1
|
Barberoux V, Anzil A, Meinertzhagen L, Nguyen-Dinh T, Servais P, George IF. Spatio-temporal dynamics of bacterial community composition in a Western European watershed, the Meuse River watershed. FEMS Microbiol Ecol 2025; 101:fiaf022. [PMID: 40042978 PMCID: PMC11916896 DOI: 10.1093/femsec/fiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to identify factors influencing bacterial diversity in the Meuse River watershed by analyzing 42 locations sampled in spring and summer 2019, combined with biweekly sampling of one mid-stream location for a year. Bacterial community composition (BCC) was assessed in the small (SF; <5 µm) and large fractions (LF; ≥5 µm,), alongside physico-chemical parameters. LF consistently exhibited greater alpha diversity than SF. During the spatial campaigns, alpha diversity increased downstream in spring with high discharge, and BCC differed significantly between headwaters and the main river. Along this axis, several genera, Flavobacterium, Limnohabitans, and Aquirufa stood out as indicators of good water quality. Rhodoferax, another taxon indicative of good water quality, prevailed in the headwaters and during winter. In contrast, two cyanobacteria genera indicators of poor river quality, Microcystis PCC 7914 and Cyanobium PCC 6307, peaked in summer. BCC in spring and summer temporal samples aligned with spatial ones, while winter and autumn samples had distinct BCC. Finally, season, temperature, and distance from river mouth were the main driving parameters of beta diversity, outweighing the effect of fraction size on the BCC. These findings reinforce the notion that local conditions exert significant influence on bacterial communities in rivers.
Collapse
Affiliation(s)
- Valentin Barberoux
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
- Laboratory of Marine Biology, Faculty of Sciences, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Adriana Anzil
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Loïc Meinertzhagen
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Thanh Nguyen-Dinh
- Greening Laboratory, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Pierre Servais
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| |
Collapse
|
2
|
Lü Z, Su L, Han M, Wang X, Li M, Wang S, Cui S, Chen J, Yang B. Genomic characteristics and virulence of common but overlooked Yersinia intermedia, Y. frederiksenii, and Y. kristensenii in food. Int J Food Microbiol 2025; 430:111052. [PMID: 39798383 DOI: 10.1016/j.ijfoodmicro.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
Yersinia intermedia, Y. frederiksenii, and Y. kristensenii are a group of pathogens that are commonly found in food and are often overlooked in terms of their pathogenic potential. This study conducted a systematic and comprehensive genomic analysis of 114 Y. intermedia genomes, 20 Y. frederiksenii genomes, and 65 Y. kristensenii genomes from public database and our previous study. The results showed that these species were most frequently detected in Europe (56.28 %, 112/199), followed by in Asia (20.6 %, 41/199). Additionally, 33.17 % (66/199) genomes were isolated from food. Y. intermedia were grouped into Bayesian analysis of population structure (Baps) groups 3 and 4, demonstrating significant genomic diversity. This species has a high proportion of accessory genes (79.43 %), approximately 50 % of which have unknown functions, indicating a high degree of genomic plasticity. The three species carried a large number of mobile genetic elements (MGEs), including plasmids such as ColRNAI_1, ColE10_1, Col440II_1, Col440I_1, and Col (Ye4449) _1; insertion sequences (ISs) like MITEYpe1, MITEEc1, and IS1635; genomic islands (GIs); and prophages. In Y. intermedia, the following antibiotics resistance genes (ARGs) were detected: qnrD1 in 3.51 % (4/114), aph(3')-Ia in 2.63 % (3/114), blaA in 1.75 % (2/114), and catA1, vat(F), and tet(C) each in 0.88 % (1/114). In Y. kristensenii, vat(F) was present in 98.46 % (64/65), blaTEM-116 in 7.69 % (5/65), and aph(3')-Ia in 1.54 % (1/65). However, only one Y. frederiksenii genome carried vat(F). There were differences in the virulence gene composition of the three species, with Y. kristensenii having the highest number of virulence genes, particularly its complete cytotoxic genes (yaxA and yaxB) and flagellar motor proteins genes (motA and motB). The pathogenic mechanisms of Y. intermedia and Y. frederiksenii were more similar, especially in the carriage of O-antigen related genes. Y. frederiksenii's unique mechanisms also include the yapC gene, which encodes the autotransporter protein YapC from Y. pestis. After co-cultured with human colonic epithelial cell lines Caco-2 and HT-29, Y. intermedia and Y. kristensenii demonstrated different adhesive and invasive capabilities, particularly the Y. intermedia strain y7, which exhibited stronger adhesion and invasion in both cell lines. In strains y118 and y119 of Y. intermedia, an Arg378del mutation in the UreC protein was identified, resulting in the loss of urease activity. Therefore, this study revealed the pathogenic potential of Y. intermedia, Y. frederiksenii, and Y. kristensenii. Future research should focus on identifying their unknown virulence genes and strengthening public food safety measures to mitigate potential risks.
Collapse
Affiliation(s)
- Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengting Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Jia Chen
- Shijiazhuang University, Shijiazhuang 050035, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Kislichkina AA, Sizova AA, Skryabin YP, Dentovskaya SV, Anisimov AP. Evaluation of 16S rRNA genes sequences and genome-based analysis for identification of non-pathogenic Yersinia. Front Microbiol 2025; 15:1519733. [PMID: 39845053 PMCID: PMC11753223 DOI: 10.3389/fmicb.2024.1519733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
16S rRNA genes sequencing has been used for routine species identification and phylogenetic studies of bacteria. However, the high sequence similarity between some species and heterogeneity within copies at the intragenomic level could be a limiting factor of discriminatory ability. In this study, we aimed to compare 16S rRNA genes sequences and genome-based analysis (core SNPs and ANI) for identification of non-pathogenic Yersinia. We used complete and draft genomes of 373 Yersinia strains from the NCBI Genome database. The taxonomic affiliations of 34 genomes based on core SNPs and the ANI results did not match those specified in the GenBank database (NCBI). The intragenic homology of the 16S rRNA gene copies exceeded 99.5% in complete genomes, but above 50% of genomes have four or more variants of the 16S rRNA gene. Among 327 draft genomes of non-pathogenic Yersinia, 11% did not have a full-length 16S rRNA gene. Most of draft genomes has one copy of gene and it is not possible to define the intragenomic heterogenicity. The average homology of 16S rRNA gene was 98.76%, and the maximum variability was 2.85%. The low degree of genetic heterogenicity of the gene (0.36%) was determined in group Y. pekkanenii/Y. proxima/Y. aldovae/Y. intermedia/Y. kristensenii/Y. rochesterensis. The identical gene sequences were found in the genomes of the Y. intermedia and Y. rochesterensis strains identified using ANI and core SNPs analyses. The phylogenetic tree based on 16S rRNA genes differed from the tree based on core SNPs of the genomes and did not represent phylogenetic relationship between the Yersinia species. These findings will help to fill the data gaps in genome characteristics of deficiently studied non-pathogenic Yersinia.
Collapse
Affiliation(s)
- Angelina A. Kislichkina
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Angelika A. Sizova
- Department of Culture Collection, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Yury P. Skryabin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| |
Collapse
|
4
|
Bertelloni F, Cagnoli G, Ebani VV. Survey on the Occurrence of Zoonotic Bacterial Pathogens in the Feces of Wolves ( Canis lupus italicus) Collected in a Protected Area in Central Italy. Microorganisms 2024; 12:2367. [PMID: 39597755 PMCID: PMC11596315 DOI: 10.3390/microorganisms12112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Previous investigations have explored the involvement of wolves in parasitic and viral diseases, but data on the zoonotic bacteria are limited. The aim of this study was to assess the occurrence of bacterial zoonotic agents in 16 wolf (Canis lupus italicus) fecal samples collected in a protected area in Central Italy. Campylobacter spp., Salmonella spp., Yersinia spp., Listeria monocytogenes, and Shiga Toxin-Producing Escherichia coli (STEC) were investigated by culture, while polymerase chain reaction (PCR) was employed to detect Coxiella burnetii, Mycobacterium spp., Brucella spp., and Francisella tularensis. The presence of Extended Spectrum β-Lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae was also evaluated, using selective isolation media and detection of antimicrobial resistance genes. All samples were negative for Campylobacter spp., Salmonella spp., C. burnetii, Mycobacterium spp., Brucella spp., F. tularensis, and carbapenemase-producing Enterobacteriaceae. One sample tested positive for Yersinia aldovae and three for Yersinia enterocolitica BT1A. One L. monocytogenes (serogroup IIa) and one STEC, carrying the stx1 gene, were isolated. Two ESBL isolates were detected: one Serratia fonticola, carrying blaFONA-3/6 gene, and one Escherichia coli, carrying blaCTX-M-1 gene. Both ESBL isolates were resistant to different antimicrobials and therefore classified as multi-drug-resistant. Our data suggest that wolves are potential carriers of zoonotic bacteria and may contribute to the environmental contamination through their feces.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
| | - Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
- Centre for Climate Change Impact, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Vilela FP, Imori PFM, Allard MW, Falcão JP. Insights into the genomic traits of Yersinia frederiksenii, Yersinia intermedia and Yersinia kristensenii isolated from diverse sources in Brazil. Antonie Van Leeuwenhoek 2024; 117:86. [PMID: 38829455 DOI: 10.1007/s10482-024-01984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.
Collapse
Affiliation(s)
- Felipe Pinheiro Vilela
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Priscilla Fernanda Martins Imori
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marc William Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Juliana Pfrimer Falcão
- Brazilian Reference Center on Yersinia spp. other than Y. pestis, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
6
|
Huang S, Li Y, Hong C, Jin Y, Li S, Xu X, Xia Y, Zhang L, Lou Y, Guan W. Whole-genome sequencing-based analysis of antimicrobial resistance, virulence factors, and genetic diversity in Yersinia isolated in Wenzhou, China 2020. Mol Phylogenet Evol 2023; 188:107903. [PMID: 37574177 DOI: 10.1016/j.ympev.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.
Collapse
Affiliation(s)
- Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Yi Li
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| | - Chengji Hong
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xuelian Xu
- Yuhang Center for Disease Control and Prevention, Yuhang, China.
| | - Yanmei Xia
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Fang X, Kang L, Qiu YF, Li ZS, Bai Y. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 2023; 13:1129996. [PMID: 36968108 PMCID: PMC10031030 DOI: 10.3389/fcimb.2023.1129996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn’s disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- *Correspondence: Zhao-Shen Li, ; Yu Bai,
| |
Collapse
|
8
|
Ojasanya RA, Gardner IA, Groman D, Saksida S, Saab ME, Thakur KK. Development and validation of main spectral profile for rapid identification of Yersinia ruckeri isolated from Atlantic salmon using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Front Vet Sci 2022; 9:1031373. [PMID: 36337185 PMCID: PMC9630595 DOI: 10.3389/fvets.2022.1031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and reliable identification of microorganisms. The accuracy of bacterial identification using MALDI-TOF MS depends on main spectral profiles (MSPs) provided in a quality-assured commercial reference library, which requires ongoing improvement. This study aimed to develop and validate an in-house MALDI-TOF MS MSP to rapidly identify Yersinia ruckeri isolated from Atlantic salmon (Salmo salar). The novel MSP was prepared using an isolate of Y. ruckeri recovered from Atlantic salmon and confirmed by 16S rRNA gene sequencing. Subsequently, a validation set which comprises 29 isolates of Y. ruckeri were examined from three fishes: Atlantic salmon (Salmo salar) (n = 26), American eel (Anguilla rostrata) (n = 1), and Atlantic cod (Gadus morhua) (n = 2). These isolates were randomly selected from the Atlantic Veterinary College, Aquatic Diagnostic Services Bacteriology Laboratory's culture collection to validate the novel MSP. Analytical sensitivity of MALDI-TOF MS using the novel MSP to identify the validation set was 86.2%. Repeatability was assessed by acquiring spectra from 30 different spots of a randomly-selected isolate of Y. ruckeri, and analyzed spectra from each spot were compared against the novel MSP. The coefficient of variation was 3.3%. The novel MSP clustered with Bruker MSPs (n = 3) of Y. ruckeri in the reference library and did not falsely identify any closely related bacteria to Y. ruckeri. This study reports the development of a novel MSP of high analytical sensitivity and specificity for rapid identification of Y. ruckeri using MALDI-TOF MS.
Collapse
Affiliation(s)
- Rasaq A. Ojasanya
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
- *Correspondence: Rasaq A. Ojasanya
| | - Ian A. Gardner
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - David Groman
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Sonja Saksida
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Matthew E. Saab
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
- Aquatic Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Krishna K. Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
9
|
Prevalence, bio-serotype, antibiotic susceptibility and genotype of Yersinia enterocolitica and other Yersinia species isolated from retail and processed meats in Shaanxi Province, China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Mancini ME, Beverelli M, Donatiello A, Didonna A, Dattoli L, Faleo S, Occhiochiuso G, Galante D, Rondinone V, Del Sambro L, Bianco A, Miccolupo A, Goffredo E. Isolation and characterization of Yersinia enterocolitica from foods in Apulia and Basilicata regions (Italy) by conventional and modern methods. PLoS One 2022; 17:e0268706. [PMID: 35830422 PMCID: PMC9278756 DOI: 10.1371/journal.pone.0268706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/05/2022] [Indexed: 12/03/2022] Open
Abstract
Yersiniosis is the third most reported food-borne zoonosis in Europe. The aim of the present study was to perform the search for Yersinia enterocolitica in food samples collected from Apulia and Basilicata regions (Southern Italy) and to characterize any isolates by classical and modern analytical methods. A total of 130 samples were analyzed between July 2018 and July 2019: most of them were raw milk and dairy products made from it. Furthermore, 8 out of 130 samples were individual milk samples collected from bovines reared in a Brucella-free farm which showed false positive serological reaction for brucellosis due to the presence of pathogenic Y. enterocolitica O:9 biotype 2 in faeces. The Real Time PCR targeting the ail gene and the culture method were performed to detect pathogenic Y. enterocolitica. Isolates were subjected to API 20E (Biomerieux) and MALDI-TOF MS (Matrix Assisted Laser Desorption Ionization Time-of-Flight) for species identification. All samples were negative for the ail gene. The culture method allowed to isolate suspicious colonies from 28 samples. The API 20E system and the MALDI-TOF MS technique identified 20 Y. enterocolitica and 1 Y. intermedia in a concordant way. The remaining 7 strains were all identified as Y. enterocolitica by the API 20E system, while the MALDI-TOF MS recognized 4 Y. intermedia, 1 Y. bercovieri and 2 Y. massiliensis. Genotypic characterization of the discordant strains was performed by rMLST and it confirmed the MALDI-TOF MS' results. Only non-pathogenic Y. enterocolitica biotype 1A strains were found, although with a non-negligible prevalence (P = 0.15 with CI 95% = ± 0.06). This study indicates a poor circulation of pathogenic Y. enterocolitica in food products made and marketed in the investigated areas. However, the small number of samples, insufficient for some food categories such as meat and vegetable, does not allow to exclude the presence of pathogenic strains at all.
Collapse
Affiliation(s)
| | - Matteo Beverelli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Adelia Donatiello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Antonella Didonna
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigi Dattoli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Simona Faleo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Gilda Occhiochiuso
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Laura Del Sambro
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angelica Bianco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Angela Miccolupo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Elisa Goffredo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| |
Collapse
|
11
|
Platt-Samoraj A, Kończyk-Kmiecik K, Bakuła T. Occurrence and Genetic Correlations of Yersinia spp. Isolated from Commensal Rodents in Northeastern Poland. Pathogens 2021; 10:pathogens10101247. [PMID: 34684196 PMCID: PMC8537150 DOI: 10.3390/pathogens10101247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023] Open
Abstract
Rodents can be a potential Yersinia spp. vector responsible for farm facilities contamination. The aim of the study was to determine the prevalence of Yersinia spp. in commensal rodents found in the farms and fodder factory areas to characterize the obtained isolates and epidemiological risk. Intestinal samples were subjected to bacteriological, bioserotype, and PCR examination for virulence markers ail, ystA, ystB, and inv presence. Yersinia spp. was isolated from 43 out of 244 (17.6%) rodents (Apodemus agrarius n = 132, Mus musculus n = 102, Apodemus sylvaticus n = 8, Rattus norvegicus n = 2). Y. enterocolitica was isolated from 41 rodents (16.8%), and from one Y. pseudotuberculosis and one Y. kristensenii. In three cases, two Y. enterocolitica isolates were obtained from one rodent. All Y. enetrocolitica contained ystB and belonged to biotype 1A, considered as potentially pathogenic. One isolate additionally had the ail gene typical for pathogenic strains. The sequence analysis of the ystB, ail, and inv fragments showed a high similarity to those from clinical cases. The current study revealed a high prevalence of Y. enetrocolitica among commensal rodents, but the classification of all of Y. enterocolitica isolates into biotype 1A and the sporadic isolation of Y. pseudotuberculosis do not indicate a high epidemiological risk.
Collapse
Affiliation(s)
- Aleksandra Platt-Samoraj
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland;
- Correspondence:
| | - Klaudia Kończyk-Kmiecik
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland;
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13 Str., 10-718 Olsztyn, Poland;
| |
Collapse
|
12
|
Imnadze T, Malania L, Chakvetadze N, Burjanadze I, Abazashvili N, Zhgenti E, Sidamonidze K, Khmaladze E, Martashvili V, Tsertsvadze N, Imnadze P, Kandaurov A, Arner RJ, Motin V, Kosoy M. Evidence of Extensive Circulation of Yersinia enterocolitica in Rodents and Shrews in Natural Habitats from Retrospective and Perspective Studies in South Caucasus. Pathogens 2021; 10:939. [PMID: 34451404 PMCID: PMC8400892 DOI: 10.3390/pathogens10080939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Yersinia enterocolitica culture-positive rodents and shrews were reported in different territories across Georgia during 14 of 17 years of investigations conducted for the period of 1981-1997. In total, Y. enterocolitica was isolated from 2052 rodents (15 species) and 33 shrews. Most isolates were obtained from Microtus arvalis, Rattus norvegicus, Mus musculus, and Apodemus spp. During the prospective study (2017-2019), isolates of Yersinia-like bacteria were cultured from 53 rodents collected in four parts of Georgia. All the Yersinia-like isolates were confirmed as Y. enterocolitica based on the API 20E and the BD Phenix50 tests. Whole-genome (WG) sequencing of five rodents and one shrew strain of Y. enterocolitica revealed that they possessed a set of virulence genes characteristic of the potentially pathogenic strains of biogroup 1A. All isolates lacked distinguished virulence determinants for YstA, Ail, TccC, VirF, and virulence plasmid pYV but carried the genes for YstB, YmoA, HemPR-HmuVSTU, YaxAB, PhlA, PldA, ArsCBR, and a flagellar apparatus. One strain contained a gene highly homologous to heat-labile enterotoxin, a chain of E. coli, a function not previously described for Y. enterocolitica. The WG single-nucleotide polymorphism-based typing placed the isolates in four distinct phylogenetic clusters.
Collapse
Affiliation(s)
- Tata Imnadze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
- Faculty of Medicine, Public Health and Epidemiology Department, Ivane Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Lile Malania
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Neli Chakvetadze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Irma Burjanadze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Natalia Abazashvili
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Ekaterine Zhgenti
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Ketevan Sidamonidze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Ekaterine Khmaladze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Vakhtang Martashvili
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Nikoloz Tsertsvadze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
| | - Paata Imnadze
- National Center for Disease Control and Public Health, 0186 Tbilisi, Georgia; (T.I.); (L.M.); (N.C.); (I.B.); (N.A.); (E.Z.); (K.S.); (E.K.); (V.M.); (N.T.); (P.I.)
- Faculty of Medicine, Public Health and Epidemiology Department, Ivane Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Andrei Kandaurov
- Institute of Zoology, Ilia State University, 0177 Tbilisi, Georgia;
| | - Ryan J. Arner
- Ryan Arner Science Consulting LLC, Freeport, PA 16229, USA;
| | - Vladimir Motin
- Department of Pathology, University Texas Medical Branch, Galveston, TX 77555, USA;
| | | |
Collapse
|
13
|
Nguyen SV, Cunningham SA, Jeraldo P, Tran A, Patel R. Yersinia occitanica is a later heterotypic synonym of Yersinia kristensenii subsp. rochesterensis and elevation of Yersinia kristensenii subsp. rochesterensis to species status. Int J Syst Evol Microbiol 2021; 71. [PMID: 33406034 DOI: 10.1099/ijsem.0.004626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of Yersinia kristensenii subsp. rochesterensis and Yersinia occitanica was re-evaluated by genomic analysis. Average nucleotide identity (ANI), digital DNA-DNA hybridization values, and phylogenetic analyses of the type strains indicate that Y. kristensenii subsp. rochesterensis and Y. occitanica are the same genospecies. Additionally, the overall genomic relatedness index (OGRI) values reveal that Y. kristensenii subsp. rochesterensis should be elevated to species status as Yersinia rochesterensis sp. nov.
Collapse
Affiliation(s)
- Scott Van Nguyen
- District of Columbia Department of Forensic Sciences, Public Health Laboratory Division, Washington, District of Columbia, USA
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Microbiome Program, Center for Individualized Medicine, Rochester, Minnesota, USA.,Department of Surgery, Rochester, Minnesota, USA
| | - Anthony Tran
- District of Columbia Department of Forensic Sciences, Public Health Laboratory Division, Washington, District of Columbia, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA.,Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
The Changing Face of the Family Enterobacteriaceae (Order: " Enterobacterales"): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin Microbiol Rev 2021; 34:34/2/e00174-20. [PMID: 33627443 DOI: 10.1128/cmr.00174-20] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Collapse
|
15
|
Morka K, Wałecka-Zacharska E, Schubert J, Dudek B, Woźniak-Biel A, Kuczkowski M, Wieliczko A, Bystroń J, Bania J, Bugla-Płoskońska G. Genetic Diversity and Distribution of Virulence-Associated Genes in Y. enterocolitica and Y. enterocolitica-Like Isolates from Humans and Animals in Poland. Pathogens 2021; 10:65. [PMID: 33450948 PMCID: PMC7828411 DOI: 10.3390/pathogens10010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 11/17/2022] Open
Abstract
Yersinia enterocolitica, widespread within domestic and wild-living animals, is a foodborne pathogen causing yersiniosis. The goal of this study was to assess a genetic similarity of Y. enterocolitica and Y. enterocolitica-like strains isolated from different hosts using Multiple Locus Variable-Number Tandem Repeat Analysis (MLVA) and Pulsed-Field Gel Electrophoresis (PFGE) methods, and analyze the prevalence of virulence genes using multiplex-Polymerase Chain Reaction (PCR) assays. Among 51 Yersinia sp. strains 20 virulotypes were determined. The most common virulence genes were ymoA, ureC, inv, myfA, and yst. Yersinia sp. strains had genes which may contribute to the bacterial invasion and colonization of the intestines as well as survival in serum. One wild boar Y. enterocolitica 1A strain possessed ail gene implying the possible pathogenicity of 1A biotype. Wild boar strains, represented mainly by 1A biotype, were not classified into the predominant Variable-Number Tandem Repeats (VNTR)/PFGE profile and virulotype. There was a clustering tendency among VNTR/PFGE profiles of pig origin, 4/O:3, and virulence profile. Pig and human strains formed the most related group, characterized by ~80% of genetic similarity what suggest the role of pigs as a potential source of infection for the pork consumers.
Collapse
Affiliation(s)
- Katarzyna Morka
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland; (E.W.-Z.); (J.S.); (J.B.); (J.B.)
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland; (E.W.-Z.); (J.S.); (J.B.); (J.B.)
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland; (E.W.-Z.); (J.S.); (J.B.); (J.B.)
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw University, S. Przybyszewskiego 63, 51-148 Wrocław, Poland;
| | - Anna Woźniak-Biel
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (A.W.-B.); (M.K.); (A.W.)
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (A.W.-B.); (M.K.); (A.W.)
| | - Alina Wieliczko
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 45, 50-366 Wrocław, Poland; (A.W.-B.); (M.K.); (A.W.)
| | - Jarosław Bystroń
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland; (E.W.-Z.); (J.S.); (J.B.); (J.B.)
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland; (E.W.-Z.); (J.S.); (J.B.); (J.B.)
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw University, S. Przybyszewskiego 63, 51-148 Wrocław, Poland;
| |
Collapse
|
16
|
Acuña LG, Barros MJ, Montt F, Peñaloza D, Núñez P, Valdés I, Gil F, Fuentes JA, Calderón IL. Participation of two sRNA RyhB homologs from the fish pathogen Yersinia ruckeri in bacterial physiology. Microbiol Res 2020; 242:126629. [PMID: 33153884 DOI: 10.1016/j.micres.2020.126629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023]
Abstract
Small noncoding RNAs (sRNAs) are important regulators of gene expression and physiology in bacteria. RyhB is an iron-responsive sRNA well characterized in Escherichia coli and conserved in other Enterobacteriaceae. In this study, we identified and characterized two RyhB homologs (named RyhB-1 and RyhB-2) in the fish pathogen Yersinia ruckeri. We found that, as in other Enterobacteriaceae, both RyhB-1 and RyhB-2 are induced under iron starvation, repressed by the Fur regulator, and depend on Hfq for stability. Despite these similarities in expression, the mutant strains of Y. ruckeri lacking RyhB-1 (ΔryhB-1) or RyhB-2 (ΔryhB-2) exhibited differential phenotypes. In comparison with the wild type, the ΔryhB-1 strain showed a hypermotile phenotype, reduced biofilm formation, increased replication rate, faster growth, and increased ATP levels in bacterial cultures. By contrast, in salmon cell cultures, the ΔryhB-1 strain exhibited an increased survival. On the other hand, the ΔryhB-2 strain was non-motile and showed augmented biofilm formation as compared to the wild type. The expression of a subset of RyhB conserved targets, selected from different bacterial species, was analyzed by quantitative RT-PCR in wild type, ΔryhB-1, ΔryhB-2, and ΔryhB-1 ΔryhB-2 strains cultured in iron-depleted media. RyhB-1 negatively affected the expression of most analyzed genes (sodB, acnA, sdhC, bfr, fliF, among others), whose functions are related to metabolism and motility, involving iron-containing proteins. Among the genes analyzed, only sdhC and bfr appeared as targets for RyhB-2. Taken together, these results indicate that Y. ruckeri RyhB homologs participate in the modulation of the bacterial physiology with non-redundant roles.
Collapse
Affiliation(s)
- Lillian G Acuña
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - M José Barros
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Fernanda Montt
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Diego Peñaloza
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Paula Núñez
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Iván Valdés
- Desarrollo de Biológicos, Veterquímica S.A., Santiago, Chile.
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Iván L Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
17
|
Mutational Effects on Carbapenem Hydrolysis of YEM-1, a New Subclass B2 Metallo-β-Lactamase from Yersinia mollaretii. Antimicrob Agents Chemother 2020; 64:AAC.00105-20. [PMID: 32540974 DOI: 10.1128/aac.00105-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 11/20/2022] Open
Abstract
Analysis of the genome sequence of Yersinia mollaretii ATCC 43969 identified the bla YEM gene, encoding YEM-1, a putative subclass B2 metallo-β-lactamase. The objectives of our work were to produce and purify YEM-1 and to complete its kinetic characterization. YEM-1 displayed the narrowest substrate range among known subclass B2 metallo-β-lactamases, since it can hydrolyze imipenem, but not other carbapenems, such as biapenem, meropenem, doripenem, and ertapenem, with high catalytic efficiency. A possible explanation of this activity profile is the presence of tyrosine at residue 67 (loop L1), threonine at residue 156 (loop L2), and serine at residue 236 (loop L3). We showed that replacement of Y67 broadened the activity profile of the enzyme for all carbapenems but still resulted in poor activity toward the other β-lactam classes.
Collapse
|
18
|
Clarke M, Dabke G, Strakova L, Jenkins C, Saavedra-Campos M, McManus O, Paranthaman K. Introduction of PCR testing reveals a previously unrecognized burden of yersiniosis in Hampshire, UK. J Med Microbiol 2020; 69:419-426. [PMID: 31999240 DOI: 10.1099/jmm.0.001125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Current testing practices for yersiniosis mean that its true incidence and epidemiology are not well understood. In mid-2016, the introduction of testing via a multiplex gastrointestinal PCR panel at Portsmouth hospital laboratory in Hampshire, UK, resulted in a marked increase in the number of Yersinia cases identified locally.Aim. Here we describe the epidemiology and microbiology of Yersinia cases identified at Portsmouth laboratory following the introduction of PCR testing.Methodology. A case was defined as a person with a stool specimen in which Yersinia was detected by PCR and/or culture at Portsmouth NHS Trust laboratory between 1 January 2014 and 31 December 2018. A case list was created from laboratory data submitted by Portsmouth laboratory to Public Health England (PHE), updated with speciation and serotyping data from the PHE reference laboratory. Descriptive analysis was performed.Results. Over 30 months following introduction of PCR testing, 199 cases were confirmed with Yersinia, compared to two cases in the preceding 30 months. This corresponds to a rate of 13.8 and 0.1 per 100 000 population per year respectively (P<0.0001). In total, 85% of tested isolates were Y. enterocolitica, belonging to multiple serotypes, and the rest belonged to a range of Y. enterocolitica-like species.Conclusions. Introduction of PCR testing led to the identification of a previously unrecognized burden of yersiniosis in Hampshire. The diversity of species and serotypes suggests heterogeneity in sources and transmission routes. Further research on exposures, risk factors and clinical sequalae is needed to improve our understanding of the clinical and public health impact.
Collapse
Affiliation(s)
- Mattea Clarke
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| | - Girija Dabke
- Public Health England South East, PHE, Fareham, UK
| | | | - Claire Jenkins
- E. coli, Shigella, Yersinia and Vibrio Reference Service, NIS, PHE, London, UK
| | - Maria Saavedra-Campos
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| | - Oliver McManus
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| | - Karthik Paranthaman
- Field Service, National Infection Service (NIS), Public Health England (PHE), London, UK
| |
Collapse
|
19
|
Ost GS, Wirth C, Bogdanović X, Kao WC, Schorch B, Aktories PJK, Papatheodorou P, Schwan C, Schlosser A, Jank T, Hunte C, Aktories K. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. SCIENCE ADVANCES 2020; 6:eaaz2094. [PMID: 32195351 PMCID: PMC7065874 DOI: 10.1126/sciadv.aaz2094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 05/20/2023]
Abstract
We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.
Collapse
Affiliation(s)
- G. Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Institut für Biologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Xenia Bogdanović
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Wei-Chun Kao
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Philipp J. K. Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Thomas Jank
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Corresponding author.
| |
Collapse
|
20
|
Nyataya J, Maraka M, Lemtudo A, Masakhwe C, Mutai B, Njaanake K, Estambale BB, Nyakoe N, Siangla J, Waitumbi JN. Serological Evidence of Yersiniosis, Tick-Borne Encephalitis, West Nile, Hepatitis E, Crimean-Congo Hemorrhagic Fever, Lyme Borreliosis, and Brucellosis in Febrile Patients Presenting at Diverse Hospitals in Kenya. Vector Borne Zoonotic Dis 2020; 20:348-357. [PMID: 31928511 DOI: 10.1089/vbz.2019.2484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Data on pathogen prevalence is crucial for informing exposure and disease risk. We evaluated serological evidence of tick-borne encephalitis (TBE), West Nile (WN), Hepatitis E virus (HEV), Crimean-Congo Hemorrhagic Fever (CCHF), Yersiniosis, Lyme Disease (LD), and brucellosis in 1033 patients presenting with acute febrile illness at 9 health care facilities from diverse ecological zones of Kenya: arid and semiarid (Garissa District Hospital, Lodwar District Hospital, Marigat District Hospital, Gilgil District Hospital), Lake Victoria basin (Kisumu District Hospital, Alupe District Hospital, Kombewa Sub-County Hospital), Kisii highland (Kisii District Hospital), and coastal (Malindi District Hospital). Epidemiological information of the patients such as geography, age, gender, and keeping animals were analyzed as potential risk factors. Of the 1033 samples, 619 (59.9%) were seropositive to at least one pathogen by IgM (current exposure), IgG/IgM (recent exposure), and IgG (past exposure). Collective seroprevalence for current, recent, and past to the pathogens was 9.4%, 5.1%, and 21.1% for LD; 3.6%, 0.5%, and 12.4% for WN; 0.9%, 0.5%, and 16.9% for HEV; 5.8%, 1.3%, and 3.9% for brucellosis; 5.7%, 0.2%, and 2.3% for yersiniosis; 1.7%, 0%, and 6.2% for TBE; and 0.4%, 0%, and 1.9% for CCHF. Brucellosis risk was higher in patients recruited at Garissa District Hospital (odds ratio [OR] = 3.41), HEV (OR = 2.45) and CCHF (OR = 5.46) in Lodwar District Hospital, LD in Alupe District Hospital (OR = 5.73), Kombewa Sub-district hospital (OR = 8.17), and Malindi District hospital (OR = 3.3). Exposure to LD was highest in the younger age group, whereas yersiniosis did not vary with age. Age was a significant risk for WN, brucellosis, CCHF, TBE, and HEV and in those aged >14 years there was an increased risk to WN (OR = 2.30, p < 0.0001), brucellosis (OR = 1.84, p = 0.005), CCHF (OR = 4.35, p = 0.001), TBE (OR = 2.78, p < 0.0001), and HEV (OR = 1.94, p = 0.0001). We conclude that LD is pervasive and constitutes a significant health burden to the study population, whereas yersiniosis and CCHF are not significant threats. Going forward, community-based studies will be needed to capture the true seroprevalence rates and the associated risk factors.
Collapse
Affiliation(s)
- Josphat Nyataya
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| | - Moureen Maraka
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| | - Allan Lemtudo
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| | - Clement Masakhwe
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| | - Beth Mutai
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| | - Kariuki Njaanake
- Department of Medical Microbiology, College of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Benson B Estambale
- Division of Research, Innovation and Outreach, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Nancy Nyakoe
- Department of Biochemistry, Cell and Molecular Biology, West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Joram Siangla
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| | - John Njenga Waitumbi
- Medical Research Directorate-Africa/Kenya Medical Research Institute, Basic Science Laboratory, Kisumu, Kenya
| |
Collapse
|
21
|
Sizova OV, Shashkov AS, Toukach PV, Knirel YA, Shaikhutdinova RZ, Ivanov SA, Kislichkina AA, Dentovskaya SV. Structure elucidation and gene cluster characterization of the O-antigen of Yersinia kristensenii С-134. Carbohydr Res 2019; 481:9-15. [PMID: 31220629 DOI: 10.1016/j.carres.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 11/26/2022]
Abstract
Mild acid degradation of the lipopolysaccharide of Yersinia kristensenii C-134 afforded a glycerol teichoic acid-like O-polysaccharide, which was studied by sugar analysis, O-deacetylation and dephosphorylation along with 1D and 2D NMR spectroscopy. The following structure of the O-polysaccharide was established: This structure is related to those of other Y. kristensenii O-polysaccharides studied earlier. The O-antigen gene cluster of Y. kristensenii С-134 was analyzed and found to be consistent with the O-polysaccharide structure established.
Collapse
Affiliation(s)
- Olga V Sizova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Philip V Toukach
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Rima Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - Sergei A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - Angelina A Kislichkina
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation
| | - Svetlana V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, 142279, Obolensk, Moscow Region, Russian Federation.
| |
Collapse
|
22
|
Nishiura H, Yamazaki A, Wakakuri K, Sasaki J, Terajima J, Ochiai K. Yersinia infection in two captive guereza colobus monkeys (Colobus guereza). J Vet Med Sci 2019; 81:1201-1204. [PMID: 31308292 PMCID: PMC6715909 DOI: 10.1292/jvms.19-0039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Two guereza colobus monkeys (Colobus guereza) reared in a zoological
garden in Japan suddenly died of multifocal fibrinonecrotic gastroenteritis and septicemia
associated with infection by Yersinia spp. It was necessary to
microbiologically differentiate Yersinia frederiksenii and Y.
enterocolitica. We described the pathological findings and discuss the causal
agent to emphasize the need to revert to using a combination of multiple examinations for
diagnosis.
Collapse
Affiliation(s)
- Hayate Nishiura
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Akiko Yamazaki
- Veterinary Public Health, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Koichi Wakakuri
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Jun Sasaki
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Jun Terajima
- Veterinary Public Health, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Kenji Ochiai
- Laboratory of Veterinary Pathology, Co-department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
23
|
Yersinia hibernica sp. nov., isolated from pig-production environments. Int J Syst Evol Microbiol 2019; 69:2023-2027. [DOI: 10.1099/ijsem.0.003422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
24
|
Cunningham SA, Jeraldo P, Patel R. Yersinia kristensenii subsp. rochesterensis subsp. nov., isolated from human feces. Int J Syst Evol Microbiol 2019; 69:2292-2298. [PMID: 31135335 DOI: 10.1099/ijsem.0.003464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A single bacterial isolate, EPLC-04T, was isolated from human feces and identified as representing a member of the genus Yersinia on the basis of phenotypic characteristics, matrix assisted laser desorption ionization time-of-flight mass spectrometry and partial 16S rRNA gene sequencing. The isolate's phenotypic profile differed from that described for the most closely related species, Yersinia kristensenii, by exhibiting lipase production and lacking pyrazinamidase activity. Multiple genetic targets, including the complete (1465 bp) 16S rRNA gene sequence and partial sequences of groEL (539 bp), gyrB (935 bp), glnA (525 bp) and recA (535 bp) indicated that the isolate exhibited 98.91, 92.16, 90.81, 92.78 and 89.01 % identity with Yersinia aldovae, 98.98, 91.99, 90.17, 89.77 and 89.55 % identity with Yersinia intermedia, and 99.66, 98.11, 98.50, 98.49 and 98.51 % identity with Y. kristensenii, respectively. Phylogenetic reconstructions based on the combination of the four housekeeping genes indicated that the isolate formed a unique branch, supported by a bootstrap value of 100 %. Digital DNA-DNA homology and 16S rRNA gene sequencing identified EPLC-04T as representing Y. kristensenii. However, the unique phenotypic traits and results of phylogenetic analysis indicate that it represents a novel subspecies of Y. kristensenii. The name Yersinia kristenseniisubsp. rochesterensis subsp. nov. is proposed for this novel taxon (type strain EPLC-04T=ATCC BAA-2637T, DSMZ 28595T).
Collapse
Affiliation(s)
- Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Department of Surgery, Rochester, Minnesota, USA.,Microbiome Program, Center for Individualized Medicine, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Francis MS, Auerbuch V. Editorial: The Pathogenic Yersiniae-Advances in the Understanding of Physiology and Virulence, Second Edition. Front Cell Infect Microbiol 2019; 9:119. [PMID: 31058103 PMCID: PMC6482262 DOI: 10.3389/fcimb.2019.00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew S Francis
- Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
26
|
Sizova OV, Shashkov AS, Dmitrenok AS, Toukach PV, Knirel YA, Shaikhutdinova RZ, Ivanov SA, Kislichkina AA, Bogun AG, Dentovskaya SV. Structure and gene cluster of the O-polysaccharide of Yersinia rohdei H274-36/78. Int J Biol Macromol 2019; 122:555-561. [PMID: 30385338 DOI: 10.1016/j.ijbiomac.2018.10.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
Abstract
A branched O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Yersinia rohdei H274-36/78 and found to contain d-rhamnose, d-mannose, and 3,6-dideoxy-4-C-[(S)-1-hydroxyethyl]-d-xylo-hexose called yersiniose A (Yer). Partial acid hydrolysis of the O-polysaccharide eliminated Yer residues to give a modified linear polysaccharide. Studies by sugar analysis and 1H and 13C NMR spectroscopy, including computational NMR analysis, enabled structure elucidation of a hexasaccharide repeating unit of the O-polysaccharide having two Yer residues attached as monosaccharide side chains. The O-antigen gene cluster of Y. rohdei H274-36/78 located between JUMPStart and galF genes contained putative genes for synthesis of precursors of two O-antigen constituents, GDP-d-Man and GDP-d-Rha, whereas genes responsible for synthesis of CDP-Yer were within the chromosome outside the O-antigen gene cluster. Glycosyltransferase genes and ABC 2 transporter genes were present in the O-antigen gene cluster, and hence the structure established is consistent with the polysaccharide synthesis gene content of the genome.
Collapse
Affiliation(s)
- O V Sizova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - A S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - A S Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Ph V Toukach
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | - Y A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - R Z Shaikhutdinova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - S A Ivanov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - A A Kislichkina
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - A G Bogun
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| | - S V Dentovskaya
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russian Federation
| |
Collapse
|
27
|
Springer K, Sänger PA, Moritz C, Felsl A, Rattei T, Fuchs TM. Insecticidal Toxicity of Yersinia frederiksenii Involves the Novel Enterotoxin YacT. Front Cell Infect Microbiol 2018; 8:392. [PMID: 30488025 PMCID: PMC6246891 DOI: 10.3389/fcimb.2018.00392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
The genus Yersinia comprises 19 species of which three are known as human and animal pathogens. Some species display toxicity toward invertebrates using the so-called toxin complex (TC) and/or determinants that are not yet known. Recent studies showed a remarkable variability of insecticidal activities when representatives of different Yersinia species (spp.) were subcutaneously injected into the greater wax moth, Galleria mellonella. Here, we demonstrate that Y. intermedia and Y. frederiksenii are highly toxic to this insect. A member of Y. Enterocolitica phylogroup 1B killed G. mellonella larvae with injection doses of approximately 38 cells only, thus resembling the insecticidal activity of Photorhabdus luminescens. The pathogenicity Yersinia spp. displays toward the larvae was higher at 15°C than at 30°C and independent of the TC. However, upon subtraction of all genes of the low-pathogenic Y. enterocolitica strain W22703 from the genomes of Y. intermedia and Y. frederiksenii, we identified a set of genes that may be responsible for the toxicity of these two species. Indeed, a mutant of Y. frederiksenii lacking yacT, a gene that encodes a protein similar to the heat-stable cytotonic enterotoxin (Ast) of Aeromonas hydrophila, exhibited a reduced pathogenicity toward G. mellonella larvae and altered the morphology of hemocytes. The data suggests that the repertoire of virulence determinants present in environmental Yersinia species remains to be elucidated.
Collapse
Affiliation(s)
- Katharina Springer
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | | | - Christian Moritz
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Thomas Rattei
- Department of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany.,Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| |
Collapse
|
28
|
Bonnedahl J, Berg C, Andersson DI, Söderlund R, Vågsholm I, Olsen B. Occurrence of Yersinia rohdei among feral reindeer ( Rangifer t. tarandus) and kelp gulls ( Larus dominicanus) on the Sub-Antarctic island South Georgia. Infect Ecol Epidemiol 2018; 8:1517582. [PMID: 31105907 PMCID: PMC6509991 DOI: 10.1080/20008686.2018.1517582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 11/01/2022] Open
Abstract
Introduction: During a research expedition in 2012, faecal samples were collected from feral reindeer and kelp gulls on the main island of South Georgia in the Sub-Antarctic region of the Atlantic. The samples were analysed for bacteria of the genus Yersinia with the aim of identifying isolates to the species level. Materials and Methods: A total of 11 reindeer samples and 26 Kelp Gull samples were retrieved from the location of Stromness, kept refrigerated and cultivated for gram-negative bacteria. Results: Three of the samples showed growth of Yersinia rohdei, as confirmed by biochemical typing, MALDI-TOF and 16S rRNA sequencing. The isolates were indistinguishable from each other by 16S sequencing, and differed by a single base pair from the type strain of Y. rohdei. Discussion: The Yersinia genus contains well-known pathogens of significance to both human and veterinary medicine, but the public health and animal health relevance of Y. rohdei is unknown. Although it is clear that Y. rhodei is present in the south Georgian biotope, its importance and relevance for biological diversity is unknown, as is if this presence is merely a reflection of human activities.
Collapse
Affiliation(s)
- Jonas Bonnedahl
- Department of Infectious Diseases, Kalmar County Council, Linköping University, Kalmar, Sweden
| | - Charlotte Berg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute SVA, Uppsala, Sweden
| | - Ivar Vågsholm
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Ferrari G, Lischer HEL, Neukamm J, Rayo E, Borel N, Pospischil A, Rühli F, Bouwman AS, Campana MG. Assessing Metagenomic Signals Recovered from Lyuba, a 42,000-Year-Old Permafrost-Preserved Woolly Mammoth Calf. Genes (Basel) 2018; 9:genes9090436. [PMID: 30200350 PMCID: PMC6162753 DOI: 10.3390/genes9090436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022] Open
Abstract
The reconstruction of ancient metagenomes from archaeological material, and their implication in human health and evolution, is one of the most recent advances in paleomicrobiological studies. However, as for all ancient DNA (aDNA) studies, environmental and laboratory contamination need to be specifically addressed. Here we attempted to reconstruct the tissue-specific metagenomes of a 42,000-year-old, permafrost-preserved woolly mammoth calf through shotgun high-throughput sequencing. We analyzed the taxonomic composition of all tissue samples together with environmental and non-template experimental controls and compared them to metagenomes obtained from permafrost and elephant fecal samples. Preliminary results suggested the presence of tissue-specific metagenomic signals. We identified bacterial species that were present in only one experimental sample, absent from controls, and consistent with the nature of the samples. However, we failed to further authenticate any of these signals and conclude that, even when experimental samples are distinct from environmental and laboratory controls, this does not necessarily indicate endogenous presence of ancient host-associated microbiomic signals.
Collapse
Affiliation(s)
- Giada Ferrari
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Heidi E L Lischer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany.
| | - Enrique Rayo
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland.
| | - Andreas Pospischil
- Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland.
| | - Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.
| | - Abigail S Bouwman
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.
| | - Michael G Campana
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA.
| |
Collapse
|
30
|
Full structure and insight into the gene cluster of the O-specific polysaccharide of Yersinia intermedia H9-36/83 (O:17). Carbohydr Res 2018. [PMID: 29524727 DOI: 10.1016/j.carres.2018.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Lipopolysaccharide was isolated from bacteria Yersinia intermedia H9-36/83 (O:17) and degraded with mild acid to give an O-specific polysaccharide, which was isolated by GPC on Sephadex G-50 and studied by sugar analysis and 1D and 2D NMR spectroscopy. The polysaccharide was found to contain 3-deoxy-3-[(R)-3-hydroxybutanoylamino]-d-fucose (d-Fuc3NR3Hb) and the following structure of the heptasaccharide repeating unit was established: The structure established is consistent with the gene content of the O-antigen gene cluster. The O-polysaccharide structure and gene cluster of Y. intermedia are related to those of Hafnia alvei 1211 and Escherichia coli O:103.
Collapse
|
31
|
Imori PF, Passaglia J, Souza RA, Rocha LB, Falcão JP. Virulence-related genes, adhesion and invasion of some Yersinia enterocolitica-like strains suggests its pathogenic potential. Microb Pathog 2017; 104:72-77. [DOI: 10.1016/j.micpath.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
|
32
|
Laaksonen S, Oksanen A, Julmi J, Zweifel C, Fredriksson-Ahomaa M, Stephan R. Presence of foodborne pathogens, extended-spectrum β-lactamase -producing Enterobacteriaceae, and methicillin-resistant Staphylococcus aureus in slaughtered reindeer in northern Finland and Norway. Acta Vet Scand 2017; 59:2. [PMID: 28049493 PMCID: PMC5209846 DOI: 10.1186/s13028-016-0272-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/21/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Various food-producing animals were recognized in recent years as healthy carriers of bacterial pathogens causing human illness. In northern Fennoscandia, the husbandry of semi-domesticated reindeer (Rangifer tarandus tarandus) is a traditional livelihood and meat is the main product. This study determined the presence of selected foodborne pathogens, methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in healthy semi-domesticated reindeer at slaughter in northern Finland and Norway. RESULTS All 470 reindeer fecal samples tested negative for Salmonella spp., whereas L. monocytogenes was detected in 3%, Yersinia spp. in 10%, and Shiga toxins genes (stx1 and/or stx2) in 33% of the samples. Listeria monocytogenes isolates belonged to the serotype 1/2a (14/15) and 4b, Yersinia spp. were identified mainly as Y. kristensenii (30/46) and Y. enterocolitica (8/46), and stx2 predominated among the Shiga toxin genes (stx2 alone or in combination with stx1 was found in 25% of the samples). With regard to the frequency and distribution of stx1/stx2, striking differences were evident among the 10 different areas of origin. Hence, reindeer could constitute a reservoir for Shiga toxin-producing E. coli (STEC), but strain isolation and characterization is required for verification purposes and to assess the potential human pathogenicity of strains. On the other hand, the favorable antibiotic resistance profiles (only 5% of 95 E. coli isolates were resistant to one or more of the tested antibiotics) and the absence of MRSA and ESBL-producing Enterobacteriaceae (when applying selective methods) suggest only a limited risk of transmission to humans. CONCLUSIONS Healthy semi-domesticated reindeer in northern Finland and Norway can be carriers of certain bacterial foodborne pathogens. Strict compliance with good hygiene practices during any step of slaughter (in particular during dehiding and evisceration) is therefore of central importance to avoid carcass contamination and to prevent foodborne pathogens from entering the food chain.
Collapse
Affiliation(s)
- Sauli Laaksonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Wazama, Finland
| | - Antti Oksanen
- Research and Laboratory Department, Production Animal and Wildlife Health Research Unit, Finnish Food Safety Authority Evira, Oulu, Finland
| | - Jérôme Julmi
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Claudio Zweifel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species. Sci Rep 2016; 6:36116. [PMID: 27796355 PMCID: PMC5086877 DOI: 10.1038/srep36116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and “Clustered regularly-interspaced short palindromic repeats”. Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
Collapse
Affiliation(s)
- Shi Yang Tan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Irene Kit Ping Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mui Fern Tan
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Stenkova AM, Bystritskaya EP, Guzev KV, Rakin AV, Isaeva MP. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC). Evol Bioinform Online 2016; 12:185-91. [PMID: 27578962 PMCID: PMC4993215 DOI: 10.4137/ebo.s40346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 01/06/2023] Open
Abstract
The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system.
Collapse
Affiliation(s)
- Anna M. Stenkova
- Far Eastern Federal University, Vladivostok, Russia
- Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | - Evgeniya P. Bystritskaya
- Far Eastern Federal University, Vladivostok, Russia
- Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| | | | - Alexander V. Rakin
- Max von Pettenkofer Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University, Munich, Germany
| | - Marina P. Isaeva
- Far Eastern Federal University, Vladivostok, Russia
- Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia
| |
Collapse
|
35
|
Liu Z, Gao X, Wang H, Fang H, Yan Y, Liu L, Chen R, Zhou D, Yang R, Han Y. Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiol 2016; 16:176. [PMID: 27492011 PMCID: PMC4973556 DOI: 10.1186/s12866-016-0793-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
Background The ability of Yersinia pestis to form a biofilm is an important characteristic in flea transmission of this pathogen. Y. pestis laterally acquired two plasmids (pPCP1and pMT1) and the ability to form biofilms when it evolved from Yersinia pseudotuberculosis. Small regulatory RNAs (sRNAs) are thought to play a crucial role in the processes of biofilm formation and pathogenesis. Results A pPCP1-derived sRNA HmsA (also known as sR084) was found to contribute to the enhanced biofilm formation phenotype of Y. pestis. The concentration of c-di-GMP was significantly reduced upon deletion of the hmsA gene in Y. pestis. The abundance of mRNA transcripts determining exopolysaccharide production, crucial for biofilm formation, was measured by primer extension, RT-PCR and lacZ transcriptional fusion assays in the wild-type and hmsA mutant strains. HmsA positively regulated biofilm synthesis-associated genes (hmsHFRS, hmsT and hmsCDE), but had no regulatory effect on the biofilm degradation-associated gene hmsP. Interestingly, the recently identified biofilm activator sRNA, HmsB, was rapidly degraded in the hmsA deletion mutant. Two genes (rovM and rovA) functioning as biofilm regulators were also found to be regulated by HmsA, whose regulatory effects were consistent with the HmsA-mediated biofilm phenotype. Conclusion HmsA potentially functions as an activator of biofilm formation in Y. pestis, implying that sRNAs encoded on the laterally acquired plasmids might be involved in the chromosome-based regulatory networks implicated in Y. pestis-specific physiological processes. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0793-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaofang Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hongduo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,College of Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Rong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.,The General Hospital of PLA, Beijing, 100853, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20, Dongdajie, Fengtai, Beijing, 100071, China.
| |
Collapse
|
36
|
McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177-90. [PMID: 26876035 DOI: 10.1038/nrmicro.2015.29] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
37
|
Sizova OV, Shashkov AS, Shaikhutdinova RZ, Ivanov SA, Dentovskaya SV, Knirel YA. Structure of the O-polysaccharide of Yersinia frederiksenii H56-36/81 (serotype O:60) containing 4-deoxy-d-arabino-hexose. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Hurst MRH, Beattie A, Altermann E, Moraga RM, Harper LA, Calder J, Laugraud A. The Draft Genome Sequence of the Yersinia entomophaga Entomopathogenic Type Strain MH96T. Toxins (Basel) 2016; 8:toxins8050143. [PMID: 27187466 PMCID: PMC4885058 DOI: 10.3390/toxins8050143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023] Open
Abstract
Here we report the draft genome of Yersinia entomophaga type strain MH96T. The genome shows 93.8% nucleotide sequence identity to that of Yersinia nurmii type strain APN3a-cT, and comprises a single chromosome of approximately 4,275,531 bp. In silico analysis identified that, in addition to the previously documented Y. entomophaga Yen-TC gene cluster, the genome encodes a diverse array of toxins, including two type III secretion systems, and five rhs-associated gene clusters. As well as these multicomponent systems, several orthologs of known insect toxins, such as VIP2 toxin and the binary toxin PirAB, and distant orthologs of some mammalian toxins, including repeats-in-toxin, a cytolethal distending toxin, hemolysin-like genes and an adenylate cyclase were identified. The genome also contains a large number of hypothetical proteins and orthologs of known effector proteins, such as LopT, as well as genes encoding a wide range of proteolytic determinants, including metalloproteases and pathogen fitness determinants, such as genes involved in iron metabolism. The bioinformatic data derived from the current in silico analysis, along with previous information on the pathobiology of Y. entomophaga against its insect hosts, suggests that a number of these virulence systems are required for survival in the hemocoel and incapacitation of the insect host.
Collapse
Affiliation(s)
- Mark R H Hurst
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Amy Beattie
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Eric Altermann
- AgResearch Limited, Rumen Microbiology, Palmerston North 4474, New Zealand.
- Riddet Institute, Massey University, Palmerston North 4474, New Zealand.
| | - Roger M Moraga
- AgResearch Limited, Bioinformatics & Statistics, Hamilton 3214, New Zealand.
| | - Lincoln A Harper
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Joanne Calder
- AgResearch, Farm Systems & Environment, Lincoln Research Centre, Christchurch 8140, New Zealand.
| | - Aurelie Laugraud
- AgResearch Limited, Bioinformatics & Statistics, Lincoln Research Centre, Christchurch 8140, New Zealand.
| |
Collapse
|
39
|
Yersinia spp. Identification Using Copy Diversity in the Chromosomal 16S rRNA Gene Sequence. PLoS One 2016; 11:e0147639. [PMID: 26808495 PMCID: PMC4726496 DOI: 10.1371/journal.pone.0147639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 12/03/2022] Open
Abstract
API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.
Collapse
|
40
|
Chen Y, Duan R, Li X, Li K, Liang J, Liu C, Qiu H, Xiao Y, Jing H, Wang X. Homology analysis and cross-immunogenicity of OmpA from pathogenic Yersinia enterocolitica, Yersinia pseudotuberculosis and Yersinia pestis. Mol Immunol 2015; 68:290-9. [PMID: 26435220 DOI: 10.1016/j.molimm.2015.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022]
Abstract
The outer membrane protein A (OmpA) is one of the intra-species conserved proteins with immunogenicity widely found in the family of Enterobacteriaceae. Here we first confirmed OmpA is conserved in the three pathogenic Yersinia: Yersinia pestis, Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica, with high homology at the nucleotide level and at the amino acid sequence level. The identity of ompA sequences for 262 Y. pestis strains, 134 Y. pseudotuberculosis strains and 219 pathogenic Y. enterocolitica strains are 100%, 98.8% and 97.7% similar. The main pattern of OmpA of pathogenic Yersinia are 86.2% and 88.8% identical at the nucleotide and amino acid sequence levels, respectively. Immunological analysis showed the immunogenicity of each OmpA and cross-immunogenicity of OmpA for pathogenic Yersinia where OmpA may be a vaccine candidate for Y. pestis and other pathogenic Yersinia.
Collapse
Affiliation(s)
- Yuhuang Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xu Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Kewei Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Chang Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Haiyan Qiu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Yuchun Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China.
| |
Collapse
|
41
|
Practical Guidance for Clinical Microbiology Laboratories: Diagnosis of Bacterial Gastroenteritis. Clin Microbiol Rev 2015; 28:3-31. [PMID: 25567220 DOI: 10.1128/cmr.00073-14] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial gastroenteritis is a disease that is pervasive in both the developing and developed worlds. While for the most part bacterial gastroenteritis is self-limiting, identification of an etiological agent by bacterial stool culture is required for the management of patients with severe or prolonged diarrhea, symptoms consistent with invasive disease, or a history that may predict a complicated course of disease. Importantly, characterization of bacterial enteropathogens from stool cultures in clinical laboratories is one of the primary means by which public health officials identify and track outbreaks of bacterial gastroenteritis. This article provides guidance for clinical microbiology laboratories that perform stool cultures. The general characteristics, epidemiology, and clinical manifestations of key bacterial enteropathogens are summarized. Information regarding optimal specimen collection, transport, and processing and current diagnostic tests and testing algorithms is provided. This article is an update of Cumitech 12A (P. H. Gilligan, J. M. Janda, M. A. Karmali, and J. M. Miller, Cumitech 12A, Laboratory diagnosis of bacterial diarrhea, 1992).
Collapse
|
42
|
|
43
|
Jamali H, Paydar M, Radmehr B, Ismail S. Prevalence, characterization, and antimicrobial resistance of Yersinia species and Yersinia enterocolitica isolated from raw milk in farm bulk tanks. J Dairy Sci 2015; 98:798-803. [DOI: 10.3168/jds.2014-8853] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 11/19/2022]
|
44
|
Tan SY, Dutta A, Jakubovics NS, Ang MY, Siow CC, Mutha NV, Heydari H, Wee WY, Wong GJ, Choo SW. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia. BMC Bioinformatics 2015; 16:9. [PMID: 25591325 PMCID: PMC4384384 DOI: 10.1186/s12859-014-0422-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. DESCRIPTION To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. CONCLUSIONS YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .
Collapse
Affiliation(s)
- Shi Yang Tan
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Avirup Dutta
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nicholas S Jakubovics
- Center for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.
| | - Mia Yang Ang
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Cheuk Chuen Siow
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naresh Vr Mutha
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Hamed Heydari
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei Yee Wee
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Guat Jah Wong
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siew Woh Choo
- Genome Informatics Research Laboratory, High Impact Research Building (HIR) Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
45
|
Gauthier DT. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 2014; 203:27-35. [PMID: 25466575 DOI: 10.1016/j.tvjl.2014.10.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/18/2014] [Accepted: 10/22/2014] [Indexed: 11/24/2022]
Abstract
Human contact with and consumption of fishes presents hazards from a range of bacterial zoonotic infections. Whereas many bacterial pathogens have been presented as fish-borne zoonoses on the basis of epidemiological and phenotypic evidence, genetic identity between fish and human isolates is not frequently examined or does not provide support for transmission between these hosts. In order to accurately assess the zoonotic risk from exposure to fishes in the context of aquaculture, wild fisheries and ornamental aquaria, it is important to critically examine evidence of linkages between bacteria infecting fishes and humans. This article reviews bacteria typically presented as fish-borne zoonoses, and examines the current strength of evidence for this classification. Of bacteria generally described as fish-borne zoonoses, only Mycobacterium spp., Streptococcus iniae, Clostridium botulinum, and Vibrio vulnificus appear to be well-supported as zoonoses in the strict sense. Erysipelothrix rhusiopathiae, while transmissible from fishes to humans, does not cause disease in fishes and is therefore excluded from the list. Some epidemiological and/or molecular linkages have been made between other bacteria infecting both fishes and humans, but more work is needed to elucidate routes of transmission and the identity of these pathogens in their respective hosts at the genomic level.
Collapse
Affiliation(s)
- David T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA.
| |
Collapse
|
46
|
The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis 2014; 5:864-70. [PMID: 25150725 DOI: 10.1016/j.ttbdis.2014.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/03/2014] [Accepted: 07/04/2014] [Indexed: 02/01/2023]
Abstract
The tick Ixodes persulcatus is the predominant tick species in Northeastern China, and it is a major vector in transmission of tick-borne diseases. By 16S rRNA Illumina sequencing, we investigated the microbiome of I. persulcatus and assessed the variation of the microbiome before and after blood feeding. The prolonged blood meal dramatically altered the composition of the microbiome but did not influence the bacterial diversity. Overall, 373 and 289 bacterial genera were assigned to unfed and fed ticks, respectively. To investigate microbes that were potentially transmitted to vertebrate hosts during a blood meal, we examined the microbiome in rat blood after tick bites. Our data showed that 237 bacterial genera were suspected to be pathogens of vertebrates because they were commonly detected in unfed ticks, fed ticks, and rat blood samples after tick bites. Additionally, the prevalence survey on Borrelia burgdorferi s.l., Ehrlichia chaffeensis, Anaplasma phagocytophilum and Yersinia pestis was performed. We found that B. garinii and B. afzelii are the predominant genospecies of the Lyme disease spirochete in I. persulcatus ticks. This is the first time that the microbial composition in this tick species and in rat blood transmitted via tick bites has been reported. These data may ultimately assist in identification of novel pathogens transmitted by I. persulcatus ticks.
Collapse
|
47
|
De Keukeleire S, De Bel A, Jansen Y, Janssens M, Wauters G, Piérard D. Yersinia ruckeri, an unusual microorganism isolated from a human wound infection. New Microbes New Infect 2014; 2:134-5. [PMID: 25356360 PMCID: PMC4184584 DOI: 10.1002/nmi2.56] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 11/10/2022] Open
Abstract
We report the first documented case of Yersinia ruckeri isolated from a wound infection, in a 16-year-old male after hitting a stone while paddling in a river.
Collapse
Affiliation(s)
- S De Keukeleire
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) Brussels, Belgium
| | - A De Bel
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) Brussels, Belgium
| | - Y Jansen
- Department of Surgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) Brussels, Belgium
| | - M Janssens
- National Reference Centre for Yersinia, Secteur des sciences de la santé - Pôle de Microbiologie Médicale, Université Catholique de Louvain Brussels, Belgium
| | - G Wauters
- National Reference Centre for Yersinia, Secteur des sciences de la santé - Pôle de Microbiologie Médicale, Université Catholique de Louvain Brussels, Belgium
| | - D Piérard
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB) Brussels, Belgium
| |
Collapse
|
48
|
|
49
|
Abstract
Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.
Collapse
Affiliation(s)
- Andreas Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California 95616
| | | |
Collapse
|
50
|
Babujee L, Balakrishnan V, Kiley PJ, Glasner JD, Perna NT. Transcriptome changes associated with anaerobic growth in Yersinia intermedia (ATCC29909). PLoS One 2013; 8:e76567. [PMID: 24116118 PMCID: PMC3792023 DOI: 10.1371/journal.pone.0076567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/26/2013] [Indexed: 12/04/2022] Open
Abstract
Background The yersiniae (Enterobacteriaceae) occupy a variety of niches, including some in human and flea hosts. Metabolic adaptations of the yersiniae, which contribute to their success in these specialized environments, remain largely unknown. We report results of an investigation of the transcriptome under aerobic and anaerobic conditions for Y. intermedia, a non-pathogenic member of the genus that has been used as a research surrogate for Y. pestis. Y. intermedia shares characteristics of pathogenic yersiniae, but is not known to cause disease in humans. Oxygen restriction is an important environmental stimulus experienced by many bacteria during their life-cycles and greatly influences their survival in specific environments. How oxygen availability affects physiology in the yersiniae is of importance in their life cycles but has not been extensively characterized. Methodology/Principal Findings Tiled oligonucleotide arrays based on a draft genome sequence of Y. intermedia were used in transcript profiling experiments to identify genes that change expression in response to oxygen availability during growth in minimal media with glucose. The expression of more than 400 genes, constituting about 10% of the genome, was significantly altered due to oxygen-limitation in early log phase under these conditions. Broad functional categorization indicated that, in addition to genes involved in central metabolism, genes involved in adaptation to stress and genes likely involved with host interactions were affected by oxygen-availability. Notable among these, were genes encoding functions for motility, chemotaxis and biosynthesis of cobalamin, which were up-regulated and those for iron/heme utilization, methionine metabolism and urease, which were down-regulated. Conclusions/Significance This is the first transcriptome analysis of a non-pathogenic Yersiniaspp. and one of few elucidating the global response to oxygen limitation for any of the yersiniae. Thus this study lays the foundation for further experimental characterization of oxygen-responsive genes and pathways in this ecologically diverse genus.
Collapse
Affiliation(s)
- Lavanya Babujee
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Venkatesh Balakrishnan
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Jeremy D. Glasner
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Nicole T. Perna
- Biotechnology Center, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|