1
|
Liu JQ, Jabbari A, Lin CH, Akkanapally V, Frankel WL, Basu S, He K, Zheng P, Liu Y, Bai XF. IL-27 Gene Therapy Ameliorates IPEX Syndrome Caused by Germline Mutation of Foxp3 Gene: A Major Role for Induction of IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:559-566. [PMID: 38975727 PMCID: PMC11333164 DOI: 10.4049/jimmunol.2400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
Inactivating mutations of Foxp3, the master regulator of regulatory T cell development and function, lead to immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in mice and humans. IPEX is a fatal autoimmune disease, with allogeneic stem cell transplant being the only available therapy. In this study, we report that a single dose of adeno-associated virus (AAV)-IL-27 to young mice with naturally occurring Foxp3 mutation (Scurfy mice) substantially ameliorates clinical symptoms, including growth retardation and early fatality. Correspondingly, AAV-IL-27 gene therapy significantly prevented naive T cell activation, as manifested by downregulation of CD62L and upregulation of CD44, and immunopathology typical of IPEX. Because IL-27 is known to induce IL-10, a key effector molecule of regulatory T cells, we evaluated the contribution of IL-10 induction by crossing IL-10-null allele to Scurfy mice. Although IL-10 deficiency does not affect the survival of Scurfy mice, it largely abrogated the therapeutic effect of AAV-IL-27. Our study revealed a major role for IL-10 in AAV-IL-27 gene therapy and demonstrated that IPEX is amenable to gene therapy.
Collapse
MESH Headings
- Animals
- Forkhead Transcription Factors/genetics
- Mice
- Interleukin-10/genetics
- Interleukin-10/immunology
- Genetic Therapy/methods
- Germ-Line Mutation
- T-Lymphocytes, Regulatory/immunology
- Genetic Diseases, X-Linked/therapy
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/genetics
- Interleukins/immunology
- Interleukins/genetics
- Diarrhea/genetics
- Diarrhea/therapy
- Diarrhea/immunology
- Intestinal Diseases/immunology
- Intestinal Diseases/genetics
- Intestinal Diseases/therapy
- Dependovirus/genetics
- Mice, Inbred C57BL
- Immune System Diseases/immunology
- Immune System Diseases/therapy
- Immune System Diseases/genetics
- Immune System Diseases/congenital
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/congenital
- Mice, Knockout
- Lymphocyte Activation/immunology
- Humans
- Interleukin-27/genetics
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, College of Medicine, Iowa City, Iowa, USA
| | - Cho-Hao Lin
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Venu Akkanapally
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Wendy L. Frankel
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sujit Basu
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Kai He
- Division of Medical Oncology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Pan Zheng
- OncoC4, Inc., 640 Medical Center Drive, Rockville, MD, USA
| | - Yang Liu
- OncoC4, Inc., 640 Medical Center Drive, Rockville, MD, USA
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
2
|
Xue W, Fulco C, Sha S, Alden N, Panteli J, Hossler P, Warren J. Adeno-associated virus perfusion enhanced expression: A commercially scalable, high titer, high quality producer cell line process. Mol Ther Methods Clin Dev 2024; 32:101266. [PMID: 38868441 PMCID: PMC11166877 DOI: 10.1016/j.omtm.2024.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
With safety and efficacy demonstrated over hundreds of clinical trials in the last 30 years, along with at least six recent global marketing authorizations achieved since 2017, recombinant adeno-associated viruses (rAAVs) have been established as the leading therapeutic gene transfer vector for rare, monogenic diseases. Significant advances in manufacturing technology have been made in the last few decades to address challenges with GMP production of rAAV products, although yield, cost, scalability, and quality remain a challenge. With transient transfection processes established as a manufacturing platform for multiple commercial AAV products, there remains significant yield, cost, robustness, and scalability constraints that need to be resolved to enable a reliable supply of rAAV products for global patient access. The development of stable producer cell lines for rAAV products has enabled scalability and, in some cases, improvements in productivity. Herein we describe a novel AAV perfusion-enhanced expression (APEX) process, resulting in higher maximum cell densities in the production bioreactor with a 3- to 6-fold increase in volumetric productivity. This process has been successfully demonstrated across multiple serotypes in large scale cell culture with titers approaching 1 × 1012 GC/mL. The APEX production platform marks a significant leap forward in the efficient and effective manufacturing of rAAV vector products.
Collapse
Affiliation(s)
- Wei Xue
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Cameron Fulco
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Sha Sha
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Nick Alden
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Jan Panteli
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - Patrick Hossler
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| | - James Warren
- Ultragenyx Pharmaceutical Inc., Global CMC Development, 19 Presidential Way, Woburn, MA 01801, USA
| |
Collapse
|
3
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
4
|
Piletska E, Veron P, Bertin B, Mingozzi F, Jones D, Norman RL, Earley J, Karim K, Garcia-Cruz A, Piletsky S. Analysis of Adeno-Associated Virus Serotype 8 (AAV8)-antibody complexes using epitope mapping by molecular imprinting leads to the identification of Fab peptides that potentially evade AAV8 neutralisation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102691. [PMID: 37329939 DOI: 10.1016/j.nano.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy is a promising approach for treating genetic disorders by delivering therapeutic genes to replace or correct malfunctioning genes. However, the introduced gene therapy vector can trigger an immune response, leading to reduced efficacy and potential harm to the patient. To improve the efficiency and safety of gene therapy, preventing the immune response to the vector is crucial. This can be achieved through the use of immunosuppressive drugs, vector engineering to evade the immune system, or delivery methods that bypass the immune system altogether. By reducing the immune response, gene therapy can deliver therapeutic genes more effectively and potentially cure genetic diseases. In this study, a novel molecular imprinting technique, combined with mass-spectrometry and bioinformatics, was used to identify four antigen-binding fragments (Fab) sequences of Adeno-Associated Virus (AAV) - neutralising antibodies capable of binding to AAV. The identified Fab peptides were shown to prevent AAV8's binding to antibodies, demonstrating their potential to improve gene therapy efficiency by preventing the immune response.
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | - Philippe Veron
- Laboratory of Immunology, Genethon, 91002 Evry Cedex, France
| | | | | | - Donald Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK; Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Rachel L Norman
- Cancer Research Centre, RKCSB, University of Leicester, Leicester LE1 7RH, UK; Van Geest MS Omics Facility, University of Leicester, Leicester LE1 9HN, UK
| | - Joseph Earley
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | - Kal Karim
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
5
|
Abstract
Adeno-associated virus (AAV) has a single-stranded DNA genome encapsidated in a small icosahedrally symmetric protein shell with 60 subunits. AAV is the leading delivery vector in emerging gene therapy treatments for inherited disorders, so its structure and molecular interactions with human hosts are of intense interest. A wide array of electron microscopic approaches have been used to visualize the virus and its complexes, depending on the scientific question, technology available, and amenability of the sample. Approaches range from subvolume tomographic analyses of complexes with large and flexible host proteins to detailed analysis of atomic interactions within the virus and with small ligands at resolutions as high as 1.6 Å. Analyses have led to the reclassification of glycan receptors as attachment factors, to structures with a new-found receptor protein, to identification of the epitopes of antibodies, and a new understanding of possible neutralization mechanisms. AAV is now well-enough characterized that it has also become a model system for EM methods development. Heralding a new era, cryo-EM is now also being deployed as an analytic tool in the process development and production quality control of high value pharmaceutical biologics, namely AAV vectors.
Collapse
Affiliation(s)
- Scott
M. Stagg
- Department
of Biological Sciences, Florida State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Craig Yoshioka
- Department
of Biomedical Engineering, Oregon Health
& Science University, Portland Oregon 97239, United States
| | - Omar Davulcu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354, United States
| | - Michael S. Chapman
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Bosma PJ, Wits M, Oude-Elferink RPJ. Gene Therapy for Progressive Familial Intrahepatic Cholestasis: Current Progress and Future Prospects. Int J Mol Sci 2020; 22:E273. [PMID: 33383947 PMCID: PMC7796371 DOI: 10.3390/ijms22010273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive Familial Intrahepatic Cholestasis (PFIC) are inherited severe liver disorders presenting early in life, with high serum bile salt and bilirubin levels. Six types have been reported, two of these are caused by deficiency of an ABC transporter; ABCB11 (bile salt export pump) in type 2; ABCB4 (phosphatidylcholine floppase) in type 3. In addition, ABCB11 function is affected in 3 other types of PFIC. A lack of effective treatment makes a liver transplantation necessary in most patients. In view of long-term adverse effects, for instance due to life-long immune suppression needed to prevent organ rejection, gene therapy could be a preferable approach, as supported by proof of concept in animal models for PFIC3. This review discusses the feasibility of gene therapy as an alternative for liver transplantation for all forms of PFIC based on their pathological mechanism. Conclusion: Using presently available gene therapy vectors, major hurdles need to be overcome to make gene therapy for all types of PFIC a reality.
Collapse
Affiliation(s)
- Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, AGEM, Amsterdam UMC, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.W.); (R.P.J.O.-E.)
| | | | | |
Collapse
|
7
|
Cushnie AK, El-Nahal HG, Bohlen MO, May PJ, Basso MA, Grimaldi P, Wang MZ, de Velasco Ezequiel MF, Sommer MA, Heilbronner SR. Using rAAV2-retro in rhesus macaques: Promise and caveats for circuit manipulation. J Neurosci Methods 2020; 345:108859. [PMID: 32668316 PMCID: PMC7539563 DOI: 10.1016/j.jneumeth.2020.108859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recent genetic technologies such as opto- and chemogenetics allow for the manipulation of brain circuits with unprecedented precision. Most studies employing these techniques have been undertaken in rodents, but a more human-homologous model for studying the brain is the nonhuman primate (NHP). Optimizing viral delivery of transgenes encoding actuator proteins could revolutionize the way we study neuronal circuits in NHPs. NEW METHOD: rAAV2-retro, a popular new capsid variant, produces robust retrograde labeling in rodents. Whether rAAV2-retro's highly efficient retrograde transport would translate to NHPs was unknown. Here, we characterized the anatomical distribution of labeling following injections of rAAV2-retro encoding opsins or DREADDs in the cortico-basal ganglia and oculomotor circuits of rhesus macaques. RESULTS rAAV2-retro injections in striatum, frontal eye field, and superior colliculus produced local labeling at injection sites and robust retrograde labeling in many afferent regions. In every case, however, a few brain regions with well-established projections to the injected structure lacked retrogradely labeled cells. We also observed robust terminal field labeling in downstream structures. COMPARISON WITH EXISTING METHOD(S) Patterns of labeling were similar to those obtained with traditional tract-tracers, except for some afferent labeling that was noticeably absent. CONCLUSIONS rAAV2-retro promises to be useful for circuit manipulation via retrograde transduction in NHPs, but caveats were revealed by our findings. Some afferently connected regions lacked retrogradely labeled cells, showed robust axon terminal labeling, or both. This highlights the importance of anatomically characterizing rAAV2-retro's expression in target circuits in NHPs before moving to manipulation studies.
Collapse
Affiliation(s)
- Adriana K Cushnie
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hala G El-Nahal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, 39216, United States
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Piercesare Grimaldi
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Univ. of California Los Angeles, Los Angeles, CA 90095, United States
| | - Maya Zhe Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | - Marc A Sommer
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
8
|
Zekonyte U, Bacman SR, Moraes CT. DNA-editing enzymes as potential treatments for heteroplasmic mtDNA diseases. J Intern Med 2020; 287:685-697. [PMID: 32176378 PMCID: PMC7260085 DOI: 10.1111/joim.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the mitochondrial genome are the cause of many debilitating neuromuscular disorders. Currently, there is no cure or treatment for these diseases, and symptom management is the only relief doctors can provide. Although supplements and vitamins are commonly used in treatment, they provide little benefit to the patient and are only palliative. This is why gene therapy is a promising research topic to potentially treat and, in theory, even cure diseases caused by mutations in the mitochondrial DNA (mtDNA). Mammalian cells contain approximately a thousand copies of mtDNA, which can lead to a phenomenon called heteroplasmy, where both wild-type and mutant mtDNA molecules co-exist within the cell. Disease only manifests once the per cent of mutant mtDNA reaches a high threshold (usually >80%), which causes mitochondrial dysfunction and reduced ATP production. This is a useful feature to take advantage of for gene therapy applications, as not every mutant copy of mtDNA needs to be eliminated, but only enough to shift the heteroplasmic ratio below the disease threshold. Several DNA-editing enzymes have been used to shift heteroplasmy in cell culture and mice. This review provides an overview of these enzymes and discusses roadblocks of applying these to gene therapy in humans.
Collapse
Affiliation(s)
- U Zekonyte
- From the, Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Barry MA. Recent advances towards gene therapy for propionic acidemia: translation to the clinic. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1635883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Department of Immunology, and Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Chan JKY, Gil-Farina I, Johana N, Rosales C, Tan YW, Ceiler J, Mcintosh J, Ogden B, Waddington SN, Schmidt M, Biswas A, Choolani M, Nathwani AC, Mattar CNZ. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques. FASEB J 2018; 33:3954-3967. [PMID: 30517034 PMCID: PMC6404563 DOI: 10.1096/fj.201801391r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) achieve stable therapeutic expression without long-term toxicity in adults with hemophilia. To avert irreversible complications in congenital disorders producing early pathogenesis, safety and efficacy of AAV-intrauterine gene transfer (IUGT) requires assessment. We therefore performed IUGT of AAV5 or -8 with liver-specific promoter-1 encoding either human coagulation factors IX (hFIX) or X (hFX) into Macaca fascicularis fetuses at ∼0.4 gestation. The initial cohort received 1 × 1012 vector genomes (vgs) of AAV5-hFIX (n = 5; 0.45 × 1013 vg/kg birth weight), resulting in ∼3.0% hFIX at birth and 0.6–6.8% over 19–51 mo. The next cohort received 0.2–1 × 1013 vg boluses. AAV5-hFX animals (n = 3; 3.57 × 1013 vg/kg) expressed <1% at birth and 9.4–27.9% up to 42 mo. AAV8-hFIX recipients (n = 3; 2.56 × 1013 vg/kg) established 4.2–41.3% expression perinatally and 9.8–25.3% over 46 mo. Expression with AAV8-hFX (n = 6, 3.12 × 1013 vg/kg) increased from <1% perinatally to 9.8–13.4% >35 mo. Low expressers (<1%, n = 3) were postnatally challenged with 2 × 1011 vg/kg AAV5 resulting in 2.4–13.2% expression and demonstrating acquired tolerance. Linear amplification–mediated-PCR analysis demonstrated random integration of 57–88% of AAV sequences retrieved from hepatocytes with no events occurring in or near oncogenesis-associated genes. Thus, early-IUGT in macaques produces sustained curative expression related significantly to integrated AAV in the absence of clinical toxicity, supporting its therapeutic potential for early-onset monogenic disorders.—Chan, J. K. Y., Gil-Farina I., Johana, N., Rosales, C., Tan, Y. W., Ceiler, J., Mcintosh, J., Ogden, B., Waddington, S. N., Schmidt, M., Biswas, A., Choolani, M., Nathwani, A. C., Mattar, C. N. Z. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector–mediated intrauterine gene transfer in early-gestation fetal macaques.
Collapse
Affiliation(s)
- Jerry K Y Chan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Irene Gil-Farina
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Nuryanti Johana
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Cecilia Rosales
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Yi Wan Tan
- Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jessika Ceiler
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Jenny Mcintosh
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bryan Ogden
- SingHealth Experimental Medicine Centre, Singapore Health Services Pte, Singapore, Singapore
| | - Simon N Waddington
- Institute for Women's Health, University College London, London, United Kingdom.,Faculty of Health Sciences, Wits/South African Medical Research Council (SAMRC), Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa; and
| | - Manfred Schmidt
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom.,GeneWerk, Heidelberg, Germany
| | - Arijit Biswas
- Department of Translational Oncology, German Cancer Research Center/National Center for Tumor Diseases, Heidelberg, Germany
| | - Mahesh Choolani
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Amit C Nathwani
- University College London (UCL) Cancer Institute, University College London, London, United Kingdom
| | - Citra N Z Mattar
- Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
11
|
Yoo SY, Jeong SN, Kang JI, Lee SW. Chimeric Adeno-Associated Virus-Mediated Cardiovascular Reprogramming for Ischemic Heart Disease. ACS OMEGA 2018; 3:5918-5925. [PMID: 30023931 PMCID: PMC6044635 DOI: 10.1021/acsomega.8b00904] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/22/2018] [Indexed: 05/28/2023]
Abstract
Here, we demonstrated chimeric adeno-associated virus (chimeric AAV), AAV-DJ-mediated cardiovascular reprogramming strategy to generate new cardiomyocytes and limit collagen deposition in cardiac fibroblasts by inducing synergism of chimeric AAV-expressing Gata4, Mef2c, Tbx5 (AAV-GMT)-mediated heart reprogramming and chimeric AAV-expressing thymosin β4 (AAV-Tβ4)-mediated heart regeneration. AAV-GMT promoted a gradual increase in expression of cardiac-specific genes, including Actc1, Gja1, Myh6, Ryr2, and cTnT, with a gradual decrease in expression of a fibrosis-specific gene, procollagen type I and here AAV-Tβ4 help to induce GMT expression, providing a chimeric AAV-mediated therapeutic cell reprogramming strategy for ischemic heart diseases.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT
Foundry Technology Institute, Pusan National
University, Busan 46241, Republic of Korea
- Research
Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Su-Nam Jeong
- BIO-IT
Foundry Technology Institute, Pusan National
University, Busan 46241, Republic of Korea
| | - Jeong-In Kang
- Research
Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Control
and Instrumentation Engineering, Korea Maritime
and Ocean University, Busan 49112, Republic of Korea
| | - Seung-Wuk Lee
- Bioengineering,
University of California, Berkeley, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Zhu J, Liu JQ, Liu Z, Wu L, Shi M, Zhang J, Davis JP, Bai XF. Interleukin-27 Gene Therapy Prevents the Development of Autoimmune Encephalomyelitis but Fails to Attenuate Established Inflammation due to the Expansion of CD11b +Gr-1 + Myeloid Cells. Front Immunol 2018; 9:873. [PMID: 29740452 PMCID: PMC5928207 DOI: 10.3389/fimmu.2018.00873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Interleukin-27 (IL-27) and its subunit P28 (also known as IL-30) have been shown to inhibit autoimmunity and have been suggested as potential immunotherapeutic for autoimmune diseases such as multiple sclerosis (MS). However, the potential of IL-27 and IL-30 as immunotherapeutic, and their mechanisms of action have not been fully understood. In this study, we evaluated the efficacy of adeno-associated viral vector (AAV)-delivered IL-27 (AAV-IL-27) and IL-30 (AAV-IL-30) in a murine model of MS. We found that one single administration of AAV-IL-27, but not AAV-IL-30 completely blocked the development of experimental autoimmune encephalomyelitis (EAE). AAV-IL-27 administration reduced the frequencies of Th17, Treg, and GM-CSF-producing CD4+ T cells and induced T cell expression of IFN-γ, IL-10, and PD-L1. However, experiments involving IL-10-deficient mice and PD-1 blockade revealed that AAV-IL-27-induced IL-10 and PD-L1 expression were not required for the prevention of EAE development. Surprisingly, neither AAV-IL-27 nor AAV-IL-30 treatment inhibited EAE development and Th17 responses when given at disease onset. We found that mice with established EAE had significant expansion of CD11b+Gr-1+ cells, and AAV-IL-27 treatment further expanded these cells and induced their expression of Th17-promoting cytokines such as IL-6. Adoptive transfer of AAV-IL-27-expanded CD11b+Gr-1+ cells enhanced EAE development. Thus, expansion of CD11b+Gr-1+ cells provides an explanation for the resistance to IL-27 therapy in mice with established disease.
Collapse
MESH Headings
- Animals
- CD11b Antigen/immunology
- CD11b Antigen/metabolism
- Dependovirus/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Humans
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-27/administration & dosage
- Interleukin-27/genetics
- Interleukin-27/immunology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/therapy
- Myeloid Cells/immunology
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Receptors, Interleukin
- Treatment Outcome
Collapse
Affiliation(s)
- Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Lisha Wu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Min Shi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, OH, United States
| | - Jonathan P. Davis
- Department of Physiology, Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Galli A, Della Latta V, Bologna C, Pucciarelli D, Cipriani F, Backovic A, Cervelli T. Strategies to optimize capsid protein expression and single-stranded DNA formation of adeno-associated virus in Saccharomyces cerevisiae. J Appl Microbiol 2017; 123:414-428. [PMID: 28609559 DOI: 10.1111/jam.13511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/08/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
AIMS Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. METHODS AND RESULTS Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. CONCLUSIONS This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. SIGNIFICANCE AND IMPACT OF THE STUDY New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production.
Collapse
Affiliation(s)
- A Galli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - V Della Latta
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - C Bologna
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - D Pucciarelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - F Cipriani
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - A Backovic
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - T Cervelli
- Yeast Genetics and Genomics Group, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
14
|
Mendoza SD, El-Shamayleh Y, Horwitz GD. AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses. J Neurophysiol 2017; 117:2004-2013. [PMID: 28202570 PMCID: PMC5411474 DOI: 10.1152/jn.00780.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023] Open
Abstract
Gene delivery to the primate central nervous system via recombinant adeno-associated viral vectors (AAV) allows neurophysiologists to control and observe neural activity precisely. A current limitation of this approach is variability in vector transduction efficiency. Low levels of transduction can foil experimental manipulations, prompting vector readministration. The ability to make multiple vector injections into the same animal, even in cases where successful vector transduction has already been achieved, is also desirable. However, vector readministration has consequences for humoral immunity and gene delivery that depend on vector dosage and route of administration in complex ways. As part of optogenetic experiments in rhesus monkeys, we analyzed blood sera collected before and after AAV injections into the brain and quantified neutralizing antibodies to AAV using an in vitro assay. We found that injections of AAV1 and AAV9 vectors elevated neutralizing antibody titers consistently. These immune responses were specific to the serotype injected and were long lasting. These results demonstrate that optogenetic manipulations in monkeys trigger immune responses to AAV capsids, suggesting that vector readministration may have a higher likelihood of success by avoiding serotypes injected previously.NEW & NOTEWORTHY Adeno-associated viral vector (AAV)-mediated gene delivery is a valuable tool for neurophysiology, but variability in transduction efficiency remains a bottleneck for experimental success. Repeated vector injections can help overcome this limitation but affect humoral immune state and transgene expression in ways that are poorly understood. We show that AAV vector injections into the primate central nervous system trigger long-lasting and serotype-specific immune responses, raising the possibility that switching serotypes may promote successful vector readministration.
Collapse
Affiliation(s)
- Skyler D Mendoza
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Yasmine El-Shamayleh
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Sessions JW, Lewis TE, Skousen CS, Hope S, Jensen BD. The effect of injection speed and serial injection on propidium iodide entry into cultured HeLa and primary neonatal fibroblast cells using lance array nanoinjection. SPRINGERPLUS 2016; 5:1093. [PMID: 27468394 PMCID: PMC4947087 DOI: 10.1186/s40064-016-2757-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023]
Abstract
Background Although site-directed genetic engineering has greatly improved in recent years, particularly with the implementation of CRISPR-Cas9, the ability to deliver these molecular constructs to a wide variety of cell types without adverse reaction is still a challenge. One non-viral transfection method designed to address this challenge is a MEMS based biotechnology described previously as lance array nanoinjection (LAN). LAN delivery of molecular loads is based upon the combinational use of electrical manipulation of loads of interest and physical penetration of target cell membranes. This work explores an original procedural element to nanoinjection by investigating the effects of the speed of injection and also the ability to serially inject the same sample. Results Initial LAN experimentation demonstrated that injecting at speeds of 0.08 mm/s resulted in 99.3 % of cultured HeLa 229 cells remaining adherent to the glass slide substrate used to stage the injection process. These results were then utilized to examine whether or not target cells could be injected multiple times (1, 2, and 3 times) since the injection process was not pulling the cells off of the glass slide. Using two different current control settings (1.5 and 3.0 mA) and two different cell types (HeLa 229 cells and primary neonatal fibroblasts [BJ(ATCC® CRL-2522™)], treatment samples were injected with propidium iodide (PI), a cell membrane impermeable nucleic acid dye, to assess the degree of molecular load delivery. Results from the serial injection work indicate that HeLa cells treated with 3.0 mA and injected twice (×2) had the greatest mean PI uptake of 60.47 % and that neonatal fibroblasts treated with the same protocol reached mean PI uptake rates of 20.97 %. Conclusions Both experimental findings are particularly useful because it shows that greater molecular modification rates can be achieved by multiple, serial injections via a slower injection process.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 USA
| | - Tyler E Lewis
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 USA
| | - Craig S Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 USA
| |
Collapse
|
16
|
Abstract
The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
17
|
Sessions JW, Hanks BW, Lindstrom DL, Hope S, Jensen BD. Transient Low-Temperature Effects on Propidium Iodide Uptake in Lance Array Nanoinjected HeLa Cells. J Nanotechnol Eng Med 2016. [DOI: 10.1115/1.4033323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding environmental factors relative to transfection protocols is key for improving genetic engineering outcomes. In the following work, the effects of temperature on a nonviral transfection procedure previously described as lance array nanoinjection are examined in context of molecular delivery of propidium iodide (PI), a cell membrane impermeable nucleic acid dye, to HeLa 229 cells. For treatment samples, variables include varying the temperature of the injection solution (3C and 23C) and the magnitude of the pulsed voltage used during lance insertion into the cells (+5 V and +7 V). Results indicate that PI is delivered at levels significantly higher for samples injected at 3C as opposed to 23C at four different postinjection intervals (t = 0, 3, 6, 9 mins; p-value ≤ 0.005), reaching a maximum value of 8.3 times the positive control for 3 C/7 V pulsed samples. Suggested in this work is that between 3 and 6 mins postinjection, a large number of induced pores from the injection event close. While residual levels of PI still continue to enter the treatment samples after 6 mins, it occurs at decreased levels, suggesting from a physiological perspective that many lance array nanoinjection (LAN) induced pores have closed, some are still present.
Collapse
Affiliation(s)
- John W. Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| | - Brad W. Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| | - Dallin L. Lindstrom
- Department of Exercise Science, Brigham Young University, Provo, UT 84602 e-mail:
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 e-mail:
| | - Brian D. Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602 e-mail:
| |
Collapse
|
18
|
Zhu X, Liu Z, Liu JQ, Zhu J, Zhang J, Davis JP, Chu J, Yu J, Zhou J, Li MS, Bai XF. Systemic delivery of IL-27 by an adeno-associated viral vector inhibits T cell-mediated colitis and induces multiple inhibitory pathways in T cells. J Leukoc Biol 2016; 100:403-11. [PMID: 27106672 DOI: 10.1189/jlb.3a1215-540r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
IL-27 is a heterodimeric cytokine that is composed of two subunits, i.e., EBV-induced gene 3 and IL-27p28 (also known as IL-30). Although the role of endogenous IL-27 in the pathogenesis of autoimmune colitis, an experimental model of human inflammatory bowel disease, remains controversial, IL-27 local delivery has been shown to inhibit autoimmune colitis. IL-30 has been shown to inhibit Th1 and Th17 responses and is considered a potential therapeutic for certain autoimmune diseases. In this study, we have compared the therapeutic efficacy of adeno-associated viral vector-delivered IL-27 and IL-30 in a murine model of autoimmune colitis. We found that 1 single administration of adeno-associated viral vector-delivered IL-27, but not adeno-associated viral vector-delivered IL-30, nearly completely inhibited autoimmune colitis. Adeno-associated viral vector-delivered IL-27 administration inhibited Th17 responses and induced T cell expression of IL-10, programmed death ligand 1, and stem cell antigen 1. Intriguingly, adeno-associated viral vector-delivered IL-27 treatment enhanced Th1 responses and inhibited regulatory T cell responses. Experiments involving the adoptive transfer of IL-10-deficient T cells revealed that adeno-associated viral vector-delivered IL-27-induced IL-10 production was insufficient to mediate inhibition of autoimmune colitis, whereas anti-programmed death 1 antibody treatment resulted in the breaking of adeno-associated viral vector-delivered IL-27-induced T cell tolerance. Thus, systemic delivery of IL-27 inhibits Th17 responses and induces multiple inhibitory pathways, including programmed death ligand 1 in T cells, and adeno-associated viral vector-delivered IL-27, but not IL-30, may have a therapeutic potential for the treatment of human inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Zhihao Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA; Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin-Qing Liu
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianchao Zhang
- Department of Physiology, Ohio State University, Columbus, Ohio, USA; and
| | - Jonathan P Davis
- Department of Physiology, Ohio State University, Columbus, Ohio, USA; and
| | - Jianhong Chu
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, Ohio, USA
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Song Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China;
| | - Xue-Feng Bai
- Department of Pathology and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA; Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China;
| |
Collapse
|
19
|
Mason D, Chen YZ, Krishnan HV, Sant S. Cardiac gene therapy: Recent advances and future directions. J Control Release 2015; 215:101-11. [PMID: 26254712 DOI: 10.1016/j.jconrel.2015.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/15/2022]
Abstract
Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.
Collapse
Affiliation(s)
- Daniel Mason
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yu-Zhe Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Harini Venkata Krishnan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
20
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
21
|
Uribe PM, Kawas LH, Harding JW, Coffin AB. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure. Front Cell Neurosci 2015; 9:3. [PMID: 25674052 PMCID: PMC4309183 DOI: 10.3389/fncel.2015.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/05/2015] [Indexed: 11/13/2022] Open
Abstract
Loss of sensory hair cells from exposure to certain licit drugs (e.g., aminoglycoside antibiotics, platinum-based chemotherapy agents) can result in permanent hearing loss. Here we ask if allosteric activation of the hepatocyte growth factor (HGF) cascade via Dihexa, a small molecule drug candidate, can protect hair cells from aminoglycoside toxicity. Unlike native HGF, Dihexa is chemically stable and blood-brain barrier permeable. As a synthetic HGF mimetic, it forms a functional ligand by dimerizing with endogenous HGF to activate the HGF receptor and downstream signaling cascades. To evaluate Dihexa as a potential hair cell protectant, we used the larval zebrafish lateral line, which possesses hair cells that are homologous to mammalian inner ear hair cells and show similar responses to toxins. A dose-response relationship for Dihexa protection was established using two ototoxins, neomycin and gentamicin. We found that a Dihexa concentration of 1 μM confers optimal protection from acute treatment with either ototoxin. Pretreatment with Dihexa does not affect the amount of fluorescently tagged gentamicin that enters hair cells, indicating that Dihexa’s protection is likely mediated by intracellular events and not by inhibiting aminoglycoside entry. Dihexa-mediated protection is attenuated by co-treatment with the HGF antagonist 6-AH, further evidence that HGF activation is a component of the observed protection. Additionally, Dihexa’s robust protection is partially attenuated by co-treatment with inhibitors of the downstream HGF targets Akt, TOR and MEK. Addition of an amino group to the N-terminal of Dihexa also attenuates the protective response, suggesting that even small substitutions greatly alter the specificity of Dihexa for its target. Our data suggest that Dihexa confers protection of hair cells through an HGF-mediated mechanism and that Dihexa holds clinical potential for mitigating chemical ototoxicity.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Leen H Kawas
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA ; M3 Biotechnology, Inc. Seattle, WA, USA
| | - Joseph W Harding
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA ; M3 Biotechnology, Inc. Seattle, WA, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA ; College of Arts and Sciences, Washington State University Vancouver, WA, USA
| |
Collapse
|
22
|
Le Guiner C, Stieger K, Toromanoff A, Guilbaud M, Mendes-Madeira A, Devaux M, Guigand L, Cherel Y, Moullier P, Rolling F, Adjali O. Transgene regulation using the tetracycline-inducible TetR-KRAB system after AAV-mediated gene transfer in rodents and nonhuman primates. PLoS One 2014; 9:e102538. [PMID: 25248159 PMCID: PMC4172479 DOI: 10.1371/journal.pone.0102538] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022] Open
Abstract
Numerous studies have demonstrated the efficacy of the Adeno-Associated Virus (AAV)-based gene delivery platform in vivo. The control of transgene expression in many protocols is highly desirable for therapeutic applications and/or safety reasons. To date, the tetracycline and the rapamycin dependent regulatory systems have been the most widely evaluated. While the long-term regulation of the transgene has been obtained in rodent models, the translation of these studies to larger animals, especially to nonhuman primates (NHP), has often resulted in an immune response against the recombinant regulator protein involved in transgene expression regulation. These immune responses were dependent on the target tissue and vector delivery route. Here, using AAV vectors, we evaluated a doxycyclin-inducible system in rodents and macaques in which the TetR protein is fused to the human Krüppel associated box (KRAB) protein. We demonstrated long term gene regulation efficiency in rodents after subretinal and intramuscular administration of AAV5 and AAV1 vectors, respectively. However, as previously described for other chimeric transactivators, the TetR-KRAB-based system failed to achieve long term regulation in the macaque after intramuscular vector delivery because of the development of an immune response. Thus, immunity against the chimeric transactivator TetR-KRAB emerged as the primary limitation for the clinical translation of the system when targeting the skeletal muscle, as previously described for other regulatory proteins. New developments in the field of chimeric drug-sensitive transactivators with the potential to not trigger the host immune system are still needed.
Collapse
Affiliation(s)
- Caroline Le Guiner
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Knut Stieger
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
- Department of Ophthalmology, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alice Toromanoff
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Mickaël Guilbaud
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | | | - Marie Devaux
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Lydie Guigand
- INRA UMR 703 and Atlantic Gene Therapies, ONIRIS, Nantes, France
| | - Yan Cherel
- INRA UMR 703 and Atlantic Gene Therapies, ONIRIS, Nantes, France
| | - Philippe Moullier
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
- Department of Molecular Genetics and Microbiology department, University of Florida, Gainesville, Florida, United States of America
| | - Fabienne Rolling
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, Atlantic Gene Therapies, Nantes University Hospital, Nantes, France
| |
Collapse
|
23
|
D'Amico JM, Condliffe EG, Martins KJB, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci 2014; 8:36. [PMID: 24860447 PMCID: PMC4026713 DOI: 10.3389/fnint.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Elizabeth G Condliffe
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada ; Division of Physical Medicine and Rehabilitation, University of Alberta Edmonton, AB, Canada
| | - Karen J B Martins
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - David J Bennett
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Monica A Gorassini
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
24
|
Complement yourself: Transcomplementation rescues partially folded mutant proteins. Biophys Rev 2014; 6:169-180. [PMID: 24949105 DOI: 10.1007/s12551-014-0137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal disease associated with malfunction in fluid and electrolyte transport across several mucosal membranes. The most common mutation in CF is an in-frame three-base pair deletion that removes a phenylalanine at position 508 in the first nucleotide-binding domain of the cystic fibrosis conductance regulator (CFTR) chloride channel. This mutation has been studied extensively and leads to biosynthetic arrest of the protein in the endoplasmic reticulum and severely reduced channel activity. This review discusses a novel method of rescuing ΔF508 with transcomplementation, which occurs when smaller fragments of CFTR containing the wild-type nucleotide binding domain are co-expressed with the ΔF508 deletion mutant. Transcomplementation rescues the processing and channel activity of ΔF508 and reduces its rate of degradation in airway epithelial cells. To apply transcomplementation as a therapy would require that the cDNA encoding the truncated CFTR be delivered to cells. We also discuss a gene therapeutic approach based on delivery of a truncated form of CFTR to airway cells using adeno-associated viral vectors.
Collapse
|
25
|
Bhardwaj S, Roy H, Ylä-Herttuala S. Gene therapy to prevent occlusion of venous bypass grafts. Expert Rev Cardiovasc Ther 2014; 6:641-52. [DOI: 10.1586/14779072.6.5.641] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
26
|
|
27
|
Jennings JH, Stuber GD. Tools for resolving functional activity and connectivity within intact neural circuits. Curr Biol 2014; 24:R41-R50. [PMID: 24405680 PMCID: PMC4075962 DOI: 10.1016/j.cub.2013.11.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements.
Collapse
Affiliation(s)
- Joshua H Jennings
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Moniri MR, Dai LJ, Warnock GL. The challenge of pancreatic cancer therapy and novel treatment strategy using engineered mesenchymal stem cells. Cancer Gene Ther 2014; 21:12-23. [PMID: 24384772 DOI: 10.1038/cgt.2013.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/09/2013] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) have attracted significant attention in cancer research as a result of their accessibility, tumor-oriented homing capacity, and the feasibility of auto-transplantation. This review provides a comprehensive overview of current challenges in pancreatic cancer therapy, and we propose a novel strategy for using MSCs as means of delivering anticancer genes to the site of pancreas. We aim to provide a practical platform for the development of MSC-based therapy for pancreatic cancer.
Collapse
Affiliation(s)
- M R Moniri
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
| | - L-J Dai
- 1] Department of Surgery, University of British Columbia, Vancouver BC, Canada [2] Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - G L Warnock
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
29
|
Kim SA, Jun SB. In-vivo Optical Measurement of Neural Activity in the Brain. Exp Neurobiol 2013; 22:158-66. [PMID: 24167411 PMCID: PMC3807003 DOI: 10.5607/en.2013.22.3.158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/08/2013] [Accepted: 09/08/2013] [Indexed: 11/23/2022] Open
Abstract
The optical neural recording techniques are promising tools in recent years. Compared to the traditional electrophysiological recording, the optical means offer several advantages including no inclusion of electrical noise, simultaneous imaging of a large number of neurons, or selective recording from genetically-targeted neurons. Overall the optical neural recording technique comprises the intrinsic and the extrinsic optical recordings. The methods for intrinsic neural recording employ the change of optical properties in brains such as blood flow/oxygenation, cellular volume change, or refractive index change without addition of external indicators. Those properties can be detected using various optical techniques including laser Doppler flowmetry (LDF), near-infrared (NIR) spectrometer, functional optical coherence tomography (fOCT), and surface plasmon resonance (SPR). The extrinsic monitoring techniques use fluorescence signals reflecting neuronal activity via chemical or genetic modification of the neuronal cells. Two most popular activity-dependent fluorescent probes, calcium indicators and voltage-sensitive fluorescent proteins will be examined in this review. The principles, the instrumentations and in vivo applications of those optical signal measurements are described.
Collapse
Affiliation(s)
- Shin Ae Kim
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA30332, United States
| | | |
Collapse
|
30
|
Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, Nitschko H, Busch U, Sing A, Ehrhardt A, Baiker A. Universal real-time PCR for the detection and quantification of adeno-associated virus serotype 2-derived inverted terminal repeat sequences. Hum Gene Ther Methods 2013; 23:18-28. [PMID: 22428977 DOI: 10.1089/hgtb.2011.034] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Viral vectors based on various naturally occurring adeno-associated virus (AAV) serotypes are among the most promising tools in human gene therapy. For the production of recombinant AAV (rAAV) vectors, researchers are focusing predominantly on cross-packaging an artificial AAV genome based on serotype 2 (AAV2) into capsids derived from other serotypes. Within the packaged genome the inverted terminal repeats (ITRs) are the only cis-acting viral elements required for rAAV vector generation and depict the lowest common denominator of all AAV2-derived vector genomes. Up to now, no quantitative PCR (qPCR) for the detection and quantification of AAV2 ITRs could be established because of their extensive secondary hairpin structure formation. Current qPCR-based methods are therefore targeting vector-encoded transgenes or regulatory elements. Herein we establish a molecular biological method that allows accurate and reproducible quantification of AAV2 genomes on the basis of an AAV2 ITR sequence-specific qPCR. Primers and labeled probe are located within the ITR sequence and have been designed to detect both wild-type AAV2 and AAV2-based vectors. This method is suitable for detecting single-stranded DNA derived from AAV2 vector particles and double-stranded DNA derived from vector plasmids. The limit of detection has been determined as 50 ITR sequence copies per reaction, by comparison with a plasmid standard. In conclusion, this method describes the first qPCR system facilitating the detection and quantification of AAV2 ITR sequences. Because this method can be used universally for all AAV2 genome-based vectors, it will significantly simplify rAAV2 vector titrations in the future.
Collapse
|
31
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Gene transfer of heme oxygenase-1 using an adeno-associated virus serotype 6 vector prolongs cardiac allograft survival. J Transplant 2012; 2012:740653. [PMID: 23125915 PMCID: PMC3480008 DOI: 10.1155/2012/740653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
Introduction. Allograft survival can be prolonged by overexpression of cytoprotective genes such as heme oxygenase-1 (HO-1). Modifications in vector design and delivery have provided new opportunities to safely and effectively administer HO-1 into the heart prior to transplantation to improve long-term graft outcome. Methods. HO-1 was delivered to the donor heart using an adeno-associated virus vector (AAV) with a pseudotype 6 capsid and vascular endothelial growth factor (VEGF) to enhance myocardial tropism and microvascular permeability. Survival of mouse cardiac allografts, fully or partially mismatched at the MHC, was determined with and without cyclosporine A. Intragraft cytokine gene expression was examined by PCR.
Results. The use of AAV6 to deliver HO-1 to the donor heart, combined with immunosuppression, prolonged allograft survival by 55.3% when donor and recipient were completely mismatched at the MHC and by 94.6% if partially mismatched. The combination of gene therapy and immunosuppression was more beneficial than treatment with either AAV6-HO-1 or CsA alone. IL-17a, b, e and f were induced in the heart at rejection.
Conclusions. Pretreatment of cardiac allografts with AAV6-HO-1 plus cyclosporine A prolonged graft survival. HO-1 gene therapy represents a beneficial adjunct to immunosuppressive therapy in cardiac transplantation.
Collapse
|
33
|
Kos A, Loohuis NFO, Glennon JC, Celikel T, Martens GJM, Tiesinga PH, Aschrafi A. Recent developments in optical neuromodulation technologies. Mol Neurobiol 2012; 47:172-85. [PMID: 23065387 DOI: 10.1007/s12035-012-8361-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
The emergence of optogenetics technology facilitated widespread applications for interrogation of complex neural networks, such as activation of specific axonal pathways, previously found impossible with electrical stimulation. Consequently, within the short period of its application in neuroscience research, optogenetics has led to findings of significant importance both during normal brain function as well as in disease. Moreover, the optimization of optogenetics for in vivo studies has allowed the control of certain behavioral responses such as motility, reflex, and sensory responses, as well as more complex emotional and cognitive behaviors such as decision-making, reward seeking, and social behavior in freely moving animals. These studies have produced a wide variety of animal models that have resulted in fundamental findings and enhanced our understanding of the neural networks associated with behavior. The increasing number of opsins available for this technique enabled even broader regulation of neuronal activity. These advancements highlight the potential of this technique for future treatment of human diseases. Here, we provide an overview of the recent developments in the field of optogenetics technology that are relevant for a better understanding of several neuropsychiatric and neurodegenerative disorders and may pave the way for future therapeutic interventions.
Collapse
Affiliation(s)
- Aron Kos
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Dugué GP, Akemann W, Knöpfel T. A comprehensive concept of optogenetics. PROGRESS IN BRAIN RESEARCH 2012; 196:1-28. [PMID: 22341318 DOI: 10.1016/b978-0-444-59426-6.00001-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fundamental questions that neuroscientists have previously approached with classical biochemical and electrophysiological techniques can now be addressed using optogenetics. The term optogenetics reflects the key program of this emerging field, namely, combining optical and genetic techniques. With the already impressively successful application of light-driven actuator proteins such as microbial opsins to interact with intact neural circuits, optogenetics rose to a key technology over the past few years. While spearheaded by tools to control membrane voltage, the more general concept of optogenetics includes the use of a variety of genetically encoded probes for physiological parameters ranging from membrane voltage and calcium concentration to metabolism. Here, we provide a comprehensive overview of the state of the art in this rapidly growing discipline and attempt to sketch some of its future prospects and challenges.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | | | | |
Collapse
|
36
|
Abstract
The recent development of optogenetics, a revolutionary research tool in neuroscience, portends an evolution of current clinical neuromodulation tools. A form of gene therapy, optogenetics makes possible highly precise spatial and temporal control of specific neuronal populations. This technique has already provided several new insights relevant to clinical neuroscience, from the physiological substrate of functional magnetic resonance imaging to the mechanism of deep brain stimulation in Parkinson's disease. The increased precision of optogenetic techniques also raises the possibility of eventual human use. Translational efforts have begun in primates, with success reported from multiple labs in rhesus macaques. These developments will remain of ongoing interest to neurologists and neurosurgeons.
Collapse
Affiliation(s)
- Paul S A Kalanithi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
37
|
|
38
|
Marel SVD, Majowicz A, Deventer SV, Petry H, Hommes DW, Ferreira V. Gene and cell therapy based treatment strategies for inflammatory bowel diseases. World J Gastrointest Pathophysiol 2011; 2:114-22. [PMID: 22180846 PMCID: PMC3240904 DOI: 10.4291/wjgp.v2.i6.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders most commonly affecting young adults. Currently available therapies can result in induction and maintenance of remission, but are not curative and have sometimes important side effects. Advances in basic research in IBD have provided new therapeutic opportunities to target the inflammatory process involved. Gene and cell therapy approaches are suitable to prevent inflammation in the gastrointestinal tract and show therefore potential in the treatment of IBD. In this review, we present the current progress in the field of both gene and cell therapy and future prospects in the context of IBD. Regarding gene therapy, we focus on viral vectors and their applications in preclinical models. The focus for cell therapy is on regulatory T lymphocytes and mesenchymal stromal cells, their potential for the treatment of IBD and the progress made in both preclinical models and clinical trials.
Collapse
|
39
|
XU DONGMEI, YU JIAHUI, LIU YONGBIAO, SUN HANWEN, XU JINGYING, SHENG KANGLONG, YAO SIDE, XU YUHONG, LU HUILI. NOVEL POLYETHYLENIMINE NANOGELS AS POTENTIAL GENE CARRIERS PRODUCED VIA PHOTOCHEMISTRY IN SURFACTANT-FREE AQUEOUS SOLUTION. INTERNATIONAL JOURNAL OF NANOSCIENCE 2011. [DOI: 10.1142/s0219581x06005108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cationic polymer nanogels, positively-charged submicrometer polymeric particles that swell in water, have attracted an increasing research attentions in recent years because of their potential applications as gene carriers. In this paper, we report a novel method to synthesize polyethylenimine (PEI) nanogels with sizes ranging from 80 nm to 200 nm via UV irradiation at room temperature in aqueous solution without adding any kind of surfactants. The morphology of the nanoparticles is determined to be spherical. The nanogels are of high stability, high transfection efficiency, low toxicity and low immunogenicity, as having been confirmed by in vivo tests with mice as an animal model, and by in vitro tests with human lung and liver cancer cells as well.
Collapse
Affiliation(s)
- DONGMEI XU
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - JIAHUI YU
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - YONGBIAO LIU
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - HANWEN SUN
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - JINGYING XU
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - KANGLONG SHENG
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - SIDE YAO
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
- Graduate School of the Chinese Academy of Sciences, P. O. Box 800204, P. R. China
| | - YUHONG XU
- Shanghai Jiaotong University, Shanghai 200031, P. R. China
| | - HUILI LU
- Shanghai Jiaotong University, Shanghai 200031, P. R. China
| |
Collapse
|
40
|
Rescue of avian adeno-associated virus from a recombinant plasmid containing deletions in the viral inverted terminal repeats. Arch Virol 2011; 157:129-34. [PMID: 21947568 DOI: 10.1007/s00705-011-1121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
We have previously reported the complete genome sequence of avian adeno-associated virus (AAAV) strain YZ-1, isolated from healthy chickens in China. In this study, we describe the successful rescue of infectious virions from a recombinant plasmid containing the genome of YZ-1 with deletions in the viral inverted terminal repeats (ITRs). The complete genome of YZ-1 was cloned into a bacterial plasmid by a modified "A-T" cloning method. Six recombinant plasmids were selected for further experiments. Sequence analysis indicated that the six clones shared identical internal sequences except for the various deletions within ITRs at either end of the cloned genome. The recombinant plasmid pYZ525, harboring a YZ-1 genome with a 96-nt deletion at the 5' end, was used to transfect CEL or HEK293 cells in the presence of the CELO virus or a helper plasmid, and rescued virions were obtained by both of the methods despite the presence of the deletions. Here, for the first time, we provide evidence that a certain number of nt deletions in the ITRs are not lethal for the rescue of viable AAAV from recombinant plasmids. This study provides insight into the unique biology of AAAV and the mechanism of viral replication.
Collapse
|
41
|
Abstract
Both observational and perturbational technologies are essential for advancing the understanding of brain function and dysfunction. But while observational techniques have greatly advanced in the last century, techniques for perturbation that are matched to the speed and heterogeneity of neural systems have lagged behind. The technology of optogenetics represents a step toward addressing this disparity. Reliable and targetable single-component tools (which encompass both light sensation and effector function within a single protein) have enabled versatile new classes of investigation in the study of neural systems. Here we provide a primer on the application of optogenetics in neuroscience, focusing on the single-component tools and highlighting important problems, challenges, and technical considerations.
Collapse
Affiliation(s)
- Ofer Yizhar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
42
|
Aurnhammer C, Haase M, Muether N, Hausl M, Rauschhuber C, Huber I, Nitschko H, Busch U, Sing A, Ehrhardt A, Baiker A. Universal Real-Time PCR for the Detection and Quantification of Adeno-Associated Virus Serotype 2-Derived Inverted Terminal Repeat Sequences. Hum Gene Ther 2011. [DOI: 10.1089/hum.2011.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Future of local bone regeneration - Protein versus gene therapy. J Craniomaxillofac Surg 2011; 39:54-64. [PMID: 20434921 DOI: 10.1016/j.jcms.2010.03.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 03/09/2010] [Accepted: 03/11/2010] [Indexed: 11/22/2022] Open
Abstract
The most promising attempts to achieve bone regeneration artificially are based on the application of mediators such as bone morphogenetic proteins (BMPs) directly to the deficient tissue site. BMPs, as promoters of the regenerative process, have the ability to induce de novo bone formation in various tissues, and many animal models have demonstrated their high potential for ectopic and orthotopic bone formation. However, the biological activity of the soluble factors that promote bone formation in vivo is limited by diffusion and degradation, leading to a short half-life. Local delivery remains a problem in clinical applications. Several materials, including hydroxyapatite, tricalcium phosphate, demineralised bone matrices, poly-lactic acid homo- and heterodimers, and collagen have been tested as carriers and delivery systems for these factors in a sustained and appropriate manner. Unfortunately these delivery vehicles often have limitations in terms of biodegradability, inflammatory and immunological rejection, disease transmission, and most importantly, an inability to provide a sustained, continuous release of these factors at the region of interest. In coping with these problems, new approaches have been established: genes encoding these growth factor proteins can be delivered to the target cells. In this way the transfected cells serve as local "bioreactors", as they express the exogenous genes and secrete the synthesised proteins into their vicinity. The purpose of this review is to present the different methods of gene versus growth factor delivery in tissue engineering. Our review focuses on these promising and innovative methods that are defined as regional gene therapy and provide an alternative to the direct application of growth factors. Various advantages and disadvantages of non-viral and viral vectors are discussed. This review identifies potential candidate genes and target cells, and in vivo as well as ex vivo approaches for cell transduction and transfection. In explaining the biological basis, this paper also refers to current experimental and clinical applications.
Collapse
|
44
|
Gwathmey JK, Yerevanian AI, Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol 2011; 50:803-12. [PMID: 21093451 PMCID: PMC3075330 DOI: 10.1016/j.yjmcc.2010.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 10/27/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
While progress in conventional treatments is making steady and incremental gains to reduce mortality associated with heart failure, there remains a need to explore potentially new therapeutic approaches. Heart failure induced by different etiologies such as coronary artery disease, hypertension, diabetes, infection, or inflammation results generally in calcium cycling dysregulation at the myocyte level. Recent advances in understanding of the molecular basis of these calcium cycling abnormalities, together with the evolution of increasingly efficient gene transfer technology, have placed heart failure within reach of gene-based therapy. Furthermore, the recent successful completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium pump (SERCA2a) ushers in a new era for gene therapy for the treatment of heart failure. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
|
45
|
Li B, Zhang J, Li Z, Tan M. Adeno-associated virus serotype 2 mediated transduction and coexpression of the human apoAI and SR-BI gene in HepG2 cells. Mol Biol Rep 2011; 39:25-32. [PMID: 21431865 DOI: 10.1007/s11033-011-0706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
Cholesterol efflux is the first step in the reverse cholesterol transport (RCT) pathway, removing excess cholesterol from tissues, including the arterial wall, thus preventing the development of atherosclerosis. Adeno-associated virus (rAAV) has demonstrated significant promise as a DNA-delivery vector to treat serious human diseases. In this study, we constructed recombinant adeno-associated viruses coexpressing apoAI and SR-BI successfully, the double gene mRNA and protein were both strongly expressed in transduced HepG2 cells. A novel safe and efficient method of promoting the reverse cholesterol transport (RCT) may be established. These results may provide a new method for gene therapy of Arteriosclerosis.
Collapse
Affiliation(s)
- Bingnan Li
- Experimental Hematology Laboratory, Department of Physiology, Xiang-Ya School of Medicine, Central South University, Changsha, 410078, China
| | | | | | | |
Collapse
|
46
|
Abstract
OBJECTIVE To determine if hybrid adeno-associated virus serotype 2/5 (AAV5) vector can effectively deliver foreign genes into the equine cornea without causing adverse side effects. The aims of this study were to: (i) evaluate efficacy of AAV5 to deliver therapeutic genes into equine corneal fibroblasts (ECFs) using enhanced green fluorescent protein (EGFP) marker gene, and (ii) establish the safety of AAV5 vector for equine corneal gene therapy. MATERIAL Primary ECF cultures were harvested from healthy donor equine corneas. Cultures were maintained at 37°C in humidified atmosphere with 5% CO(2). PROCEDURE AAV5 vector expressing EGFP under control of hybrid cytomegalovirus + chicken β-actin promoter was applied topically to ECF. Expression of delivered EGFP gene in ECF was quantified using fluorescent microscopy. Using fluorescent staining, the total number of cells and transduction efficiency of tested AAV vector was determined. Phase contrast microscopy, trypan blue and TUNEL assays were used to determine toxicity and safety of AAV5 for ECFs. RESULTS Topical AAV5 application successfully transduced significant numbers of ECFs. Transduction efficiency was 13.1%. Tested AAV5 vector did not cause phenotype change or significant cell death and cell viability was maintained. CONCLUSIONS Tested AAV5 vector is effective and safe for gene therapy in ECFs in vitro.
Collapse
Affiliation(s)
- Dylan G. Buss
- College of Veterinary Medicine
- University of Missouri, Columbia, MO
| | - Ajay Sharma
- Mason Eye Institute
- University of Missouri, Columbia, MO
- Ophthalmology, Harry S. Truman Memorial Veterans Hospital, Columbia, MO
| | | | - Rajiv R. Mohan
- Mason Eye Institute
- College of Veterinary Medicine
- University of Missouri, Columbia, MO
- Ophthalmology, Harry S. Truman Memorial Veterans Hospital, Columbia, MO
| |
Collapse
|
47
|
Choi SH, Lee HC. Long-term, antidiabetogenic effects of GLP-1 gene therapy using a double-stranded, adeno-associated viral vector. Gene Ther 2010; 18:155-63. [DOI: 10.1038/gt.2010.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Abstract
Heart failure is a chronic progressive disorder in which frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance are developing vectors and delivery methods that can efficiently transduce most of the cardiomyocytes that can offer a long-term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future.
Collapse
Affiliation(s)
- Antoine H Chaanine
- Cardiovascular Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
49
|
Nathanson JL, Jappelli R, Scheeff ED, Manning G, Obata K, Brenner S, Callaway EM. Short Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not Restrict Activity to Specific Inhibitory Cell-Types. Front Neural Circuits 2009; 3:19. [PMID: 19949461 PMCID: PMC2783723 DOI: 10.3389/neuro.04.019.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 10/13/2009] [Indexed: 12/05/2022] Open
Abstract
Short cell-type specific promoter sequences are important for targeted gene therapy and studies of brain circuitry. We report on the ability of short promoter sequences to drive fluorescent protein expression in specific types of mammalian cortical inhibitory neurons using adeno-associated virus (AAV) and lentivirus (LV) vectors. We tested many gene regulatory sequences derived from fugu (Takifugu rubripes), mouse, human, and synthetic composite regulatory elements. All fugu compact promoters expressed in mouse cortex, with only the somatostatin (SST) and the neuropeptide Y (NPY) promoters largely restricting expression to GABAergic neurons. However these promoters did not control expression in inhibitory cells in a subtype specific manner. We also tested mammalian promoter sequences derived from genes putatively coexpressed or coregulated within three major inhibitory interneuron classes (PV, SST, VIP). In contrast to the fugu promoters, many of the mammalian sequences failed to express, and only the promoter from gene A930038C07Rik conferred restricted expression, although as in the case of the fugu sequences, this too was not inhibitory neuron subtype specific. Lastly and more promisingly, a synthetic sequence consisting of a composite regulatory element assembled with PAX6 E1.1 binding sites, NRSE and a minimal CMV promoter showed markedly restricted expression to a small subset of mostly inhibitory neurons, but whose commonalities are unknown.
Collapse
Affiliation(s)
- Jason L Nathanson
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Li Z, Yao H, Ma Y, Dong Q, Chen Y, Peng Y, Zheng BJ, Huang JD, Chan CY, Lin MC, Sung JJ, Yuen KY, Kung HF, He ML. Inhibition of HBV gene expression and replication by stably expressed interferon-alpha1 via adeno-associated viral vectors. J Gene Med 2008; 10:619-27. [PMID: 18383553 PMCID: PMC7166674 DOI: 10.1002/jgm.1174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Interferon‐α2 (IFNα2) is routinely used for anti‐hepatitis B virus (HBV) treatment. However, the therapeutic efficiency is unsatisfactory, particularly in East Asia. Such inefficiency might be a result of the short half‐life, relatively low local concentration and strong side‐effects of interferons. Frequent and repeated injection is also a big burden for patients. In the present study, a single dose of vector‐delivered IFNα1 was tested for its anti‐HBV effects. Methods Adeno‐associated viral vector (AAV‐IFNα1) was generated to deliver the IFNα1 gene into hepatocytes. IFNα1, hepatitis B surface (HBsAg) and e (HBeAg) antigens were measured by enzyme‐linked immunosorbent assay and/or western blotting. The level of viral DNA was measured by quantitative real‐time polymerase chain reaction. Results AAV‐IFNα1 effectively transduced HBV‐producing cells (HepAD38) and mouse hepatocytes, where IFNα1 was expressed in a stable manner. Both intracellular and extracellular HBsAg and HBeAg were significantly reduced in vitro. In the HBV‐producing mice, the concentration of IFNα1 in the liver was eight‐fold higher than that in plasma. Compared with control groups, HBeAg/HBsAg antigen levels were reduced by more than ten‐fold from day 1–5, and dropped to an undetectable level on day 9 in the AAV‐IFNα1 group. Concurrently, the level of viral DNA decreased over 30‐fold for several weeks. Conclusions A single dose administration of AAV‐IFNα1 viral vector displayed prolonged transgene expression and superior antiviral effects both in vitro and in vivo. Therefore, the use of AAV‐IFNα1 might be a potential alternative strategy for anti‐HBV therapy. Copyright © 2008 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhi Li
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|