. The structure details the functional domains of the ClpP2 protein subunit and includes the handle domain, which is integral to proteolytic activation. In addition, hydrogen-deuterium exchange mass spectroscopy probed the dynamics of ClpP2, and molecular modeling of ClpP1 predicted an assembly with ClpP2. By leveraging previous enzymatic experiments, we constructed a model of ClpP2 activation and its interaction with the protease subunits ClpP1 and ClpX. The structural information presented will be relevant for future rational drug design against these targets and will lead to a better understanding of ClpP complex formation and activation within this important human pathogen.
Collapse
Affiliation(s)
- Jahaun Azadmanesh
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mohamed A Seleem
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lucas Struble
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nicholas A Wood
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Derek J Fisher
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Jeffrey J Lovelace
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gloria E O Borgstahl
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, Nebraska, USA
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
32
|
Xu W, Gao W, Bu Q, Li Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules 2022; 12:biom12121848. [PMID: 36551276 PMCID: PMC9775585 DOI: 10.3390/biom12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Hundreds of proteins work together in microorganisms to coordinate and control normal activity in cells. Their degradation is not only the last step in the cell's lifespan but also the starting point for its recycling. In recent years, protein degradation has been extensively studied in both eukaryotic and prokaryotic organisms. Understanding the degradation process is essential for revealing the complex regulatory network in microorganisms, as well as further artificial reconstructions and applications. This review will discuss several studies on protein quality-control family members Lon, FtsH, ClpP, the proteasome in Streptomyces, and a few classical model organisms, mainly focusing on their structure, recognition mechanisms, and metabolic influences.
Collapse
Affiliation(s)
- Weifeng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Wenli Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qingting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
33
|
Aljghami ME, Barghash MM, Majaesic E, Bhandari V, Houry WA. Cellular functions of the ClpP protease impacting bacterial virulence. Front Mol Biosci 2022; 9:1054408. [PMID: 36533084 PMCID: PMC9753991 DOI: 10.3389/fmolb.2022.1054408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/15/2022] [Indexed: 09/28/2023] Open
Abstract
Proteostasis mechanisms significantly contribute to the sculpting of the proteomes of all living organisms. ClpXP is a central AAA+ chaperone-protease complex present in both prokaryotes and eukaryotes that facilitates the unfolding and subsequent degradation of target substrates. ClpX is a hexameric unfoldase ATPase, while ClpP is a tetradecameric serine protease. Substrates of ClpXP belong to many cellular pathways such as DNA damage response, metabolism, and transcriptional regulation. Crucially, disruption of this proteolytic complex in microbes has been shown to impact the virulence and infectivity of various human pathogenic bacteria. Loss of ClpXP impacts stress responses, biofilm formation, and virulence effector protein production, leading to decreased pathogenicity in cell and animal infection models. Here, we provide an overview of the multiple critical functions of ClpXP and its substrates that modulate bacterial virulence with examples from several important human pathogens.
Collapse
Affiliation(s)
- Mazen E. Aljghami
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Marim M. Barghash
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Emily Majaesic
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Ogawa A, Kojima F, Miyake Y, Yoshimura M, Ishijima N, Iyoda S, Sekine Y, Yamanaka Y, Yamamoto K. Regulation of constant cell elongation and Sfm pili synthesis in Escherichia coli via two active forms of FimZ orphan response regulator. Genes Cells 2022; 27:657-674. [PMID: 36057789 DOI: 10.1111/gtc.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Escherichia coli (E. coli) has multiple copies of the chaperone-usher (CU) pili operon in five fimbria groups: CU pili, curli, type IV pili, type III secretion pili, and type IV secretion pili. Commensal E. coli K-12 contains 12 CU pili operons. Among these operons, Sfm is expressed by the sfmACDHF operon. Transcriptome analyses, reporter assays, and chromatin immunoprecipitation PCR analyses reported that FimZ directly binds to and activates the sfmA promoter, transcribing sfmACDHF. In addition, FimZ regularly induces constant cell elongation in E. coli, which is required for F-type ATPase function. The bacterial two-hybrid system showed a specific interaction between FimZ and the α subunit of the cytoplasmic F1 domain of F-type ATPase. Studies performed using mutated FimZs have revealed two active forms, I and II. Active form I is required for constant cell elongation involving amino acid residues K106 and D109. Active form II additionally required D56, a putative phosphorylation site, to activate the sfmA promoter. The chromosomal fimZ was hardly expressed in parent strain but functioned in phoB and phoP double-gene knockout strains. These insights may help to understand bacterial invasion restricted host environments by the sfm γ-type pili.
Collapse
Affiliation(s)
- Ayano Ogawa
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Fumika Kojima
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Yukari Miyake
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Microbial Physiology Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Miho Yoshimura
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
| | - Nozomi Ishijima
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Tokyo, Japan
- Nippon Dental University School of Dentistry, Tokyo, Japan
| | | |
Collapse
|
35
|
Anand D, Jakkala K, Nair RR, Sharan D, Pradhan A, Mukkayyan N, Ajitkumar P. Complete identity and expression of StfZ, the cis-antisense RNA to the mRNA of the cell division gene ftsZ, in Escherichia coli. Front Microbiol 2022; 13:920117. [PMID: 36338044 PMCID: PMC9628754 DOI: 10.3389/fmicb.2022.920117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria regulate FtsZ protein levels through transcriptional and translational mechanisms for proper cell division. A cis-antisense RNA, StfZ, produced from the ftsA-ftsZ intergenic region, was proposed to regulate FtsZ level in Escherichia coli. However, its structural identity remained unknown. In this study, we determined the complete sequence of StfZ and identified the isoforms and its promoters. We find that under native physiological conditions, StfZ is expressed at a 1:6 ratio of StfZ:ftsZ mRNA at all growth phases from three promoters as three isoforms of 366, 474, and 552 nt RNAs. Overexpression of StfZ reduces FtsZ protein level, increases cell length, and blocks cell division without affecting the ftsZ mRNA stability. We did not find differential expression of StfZ under the stress conditions of heat shock, cold shock, or oxidative stress, or at any growth phase. These data indicated that the cis-encoded StfZ antisense RNA to ftsZ mRNA may be involved in the fine tuning of ftsZ mRNA levels available for translation as per the growth-phase-specific requirement at all phases of growth and cell division.
Collapse
Affiliation(s)
- Deepak Anand
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Biology, Lund University, Lund, Sweden
- *Correspondence: Deepak Anand,
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Rashmi Ravindran Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Deepti Sharan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbiology, The University of Chicago, Chicago, IL, United States
| | - Atul Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Nagaraja Mukkayyan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | | |
Collapse
|
36
|
Walker SD, Olivares AO. The activated ClpP peptidase forcefully grips a protein substrate. Biophys J 2022; 121:3907-3916. [PMID: 36045571 PMCID: PMC9674977 DOI: 10.1016/j.bpj.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ∼160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.
Collapse
Affiliation(s)
- Steven D Walker
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Adrian O Olivares
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
37
|
Zhang Y, Wang Y, Wei W, Wang M, Jia S, Yang M, Ge F. Proteomic analysis of the regulatory networks of ClpX in a model cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2022; 13:994056. [PMID: 36247581 PMCID: PMC9560874 DOI: 10.3389/fpls.2022.994056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Protein homeostasis is tightly regulated by protein quality control systems such as chaperones and proteases. In cyanobacteria, the ClpXP proteolytic complex is regarded as a representative proteolytic system and consists of a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. However, the functions and molecular mechanisms of ClpX in cyanobacteria remain unclear. This study aimed to decipher the unique contributions and regulatory networks of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We showed that the interruption of clpX led to slower growth, decreased high light tolerance, and impaired photosynthetic cyclic electron transfer. A quantitative proteomic strategy was employed to globally identify ClpX-regulated proteins in Synechocystis cells. In total, we identified 172 differentially expressed proteins (DEPs) upon the interruption of clpX. Functional analysis revealed that these DEPs are involved in diverse biological processes, including glycolysis, nitrogen assimilation, photosynthetic electron transport, ATP-binding cassette (ABC) transporters, and two-component signal transduction. The expression of 24 DEPs was confirmed by parallel reaction monitoring (PRM) analysis. In particular, many hypothetical or unknown proteins were found to be regulated by ClpX, providing new candidates for future functional studies on ClpX. Together, our study provides a comprehensive ClpX-regulated protein network, and the results serve as an important resource for understanding protein quality control systems in cyanobacteria.
Collapse
Affiliation(s)
- Yumeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaqi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Characterization of the Emerging Enteropathogen Escherichia Albertii Isolated from Urine Samples of Patients Attending Sapporo Area Hospitals, Japan. Int J Microbiol 2022; 2022:4236054. [PMID: 36160913 PMCID: PMC9507761 DOI: 10.1155/2022/4236054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, Escherichia albertii has been identified as a causative agent of diarrhea in humans and is often misidentified as diarrheagenic Escherichia coli (DEC), a lactose-nondegrading bacterium. In this study, we performed biochemical characterization, gene possession status, drug susceptibility testing, and sequencing analysis of the strains detected in urine samples. One urea-degrading strain was detected in terms of biochemical characteristics, but was found to be nonurea-degrading by another method, leading to conflicting results. All target strains possessed the E. albertii-specific gene, the DEC common gene eae, and the E. coli 16S rRNA gene. In the drug susceptibility test, all urine-derived strains were sensitive to tetracycline (TC), whereas the JCM 17328 strain was resistant to TC, suggesting that TC is effective against urine-derived E. albertii strains. In 16S rRNA sequencing analysis, the E. albertii strains were ranked at the top of homology, but not in the top one, making it difficult to differentiate them from other strains. In summary, if a suspected lactose-nondegrading E. coli strain was isolated from a urine sample, it could be differentiated from E. albertii by the presence of E. albertii-specific genes.
Collapse
|
39
|
Vobruba S, Kadlcik S, Janata J, Kamenik Z. TldD/TldE peptidases and N-deacetylases: A structurally unique yet ubiquitous protein family in the microbial metabolism. Microbiol Res 2022; 265:127186. [PMID: 36155963 DOI: 10.1016/j.micres.2022.127186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Here we provide a review on TldD/TldE family proteins, summarizing current knowledge and outlining further research perspectives. Despite being widely distributed in bacteria and archaea, TldD/TldE proteins have been escaping attention for a long time until several recent reports pointed to their unique features. Specifically, TldD/TldE generally act as peptidases, though some of them turned out to be N-deacetylases. Biological function of TldD/TldE has been extensively described in bacterial specialized metabolism, in which they participate in the biosynthesis of lincosamide antibiotics (as N-deacetylases), and in the biosynthesis of ribosomally synthesized and post-translationally modified bioactive peptides (as peptidases). These enzymes possess special position in the relevant biosynthesis since they convert non-bioactive intermediates into bioactive metabolites. Further, based on a recent study of Escherichia coli TldD/TldE, these heterodimeric metallopeptidases possess a new protein fold exhibiting several structural features with no precedent in the Protein Data Bank. The most interesting ones are structural elements forming metal-containing active site on the inner surface of the catalytically active subunit TldD, in which substrates bind through β sheet interactions in the sequence-independent manner. It results in relaxed substrate specificity of TldD/TldE, which is counterbalanced by enclosing the active centre within the hollow core of the heterodimer and only appropriate substrates can entry through a narrow channel. Based on the published data, we hypothesize a yet unrecognized central metabolic function of TldD/TldE in the degradation of (partially) unfolded proteins, i.e., in protein quality control.
Collapse
Affiliation(s)
- Simon Vobruba
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Stanislav Kadlcik
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Jiri Janata
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic
| | - Zdenek Kamenik
- Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic.
| |
Collapse
|
40
|
The Bacterial ClpXP-ClpB Family Is Enriched with RNA-Binding Protein Complexes. Cells 2022; 11:cells11152370. [PMID: 35954215 PMCID: PMC9368063 DOI: 10.3390/cells11152370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the matrix of bacteria/mitochondria/chloroplasts, Lon acts as the degradation machine for soluble proteins. In stress periods, however, proteostasis and survival depend on the strongly conserved Clp/Hsp100 family. Currently, the targets of ATP-powered unfoldases/disaggregases ClpB and ClpX and of peptidase ClpP heptameric rings are still unclear. Trapping experiments and proteome profiling in multiple organisms triggered confusion, so we analyzed the consistency of ClpP-trap targets in bacteria. We also provide meta-analyses of protein interactions in humans, to elucidate where Clp family members are enriched. Furthermore, meta-analyses of mouse complexomics are provided. Genotype–phenotype correlations confirmed our concept. Trapping, proteome, and complexome data retrieved consistent coaccumulation of CLPXP with GFM1 and TUFM orthologs. CLPX shows broad interaction selectivity encompassing mitochondrial translation elongation, RNA granules, and nucleoids. CLPB preferentially attaches to mitochondrial RNA granules and translation initiation components; CLPP is enriched with them all and associates with release/recycling factors. Mutations in CLPP cause Perrault syndrome, with phenotypes similar to defects in mtDNA/mtRNA. Thus, we propose that CLPB and CLPXP are crucial to counteract misfolded insoluble protein assemblies that contain nucleotides. This insight is relevant to improve ClpP-modulating drugs that block bacterial growth and for the treatment of human infertility, deafness, and neurodegeneration.
Collapse
|
41
|
SmiA is a hybrid priming/scaffolding adaptor for the LonA protease in Bacillus subtilis. J Biol Chem 2022; 298:102045. [PMID: 35595098 PMCID: PMC9204741 DOI: 10.1016/j.jbc.2022.102045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
Regulatory proteolysis targets properly folded clients via a combination of cis-encoded degron sequences and trans-expressed specificity factors called adaptors. SmiA of Bacillus subtilis was identified as the first adaptor protein for the Lon family of proteases, but the mechanism of SmiA-dependent proteolysis is unknown. Here, we develop a fluorescence-based assay to measure the kinetics of SmiA-dependent degradation of its client SwrA and show that SmiA–SwrA interaction and the SwrA degron were both necessary, but not sufficient, for proteolysis. Consistent with a scaffolding adaptor mechanism, we found that stoichiometric excess of SmiA caused substrate-independent inhibition of LonA-dependent turnover. Furthermore, SmiA was strictly required even when SwrA levels were high suggesting that a local increase in substrate concentration mediated by the scaffold was not sufficient for proteolysis. Moreover, SmiA function could not be substituted by thermal denaturation of the substrate, consistent with a priming adaptor mechanism. Taken together, we conclude that SmiA functions via a mechanism that is a hybrid between scaffolding and priming models.
Collapse
|
42
|
Ge Z, Yuan P, Chen L, Chen J, Shen D, She Z, Lu Y. New Global Insights on the Regulation of the Biphasic Life Cycle and Virulence Via ClpP-Dependent Proteolysis in Legionella pneumophila. Mol Cell Proteomics 2022; 21:100233. [PMID: 35427813 PMCID: PMC9112007 DOI: 10.1016/j.mcpro.2022.100233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila, an environmental bacterium that parasitizes protozoa, causes Legionnaires’ disease in humans that is characterized by severe pneumonia. This bacterium adopts a distinct biphasic life cycle consisting of a nonvirulent replicative phase and a virulent transmissive phase in response to different environmental conditions. Hence, the timely and fine-tuned expression of growth and virulence factors in a life cycle–dependent manner is crucial for survival and replication. Here, we report that the completion of the biphasic life cycle and bacterial pathogenesis is greatly dependent on the protein homeostasis regulated by caseinolytic protease P (ClpP)-dependent proteolysis. We characterized the ClpP-dependent dynamic profiles of the regulatory and substrate proteins during the biphasic life cycle of L. pneumophila using proteomic approaches and discovered that ClpP-dependent proteolysis specifically and conditionally degraded the substrate proteins, thereby directly playing a regulatory role or indirectly controlling cellular events via the regulatory proteins. We further observed that ClpP-dependent proteolysis is required to monitor the abundance of fatty acid biosynthesis–related protein Lpg0102/Lpg0361/Lpg0362 and SpoT for the normal regulation of L. pneumophila differentiation. We also found that the control of the biphasic life cycle and bacterial virulence is independent. Furthermore, the ClpP-dependent proteolysis of Dot/Icm (defect in organelle trafficking/intracellular multiplication) type IVB secretion system and effector proteins at a specific phase of the life cycle is essential for bacterial pathogenesis. Therefore, our findings provide novel insights on ClpP-dependent proteolysis, which spans a broad physiological spectrum involving key metabolic pathways that regulate the transition of the biphasic life cycle and bacterial virulence of L. pneumophila, facilitating adaptation to aquatic and intracellular niches. ClpP is the major determinant of biphasic life cycle–dependent protein turnover. ClpP-dependent proteolysis monitors SpoT abundance for cellular differentiation. ClpP-dependent regulation of life cycle and bacterial virulence is independent. ClpP-dependent proteolysis of T4BSS and effector proteins is vital for virulence.
Collapse
Affiliation(s)
- Zhenhuang Ge
- School of Chemistry, Sun Yat-sen University, Guangzhou, China; School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Peibo Yuan
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lingming Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junyi Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China
| | - Dong Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Lu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Run Ze Laboratory for Gastrointestinal Microbiome Study, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Viola MG, Perdikari TM, Trebino CE, Rahmani N, Mathews KL, Pena CM, Chua XY, Xuan B, LaBreck CJ, Fawzi NL, Camberg JL. An enhancer sequence in the intrinsically disordered region of FtsZ promotes polymer-guided substrate processing by ClpXP protease. Protein Sci 2022; 31:e4306. [PMID: 35481648 PMCID: PMC8996474 DOI: 10.1002/pro.4306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The essential bacterial division protein in Escherichia coli, FtsZ, assembles into the FtsZ-ring at midcell and recruits other proteins to the division site to promote septation. A region of the FtsZ amino acid sequence that links the conserved polymerization domain to a C-terminal protein interaction site was predicted to be intrinsically disordered and has been implicated in modulating spacing and architectural arrangements of FtsZ filaments. While the majority of cell division proteins that directly bind to FtsZ engage either the polymerization domain or the C-terminal interaction site, ClpX, the recognition and unfolding component of the bacterial ClpXP proteasome, has a secondary interaction with the predicted intrinsically disordered region (IDR) of FtsZ when FtsZ is polymerized. Here, we use NMR spectroscopy and reconstituted degradation reactions in vitro to demonstrate that this linker region is indeed disordered in solution and, further, that amino acids in the IDR of FtsZ enhance the degradation in polymer-guided interactions.
Collapse
Affiliation(s)
- Marissa G. Viola
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | | | - Catherine E. Trebino
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Negar Rahmani
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Kaylee L. Mathews
- Molecular Biology, Cell Biology, & Biochemistry Graduate ProgramBrown UniversityProvidenceRhode IslandUSA
| | - Carolina Mejia Pena
- Molecular Biology, Cell Biology, & Biochemistry Graduate ProgramBrown UniversityProvidenceRhode IslandUSA
| | - Xien Yu Chua
- Department of Molecular Pharmacology, Physiology & BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | - Botai Xuan
- Department of Molecular Pharmacology, Physiology & BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | - Christopher J. LaBreck
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| | - Nicolas L. Fawzi
- Department of Molecular Pharmacology, Physiology & BiotechnologyBrown UniversityProvidenceRhode IslandUSA
| | - Jodi L. Camberg
- Department of Cell and Molecular BiologyUniversity of Rhode IslandKingstonRhode IslandUSA
| |
Collapse
|
44
|
Olenic S, Heo L, Feig M, Kroos L. Inhibitory proteins block substrate access by occupying the active site cleft of Bacillus subtilis intramembrane protease SpoIVFB. eLife 2022; 11:e74275. [PMID: 35471152 PMCID: PMC9042235 DOI: 10.7554/elife.74275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Intramembrane proteases (IPs) function in numerous signaling pathways that impact health, but elucidating the regulation of membrane-embedded proteases is challenging. We examined inhibition of intramembrane metalloprotease SpoIVFB by proteins BofA and SpoIVFA. We found that SpoIVFB inhibition requires BofA residues in and near a predicted transmembrane segment (TMS). This segment of BofA occupies the SpoIVFB active site cleft based on cross-linking experiments. SpoIVFB inhibition also requires SpoIVFA. The inhibitory proteins block access of the substrate N-terminal region to the membrane-embedded SpoIVFB active site, based on additional cross-linking experiments; however, the inhibitory proteins did not prevent interaction between the substrate C-terminal region and the SpoIVFB soluble domain. We built a structural model of SpoIVFB in complex with BofA and parts of SpoIVFA and substrate, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that conserved BofA residues interact to stabilize a TMS and a membrane-embedded C-terminal region. The model also predicts that SpoIVFA bridges the BofA C-terminal region and SpoIVFB, forming a membrane-embedded inhibition complex. Our results reveal a novel mechanism of IP inhibition with clear implications for relief from inhibition in vivo and design of inhibitors as potential therapeutics.
Collapse
Affiliation(s)
| | - Lim Heo
- Michigan State UniversityEast LansingUnited States
| | - Michael Feig
- Michigan State UniversityEast LansingUnited States
| | - Lee Kroos
- Michigan State UniversityEast LansingUnited States
| |
Collapse
|
45
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
46
|
Sauer RT, Fei X, Bell TA, Baker TA. Structure and function of ClpXP, a AAA+ proteolytic machine powered by probabilistic ATP hydrolysis. Crit Rev Biochem Mol Biol 2022; 57:188-204. [PMID: 34923891 PMCID: PMC9871882 DOI: 10.1080/10409238.2021.1979461] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ClpXP is an archetypical AAA+ protease, consisting of ClpX and ClpP. ClpX is an ATP-dependent protein unfoldase and polypeptide translocase, whereas ClpP is a self-compartmentalized peptidase. ClpXP is currently the only AAA+ protease for which high-resolution structures exist, the molecular basis of recognition for a protein substrate is understood, extensive biochemical and genetic analysis have been performed, and single-molecule optical trapping has allowed direct visualization of the kinetics of substrate unfolding and translocation. In this review, we discuss our current understanding of ClpXP structure and function, evaluate competing sequential and probabilistic mechanisms of ATP hydrolysis, and highlight open questions for future exploration.
Collapse
Affiliation(s)
- Robert T. Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xue Fei
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tristan A. Bell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tania A. Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
47
|
Lénon M, Arias-Cartín R, Barras F. The Fe-S proteome of Escherichia coli: prediction, function and fate. Metallomics 2022; 14:6555457. [PMID: 35349713 DOI: 10.1093/mtomcs/mfac022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic ubiquitous and ancient cofactors. Fe-S bound proteins contribute to most cellular processes, including DNA replication and integrity, genetic expression and regulation, metabolism, biosynthesis and most bioenergetics systems. Also, Fe-S proteins hold a great biotechnological potential in metabolite and chemical production, including antibiotics. From classic biophysics and spectroscopy methodologies to recent development in bioinformatics, including structural modeling and chemoproteomics, our capacity to predict and identify Fe-S proteins has spectacularly increased over the recent years. Here, these developments are presented and collectively used to update the composition of Escherichia coli Fe-S proteome, for which we predict 181 occurrences, i.e. 40 more candidates than in our last catalog (Py and Barras, 2010), and equivalent to 4% of its total proteome. Besides, Fe-S clusters can be targeted by redox active compounds or reactive oxygen and nitrosative species, and even be destabilized by contaminant metals. Accordingly, we discuss how cells handle damaged Fe-S proteins, i.e. degradation, recycling or repair.
Collapse
Affiliation(s)
- Marine Lénon
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| | - Rodrigo Arias-Cartín
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| | - Frédéric Barras
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, F-75015 Paris, France
| |
Collapse
|
48
|
Abstract
Regulated proteolysis is where AAA+ ATPases (ClpX, ClpC, and ClpE) are coupled to a protease subunit (ClpP) to facilitate degradation of misfolded and native regulatory proteins in the cell. The process is intricately linked to protein quality control and homeostasis and modulates several biological processes. In streptococci, regulated proteolysis is vital to various functions, including virulence expression, competence development, bacteriocin production, biofilm formation, and stress responses. Among the various Clp ATPases, ClpX is the major one that recognizes specific amino acid residues in its substrates and delivers them to the ClpP proteolytic chamber for degradation. While multiple ClpX substrates have been identified in Escherichia coli and other bacteria, little is known about the identity of these substrates in streptococci. Here, we used a preliminary proteomic analysis to identify putative ClpX substrates using Streptococcus mutans as a model organism. SMU.961 is one such putative substrate where we identified the Glu-Lue-Gln (ELQ) motif at the C terminus that is recognized by ClpX/P. We identified several other proteins, including MecA, which also harbor ELQ and are degraded by ClpX/P. This is surprising since MecA is known to be degraded by ClpC/P in Bacillus subtilis; however, ClpX/P-mediated MecA degradation is unknown. We also identified Glu and Gln as the crucial residues for ClpX recognition. Our data indicate a species and perhaps strain-specific recognition of ELQ by streptococcal ClpX/P. At present, we do not know whether this species-dependent degradation by ClpX/P is unique to S. mutans, and we are currently examining the phenomenon in other pathogenic streptococci. IMPORTANCE ClpX/P is a major intracellular proteolytic complex that is responsible for protein quality control in the cell. ClpX, an AAA+ ATPase, distinguishes the potential substrates by recognizing short motifs at the C-terminal end of proteins and delivers the substrates for degradation by ClpP protease. The identity of these ClpX substrates, which varies greatly among bacteria, is known only for a few well-studied species. Here, we used Streptococcus mutans as a model organism to identify ClpX substrates. We found that a short motif of three residues is successfully recognized by ClpX/P. Interestingly, the motif is not present at the ultimate C-terminal end; rather it is present close to the end. This result suggests that streptococcal ClpX ATPase can recognize internal motifs.
Collapse
|
49
|
Mabanglo MF, Houry WA. Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules. J Biol Chem 2022; 298:101781. [PMID: 35245501 PMCID: PMC9035409 DOI: 10.1016/j.jbc.2022.101781] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Nguyen T, Gronauer TF, Nast‐Kolb T, Sieber SA, Lang K. Substrate Profiling of Mitochondrial Caseinolytic Protease P via a Site-Specific Photocrosslinking Approach. Angew Chem Int Ed Engl 2022; 61:e202111085. [PMID: 34847623 PMCID: PMC9306725 DOI: 10.1002/anie.202111085] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Approaches for profiling protease substrates are critical for defining protease functions, but remain challenging tasks. We combine genetic code expansion, photocrosslinking and proteomics to identify substrates of the mitochondrial (mt) human caseinolytic protease P (hClpP). Site-specific incorporation of the diazirine-bearing amino acid DiazK into the inner proteolytic chamber of hClpP, followed by UV-irradiation of cells, allows to covalently trap substrate proteins of hClpP and to substantiate hClpP's major involvement in maintaining overall mt homeostasis. In addition to confirming many of the previously annotated hClpP substrates, our approach adds a diverse set of new proteins to the hClpP interactome. Importantly, our workflow allows identifying substrate dynamics upon application of external cues in an unbiased manner. Identification of unique hClpP-substrate proteins upon induction of mt oxidative stress, suggests that hClpP counteracts oxidative stress by processing of proteins that are involved in respiratory chain complex synthesis and maturation as well as in catabolic pathways.
Collapse
Affiliation(s)
- Tuan‐Anh Nguyen
- Department of ChemistryGroup of Synthetic BiochemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Thomas F. Gronauer
- Center for Protein Assemblies (CPA)Department of ChemistryChair of Organic Chemistry IITechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Timon Nast‐Kolb
- Center for Protein Assemblies (CPA) and Lehrstuhl für Biophysik (E27)Physics DepartmentTechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Stephan A. Sieber
- Center for Protein Assemblies (CPA)Department of ChemistryChair of Organic Chemistry IITechnical University of MunichLichtenbergstr. 485748GarchingGermany
| | - Kathrin Lang
- Department of ChemistryGroup of Synthetic BiochemistryTechnical University of MunichLichtenbergstr. 485748GarchingGermany
- Laboratory of Organic ChemistryDepartment of Chemistry and Applied BiosciencesChair of Chemical BiologyETH ZürichVladimir-Prelog-Weg 38093ZurichSwitzerland
| |
Collapse
|