1
|
Kostoulias X, Fu Y, Morris FC, Yu C, Qu Y, Chang CC, Blakeway L, Landersdorfer CB, Abbott IJ, Wang L, Wisniewski J, Yu Y, Li J, Peleg AY. Ceftolozane/tazobactam disrupts Pseudomonas aeruginosa biofilms under static and dynamic conditions. J Antimicrob Chemother 2025; 80:372-380. [PMID: 39657684 PMCID: PMC11787898 DOI: 10.1093/jac/dkae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa biofilms limit the efficacy of currently available antibacterial therapies and pose significant clinical challenges. Pseudomonal biofilms are complicated further when other markers of persistence such as mucoid and hypermutable phenotypes are present. There is currently a paucity of data regarding the activity of the newer β-lactam/β-lactamase inhibitor combination ceftolozane/tazobactam against P. aeruginosa biofilms. METHODS We evaluated the efficacy of ceftolozane/tazobactam against clinical P. aeruginosa isolates, the laboratory isolate PAO1 and its isogenic mutS-deficient hypermutator derivative (PAOMS) grown under static and dynamic biofilm conditions. The clinical isolate collection included strains with mucoid and hypermutable phenotypes. RESULTS Ceftolozane/tazobactam exposure led to a bactericidal (≥3 log cfu/cm2) biofilm reduction in 15/18 (83%) clinical isolates grown under static conditions, irrespective of carbapenem susceptibility or mucoid phenotype, with greater activity compared with colistin (P < 0.05). Dynamically grown biofilms were less susceptible to ceftolozane/tazobactam with active biofilm reduction (≥1 log cfu/cm2) observed in 2/3 isolates. Hypermutability did not affect the antibiofilm efficacy of ceftolozane/tazobactam in either static or dynamic conditions when comparing PAO1 and PAOMS. Consistent with the activity of ceftolozane/tazobactam as a potent inhibitor of PBP3, dramatic impacts on P. aeruginosa morphology were observed. CONCLUSIONS Our data demonstrate that ceftolozane/tazobactam has encouraging properties in the treatment of P. aeruginosa biofilm infections, and its activity is not diminished against mucoid or hypermutable variants at the timepoints examined.
Collapse
Affiliation(s)
- Xenia Kostoulias
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Ying Fu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Faye C Morris
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Crystal Yu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Yue Qu
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| | - Christina C Chang
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Luke Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Cornelia B Landersdorfer
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Iain J Abbott
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Microbiology Unit, The Alfred Hospital, Prahran, Melbourne, VIC 3004, Australia
| | - Lynn Wang
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yunsong Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Li
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anton Y Peleg
- Infection Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre to Impact AMR, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
2
|
Bellavita R, Casciaro B, Nocerino V, Palladino S, Loffredo MR, Dardano P, De Stefano L, Falcigno L, D'Auria G, Galdiero S, Falanga A. Myxinidin-analogs able to sequester Fe(III): Metal-based gun to combat Pseudomonas aeruginosa biofilm. J Inorg Biochem 2025; 263:112774. [PMID: 39561505 DOI: 10.1016/j.jinorgbio.2024.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Bacteria have developed a tendency to form biofilms, where bacteria live in organized structures embedded in a self-produced matrix of DNA, proteins, and polysaccharides. Additionally, bacteria need iron(III) as an essential nutrient for bacterial growth and secrete siderophore groups that sequester it from the environment. To design a molecule able both to inhibit the bacteria and to sequester iron, we developed two hydroxamate-based peptides derived from an analog (WMR-4), previously developed in our lab, of the antimicrobial peptide myxinidin. In detail, we proposed a combination of WMR-4 with the hydroxamic acid resulting in the peptides WMR-7 and WMR-16 which differ for the length of the linker between the antimicrobial moiety and the siderophore. Both peptides were characterized through a set of different biophysical experiments to investigate their ability to sequester Fe3+. The peptide‑iron(III) complexes were studied through the UV-visible spectroscopy in organic solvent to eliminate water competition, and in acidic water to avoid iron precipitation. The complexes were also characterized by performing electrochemistry, circular dichroism and NMR spectroscopy experiments. In addition, we demonstrated the ability of peptide‑iron(III) complexes to inhibit the biofilm of Pseudomonas aeruginosa and to have an impact on the cell motility. This metal-based approach consisting in a hydroxamic acid conjugation represents a promising strategy to enhance the antibiofilm activity of antimicrobial peptides against one of most dangerous bacteria such as Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Valeria Nocerino
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Sara Palladino
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Principia Dardano
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Luca De Stefano
- National Research Council (ISASI-CNR), Institute of Applied Sciences and Intelligent Systems, Napoli, Italy
| | - Lucia Falcigno
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gabriella D'Auria
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples 'Federico II', Via Domenico Montesano 49, 80131 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples 'Federico II', Via Università 100, Portici, 80055 Portici, Italy.
| |
Collapse
|
3
|
Zhang Y, Wang X, Liang Y, Zhang L, Fan J, Yang Y. A Semisynthetic Oligomannuronic Acid-Based Glycoconjugate Vaccine against Pseudomonas aeruginosa. ACS CENTRAL SCIENCE 2024; 10:1515-1523. [PMID: 39220693 PMCID: PMC11363335 DOI: 10.1021/acscentsci.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and has become increasingly resistant to multiple antibiotics. However, development of novel classes of antibacterial agents against multidrug-resistant P. aeruginosa is extremely difficult. Herein we develop a semisynthetic oligomannuronic acid-based glycoconjugate vaccine that confers broad protection against infections of both mucoid and nonmucoid strains of P. aeruginosa. The well-defined glycoconjugate vaccine formulated with Freund's adjuvant (FA) employing a highly conserved antigen elicited a strong and specific immune response and protected mice against both mucoid and nonmucoid strains of P. aeruginosa. The resulting antibodies recognized different strains of P. aeruginosa and mediated the opsonic killing of the bacteria at varied levels depending on the amount of alginate expressed on the surface of the strains. Vaccination with the glycoconjugate vaccine plus FA significantly promoted the pulmonary and blood clearance of the mucoid PAC1 strain of P. aeruginosa and considerably improved the survival rates of mice against the nonmucoid PAO1 strain of P. aeruginosa. Thus, the semisynthetic glycoconjugate is a promising vaccine that may provide broad protection against both types of P. aeruginosa.
Collapse
Affiliation(s)
- Yiyue Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaotong Wang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youling Liang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangliang Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahao Fan
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Wen H, Zhang Y, Mi Z, Zhang H, Sun C, Liu X, Fan X. Rational design of PspAlgL to improve its thermostability and anti-biofilm activity against Pseudomonas aeruginosa. Int J Biol Macromol 2024; 269:132084. [PMID: 38719003 DOI: 10.1016/j.ijbiomac.2024.132084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Pseudomonas aeruginosa biofilm enhances tolerance to antimicrobials and immune system defenses. Alginate is an important component of biofilm and a virulence factor of P. aeruginosa. The degradation of alginate by alginate lyases has come to serve as an adjunctive therapeutic strategy against P. aeruginosa biofilm, but poor stability of the enzyme limited this application. Thus, PspAlgL, an alginate lyase, can degrade acetylated alginate but has poor thermostability. The 3D structure of PspAlgL was predicted, and the thermostability of PspAlgL was rationally designed by GRAPE strategy, resulting in two variants with better stability. These variants, PspAlgLS270F/E311P and PspAlgLG291S/E311P, effectively degraded the alginate in biofilm. In addition, compared with PspAlgL, these variants were more efficient in inhibiting biofilm formation and degrading the established biofilm of P. aeruginosa PAO1, and they were also able to destroy the biofilm attached to catheters and to increase the sensitivity of P. aeruginosa to the antibiotic amikacin. This study provides one potential anti-biofilm agent for P. aeruginosa infection.
Collapse
Affiliation(s)
- Huamei Wen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Yanyu Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Zhongwen Mi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Haichuan Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenyang Sun
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
6
|
Xu M, Lyu Y, Cheng K, Zhang B, Cai Z, Chen G, Zhou J. Interactions between quorum sensing/quorum quenching and virulence genes may affect coral health by regulating symbiotic bacterial community. ENVIRONMENTAL RESEARCH 2023; 238:117221. [PMID: 37775014 DOI: 10.1016/j.envres.2023.117221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China
| | - Yihua Lyu
- Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou, 510300, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Boya Zhang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
7
|
Francis D, Veeramanickathadathil Hari G, Koonthanmala Subash A, Bhairaddy A, Joy A. The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:327-400. [PMID: 38220430 DOI: 10.1016/bs.apcsb.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India.
| | | | | | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College (Autonomous), Bengaluru, India
| |
Collapse
|
8
|
McGlennen M, Dieser M, Foreman CM, Warnat S. Monitoring biofilm growth and dispersal in real-time with impedance biosensors. J Ind Microbiol Biotechnol 2023; 50:kuad022. [PMID: 37653441 PMCID: PMC10485796 DOI: 10.1093/jimb/kuad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Microbial biofilm contamination is a widespread problem that requires precise and prompt detection techniques to effectively control its growth. Microfabricated electrochemical impedance spectroscopy (EIS) biosensors offer promise as a tool for early biofilm detection and monitoring of elimination. This study utilized a custom flow cell system with integrated sensors to make real-time impedance measurements of biofilm growth under flow conditions, which were correlated with confocal laser scanning microscopy (CLSM) imaging. Biofilm growth on EIS biosensors in basic aqueous growth media (tryptic soy broth, TSB) and an oil-water emulsion (metalworking fluid, MWF) attenuated in a sigmoidal decay pattern, which lead to an ∼22-25% decrease in impedance after 24 Hrs. Subsequent treatment of established biofilms increased the impedance by ∼14% and ∼41% in TSB and MWF, respectively. In the presence of furanone C-30, a quorum-sensing inhibitor (QSI), impedance remained unchanged from the initial time point for 18 Hrs in TSB and 72 Hrs in MWF. Biofilm changes enumerated from CLSM imaging corroborated impedance measurements, with treatment significantly reducing biofilm. Overall, these results support the application of microfabricated EIS biosensors for evaluating the growth and dispersal of biofilm in situ and demonstrate potential for use in industrial settings. ONE-SENTENCE SUMMARY This study demonstrates the use of microfabricated electrochemical impedance spectroscopy (EIS) biosensors for real-time monitoring and treatment evaluation of biofilm growth, offering valuable insights for biofilm control in industrial settings.
Collapse
Affiliation(s)
- Matthew McGlennen
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Christine M Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Stephan Warnat
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Mechanical and Industrial Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
9
|
Lu Y, Cai WJ, Ren Z, Han P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022; 10:1909. [PMID: 36296183 PMCID: PMC9612000 DOI: 10.3390/microorganisms10101909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, implant-associated infection remains a major challenge for orthopedic surgeries. The subject of bacterial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the clinical environment, as well as the extreme difficulty in eradicating them. Biofilm can be defined as a structured microbial community of cells that are attached to a substratum and embedded in a matrix of extracellular polymeric substances (EPS) that they have produced. Biofilm development has been proposed as occurring in a multi-step process: (i) attachment and adherence, (ii) accumulation/maturation due to cellular aggregation and EPS production, and (iii) biofilm detachment (also called dispersal) of bacterial cells. In all these stages, characteristic proteinaceous and non-proteinaceous compounds are expressed, and their expression is strictly controlled. Bacterial biofilm formation around implants shelters the bacteria and encourages the persistence of infection, which could lead to implant failure and osteomyelitis. These complications need to be treated by major revision surgeries and extended antibiotic therapies, which could lead to high treatment costs and even increase mortality. Effective preventive and therapeutic measures to reduce risks for implant-associated infections are thus in urgent need.
Collapse
Affiliation(s)
| | | | | | - Pei Han
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Qader GM, Jarjees KK, Jarjees RK, Jarjees RK. Molecular detection of Metallo-Beta-Lactamase and alginate in multidrug resistance Pseudomonas aeruginosa isolated from the clinical specimen. J Med Life 2022; 15:1105-1109. [PMID: 36415531 PMCID: PMC9635232 DOI: 10.25122/jml-2021-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Pseudomonas aeruginosa pathogen is opportunistic. Several virulence factors and biofilms can cause its pathogenicity. Furthermore, infections triggered via multidrug-resistant P. aeruginosa among hospitalized patients are a public health concern. The primary antimicrobial agents in treating Gram-negative infection include Meropenem and Imipenem. Moreover, the spread of Carbapenem-resistant P. aeruginosa is a focal concern worldwide. The present research aims to determine the spread of Carbapenem-resistant P. aeruginosa, and the distribution of the Alginate and Metallo-beta-lactamase encoding gene in clinical isolates. In the present cross-sectional descriptive research, 50 wound and sputum clinical specimens were obtained. Isolates were all identified by applying cultural characteristics and biochemical tests. The Polymerase Chain Reaction (PCR) was conducted to distinguish algD, BLA-VIM, BLA-IMP, and 16SrRNA genes. Moreover, the phenotypic method was used to detect hemolysin. The disk diffusion technique was applied to screen clinical isolates for eight antimicrobial agents. The PCR results showed all isolates to be positive for algD and negative for BLA-VIM and BLA-IMP genes. Hemolysin and multidrug resistance prevalence was 100% and 76%, respectively. Furthermore, Meropenem proved to be the most efficient antibiotic against clinical isolates. Alginate and hemolysin are considered significant virulence factors for P. aeruginosa, playing a key role in triggering diseases and tissue or skin lesions. The emergence of Multidrug Resistant (MDR) isolates indicates that developing antibiotic stewardship in our regional community hospital is a top priority. Infection control measures could help control the distribution of virulence genes in P. aeruginosa isolates. Moreover, regular observation is needed to decrease public health threats, distributing virulence factors and Imipenem-resistance patterns in clinical isolates of P. aeruginosa.
Collapse
Affiliation(s)
- Govend Musa Qader
- Department of Biology, College of Science, University of Salahaddin-Erbil, Kurdistan Region, Iraq
| | - Khanzad Khudhur Jarjees
- Department of Food Technology, College of Agricultural Engineering Sciences, University of Salahaddin-Erbil, Kurdistan Region, Iraq,Corresponding Author: Khanzad Khudhur Jarjees, Department of Food Technology, College of Agriculture, University of Salahaddin, Erbil, Iraq. E-mail:
| | - Rozhhalat Khudhur Jarjees
- Department of Pharmacy, Erbil Medical Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | | | | |
Collapse
|
11
|
Wu H, Song L, Yam JKH, Plotkin M, Wang H, Rybtke M, Seliktar D, Kofidis T, Høiby N, Tolker-Nielsen T, Song Z, Givskov M. Effects of antibiotic treatment and phagocyte infiltration on development of Pseudomonas aeruginosa biofilm—Insights from the application of a novel PF hydrogel model in vitro and in vivo. Front Cell Infect Microbiol 2022; 12:826450. [PMID: 35959369 PMCID: PMC9362844 DOI: 10.3389/fcimb.2022.826450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background and purpose Bacterial biofilm infections are major health issues as the infections are highly tolerant to antibiotics and host immune defenses. Appropriate biofilm models are important to develop and improve to make progress in future biofilm research. Here, we investigated the ability of PF hydrogel material to facilitate the development and study of Pseudomonas aeruginosa biofilms in vitro and in vivo. Methods Wild-type P. aeruginosa PAO1 bacteria were embedded in PF hydrogel situated in vitro or in vivo, and the following aspects were investigated: 1) biofilm development; 2) host immune response and its effect on the bacteria; and 3) efficacy of antibiotic treatment. Results Microscopy demonstrated that P. aeruginosa developed typical biofilms inside the PF hydrogels in vitro and in mouse peritoneal cavities where the PF hydrogels were infiltrated excessively by polymorphonuclear leukocytes (PMNs). The bacteria remained at a level of ~106 colony-forming unit (CFU)/hydrogel for 7 days, indicating that the PMNs could not eradicate the biofilm bacteria. β-Lactam or aminoglycoside mono treatment at 64× minimal inhibitory concentration (MIC) killed all bacteria in day 0 in vitro biofilms, but not in day 1 and older biofilms, even at a concentration of 256× MIC. Combination treatment with the antibiotics at 256× MIC completely killed the bacteria in day 1 in vitro biofilms, and combination treatment in most of the cases showed significantly better bactericidal effects than monotherapies. However, in the case of the established in vivo biofilms, the mono and combination antibiotic treatments did not efficiently kill the bacteria. Conclusion Our results indicate that the bacteria formed typical biofilms in PF hydrogel in vitro and in vivo and that the biofilm bacteria were tolerant against antibiotics and host immunity. The PF hydrogel biofilm model is simple and easy to fabricate and highly reproducible with various application possibilities. We conclude that the PF hydrogel biofilm model is a new platform that will facilitate progress in future biofilm investigations, as well as studies of the efficacy of new potential medicine against biofilm infections.
Collapse
Affiliation(s)
- Hong Wu
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lulu Song
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, Singapore
| | - Joey Kuok Hoong Yam
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, Singapore
| | - Marian Plotkin
- Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Hengzhuang Wang
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dror Seliktar
- Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Theodoros Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Health System, Singapore, Singapore
| | - Niels Høiby
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhijun Song
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
- *Correspondence: Zhijun Song,
| | - Michael Givskov
- Costerton Biofilm Center, and Institute of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technical University, Singapore, Singapore
| |
Collapse
|
12
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
13
|
Calum H, Trøstrup H, Laulund AS, Thomsen K, Christophersen L, Høiby N, Moser C. Murine burn lesion model for studying acute and chronic wound infections. APMIS 2022; 130:477-490. [PMID: 35441434 DOI: 10.1111/apm.13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/13/2022] [Indexed: 02/05/2023]
Abstract
Acute wounds, such as thermal injury, and chronic wounds are challenging for patients and the healthcare system around the world. Thermal injury of considerable size induces immunosuppression, which renders the patient susceptible to wound infections, but also in other foci like the airways and urinary tract. Infected thermal lesions can progress to chronic wounds with biofilm making them more difficult to treat. While animal models have their limitations, murine wound models are still the best tool at the moment to identify strategies to overcome these challenges. Here, we present a murine burn model, which has been developed to study biofilm formation, the significance of wound healing, and for identifying novel treatment candidates. Investigating the effect of a thermal injury in mice, we observed that 48 h after introduction of the injury, the mice showed a reduction in polymorphonuclear neutrophil granulocytes (PMNs) and a reduced capacity for phagocytosis and oxidative burst. Regarding the chronic wound, Pseudomonas aeruginosa biofilm arrested wound healing and kept the wound in an inflammatory state, but suppressing PMN function by means of the PMN factor S100A8/A9, corresponding to observations in human venous leg ulcers. Monotherapy and dual treatment with S100A8/A9 and ciprofloxacin on P. aeruginosa biofilm-infected murine wounds have been investigated. In combination, S100A8/A9 and ciprofloxacin reduced the bacterial quantity, lowered the proinflammatory response, and increased anti-inflammatory cytokines after 4 days of treatment. When the treatment was prolonged, an additional prevention of resistance development was detected in all the dual-treated mice. In the present review, we provide data on using the murine model for research with the aim of better understanding pathophysiology of wounds and for identifying novel treatments for humans suffering from these lesions.
Collapse
Affiliation(s)
- Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Burns Treatment, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Sofie Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology (ISIM), University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Xiao Q, Luo Y, Shi W, Lu Y, Xiong R, Wu X, Huang H, Zhao C, Zeng J, Chen C. The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:284. [PMID: 35434009 PMCID: PMC9011280 DOI: 10.21037/atm-22-617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Background Antimicrobial peptides (AMPs) have shown promise in the treatment of multi-resistant pathogens. It was therefore of interest to analyze the effects of the AMP LL-37 on the regulation of several virulence factors related to the quorum sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) in vitro. Methods The minimum inhibitory concentration (MIC) was evaluated by the micro broth dilution method. The expression of QS-related and QS-regulated virulence factor genes was also evaluated. Exotoxin A activity was measured with the nicotinamide adenine dinucleotide (NAD) (Coenzyme I) method; Elastase activity was detected with the elastin-Congo red (ECR) method; Pyocyanin detection was performed using the chloroform extraction method. The effects of LL-37 were assessed by measuring the expression changes of the virulence protein-encoding genes of the strains with quantitative polymerase chain reaction (PCR). Results The MIC of LL-37 against both P. aeruginosa reference strain (ATCC 15692 PAO1) and PA-ΔlasI/rhII was therefore determined to be 256 µg/mL. LL-37 at sub-minimum inhibitory concentrations (sub-MICs) had no significant effects on P. aeruginosa bacterial growth (P>0.05), but significantly downregulated the expression of all 3 virulence factors. Conclusions Interestingly, this effect appeared to be dose-related. These findings suggest that LL-37 could be a potential candidate for QS inhibition against bacterial infection and may have significant clinical potential in the treatment of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanfen Luo
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Shi
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinggui Wu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haihao Huang
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
|
16
|
Li Y, Wang S, Xing Z, Niu Y, Liao Z, Lu Y, Qiu J, Zhang J, Wang C, Dong L. Destructing biofilms by cationic dextran through phase transition. Carbohydr Polym 2022; 279:118778. [PMID: 34980345 DOI: 10.1016/j.carbpol.2021.118778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022]
Abstract
Eliminating biofilms from infected tissue presents one of the most challenging issues in clinical treatment of chronic wounds. In biofilms, the extracellular polymeric substances (EPS) form gel structures by electrostatic forces between macromolecules. We hypothesized that cationic polymers could induce the gel-to-sol phase transition of the network, leading to biofilms disruptions. We first validated this assumption by using polyethyleneimine (PEI) as a model molecule, and further synthesized two cationic dextrans with high biodegradability for in vitro and in vivo evaluation. All the cationic polymers could destruct Pseudomonas aeruginosa (P. aeruginosa) biofilms. Treating biofilm with cationic dextrans significantly enhanced the bacterial antibiotic sensitivity. When tested in a biofilm-presenting mouse wound healing model, the cationic dextrans efficiently controlled infection, and accelerated the healing process. Our findings suggest that devising cationic polymers to trigger phase transition of biofilm is an effective, straightforward, and perhaps generic strategy for anti-bacterial therapies.
Collapse
Affiliation(s)
- Yurong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhencheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junni Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
17
|
Wollanke B, Gerhards H, Ackermann K. Infectious Uveitis in Horses and New Insights in Its Leptospiral Biofilm-Related Pathogenesis. Microorganisms 2022; 10:387. [PMID: 35208842 PMCID: PMC8875353 DOI: 10.3390/microorganisms10020387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Uveitis is a sight-threatening eye disease in equids known worldwide that leads to considerable pain and suffering. By far the most common type of uveitis in Germany and neighboring countries is classical equine recurrent uveitis (ERU), which is caused by chronic intraocular leptospiral infection and is the main cause of infectious uveitis in horses. Other infectious causes are extremely rare and are usually clinically distinguishable from ERU. ERU can be treated very effectively by vitreous cavity lavage (vitrectomy). For proper indications of this demanding surgery, it is necessary to differentiate ERU from other types of uveitis in which vitrectomy is not helpful. This can be conducted on the basis of anamnesis in combination with ophthalmologic findings and by aqueous humor examination. During vitrectomy, vitreous material is obtained. These vitreous samples have historically been used for numerous etiologic studies. In this way, a chronic intraocular leptospiral infection has been shown to be the cause of typical ERU and, among other findings, ERU has also been recognized as a biofilm infection, providing new insights into the pathogenesis of ERU and explaining some thus far unexplainable phenomena of ERU. ERU may not only have transmissible aspects to some types of uveitis in humans but may also serve as a model for a spontaneously occurring biofilm infection. Vitreous material obtained during therapeutically indicated vitrectomy can be used for further studies on in vivo biofilm formation, biofilm composition and possible therapeutic approaches.
Collapse
Affiliation(s)
- Bettina Wollanke
- Equine Clinic, Ludwig-Maximilians-University, 80539 Munich, Germany; (H.G.); (K.A.)
| | | | | |
Collapse
|
18
|
Guo H, Tong Y, Cheng J, Abbas Z, Li Z, Wang J, Zhou Y, Si D, Zhang R. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci 2022; 23:ijms23031241. [PMID: 35163165 PMCID: PMC8835882 DOI: 10.3390/ijms23031241] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.
Collapse
|
19
|
Guo HN, Tong YC, Wang HL, Zhang J, Li ZX, Abbas Z, Yang TT, Liu MY, Chen PY, Hua ZC, Yan XN, Cheng Q, Ahmat M, Wang JY, Zhang LL, Wei XB, Liao XD, Zhang RJ. Novel Hybrid Peptide Cathelicidin 2 (1-13)-Thymopentin (TP5) and Its Derived Peptides with Effective Antibacterial, Antibiofilm, and Anti-Adhesion Activities. Int J Mol Sci 2021; 22:11681. [PMID: 34769113 PMCID: PMC8583881 DOI: 10.3390/ijms222111681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/08/2023] Open
Abstract
The increasing numbers of infections caused by multidrug-resistant (MDR) pathogens highlight the urgent need for new alternatives to conventional antibiotics. Antimicrobial peptides have the potential to be promising alternatives to antibiotics because of their effective bactericidal activity and highly selective toxicity. The present study was conducted to investigate the antibacterial, antibiofilm, and anti-adhesion activities of different CTP peptides (CTP: the original hybrid peptide cathelicidin 2 (1-13)-thymopentin (TP5); CTP-NH2: C-terminal amidated derivative of cathelicidin 2 (1-13)-TP5; CTPQ: glutamine added at the C-terminus of cathelicidin 2 (1-13)-TP5) by determining the minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), propidium iodide uptake, and analysis by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy). The results showed that CTPs had broad-spectrum antibacterial activity against different gram-positive and gram-negative bacteria, with MICs against the tested strains varying from 2 to 64 μg/mL. CTPs at the MBC (2 × MIC 64 μg/mL) showed strong bactericidal effects on a standard methicillin-resistant Staphylococcus aureus strain ATCC 43300 after co-incubation for 6 h through disruption of the bacterial membrane. In addition, CTPs at 2 × MIC also displayed effective inhibition activity of several S. aureus strains with a 40-90% decrease in biofilm formation by killing the bacteria embedded in the biofilms. CTPs had low cytotoxicity on the intestinal porcine epithelial cell line (IPEC-J2) and could significantly decrease the rate of adhesion of S. aureus ATCC 43300 on IPEC-J2 cells. The current study proved that CTPs have effective antibacterial, antibiofilm, and anti-adhesion activities. Overall, this study contributes to our understanding of the possible antibacterial and antibiofilm mechanisms of CTPs, which might be an effective anti-MDR drug candidate.
Collapse
Affiliation(s)
- He-Nan Guo
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Yu-Cui Tong
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Hui-Li Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Jing Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Zhong-Xuan Li
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China;
| | - Zaheer Abbas
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Tian-Tian Yang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Meng-Yao Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Pei-Yao Chen
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Zheng-Chang Hua
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Xiao-Na Yan
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China;
| | - Qiang Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Marhaba Ahmat
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Jun-Yong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Lu-Lu Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (L.-L.Z.); (X.-B.W.)
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu-Biao Wei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (L.-L.Z.); (X.-B.W.)
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiu-Dong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ri-Jun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| |
Collapse
|
20
|
Motealleh A, Kart D, Czieborowski M, Kehr NS. Functional Nanomaterials and 3D-Printable Nanocomposite Hydrogels for Enhanced Cell Proliferation and for the Reduction of Bacterial Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43755-43768. [PMID: 34464080 DOI: 10.1021/acsami.1c13392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomaterial-associated infections are a major cause of biomaterial implant failure. To prevent the initial attachment of bacteria to the implant surface, researchers have investigated various surface modification methods. However, most of these approaches also prevent the attachment, spread, and growth of mammalian cells, resulting in tissue integration failure. Therefore, the success of biomaterial implants requires an optimal balance between tissue integration (cell adhesion to biomaterial implants) and inhibition of bacterial colonization. In this regard, we synthesize bifunctional nanomaterials by functionalizing the pores and outer surfaces of periodic mesoporous organosilica (PMO) with antibacterial tetracycline (Tet) and antibacterial and cell-adhesive bipolymer poly-d-lysine (PDL), respectively. Then, the fabricated TetPMO-PDL nanomaterials are incorporated into alginate-based hydrogels to create injectable and 3D-printable nanocomposite (NC) hydrogels (AlgL-TetPMO-PDL). These bifunctional nanomaterial and 3D-printable NC hydrogel show pH-dependent release of Tet over 7 days. They also enhance the proliferation of eukaryotic cells (fibroblasts). TetPMO-PDL is inactive in reducing Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis biofilms. However, AlgL-TetPMO-PDL shows significant antibiofilm activity against P. aeruginosa. These results suggest that the incorporation of TetPMO-PDL into AlgL may have a synergistic effect on the inhibition of the Gram-negative bacterial (P. aeruginosa) biofilm, while this has no effect on the reduction of the Gram-positive bacterial (S. aureus and E. faecalis) biofilm.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Sihhiye, 06100 Ankara, Turkey
| | - Michael Czieborowski
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - Nermin S Kehr
- Physikalisches Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
21
|
Konikkat S, Scribner MR, Eutsey R, Hiller NL, Cooper VS, McManus J. Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for premature 3' end formation in response to azithromycin. PLoS Genet 2021; 17:e1009634. [PMID: 34252072 PMCID: PMC8297930 DOI: 10.1371/journal.pgen.1009634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including patients with cystic fibrosis. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and quorum sensing (QS). The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using a fast, cost-effective genome-wide approach to quantitate RNA 3’ ends (3pMap). We also identified hundreds of P. aeruginosa genes with high incidence of premature 3’ end formation indicative of riboregulation in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’ ends indicating premature transcription termination, transcriptional pausing, or accumulation of stable intermediates resulting from the action of nucleases. Reciprocally, AZM reduced premature intragenic 3’ end termini in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced changes in 3’ end formation alter the expression of central regulators which in turn impairs the expression of QS, biofilm formation and stress response genes, while upregulating genes associated with persistence. Pseudomonas aeruginosa is a common source of hospital-acquired infections and causes prolonged illness in patients with cystic fibrosis. P. aeruginosa infections are often treated with the macrolide antibiotic azithromycin, which changes the expression of many genes involved in infection. By examining such expression changes at nucleotide resolution, we found azithromycin treatment alters the locations of mRNA 3’ ends suggesting most downregulated genes are subject to premature 3’ end formation. We further identified candidate RNA regulatory elements that P. aeruginosa may use to control gene expression. Our work provides new insights in P. aeruginosa gene regulation and its response to antibiotics.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rory Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Pourtois JD, Kratochvil MJ, Chen Q, Haddock NL, Burgener EB, De Leo GA, Bollyky PL. Filamentous Bacteriophages and the Competitive Interaction between Pseudomonas aeruginosa Strains under Antibiotic Treatment: a Modeling Study. mSystems 2021; 6:e0019321. [PMID: 34156288 PMCID: PMC8269214 DOI: 10.1128/msystems.00193-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) is a major bacterial pathogen responsible for chronic lung infections in cystic fibrosis patients. Recent work has implicated Pf bacteriophages, nonlytic filamentous viruses produced by Pa, in the chronicity and severity of Pa infections. Pf phages act as structural elements in Pa biofilms and sequester aerosolized antibiotics, thereby contributing to antibiotic tolerance. Consistent with a selective advantage in this setting, the prevalence of Pf-positive (Pf+) bacteria increases over time in these patients. However, the production of Pf phages comes at a metabolic cost to bacteria, such that Pf+ strains grow more slowly than Pf-negative (Pf-) strains in vitro. Here, we use a mathematical model to investigate how these competing pressures might influence the relative abundance of Pf+ versus Pf- strains in different settings. Our model suggests that Pf+ strains of Pa cannot outcompete Pf- strains if the benefits of phage production falls onto both Pf+ and Pf- strains for a majority of parameter combinations. Further, phage production leads to a net positive gain in fitness only at antibiotic concentrations slightly above the MIC (i.e., concentrations for which the benefits of antibiotic sequestration outweigh the metabolic cost of phage production) but which are not lethal for Pf+ strains. As a result, our model suggests that frequent administration of intermediate doses of antibiotics with low decay rates and high killing rates favors Pf+ over Pf- strains. These models inform our understanding of the ecology of Pf phages and suggest potential treatment strategies for Pf+ Pa infections. IMPORTANCE Filamentous phages are a frontier in bacterial pathogenesis, but the impact of these phages on bacterial fitness is unclear. In particular, Pf phages produced by Pa promote antibiotic tolerance but are metabolically expensive to produce, suggesting that competing pressures may influence the prevalence of Pf+ versus Pf- strains of Pa in different settings. Our results identify conditions likely to favor Pf+ strains and thus antibiotic tolerance. This study contributes to a better understanding of the unique ecology of filamentous phages in both environmental and clinical settings and may facilitate improved treatment strategies for combating antibiotic tolerance.
Collapse
Affiliation(s)
- Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, California, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, California, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Bhardwaj S, Bhatia S, Singh S, Franco Jr F. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:699-719. [PMID: 34630947 PMCID: PMC8487598 DOI: 10.22038/ijbms.2021.49151.11254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
A perilous increase in the number of bacterial infections has led to developing throngs of antibiotics for increasing the quality and expectancy of life. Pseudomonas aeruginosa is becoming resistant to all known conventional antimicrobial agents thereby posing a deadly threat to the human population. Nowadays, targeting virulence traits of infectious agents is an alternative approach to antimicrobials that is gaining much popularity to fight antimicrobial resistance. Quorum sensing (QS) involves interspecies communication via a chemical signaling pathway. Under this mechanism, cells work in a concerted manner, communicate with each other with the help of signaling molecules called auto-inducers (AI). The virulence of these strains is driven by genes, whose expression is regulated by AI, which in turn acts as transcriptional activators. Moreover, the problem of antibiotic-resistance in case of infections caused by P. aeruginosa becomes more alarming among immune-compromised patients, where the infectious agents easily take over the cellular machinery of the host while hidden in the QS mediated biofilms. Inhibition of the QS circuit of P. aeruginosa by targeting various signaling pathways such as LasR, RhlR, Pqs, and QScR transcriptional proteins will help in blocking downstream signal transducers which could result in reducing the bacterial virulence. The anti-virulence agent does not pose an immediate selective pressure on growing bacterium and thus reduces the pathogenicity without harming the target species. Here, we review exclusively, the growing emergence of multi-drug resistant (MDR) P. aeruginosa and the critical literature survey of QS inhibitors with their potential application of blocking P. aeruginosa infections.
Collapse
Affiliation(s)
- Snigdha Bhardwaj
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Francisco Franco Jr
- Department of Chemistry, De La Salle University, Manila, Metro Manila, Philippines
| |
Collapse
|
24
|
Tait JR, Bilal H, Kim TH, Oh A, Peleg AY, Boyce JD, Oliver A, Bergen PJ, Nation RL, Landersdorfer CB. Pharmacodynamics of ceftazidime plus tobramycin combination dosage regimens against hypermutable Pseudomonas aeruginosa isolates at simulated epithelial lining fluid concentrations in a dynamic in vitro infection model. J Glob Antimicrob Resist 2021; 26:55-63. [PMID: 34023531 DOI: 10.1016/j.jgar.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Hypermutable Pseudomonas aeruginosa strains are a major challenge in cystic fibrosis. We investigated bacterial killing and resistance emergence for approved ceftazidime and tobramycin regimens, alone and in combination. METHODS Pseudomonas aeruginosa PAOΔmutS and six hypermutable clinical isolates were examined using 48-h static concentration time-kill (SCTK) studies (inoculum ~107.5 CFU/mL); four strains were also studied in a dynamic in vitro model (IVM) (inoculum ~108 CFU/mL). The IVM simulated concentration-time profiles in epithelial lining fluid following intravenous administration of ceftazidime (3 g/day and 9 g/day continuous infusion), tobramycin (5 mg/kg and 10 mg/kg via 30-min infusion 24-hourly; half-life 3.5 h), and their combinations. Time courses of total and less-susceptible populations were determined. RESULTS Ceftazidime plus tobramycin demonstrated synergistic killing in SCTK studies for all strains, although to a lesser extent for ceftazidime-resistant strains. In the IVM, ceftazidime and tobramycin monotherapies provided ≤5.4 and ≤3.4 log10 initial killing, respectively; however, re-growth with resistance occurred by 72 h. Against strains susceptible to one or both antibiotics, high-dose combination regimens provided >6 log10 initial killing, which was generally synergistic from 8-24 h, and marked suppression of re-growth and resistance at 72 h. The time course of bacterial density in the IVM was well described by mechanism-based models, enabling Monte Carlo simulations (MCSs) to predict likely effectiveness of the combination in patients. CONCLUSION Results of the IVM and MCS suggested antibacterial effect depends both on the strain's susceptibility and hypermutability. Further investigation of the combination against hypermutable P. aeruginosa strains is warranted.
Collapse
Affiliation(s)
- Jessica R Tait
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Hajira Bilal
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, Daegu, South Korea
| | - Abigail Oh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - John D Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma, Palma de Mallorca, Spain
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
25
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Mirzaei R, Mohammadzadeh R, Sholeh M, Karampoor S, Abdi M, Dogan E, Moghadam MS, Kazemi S, Jalalifar S, Dalir A, Yousefimashouf R, Mirzaei E, Khodavirdipour A, Alikhani MY. The importance of intracellular bacterial biofilm in infectious diseases. Microb Pathog 2020; 147:104393. [PMID: 32711113 DOI: 10.1016/j.micpath.2020.104393] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Various bacterial species, previously known as extracellular pathogens, can reside inside different host cells by adapting to intracellular modes by forming microbial aggregates with similar characteristics to bacterial biofilms. Additionally, bacterial invasion of human cells leads to failure in antibiotic therapy, as most conventional anti-bacterial agents cannot reach intracellular biofilm in normal concentrations. Various studies have shown that bacteria such as uropathogenic Escherichia coli, Pseudomonas aeruginosa, Borrelia burgdorferi,Moraxella catarrhalis, non-typeable Haemophilus influenzae, Streptococcus pneumonia, and group A Streptococci produce biofilm-like structures within the host cells. For the first time in this review, we will describe and discuss the new information about intracellular bacterial biofilm formation and its importance in bacterial infectious diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Eyup Dogan
- Department of Basic Biotechnology, Biotechnology Institute, Ankara, Turkey
| | - Mohammad Shokri Moghadam
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amine Dalir
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Mirzaei
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Khodavirdipour
- Division of Humann Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
27
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
28
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
29
|
Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life 2020; 72:1271-1285. [PMID: 32150327 DOI: 10.1002/iub.2266] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Biofilms are microbial communities established in the self-produced extracellular substances that include up to 80% of associated microbial infections. During biofilm formation, bacterial cells shift from the planktonic forms to aggregated forms surrounded by an extracellular polymeric substance. The bacterial biofilm shows resistance against immune reactions as well as antibiotics and is potentially able to cause disorders by both device-related and nondevice-related infections. The nondevice-related bacterial biofilm infections include dental plaque, urinary tract infections, cystic fibrosis, otitis media, infective endocarditis, tonsillitis, periodontitis, necrotizing fasciitis, osteomyelitis, infectious kidney stones, and chronic inflammatory diseases. In this review, we will summarize and examine the literature about bacterial biofilm infections unrelated to indwelling devices.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Shokri Moghadam
- Department of Microbiology, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. Antimicrob Agents Chemother 2020; 64:AAC.02033-19. [PMID: 31964794 DOI: 10.1128/aac.02033-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.
Collapse
|
31
|
Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel) 2020; 9:E59. [PMID: 32028684 PMCID: PMC7167820 DOI: 10.3390/antibiotics9020059] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system, antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory, and the urinary system. In most cases reviewed, the biofilms were identified through various imaging technics, in addition to other study approaches. The current knowledge on how biofilm may contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by contributing to inflammation. Observations also indicate that biofilm does not exclusively occur extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may contribute to development of cancer. In conclusion, this review shows that biofilm is part of many, probably most chronic infections. This is important knowledge for development of effective treatment strategies for such infections.
Collapse
Affiliation(s)
- Lene K. Vestby
- Department of Immunology and Virology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway;
| | - Torstein Grønseth
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital HF, Postboks 4950 Nydalen, 0424 Oslo, Norway;
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, Blindern, 0316 Oslo, Norway;
| | - Live L. Nesse
- Department of Food Safety and Animal Health Research, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| |
Collapse
|
32
|
Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc Natl Acad Sci U S A 2020; 117:3167-3173. [PMID: 31980538 DOI: 10.1073/pnas.1917576117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR-) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR- strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent K d of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR- strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.
Collapse
|
33
|
Wang L, Huang Y, Yin G, Wang J, Wang P, Chen ZY, Wang T, Ren G. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother Res 2019; 34:1226-1236. [PMID: 31885119 DOI: 10.1002/ptr.6605] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 12/15/2022]
Abstract
Asian ginseng (Panax ginseng C.A. Meyer), American ginseng (Panax quinquefolius) and notoginseng (Panax notoginseng) are the three most commonly used ginseng botanicals in the world. With the increasing interests on antimicrobial properties of plants, the antimicrobial activities of ginseng species have been investigated by a number of researchers worldwide. This overview interprets our present knowledge of the antimicrobial activities of the three ginseng species and some of their bioactive components against pathogenic bacteria (Pseudomonas aeruginosa, Helicobacter pylori, Staphylococcus aureus, Escherichia coli, Propionibacterium acnes, et al.) and fungi (Candida albicans, Fusarium oxysporum, et al). Ginsenosides, polysaccharides, essential oil, proteins, and panaxytriol are all might responsible for the antimicrobial activities of ginseng. The antimicrobial mechanisms of ginseng components could be summarized to the following points: (a) inhibit the microbial motility and quorum-sensing ability; (b) affect the formation of biofilms and destroy the mature biofilms, which can weaken the infection ability of the microbes; (c) perturb membrane lipid bilayers, thus causing the formation of pores, leakages of cell constituents and eventually cell death; (d) stimulate of the immune system and attenuate microbes induced apoptosis, inflammation, and DNA damages, which can protect or help the host fight against microbial infections; and (e) inhibit the efflux of antibiotics that can descend the drug resistance of the microbial. The collected information might facilitate and guide further studies needed to optimize the use of ginseng and their components to improve microbial food safety and prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Lijun Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yang Huang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Guo Yin
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Jue Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tiejie Wang
- Shenzhen Institute for Drug Control, Shenzhen, China
| | - Guixing Ren
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Gonzalez Gomez A, Xu C, Hosseinidoust Z. Preserving the Efficacy of Glycopeptide Antibiotics during Nanoencapsulation in Liposomes. ACS Infect Dis 2019; 5:1794-1801. [PMID: 31397146 DOI: 10.1021/acsinfecdis.9b00232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Liposome nanovesicles are attractive vehicles for encapsulation and localized delivery of antibiotics. Most liposomal batch preparation processes involve numerous freeze-thaw cycles and heating or sonication steps, all of which can potentially deactivate or degrade antibiotics. We investigated the extent of antibiotic deactivation during various liposomal preparation methods using two glycopeptide antibiotics clinically administered for Staphylococcus infections, namely, vancomycin hydrochloride and teicoplanin. Both antibiotics, in the nonencapsulated state, were found to be highly sensitive to the freeze-thaw/sonication; vancomycin completely lost efficacy after only three cycles of freeze-thaw, and teicoplanin lost efficacy after 20 min of sonication. When the antibiotics were encapsulated in liposomes, vancomycin retained full potency against bacterial cultures of Staphylococcus aureus but encapsulated teicoplanin suffered a decrease in activity. Differential scanning calorimetry and mass spectrometry suggest that liposomes have a protective effect on the encapsulated antibiotic, the extent of which was found to differ on the basis of the processing conditions.
Collapse
Affiliation(s)
- Azucena Gonzalez Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
| | - Chenchen Xu
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L9S 4L8, Canada
| |
Collapse
|
35
|
Tabatabaei M, Dastbarsar M, Moslehi MA. Isolation and identification of Pandoraea spp. From bronchoalveolar lavage of cystic fibrosis patients in Iran. Ital J Pediatr 2019; 45:118. [PMID: 31477148 PMCID: PMC6720371 DOI: 10.1186/s13052-019-0687-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background Pandoraea species are gram negative, motile, non-spore forming, rod shaped and oxidase positive, obligate aerobes bacteria, and have one polar flagellum. Most of Pandoraea species are associated with lung infections in cystic fibrosis patients. Cystic fibrosis is the most prevalent autosomal recessive hereditary disease in the world that affects various organs of the body. The main important cause of death in these patients is lung involvement. This study was conducted to isolate and identify Pandoraea bacterium from bronchoalveolar lavage and sputum samples of cystic fibrosis patients in Shiraz, Iran. Methods In this research 31 samples of bronchoalveolar lavage and sputum were examined by culture and PCR method. Then confirmed isolates were evaluated for susceptibility to different antibiotics and ability to produce biofilm. Results The results of this study after cultivation, purification and DNA extraction led to the isolation of 4 Pandoraea bacterium by PCR using specific primers. Antibiotic susceptibility test were indicated all isolates were resistant to gentamicin, amikacin and imipenem and susceptible to ciprofloxacin, trimethoprim-sulfumethoxazole, piperacillin and tetracycline. Ability to create biofilm was indicated by some of Pandoraea isolates. According to findings of this study, ability to synthesis biofilm by Pandoraea isolates and resistance to some antibiotics are very important. Conclusions Our study notes the role of P. pnomenusa as an emerging pathogen that can cause chronic lung colonization in CF patients. Identification tools need to be accurate and must be based on molecular techniques. Also our findings should raise awareness about antibiotic resistance in cystic fibrosis patients in Iran and ability of including bacterial agents to produce biofilm is an alarm for public health. Thus clinicians should exercise caution about finding of clinical relevance of this pathogen to the infection and prescribing antibiotics, especially in cases of children infections.
Collapse
|
36
|
Fallatah H, Elhaneid M, Ali-Boucetta H, Overton TW, El Kadri H, Gkatzionis K. Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25057-25070. [PMID: 31250387 PMCID: PMC6689283 DOI: 10.1007/s11356-019-05688-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/04/2019] [Indexed: 05/29/2023]
Abstract
Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 μg/mL or 8.5 μg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.
Collapse
Affiliation(s)
- Hussam Fallatah
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Mohamad Elhaneid
- School of Pharmacy, University of Birmingham, B15 2TT, Birmingham, UK
| | | | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece.
| |
Collapse
|
37
|
Morgan SJ, Lippman SI, Bautista GE, Harrison JJ, Harding CL, Gallagher LA, Cheng AC, Siehnel R, Ravishankar S, Usui ML, Olerud JE, Fleckman P, Wolcott RD, Manoil C, Singh PK. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathog 2019; 15:e1007511. [PMID: 30893371 PMCID: PMC6448920 DOI: 10.1371/journal.ppat.1007511] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/04/2019] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis. Chronic infections are poorly understood, hard to model, and treatment resistant. Future progress depends upon understanding infection pathogenesis. Our study suggests that many bacterial virulence and biofilm formation functions are not required for fitness of infecting bacteria in chronic wounds. Instead, we found that functions that mitigate stresses associated with high-density bacterial growth are critical for infection. These findings suggest new approaches to model and target chronic bacterial infections.
Collapse
Affiliation(s)
- Sarah J. Morgan
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Soyeon I. Lippman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Gilbert E. Bautista
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Christopher L. Harding
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Larry A. Gallagher
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Ann-Chee Cheng
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Richard Siehnel
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Sumedha Ravishankar
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Marcia L. Usui
- Department of Medicine, University of Washington, Seattle WA, United States of America
| | - John E. Olerud
- Department of Medicine, University of Washington, Seattle WA, United States of America
| | - Philip Fleckman
- Department of Medicine, University of Washington, Seattle WA, United States of America
| | - Randall D. Wolcott
- Southwest Regional Wound Care Center, Lubbock, TX, United States of America
| | - Colin Manoil
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail: (CM); (PKS)
| | - Pradeep K. Singh
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- * E-mail: (CM); (PKS)
| |
Collapse
|
38
|
Yu G, Vicini AC, Pieters RJ. Assembly of Divalent Ligands and Their Effect on Divalent Binding to Pseudomonas aeruginosa Lectin LecA. J Org Chem 2019; 84:2470-2488. [PMID: 30681333 PMCID: PMC6399674 DOI: 10.1021/acs.joc.8b02727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Divalent
ligands were prepared as inhibitors for the adhesion protein
of the problematic Pseudomonas aeruginosa pathogen.
Bridging two binding sites enables simultaneous binding of two galactose
moieties, which strongly enhances binding. An alternating motif of
glucose and triazole and aryl groups was shown to have the right mix
of rigidity, solubility, and ease of synthesis. Spacers were varied
with respect to the core unit as well as the aglycon portions in an
attempt to optimize dynamics and enhance interactions with the protein.
Affinities of the divalent ligands were measured by ITC, and Kd’s as low as 12 nM were determined,
notably for a compounds with either a rigid (phenyl) or flexible (butyl)
unit at the core. Introducing a phenyl aglycon moiety next to the
galactoside ligands on both termini did indeed lead to a higher enthalpy
of binding, which was more than compensated by entropic costs. The
results are discussed in terms of thermodynamics and theoretical calculations
of the expected and observed multivalency effects.
Collapse
Affiliation(s)
- Guangyun Yu
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| | - Anna Chiara Vicini
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , P.O. Box 80082, 3508 TB Utrecht , The Netherlands
| |
Collapse
|
39
|
Biodegradable microparticles designed to efficiently reach and act on cystic fibrosis mucus barrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:19-28. [DOI: 10.1016/j.msec.2018.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/09/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023]
|
40
|
Kalia M, Yadav VK, Singh PK, Dohare S, Sharma D, Narvi SS, Agarwal V. Designing quorum sensing inhibitors of Pseudomonas aeruginosa utilizing FabI: an enzymic drug target from fatty acid synthesis pathway. 3 Biotech 2019; 9:40. [PMID: 30675450 DOI: 10.1007/s13205-019-1567-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/03/2019] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa infections are a leading cause of death in patients suffering from respiratory diseases. The multidrug-resistant nature of Pseudomonas is potentiated by a process known as quorum sensing. The aim of this study was to reveal new inhibitors of a well-validated but quite unexplored target, enoyl-ACP reductase, which contributes acyl chain lengths of N-acyl homoserine lactones that are major signaling molecules in gram-negative bacteria. In the present study, the crystal structure of FabI (PDB, ID 4NR0) was used for the structure-based identification of quorum sensing inhibitors of Pseudomonas aeruginosa. Active site residues of FabI were identified from the complex of FabI with triclosan and these active site residues were further used to screen for potential inhibitors from natural database. Three-dimensional structures of the 75 natural compounds were retrieved from the ZINC database and screened using PyRX software against FabI. Thirty-eight molecules from the initial screening were sorted on the basis of binding energy, using the known inhibitor triclosan as a standard. These molecules were subjected to various secondary filters, such as Lipinski's Rule of Five, ADME, and toxicity. Finally, eight lead-like molecules were obtained after their evaluation for drug-like characteristics. The present study will open a new window for designing QS inhibitors against P. aeruginosa.
Collapse
Affiliation(s)
- Manmohit Kalia
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Vivek Kumar Yadav
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Pradeep Kumar Singh
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Suhaga Dohare
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Deepmala Sharma
- 2Department of Mathematics, National Institute of Technology Raipur, Raipur, India
| | - Shahid Suhail Narvi
- 3Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| | - Vishnu Agarwal
- 1Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
| |
Collapse
|
41
|
Lora-Tamayo J, Murillo O, Ariza J. Clinical Use of Colistin in Biofilm-Associated Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:181-195. [PMID: 31364079 DOI: 10.1007/978-3-030-16373-0_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biofilm is an adaptive bacterial strategy whereby microorganisms become encased in a complex glycoproteic matrix. The low concentration of oxygen and nutrients in this environment leads to heterogeneous phenotypic changes in the bacteria, with antimicrobial tolerance being of paramount importance. As with other antibiotics, the activity of colistin is impaired by biofilm-embedded bacteria. Therefore, the recommendation for administering high doses in combination with a second drug, indicated for planktonic infections, remains valid in this setting. Notably, colistin has activity against metabolically inactive biofilm-embedded cells located in the inner layers of the biofilm structure. This is opposite and complementary to the activity of other antimicrobials that are able to kill metabolically active cells in the outer layers of the biofilm. Several experimental models have shown a higher activity of colistin when used in combination with other agents, and have reported that this can avoid the emergence of colistin-resistant subpopulations. Most experience of colistin in biofilm-associated infections comes from patients with cystic fibrosis, where the use of nebulized colistin allows high concentrations to reach the site of the infection. However, limited clinical experience is available in other scenarios, such as osteoarticular infections or device-related central nervous system infections caused by multi-drug resistant microorganisms. In the latter scenario, the use of intraventricular or intrathecal colistin also permits high local concentrations and good clinical results. Overall, the efficacy of intravenous colistin seems to be poor, but its association with a second antimicrobial significantly increases the response rate. Given its activity against inner bioflm-embedded cells, its possible role in combination with other antibiotics, beyond last-line therapy situations, should be further explored.
Collapse
Affiliation(s)
- Jaime Lora-Tamayo
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Oscar Murillo
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Javier Ariza
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| |
Collapse
|
42
|
Yong YY, Dykes G, Lee SM, Choo WS. Biofilm inhibiting activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. J Appl Microbiol 2018; 126:68-78. [PMID: 30153380 DOI: 10.1111/jam.14091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
Abstract
AIMS To investigate the biofilm inhibitory activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. METHODS AND RESULTS The pulp of red pitahaya and the leaves of red spinach were extracted using methanol followed by subfractionation to obtain betacyanin fraction. The anti-biofilm activity was examined using broth microdilution assay on polystyrene surfaces and expressed as minimum biofilm inhibitory concentration (MBIC). The betacyanin fraction from red spinach showed better anti-biofilm activity (MBIC: 0·313-1·25 mg ml-1 ) against five Staph. aureus strains while the betacyanin fraction from red pitahaya showed better anti-biofilm activity (MBIC: 0·313-0·625 mg ml-1 ) against four P. aeruginosa strains. Both betacyanin fraction significantly reduced hydrophobicity of Staph. aureus and P. aeruginosa strains. Numbers of Staph. aureus and P. aeruginosa attached to polystyrene were also reduced without affecting their cell viability. CONCLUSION Betacyanins can act as anti-biofilm agents against the initial step of biofilm formation, particularly on a hydrophobic surface like polystyrene. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first to investigate the use of betacyanin as a biofilm inhibitory agent. Betacyanin could potentially be used to reduce the risk of biofilm-associated infections.
Collapse
Affiliation(s)
- Y Y Yong
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - G Dykes
- School of Public Health, Curtin University, Bentley, WA, Australia
| | - S M Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - W S Choo
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
43
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 815] [Impact Index Per Article: 116.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
44
|
Kang D, Kirienko NV. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol 2018; 56:449-457. [PMID: 29948830 DOI: 10.1007/s12275-018-8114-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms remain a persistent threat to human healthcare due to their role in the development of antimicrobial resistance. To combat multi-drug resistant pathogens, it is crucial to enhance our understanding of not only the regulation of biofilm formation, but also its contribution to bacterial virulence. Iron acquisition lies at the crux of these two subjects. In this review, we discuss the role of iron acquisition in biofilm formation and how hosts impede this mechanism to defend against pathogens. We also discuss recent findings that suggest that biofilm formation can also have the reciprocal effect, influencing siderophore production and iron sequestration.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of Biosciences, Rice University, Houston, USA
| | | |
Collapse
|
45
|
Schneider-Futschik EK, Paulin OKA, Hoyer D, Roberts KD, Ziogas J, Baker MA, Karas J, Li J, Velkov T. Sputum Active Polymyxin Lipopeptides: Activity against Cystic Fibrosis Pseudomonas aeruginosa Isolates and Their Interactions with Sputum Biomolecules. ACS Infect Dis 2018; 4:646-655. [PMID: 29566483 PMCID: PMC5952261 DOI: 10.1021/acsinfecdis.7b00238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The
mucoid biofilm mode of growth of Pseudomonas aeruginosa (P. aeruginosa) in the lungs of cystic fibrosis
patients makes eradication of infections with antibiotic therapy very
difficult. The lipopeptide antibiotics polymyxin B and colistin are
currently the last-resort therapies for infections caused by multidrug-resistant P. aeruginosa. In the present study, we investigated
the antibacterial activity of a series of polymyxin lipopeptides (polymyxin
B, colistin, FADDI-003, octapeptin A3, and polymyxin A2) against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa cystic fibrosis isolates grown under
planktonic or biofilm conditions in artificial sputum and their interactions
with sputum component biomolecules. In sputum media under planktonic
conditions, the lipopeptides FADDI-003 and octapeptin A3 displayed very promising activity against the polymyxin-resistant
isolate FADDI-PA066 (polymyxin B minimum inhibitory concentration
(MIC) = 32 mg/L), while retaining their activity against the polymyxin-sensitive
strains FADDI-PA021 (polymyxin B MIC = 1 mg/L) and FADDI-PA020 (polymyxin
B MIC = 2 mg/L). Polymyxin A2 was only effective against
the polymyxin-sensitive isolates. However, under biofilm growth conditions,
the hydrophobic lipopeptide FADDI-003 was inactive compared to the
more hydrophilic lipopeptides, octapeptin A3, polymyxin
A2, polymyxin B, and colistin. Transmission electron micrographs
revealed octapeptin A3 caused reduction in the cell numbers
in biofilm as well as biofilm disruption/“antibiofilm”
activity. We therefore assessed the interactions of the lipopeptides
with the component sputum biomolecules, mucin, deoxyribonucleic acid
(DNA), surfactant, F-actin, lipopolysaccharide, and phospholipids.
We observed the general trend that sputum biomolecules reduce lipopeptide
antibacterial activity. Collectively, our data suggests that, in the
airways, lipopeptide binding to component sputum biomolecules may
reduce antibacterial efficacy and is dependent on the physicochemical
properties of the lipopeptide.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Olivia K. A. Paulin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Kade D. Roberts
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - James Ziogas
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark A. Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - John Karas
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Segev-Zarko LA, Kapach G, Josten M, Klug YA, Sahl HG, Shai Y. Deficient Lipid A Remodeling by the arnB Gene Promotes Biofilm Formation in Antimicrobial Peptide Susceptible Pseudomonas aeruginosa. Biochemistry 2018. [PMID: 29518324 DOI: 10.1021/acs.biochem.8b00149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug resistant bacteria possess various mechanisms that can sense environmental stresses such as antibiotics and antimicrobial peptides and rapidly respond to defend themselves. Two known defense strategies are biofilm formation and lipopolysaccharide (LPS) modification. Though LPS modifications are observed in biofilm-embedded bacteria, their effect on biofilm formation is unknown. Using biochemical and biophysical methods coupled with confocal microscopy, atomic force microscopy, and transmission electron microscopy, we show that biofilm formation is promoted in a Pseudomonas aeruginosa PAO1 strain with a loss of function mutation in the arnB gene. This loss of function prevents the addition of the positively charged sugar 4-amino-4-deoxy-l-arabinose to lipid A of LPS under restrictive magnesium conditions. The data reveal that the arnB mutant, which is susceptible to antimicrobial peptides, forms a biofilm that is more robust than that of the wild type. This is in line with the observations that the arnB mutant exhibits outer surface properties such as hydrophobicity and net negative charge that promote the formation of biofilms. Moreover, when grown under Mg2+ limitation, both the wild type and the arnB mutant exhibited a reduction in the level of membrane-bound polysaccharides. The data suggest that the loss of polysaccharides exposes the membrane and alters its biophysical properties, which in turn leads to more biofilm formation. In summary, we show for the first time that blocking a specific lipid A modification promotes biofilm formation, suggesting a trade-off between LPS remodeling and resistance mechanisms of biofilm formation.
Collapse
Affiliation(s)
- Li-Av Segev-Zarko
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Gal Kapach
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology , University of Bonn , Bonn , Germany
| | - Yoel Alexander Klug
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| | - Hans-Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology , University of Bonn , Bonn , Germany
| | - Yechiel Shai
- Department of Biomolecular Sciences , The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
47
|
The Extracellular Polymer Substance of Pseudomonas Aeruginosa: Too slippery for Neutrophils to Migrate On? Int J Artif Organs 2018; 31:796-803. [DOI: 10.1177/039139880803100907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose Biofilm formation is increasingly recognized as the cause of persistent infections and there is evidence that P. aeruginosa organized into biofilms are quite resistant toward host defence mechanisms, particularly against an attack by polymorphonuclear neutrophils (PMN). Apparently, the migration of PMN through the biofilms is impaired, and thus the bactericidal activity remains highly localized. The aim of this study was to directly investigate the interaction of PMN with the biofilm and the extracted extracellular polymeric substance (EPS) of P. aeruginosa. Material and Methods Chemotaxis and random migration of PMN through P. aeruginosa biofilms was tested, as was their migration through and along the EPS. Results We found that the EPS and mature biofilms, but not immature or developing ones, reduced the chemotactic migration of PMN. On EPS, rather than immobilize the cells, their random, spontaneous migration was enhanced. Conclusion We propose that on EPS, the PMN lose their capacity to sense the direction and just slide over the EPS in a disoriented manner. (Int J Artif Organs 2008; 31: 796–803)
Collapse
|
48
|
Hultqvist LD, Alhede M, Jakobsen TH, Givskov M, Bjarnsholt T. Imaging N-Acyl Homoserine Lactone Quorum Sensing In Vivo. Methods Mol Biol 2018; 1673:203-212. [PMID: 29130175 DOI: 10.1007/978-1-4939-7309-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to study N-acyl homoserine lactone (AHL)-based quorum sensing in vivo, we present a protocol using an Escherichia coli strain equipped with a luxR-based monitor system, which in the presence of exogenous AHL molecules expresses a green fluorescent protein (GFP). Lungs from mice challenged intratracheally with alginate beads containing both a Pseudomonas aeruginosa strain together with the E. coli monitor strain can be investigated at different time points postinfection. Epifluorescent or confocal scanning laser microscopy (CSLM) is used to detect the GFP-expressing E. coli monitor strain in the lung tissues, indicating production and excretion of AHLs in vivo by the infecting P. aeruginosa.
Collapse
Affiliation(s)
- Louise Dahl Hultqvist
- Costerton Biofilm Centre, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Maria Alhede
- Costerton Biofilm Centre, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Michael Givskov
- Costerton Biofilm Centre, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Thomas Bjarnsholt
- Costerton Biofilm Centre, Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark.
| |
Collapse
|
49
|
Microfouling inhibition of human nosocomial pathogen Pseudomonas aeruginosa using marine cyanobacteria. Microb Pathog 2018; 114:107-115. [DOI: 10.1016/j.micpath.2017.11.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/23/2022]
|
50
|
Nagoba B, Davane M, Gandhi R, Wadher B, Suryawanshi N, Selkar S. Treatment of skin and soft tissue infections caused by Pseudomonas aeruginosa —A review of our experiences with citric acid over the past 20 years. WOUND MEDICINE 2017; 19:5-9. [DOI: 10.1016/j.wndm.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|