1
|
Parisi F, Lessi F, Menicagli M, Civita P, Liotti R, Millanta F, Freer G, Pistello M, Mazzanti CM, Poli A. Presence of a mouse mammary tumour virus-like in feline lymphomas: a preliminary study. Infect Agent Cancer 2022; 17:35. [PMID: 35739602 PMCID: PMC9219121 DOI: 10.1186/s13027-022-00449-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023] Open
Abstract
The mouse mammary tumour virus (MMTV) is implicated in the aetiology of murine mammary carcinomas and a variant of it, the type B leukemogenic virus, can cause murine thymic lymphomas. Interestingly, a MMTV-like virus is suspected to be involved in human breast cancer and feline mammary carcinomas. However, to date, no cases of MMTV-like sequence amplifications have been described in lymphoid neoplasms in veterinary literature. The aim of this study was to investigate the presence of env nucleotide sequences and protein 14 (p14) of a MMTV-like virus in fifty-three feline lymphoma samples. Our results show that MMTV-like sequences were detected in 5/53 tumours (9.4%): three gastrointestinal lymphomas (one B-type diffuse large, one B-type small non-cleaved, and one T-type diffuse mixed lymphoma); and two nasal lymphomas (one B-type diffuse small cleaved lymphoma and one B-type diffuse mixed lymphoma). P14 expression was detected in the cytoplasm, and rarely in nuclei, exclusively of neoplastic cells from PCR-positive tumours. The correlation between the presence of the MMTV-env like sequences (MMTVels) and p14 antigen was statistically significant in nasal lymphomas. All cats with MMTVels-positive lymphoma had a history of contact with the outdoor environment and/or catteries, and two deceased subjects shared their environment with cats that also died of lymphoma. In conclusion, this study succeeds in demonstrating the presence of MMTVels and p14 in feline lymphomas. The characterization of the immunophenotype of MMTVels-positive lymphomas could contribute to the understanding of a possible role of a MMTV-like virus in feline tumour aetiology. The significant association between the presence of the viral sequences in lymphoid tumours and their nasal localization, together with the data collected through supplementary anamnesis, should be further analysed in order to understand the epidemiology of the virus.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | | | | | - Prospero Civita
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | | | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Mauro Pistello
- Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| |
Collapse
|
2
|
Haugh KA, Ladinsky MS, Ullah I, Stone HM, Pi R, Gilardet A, Grunst MW, Kumar P, Bjorkman PJ, Mothes W, Uchil PD. In vivo imaging of retrovirus infection reveals a role for Siglec-1/CD169 in multiple routes of transmission. eLife 2021; 10:64179. [PMID: 34223819 PMCID: PMC8298093 DOI: 10.7554/elife.64179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous, and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer’s patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood-, and milk-borne retroviruses spanning three routes was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue-resident sentinel macrophages for establishing infection.
Collapse
Affiliation(s)
- Kelsey A Haugh
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Helen M Stone
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Ruoxi Pi
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Alexandre Gilardet
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Michael W Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
3
|
Expression of murine APOBEC3 alleles in different mouse strains and their effect on mouse mammary tumor virus infection. J Virol 2009; 83:3029-38. [PMID: 19153233 DOI: 10.1128/jvi.02536-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work has shown that mouse APOBEC3 restricts infection by mouse mammary tumor virus (MMTV) and murine leukemia virus (MLV) and that there are polymorphic APOBEC3 alleles found in different inbred mouse strains. For example, C57BL/6 mice, which are resistant to Friend MLV (F-MLV), encode a APOBEC3 gene different from that encoded by F-MLV-susceptible BALB/c mice; the predominant RNA produced in C57BL/6 mice lacks exon 5 (mA3(-5)) and encodes a protein with 15 polymorphic amino acids. It has also been reported that BALB/c mice produce only a variant RNA that lacks exon 2 (mA3(-2)). In this study, we examined the effect of these polymorphic APOBEC3 proteins on MMTV infection. We found that the major RNA made in C57BL/6 and B10.BR mice lacks exon 5 but that BALB/c and C3H/HeN mice predominantly express an RNA that contains all nine exons. In addition to producing the splice variant, C57BL/6 and B10.BR cells and tissues had levels of mA3 RNA fivefold higher than those from BALB/c and C3H/HeN mice. A cloned C57BL/6-derived mA3 protein lacking exon 5 inhibited MMTV infection better than a cloned full-length protein derived from 129/Ola RNA when packaged into MMTV virions. We also tested dendritic cells derived from different inbred mouse strains for their abilities to be infected by MMTV and showed that susceptibility to infection correlated with the presence of the exon 5-encoding allele. In vivo susceptibility to infection cosegregated with the inherited mA3 allele in a C57BL/6 x BALB/c backcross analysis. Moreover, virus produced in vivo in the mammary tissue of mA3 knockout and BALB/c mice was more infectious than that produced in the tissue of C57BL/6 mice. These data indicate that mA3 plays a role in the genetics of susceptibility and resistance to MMTV infection.
Collapse
|
4
|
BALB/Mtv-null mice responding to strong mouse mammary tumor virus superantigens restrict mammary tumorigenesis. J Virol 2008; 83:484-8. [PMID: 18922863 DOI: 10.1128/jvi.01374-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The absence of endogenous mouse mammary tumor viruses (MMTVs) in the congenic mouse strain, BALB/Mtv-null, restricts the early steps of exogenous C3H MMTV infection, preventing the superantigen (Sag) response and mammary tumorigenesis. Here we demonstrate that BALB/Mtv-null mice also resist tumor induction by FM MMTV, which encodes a stronger Sag compared to C3H MMTV. In contrast to infections with C3H MMTV, Mtv-null mice show FM-MMTV Sag-specific responses comparable to those observed in susceptible BALB/c mice. Neither virus shows significant replication in the spleen or mammary gland. Thus, Mtv-null mice restrict MMTV replication and mammary tumorigenesis even after a robust Sag response.
Collapse
|
5
|
Ross SR. MMTV infectious cycle and the contribution of virus-encoded proteins to transformation of mammary tissue. J Mammary Gland Biol Neoplasia 2008; 13:299-307. [PMID: 18661104 PMCID: PMC2715138 DOI: 10.1007/s10911-008-9090-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 07/04/2008] [Indexed: 02/08/2023] Open
Abstract
Mouse mammary tumor virus has served as a major model for the study of breast cancer since its discovery 1920's as a milk-transmitted agent. Much is known about in vivo infection by this virus, which initially occurs in lymphocytes that then carry virus to mammary tissue. In addition to the virion proteins, MMTV encodes a number of accessory proteins that facilitate high level in vivo infection. High level infection of lymphoid and mammary epithelial cells ensures efficient passage of virus to the next generation. Since MMTV causes mammary tumors by insertional activation of oncogenes, which is thought to be a stochastic process, mammary epithelial cell transformation is a by-product of the infectious cycle. The envelope protein may also participate in transformation. Although there have been several reports of a similar virus in human breast cancer, the existence of a human MTV has not been definitely established.
Collapse
Affiliation(s)
- Susan R Ross
- Department of Microbiology/Abramson Family Cancer Center, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 1914, USA.
| |
Collapse
|
6
|
Szpirer C, Szpirer J. Mammary cancer susceptibility: human genes and rodent models. Mamm Genome 2007; 18:817-31. [PMID: 18060458 DOI: 10.1007/s00335-007-9073-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 10/14/2007] [Indexed: 01/18/2023]
|
7
|
A novel block to mouse mammary tumor virus infection of lymphocytes in B10.BR mice. J Virol 2007; 82:1314-22. [PMID: 18003725 DOI: 10.1128/jvi.01848-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classic studies on C57BL-derived mouse strains showed that they were resistant to mouse mammary tumor virus (MMTV) infection. Although one form of resistance mapped to the major histocompatibility complex (MHC) locus, at least one other, unknown gene was implicated in this resistance. We show here that B10.BR mice, which are derived from C57BL mice but have the same MHC locus (H-2(k)) as susceptible C3H/HeN mice, are resistant to MMTV, and show a lack of virus spread in their lymphoid compartments but not their mammary epithelial cells. Although in vivo virus superantigen (Sag)-mediated activation of T cells was similar in C3H/HeN and B10.BR mice, T cell-dependent B-cell and dendritic cell activation was diminished in the latter. Ex vivo, B10.BR T cells showed a diminished capacity to proliferate in response to the MMTV Sag. The genetic segregation of the resistance phenotype indicated that it maps to a single allele. These data highlight the role of Sag-dependent T-cell responses in MMTV infection and point to a novel mechanism for the resistance of mice to retroviral infection that could lead to a better understanding of the interplay between hosts and pathogens.
Collapse
|
8
|
Courreges MC, Burzyn D, Nepomnaschy I, Piazzon I, Ross SR. Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. J Virol 2007; 81:3769-77. [PMID: 17267484 PMCID: PMC1866091 DOI: 10.1128/jvi.02728-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is a milk-transmitted betaretrovirus that causes mammary tumors in mice. Although mammary epithelial cells are the ultimate targets of MMTV, the virus utilizes components of the host immune system to establish infection. Previous studies indicated that dendritic cells play a role in MMTV infection. Here we show that dendritic cells are the first cells to be infected by MMTV in vivo and that they are capable of producing infectious virus that can be transmitted to other cell types. Moreover, upon contact with the virus, dendritic cells became more mature and migrated in response to the chemokine macrophage inflammatory protein 3beta. Finally, we demonstrate that targeted ablation of dendritic cells in vivo dramatically attenuated MMTV infection. These data indicate that MMTV infection of dendritic cells is critical to initial propagation of the virus in vivo.
Collapse
Affiliation(s)
- Maria Cecilia Courreges
- Department of Microbiology and Abramson Family Cancer Center, University of Pennsylvania, 313 BRBII/III, 421 Curie Blvd., Philadelphia, PA 19104-6142, USA
| | | | | | | | | |
Collapse
|
9
|
Okeoma CM, Lovsin N, Peterlin BM, Ross SR. APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 2007; 445:927-30. [PMID: 17259974 DOI: 10.1038/nature05540] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/19/2006] [Indexed: 11/09/2022]
Abstract
Genomes of all mammals encode apobec3 genes, which are thought to have a function in intrinsic cellular immunity to several viruses including human immunodeficiency virus type 1 (HIV-1). APOBEC3 (A3) proteins are packaged into virions and inhibit retroviral replication in newly infected cells, at least in part by deaminating cytidines on the negative strand DNA intermediates. However, the role of A3 in innate resistance to mouse retroviruses is not understood. Here we show that A3 functions during retroviral infection in vivo and provides partial protection to mice against infection with mouse mammary tumour virus (MMTV). Both mouse A3 and human A3G proteins interacted with the MMTV nucleocapsid in an RNA-dependent fashion and were packaged into virions. In addition, mouse A3-containing and human A3G-containing virions showed a marked decrease in titre. Last, A3(-/-) mice were more susceptible to MMTV infection, because virus spread was more rapid and extensive than in their wild-type littermates.
Collapse
Affiliation(s)
- Chioma M Okeoma
- Department of Microbiology and Abramson Family Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | |
Collapse
|
10
|
Abstract
There are well-established risk factors for breast cancer, most of which relate to estrogens and growth hormones in females. These include early-age menarche, late-age menopause, postmenopausal obesity and use of hormone therapy. However, these factors do not account for the sixfold difference in breast cancer incidence and mortality between countries and the fact that these differences dramatically lessen after migration; nor do they account for male breast cancer. Accordingly, hormone-responsive viruses have become major suspects as etiological agents for human breast cancer. Human papillomaviruses, mouse mammary tumor virus and Epstein-Barr virus are the prime candidate viruses as causes of human breast cancer. Human papillomaviruses and the mouse mammary tumor virus have hormone responsive elements that appear to be associated with enhanced replication of these viruses in the presence of corticosteroid and other hormones. This biological phenomenon is particularly relevant because of the hormone dependence of breast cancer. Viral genetic material for each of these candidate viruses has been identified by polymerase chain reaction in breast tumors but rarely in normal breast tissue controls. Pooled data from controlled studies show substantial odds ratios for the presence of viral genetic material in breast tumors compared with normal controls. These and additional data provide substantial, but not conclusive, evidence that human papillomavirus, the mouse mammary tumor virus and Epstein-Barr virus may have a role in the etiology of human breast cancer. If conclusive evidence for a role of these viruses in breast carcinogenesis can be developed, there is a practical possibility of primary prevention.
Collapse
Affiliation(s)
- James S Lawson
- School of Public Health, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
11
|
Abstract
Mouse mammary tumor virus (MMTV) has long been speculated to be involved in human breast cancer and more recently in human primary biliary cirrhosis. Despite complete proviral sequences markedly homologous to MMTV being identified in human breast cancer tissue, no convincing evidence has been presented to date that MMTV can infect human cells. Using both wild-type and a genetically marked virus (MMTV-EGFP), we show here the successful infection of a number of different human cells by MMTV. Furthermore, infection of human cells is shown to be almost as efficient as the infection of murine mammary epithelial cells. Sequencing of PCR products from integrated proviruses reveals that reverse transcription and integration of the viral genome has occurred as expected. Furthermore, sequencing of two independent MMTV proviral integration sites reveal them to be present only in the human and not in the mouse genome. Infection requires an intact MMTV envelope protein and is blocked either by heat inactivation of the virus or by specific neutralizing anti-MMTV serum, ruling out a nonspecific mechanism of viral transfer. Thus, MMTV can infect human cells and this finding provides a possible explanation for the detection by others of MMTV sequences in human breast cancer patients.
Collapse
Affiliation(s)
- Stanislav Indik
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
12
|
Szabo S, Haislip AM, Garry RF. Of mice, cats, and men: Is human breast cancer a Zoonosis? Microsc Res Tech 2005; 68:197-208. [PMID: 16276516 DOI: 10.1002/jemt.20232] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mouse mammary tumor virus (MMTV), a member of the betaretroviridae, is the most common cause of breast cancer (BC) in mice. MMTV is transmitted in mice both in the germline as endogenous proviruses and exogenously as infectious virions. Here, we review a variety of evidence accumulated for six decades that has suggested that a human homologue of MMTV may exist. The findings include recent studies from several independent laboratories that have detected sequences very closely related to MMTV in DNA isolated from human BC tumors. Other laboratories, however, have failed to detect the MMTV-related sequences in human DNA samples, and conclusive evidence for a human mammary tumor virus has been elusive. We also reviewed additional studies, suggesting that betaretroviruses are present in a much wider range of species than previously known, including rodents, felines, and primates. The observation that a subset of cats may be infected with a close homologue of MMTV may be of epidemiological significance for human BC. Cats may become infected by MMTV from mice, and in turn may transmit the virus to humans, possibly after selection for variants with an expanded host range.
Collapse
Affiliation(s)
- Sara Szabo
- Department of Pathology, Children's Hospital, New Orleans, Louisiana 70118, USA.
| | | | | |
Collapse
|
13
|
Selmi C, Ross SR, Ansari AA, Invernizzi P, Podda M, Coppel RL, Gershwin ME. Lack of immunological or molecular evidence for a role of mouse mammary tumor retrovirus in primary biliary cirrhosis. Gastroenterology 2004; 127:493-501. [PMID: 15300582 DOI: 10.1053/j.gastro.2004.05.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Recent observations, including a pilot clinical trial, have suggested that a human mouse mammary tumor virus (MMTV) causes primary biliary cirrhosis (PBC). We attempted to confirm such data. METHODS We obtained sera from 101 patients (53 with PBC and 48 controls), fixed liver sections from 10 patients (8 PBC and 2 controls), fresh liver specimens (6 PBC and 6 controls), and fresh peripheral blood lymphocytes (PBLs) (10 PBC and 10 controls). We studied sera for reactivities against 3 different strains of MMTV virions, MMTV(C3H), MMTV(FM), and MMTV(LA), including goat polyclonal antibodies against MMTV virions, gp52, and p27 as positive controls. We stained liver specimens using polyclonal antibodies against MMTV and gp52 and further examined tissue samples and PBLs for specific MMTV genome sequences. RESULTS By Western blot analysis, no detectable reactivity in any of the PBC sera against any of the 3 MMTV strains or MMTV gp52 or p27 was observed. However, viral proteins were recognized by our control positive polyclonal antibodies. We note that 13%-60% of PBC sera presented low reactivity against 2 proteins of approximately 57 and 74 kilodaltons. Such reactivity is related to the trace amounts of mitochondrial antigens in the virus preparations derived from murine mammary tumor tissue. No detectable immunohistochemical or molecular evidence for MMTV was found in the liver specimens or PBLs. CONCLUSIONS We were unable to recapitulate the data on this specific retroviral etiology of PBC and suggest that such data could be the result of contamination.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, 95616, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cryoelectron microscopy of Mouse mammary tumor virus, a Betaretrovirus, provided information about glycoprotein structure and core formation. The virions showed the broad range of diameters typical of retroviruses. Betaretroviruses assemble cytoplasmically, so the broad size range cannot reflect the use of the plasma membrane as a platform for assembly.
Collapse
Affiliation(s)
- John A G Briggs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, United Kingdom
| | | | | | | |
Collapse
|
15
|
Abstract
Recently a number of viruses, including a poxvirus, herpesvirus, retrovirus and two paramyxoviruses, have been shown to activate cells via Toll-like receptor family members. Here we postulate that although activation via Toll-like receptor molecules can lead to anti-viral innate immune responses, in some cases viruses may use these responses to ameliorate infection.
Collapse
Affiliation(s)
- John C Rassa
- Department of Microbiology/Cancer Center, University of Pennsylvania, 313 BRBII/III, 421, Curie Boulevard Philadelphia, PA 19104-6142, USA
| | | |
Collapse
|
16
|
Mustafa F, Bhadra S, Johnston D, Lozano M, Dudley JP. The type B leukemogenic virus truncated superantigen is dispensable for T-cell lymphomagenesis. J Virol 2003; 77:3866-70. [PMID: 12610163 PMCID: PMC149533 DOI: 10.1128/jvi.77.6.3866-3870.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Type B leukemogenic virus (TBLV) is a variant of mouse mammary tumor virus (MMTV) that causes T-cell lymphomas in mice. We have constructed a TBLV-MMTV hybrid, pHYB-TBLV, in which 756 bp of the C3H MMTV long terminal repeat (LTR) was replaced with 438 bp of the TBLV LTR. Intraperitoneal injection of pHYB-TBLV transfectants consistently resulted in T-cell lymphomas in 50% of injected weanling BALB/c mice with an average latency period of 5.7 (+/- 1.5) months. Transfectants of pHYB-TBLV containing a double-frameshift mutation in the truncated superantigen gene (sag) induced T-cell lymphomas with similar incidences, latency periods, and phenotypes, suggesting that cis-acting elements in the TBLV LTR determine disease specificity.
Collapse
Affiliation(s)
- Farah Mustafa
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- John L Portis
- Laboratory of Persistent Viral Diseases, NIAID, Hamilton, Montana 59840, USA.
| |
Collapse
|
18
|
Czarneski J, Berguer P, Bekinschtein P, Kim DC, Hakimpour P, Wagner N, Nepomnaschy I, Piazzon I, Ross SR. Neonatal infection with a milk-borne virus is independent of beta7 integrin- and L-selectin-expressing lymphocytes. Eur J Immunol 2002; 32:945-56. [PMID: 11920560 DOI: 10.1002/1521-4141(200204)32:4<945::aid-immu945>3.0.co;2-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse mammary tumor virus (MMTV) is acquired by neonates through milk and first infects lymphocytes in Peyer's patches. We show here that newborn mice lacking beta7 integrin or L-selectin were infected with MMTV at wild-type levels in both their lymphoid and mammary tissues. Superantigen-mediated activation and cognate T cell deletion were also unimpaired in both types of null mice. A large proportion of neonatal Peyer's patch lymphocytes in wild-type mice were beta7 and beta1 integrin low and both populations increased in response to MMTV infection. These results suggest that adhesion molecules other than beta7 integrin or L-selectin play a role in lymphocyte homing in the gut, peripheral lymph nodes and mammary gland in response to MMTV infection.
Collapse
Affiliation(s)
- Jennifer Czarneski
- Department of Microbiology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A 2002; 99:2281-6. [PMID: 11854525 PMCID: PMC122356 DOI: 10.1073/pnas.042355399] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although most retroviruses require activated cells as their targets for infection, it is not known how this is achieved in vivo. A candidate protein for the activation of B cells by either mouse mammary tumor virus (MMTV) or murine leukemia virus is the toll-like receptor 4 (TLR4), a component of the innate immune system. MMTV caused B cell activation in C3H/HeN mice but not in C3H/HeJ or BALB/c (C.C3H Tlr4(lps-d)) congenic mice, both of which have a mutant TLR4 gene. This activation was independent of viral gene expression, because it occurred after treatment of MMTV with ultraviolet light or 2,2'-dithiodipyridine and in azidothymidine-treated mice. Nuclear extracts prepared from the lymphocytes of MMTV-injected C3H/HeN but not C3H/HeJ mice showed increased nuclear factor kappaB activity. Additionally, the MMTV- and Moloney murine leukemia virus envelope proteins coimmunoprecipitated with TLR4 when expressed in 293T cells. The MMTV receptor failed to coimmunoprecipitate with TLR4, suggesting that MMTV/TLR4 interaction is independent of virus attachment and fusion. These results identify retroviral proteins that interact with a mammalian toll receptor and show that direct activation by such viruses may initiate in vivo infection pathways.
Collapse
Affiliation(s)
- John C Rassa
- Department of Microbiology/Cancer Center, University of Pennsylvania, Philadelphia, PA 19104-6142, USA
| | | | | | | | | |
Collapse
|
20
|
Czarneski J, Meyers J, Peng T, Abraham V, Mick R, Ross SR. Interleukin-4 up-regulates mouse mammary tumor virus expression yet is not required for in vivo virus spread. J Virol 2001; 75:11886-90. [PMID: 11689671 PMCID: PMC114776 DOI: 10.1128/jvi.75.23.11886-11890.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mouse mammary tumor virus (MMTV) superantigen induces T-cell production of cytokines, such as interleukin-4, which in turn increase MMTV transcription. However, interleukin-4 is not required for in vivo virus spread, because mice lacking interleukin-4 or the STAT6 transcription factor showed wild-type infection of lymphoid and mammary tissue. In spite of this, mammary tumor incidence was decreased in STAT6 null mice.
Collapse
Affiliation(s)
- J Czarneski
- Department of Microbiology, Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6142, USA
| | | | | | | | | | | |
Collapse
|